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Abstract 

Discrete, logic-based models are increasingly used to describe biological 

mechanisms. Initially introduced to study gene regulation, these models evolved to 

cover various molecular mechanisms, such as signalling, transcription factor 

cooperativity, and even metabolic processes. The abstract nature and amenability of 

discrete models to robust mathematical analyses make them appropriate for 

addressing a wide range of complex biological problems.  

Recent technological breakthroughs have generated a wealth of high 

throughput data. Novel, literature-based representations of biological processes and 

emerging algorithms offer new opportunities for model construction. Here, we review 

up-to-date efforts to address challenging biological questions by incorporating omic 

data into logic-based models, and discuss critical difficulties in constructing and 

analysing integrative, large-scale, logic-based models of biological mechanisms.  
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Highlights 

● Logic-based models are powerful tools for deciphering complex 

biological processes 

● High-throughput data can be used to enrich, validate, contextualise and 

infer logic-based models 

● Efficient omic data integration and rigorous formal methods for large-

scale dynamic analysis are paramount challenges in systems biology 

 

Introduction 

Logic-based models have made significant contributions to our understanding 

of a wide range of biological processes in health and disease. Initially introduced in 

the 60s to describe gene regulatory circuits [1-3], logic-based models have evolved 

substantially over the past five decades to cover various biological processes, such as 

signalling cascades, ion channels, coregulation of transcription factors and even 

metabolism. With the growing body of data available due to technological 

breakthroughs, new methods are being developed to integrate different biological 
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scales and expand the size and complexity of discrete models.  Additionally, efforts to 

create formalised, large-scale representations of network “maps” open avenues for 

rapidly repurposing these datasets to serve as scaffolds for qualitative models [4].  

Logic-based models use logical operators, such as AND, OR and NOT, to 

describe the functions that govern the regulation of the biological entities. While 

detailed mechanistic knowledge is not a prerequisite, the type of regulation (positive 

or negative) between the biological entities and the directionality of these regulations 

is necessary to construct the regulatory graph [5]. In the logical formalism, genes, 

proteins, and other biomolecules are assigned discrete values that correspond to 

activity thresholds (binary values for Boolean Networks: BNs hereafter), multivariate 

values for logical models), and logical rules define the evolution of the system in the 

next time step. Time is implicitly modelled using updating schemes that, together with 

the logical rules, define the emergent behaviour of the system [6, 7]. The precise 

quantitative relationship between model variables and experimental observables is 

model dependent, and needs to be considered during the model building process.  

In silico simulations of the logic-based discrete models give insights into the 

dynamics of the modelled system and allow in-depth analysis, like the searching of 

“attractors”- terminal states of the system such as steady states or cycles [8].  Simple 

attractors represent fixed points that correspond to the system’s stable states. These 

states can be linked to cellular decision-making processes, such as apoptosis, cell 

proliferation, migration, chemotaxis. Complex attractors represent terminal cycles that 

can be linked to biological oscillations, like, for example, the p53 MDM2 interactions 

[9-11]. The absence of parameters makes logic-based models suitable for large-scale 

biological networks where little or no kinetic information is available. Nevertheless, as 

their size and complexity scale up, their analysis can prove to be challenging.  

Technological advancements including high-throughput methods have led to 

an overwhelming amount of biological data. Such data has created a pressing need 

to develop tools and methodologies that could integrate omic data into the modelling 

pipelines. These new approaches include the use of omic data in combination with 

small-scale experiments and prior knowledge for i) model enrichment, pointing to new 

interactions and regulators, ii) model contextualisation, adding specificity in terms of 

data origin and type (species, body fluid, cell type, tissue, single cell data, bulk, disease 

state, treatment, healthy condition etc), iii) model validation, showcasing that the 

model can reproduce known behaviours of the system of interest,  and iv) as source 

input to infer network structure and functions (Figure 1).  
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Figure 1. Different data types and sources and their uses in the inference and analysis 

of logic-based models.  

 

High-throughput data integration into logic-based models 

Efforts to combine high throughput data with discrete logic-based modelling 

depend heavily on the model purpose and the data availability and include model 

enrichment, validation and contextualisation. A typical approach consists of using omic 

data to expand existing models with entities of interest that can be measurable and 

comparable in different conditions. Early attempts to combine high throughput data 

with logic-based models consisted mainly of using the data as a guide to model 

enrichment, identifying key genes and biomolecules to include in the model. An 

example of such an approach is the building of a logic-based model to study mast cell 

activation in the context of allergy, combining high-throughput proteomics and prior 

knowledge [12]. To build the regulatory graph, besides literature mining, the authors 

used proteomic data, pointing to novel SLP76 interactants identified for the first time 

in mastocytes [13]. A combination of small-scale experiments, such as quantitative 

PCR, Western blots, EMSA, together with data from genome-wide assays, such as 

RNA-sequencing and ChIP-sequencing, was used to assemble a comprehensive 

regulatory network to study the reprogramming of pre-B cells into macrophages [14]. 

An iteration of model predictions and in vitro validation led to the update of the model 

with new knowledge and a better understanding of B cell reprogramming mechanisms. 

In the same line, researchers developed a methodology that integrates several -omics 

datasets to identify candidate genes, serving as seeds for network modelling. They 

analysed multi-omics data from the Consensus Molecular Subtypes [15,16] study of 

colorectal cancer to expand a previously built generic cell-fate decision network [17]. 

In many studies, omic data is used as a source of biomarker signatures 

compared against stable states to validate phenotypic outcomes. This requires 

discretizing the measured data, using statistical thresholds such as the p-value or fold 

change. In this case, the regulatory graph of the discrete model is usually built 

manually through curation of the literature, text mining, and pathway database 

interrogation. The logical formulae describing specific mechanisms of gene activation 

are derived from the results of small-scale experiments. The modeller curates the 

relevant literature and uses the experiments to infer causality and mechanistic details, 
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where possible. Then different types of omic data are analysed and compared against 

the model behaviour for validation. This step includes data discretization using 

statistical thresholds to facilitate the comparison with the discrete nature of the logic-

based model results. Recent examples include the enrichment of a logical model of 

macrophage polarisation to describe cancer cell-macrophage interactions and its 

validation using microarray expression data from in vitro co-culture experiments [18-

19]. A similar methodology is employed for the building of a logical model for cancer 

cell invasion and migration. Alongside model building, researchers propose matching 

transcriptomics data to the attractors and validating the model on cell line experiments 

[20]. Going one step further and focusing on the role of ion channels in cancer, an 

executable model of osmotic regulation and membrane transport was proposed 

predicting behaviour from expression data [21-22]. In addition to considering large 

datasets, this model expands the family of biological processes beyond just 

expression and gene activation, to include the coordinated activities of biomolecules 

(in this case ions) that are not under direct control by single genes.  

In a recent commentary, the need for personalised models and the challenges 

that lie in incorporating high-throughput data into mechanistic dynamic models were 

highlighted [23]. An example of this is the framework developed to tailor logical models 

to a particular biological sample. The approach focuses on integrating mutation data, 

copy number alterations (CNA), and expression data (transcriptomics or proteomics) 

into logical models [24]. Using this data, the researchers propose a logical model to 

study the mechanisms of resistance to BRAF inhibition between melanomas and 

colorectal cancers. The model was built using literature mining and pathway 

integration and was contextualised for 100 melanoma and colorectal cell lines using 

available omics data, including mutations and RNAseq data [25]. Cell-specific logic-

based models have also been employed to recapitulate experimentally tested dynamic 

proteomic changes and phenotypic responses in diverse Acute Myeloid Leukaemia 

(AML) cell lines treated with a variety of kinase inhibitors [26]. To improve patient 

stratification, researchers assembled a network of logical relationships linking genes 

that are mutated frequently in AML patients and contextualised the model with 

genomic data inferring relevant patient-specific clinical features [27]. In each of these 

cases, even where the studied cancer was the same, different models reflect not only 

the biology and specific questions being studied, but the data used to build the model 

and the predictions that could be made. This underlines the importance of knowing the 

role data integration plays in model building. 

 

Data-driven discrete model inference  

Whilst high-throughput datasets offer new ways to build and analyse models 

following bottom-up approaches; reverse engineering methods can also be applied to 

infer models from experimental data. Different algorithms have been developed to 

reconstruct logic-based models, and specifically BNs, from high-throughput data. 

There exist two broad categories; combinatorial optimisation methods, which include 

integer or answer set programming (ASP) and allow for full exploration of the search 

space to identify the model that best explains the experimental data, and methods that 
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implement heuristic approaches. The first category has the drawback of not scaling 

well due to computational explosion, while the second one tends to focus on specific 

conditions and stable states to ease the calculation burden. In broad terms, automated 

inference of Boolean networks and functions from data, can be a daunting task due to 

the uncertainty of the data itself and also to the large number of unknowns regarding 

structure and functions that need estimation. Moreover, identifying the most suitable 

data type and available datasets for model training adds to the task, as they need to 

be different from the data used for inference. It should be noted that the experimental 

ability to resolve biologically important expression or concentration differences will 

impact the results; datasets that are prone to noise, or that concern low-expressed 

genes, may introduce bias by excluding important pathways.  

Recently, the caspo time series (caspo-ts) method [28, 29], which allows 

learning of BNs from phosphoproteomic time series data given a Prior Knowledge 

Network (PKN), was applied to data from four breast cancer cell lines (BT20, BT549, 

MCF7, UACC812) [28]. Based on ASP and model-checking, the method could handle 

a large PKN with 64 nodes and 170 edges [30]. Another popular software for building 

logic-based models of signalling networks using prior knowledge and 

phosphoproteomic data is CellNOptR. CellNOptR supports multiple formalisms, from 

BNs to differential equations, in a common framework [31,32].  GABNI (Genetic 

Algorithm-based Boolean Network Inference) is a method that searches for an optimal 

Boolean regulatory function by exploiting a mutual information-based Boolean network 

inference (MIBNI). If this step fails to find an optimal solution, then a genetic algorithm 

(GA) is applied to search an optimal set of regulatory genes on a broader solution 

space [33]. BONITA (Boolean Omics Network Invariant-Time Analysis (BONITA)) is a 

new algorithm for signal propagation, signal integration, and pathway analysis capable 

of modelling heterogeneity in transcriptomic data. The logical rules of the model are 

inferred by the genetic algorithm and are refined by local search. Application of 

BONITA pathway analysis to previously validated RNA-sequencing studies identifies 

additional relevant pathways in in-vitro human cell line experiments and in-vivo infant 

studies [34]. Single-cell expression data has also been used to infer the underlying 

model of blood development from the mesoderm. The expression of 40 genes, 

measured using qRT-PCR data in 3934 cells, was discretized and used to infer a BN 

consisting of 20 transcription factors, giving insight into the independent roles of Hox 

and Sox in Erg activation [35]. Lastly, BTR, an algorithm for training asynchronous 

BNs with single-cell expression data using a novel Boolean state space scoring 

function, was recently proposed. BTR refines existing BNs and infers new by 

improving the match between model prediction and expression data [36].  

 

 

Scalability in inference and analysis of logic-based models  

Understanding complex biological processes, such as immunometabolism, the 

tumour microenvironment, chronic or acute inflammation, or autoimmunity, requires 

models that do not comprise only a handful of nodes but can be adapted accordingly 

to incorporate hundreds of nodes and reactions.  Advancements in the field reflect the 
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tendency to scale up in terms of size and complexity to create models of more realistic 

performance. Recently, the development of the tool CaSQ bridged the gap between 

static and dynamic representations of disease mechanisms, with the inference of 

large-scale BNs from molecular interaction maps [37]. The automated inference of 

large-scale BNs creates new challenges in analysing these models, pushing the limits 

of the existing tools and methodologies. Commonly used software such as GINsim 

[38] can handle Boolean and multivariate logic-based models; however, the attractor’s 

search can be challenging when scaling up, relying on model reduction techniques to 

deal with large systems.  

Several platforms offer different approaches to dealing with large complex 

systems, focused on different problem areas. Cell Collective [39] efficiently handles 

large-scale BNs for simulations but does not offer attractors search. In contrast, 

BoolNet, an R/ Bioconductor package, offers a collection of options for the analysis of 

BNs and a set of heuristics for attractors search when the size and the complexity of 

the model is considerably large [40]. These heuristics focus on retrieving stable states 

in lieu of searching the whole state space and significantly reducing the calculation 

burden, though the results are limited to analysing stable states. BMA [41,42] focuses 

on analysing stable states and, more particularly, fixed points, offering several highly 

scalable algorithms for model analysis, including stability proof, cycle searching, and 

linear temporal logic [43-45]. The specialisation of tools emphasises the importance 

of commonly agreed standards for model storage. 

In parallel, progress has been made in developing hybrid and multi-scale 

integrative modelling frameworks, connecting different formalisms, and generating 

new insights from the emergent, combined properties. FlexFlux, an open-source java 

software, combines metabolic and regulatory networks based on the identification of 

steady states. These steady states are further used as constraints for metabolic flux 

analyses using Flux Balance Analysis (FBA) [46]. A multi-scale framework that 

couples cell cycle and metabolic networks in yeast was proposed, integrating BNs of 

a minimal yeast cell cycle with a constraint-based model of metabolism. Models are 

implemented in Python using the BooleanNet and COBRApy packages and are 

connected using Boolean logic. The methodology allows for the incorporation of 

interaction data and validation through -omics data  [47].  

 

Community efforts for the reproducibility of discrete models in biology 

Recent studies have raised concerns about reproducibility in various scientific 

fields. In computational systems biology, efforts have been made to identify the 

problem and propose strategies to tackle it [48]. The Curation and Annotation of 

Logical Models (CALM) initiative emerged to promote reproducibility, interoperability, 

accessibility and reusability of the discrete biological models [49]. The initiative 

promotes reproducibility by linking model components to the underlying experimental 

papers using proper identifiers like BioModels.net Qualifiers1 and interoperability by 

                                                
1 https://co.mbine.org/standards/qualifiers 
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promoting the use of the SBML-Qual format, an extension of the SBML Level 3 

standard compatible with the representation of qualitative models of biological 

networks [50]. Furthermore, the CoLoMoTo Interactive Notebook developed by the 

community relies on Docker and Jupyter technologies to provide a unified and user-

friendly environment to edit, execute, share, and reproduce analyses of qualitative 

models of biological networks via streamlining of tools that do not necessarily use 

standard formats, circumventing compatibility issues [51].  

In Table 1 we list the tools mentioned in the previous sections, with a brief 

description of their features, the environment and their capacity of supporting 

annotations.  

 

Table 1: Brief overview of  relevant modelling software and their main features 

Tool Features Environment SBML-Qual 

support 

Annotation 

Support 

 Tools for automated inference of logic-based models 

CaSQ Inference of BNs from 

molecular interaction 

maps 

Python Yes Yes 

Caspots Inference of BNs from 

time-series omic data 
Python No  No 

CellNOpt Inference of BNs from 

time-series omic data 
R/Bioconductor Yes  No 

BONITA Inference of BNs from 

transcriptomic data 
R/Bioconductor  No No 

Tools for analysis of logic-based models 

GINsim Logical network 

analysis; in silico 

simulations; reduction 

functionality; 

possibility for 

exhaustive attractors’ 

search; updating 

scheme: synchronous 

and asynchronous 

Java Yes Yes 
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Cell 

Collective 

BN analysis; real-time  

in silico simulations; 

topological analysis; 

updating scheme: 

synchronous and 

asynchronous 

Javascript, web-

based 
Yes Yes 

BoolNet BN analysis;  in silico 

simulations; different 

options for attractors’ 

search including 

heuristics; updating 

scheme: synchronous 

and asynchronous 

R/ Bioconductor Yes No 

BMA Stability analysis;  in 

silico simulations; 

exhaustive search for 

attractors; linear 

temporal logic; 

updating scheme: 

synchronous 

Web-based, optional 

CLI 
No Yes 

 Frameworks for integrative analysis of logic-based models with constrained based 

metabolic models 

FlexFlux BN and FBA analysis R/Bioconductor  Yes No 

BooleaNet 

and 

COBRApy 

BN and FBA analysis 

Python  No No 

 

 

New methods for formal analysis of large-scale logic-based models 

In this section we highlight recent developments regarding formal analysis. The 

methodologies presented here address problems inherent to larger and more complex 

models. 

One issue that arises as networks become larger is the role of timings in the 

control of cellular function. Whilst timing effects can be accounted for in small models 

using synchronous or asynchronous update schemas, as more genes are introduced 

this may not be a scalable approach. Ignoring potential timing effects however may 

obscure important model properties. The Most Permissive Boolean Networks (MPBN) 

approach is a promising formal method that addresses the fact that both synchronous 

and asynchronous dynamical interpretations of BNs can miss some predictions of 

behaviours observed in similar quantitative systems. The MPBNs approach formally 
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guarantees not to miss any behaviour achievable by a quantitative model following the 

same logic. Moreover, MPBNs significantly reduce the complexity of dynamical 

analysis, allowing for modelling genome-scale networks. One limitation of the 

approach can be the generation of over approximated dynamical representations, with 

only small subsets of the corresponding trajectories effectively observed  [52].  

The control of BNs offers the possibility to delineate interconnected pathways 

and specify conditions to determine a functional outcome, offering a way to focus on 

a smaller subset of nodes that possess important properties over the whole network. 

Researchers compute a minimal subset of nodes (Cmin) in recent work that allows a 

BN to be driven from any initial state in an attractor to an attractor of interest by a 

single step perturbation of Cmin. In their method, they decompose the network into 

modules, compute the minimal control on the projection of the attractors to these 

modules, and then compose the results to obtain the global Cmin [53].  

Finally, as models become larger, state space expands and the potential for 

rare transitions that undermine conclusions drawn from the model increases. Model 

verification, derived from the broader field of verification in software and hardware, 

offers a new way to tackle complexity. Here, mathematical proofs are used instead of 

simulation to analyse model behaviour. These proofs can offer guarantees of model 

correctness that apply over all of state space- for example, stating that one gene is 

always activated transiently, or another gene never becomes active. Examples include 

the computation of attractors [54] and proofs of stability [43], where proofs of properties 

of the whole model are composed of proofs computed on individual components. 

 

Conclusion 

The growing availability of high quality, whole-cell biological data has 

underlined the need to develop rigorous integrative methods that connect observations 

to fundamental mechanisms of action. Data driven-model inference combined with 

high-quality biocuration could lead to the construction of more accurate and robust 

models. At the same time, the rapid adoption of increasingly large logic-based models 

stress-tests the existing methods and tools used for dynamic analysis.  

The key challenges of the field consist in developing efficient formalisms for 

data integration and tool implementations to properly combine and integrate data to 

models but also analyse and understand these models at a larger scale. While model 

inference methodologies can greatly accelerate model building and training, the 

parallel development of formal methods for analysis, control and verification is needed 

to cope with the size and complexity of such models. The coupling of logic based 

models with other modelling types offers possibilities to address more complex 

questions spanning over different scales, such as signalling and metabolism. Lastly, 

the use of common annotation schemes and standard formats could help maximize 

transparency and model reusability and reproducibility. 

As multi-omic data will become increasingly available for a variety of biological 

functions in health and disease, logic-based models can be employed as versatile, 

powerful tools to deepen our understanding of complex biological mechanisms.  
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Figure 2. Key challenges in integrating high-throughput data in logic-based models  
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5.  Wynn ML, Consul N, Merajver SD, Schnell S: Logic-based models in 
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method. Integr Biol (Camb) 2012, 4:1323–1337. 

6.  Abou-Jaoudé W, Traynard P, Monteiro PT, Saez-Rodriguez J, Helikar T, 

Thieffry D, Chaouiya C: Logical modeling and dynamical analysis of 

cellular networks. Front. Genet. 2016, 7:94. 

7.  Niarakis A, Helikar T: A practical guide to mechanistic systems modeling 

in biology using a logic-based approach. Brief. Bioinformatics 2020, 

doi:10.1093/bib/bbaa236. 

8.  * Schwab JD, Kühlwein SD, Ikonomi N, Kühl M, Kestler HA: Concepts in 

Boolean network modeling: What do they all mean? Comput. Struct. 

Biotechnol. J. 2020, 18:571–582. 

Provides a comprehensive overview of all concepts used in Boolean modelling. 

9.  Suarez OJ, Vega CJ, Sanchez EN, González-Santiago AE, Rodríguez-Jorge 

O, Alanis AY, Chen G, Hernandez-Vargas EA: Pinning Control for the p53-

Mdm2 Network Dynamics Regulated by p14ARF. Front. Physiol. 2020, 

11:976. 

10.  Choi M, Shi J, Jung SH, Chen X, Cho K-H: Attractor landscape analysis 

reveals feedback loops in the p53 network that control the cellular 

response to DNA damage. Sci. Signal. 2012, 5:ra83. 
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Mdm2 system. BMC Syst. Biol. 2008, 2:75. 

12.  Niarakis A, Bounab Y, Grieco L, Roncagalli R, Hesse A-M, Garin J, Malissen 
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2014, 382:69–93. 
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Roncagalli R, Lie E, Lam K-P, Demangel C, et al.: Proteomic analysis of the 
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Proteomics 2013, 12:2874–2889. 

14.  Collombet S, van Oevelen C, Sardina Ortega JL, Abou-Jaoudé W, Di Stefano 

B, Thomas-Chollier M, Graf T, Thieffry D: Logical modeling of lymphoid and 
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2017, 114:5792–5799. 
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Improves Drug Synergy Predictions in Epithelial-Derived Cancer Cell 

Lines. Front. Mol. Biosci. 2020, 7:502573. 

16.  Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, 

Marisa L, Roepman P, Nyamundanda G, Angelino P, et al.: The consensus 

molecular subtypes of colorectal cancer. Nat. Med. 2015, 21:1350–1356. 

17.  * Niederdorfer B, Touré V, Vazquez M, Thommesen L, Kuiper M, Lægreid A, 

Flobak Å: Strategies to Enhance Logic Modeling-Based Cell Line-Specific 

Drug Synergy Prediction. Front. Physiol. 2020, 11:862. 

Describes the use of logic-based models to predict cell line-specific drug combination 

effects based on omic-inferred baseline calibration data.  
 

18.  Palma A, Jarrah AS, Tieri P, Cesareni G, Castiglione F: Gene regulatory 

network modeling of macrophage differentiation corroborates the 

continuum hypothesis of polarisation states. Front. Physiol. 2018, 9:1659. 

19.  Marku M, Verstraete N, Raynal F, Madrid-Mencía M, Domagala M, Fournié J-

J, Ysebaert L, Poupot M, Pancaldi V: Insights on TAM Formation from a 

Boolean Model of Macrophage Polarization Based on In Vitro Studies. 

Cancers (Basel) 2020, 12. 

20.  Cohen DPA, Martignetti L, Robine S, Barillot E, Zinovyev A, Calzone L: 

Mathematical modelling of molecular pathways enabling tumour cell 

invasion and migration. PLoS Comput. Biol. 2015, 11:e1004571. 

21.  Riedel A, Shorthouse D, Haas L, Hall BA, Shields J: Tumor-induced stromal 

reprogramming drives lymph node transformation. Nat. Immunol. 2016, 

17:1118–1127. 

22.  Shorthouse D, Riedel A, Kerr E, Pedro L, Bihary D, Samarajiwa S, Martins CP, 

Shields J, Hall BA: Exploring the role of stromal osmoregulation in cancer 

and disease using executable modelling. Nat. Commun. 2018, 9:3011. 

23.  Saez-Rodriguez J, Blüthgen N: Personalised signaling models for 

personalised treatments. Mol. Syst. Biol. 2020, 16:e9042. 

24.  Béal J, Montagud A, Traynard P, Barillot E, Calzone L: Personalisation of 

Logical Models With Multi-Omics Data Allows Clinical Stratification of 

Patients. Front. Physiol. 2018, 9:1965. 

25.  * Béal J, Pantolini L, Noël V, Barillot E, Calzone L: Personalised logical 

models to investigate cancer response to BRAF treatments in 

melanomas and colorectal cancers. PLoS Comput. Biol. 2021, 

17:e1007900. 

Describes a comprehensive pipeline from clinical question to a validated mechanistic 

model that uses different omics data types and adapts to dozens of different cell lines. 
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Cell-Specific Computational Modeling of the PIM Pathway in Acute 

Myeloid Leukemia. Cancer Res. 2017, 77:827–838. 

27.  Palma A, Iannuccelli M, Rozzo I, Licata L, Perfetto L, Massacci G, Castagnoli 

L, Cesareni G, Sacco F: Integrating Patient-Specific Information into Logic 

Models of Complex Diseases: Application to Acute Myeloid Leukemia. J. 

Pers. Med. 2021, 11. 

28.  Razzaq M, Paulevé L, Siegel A, Saez-Rodriguez J, Bourdon J, Guziolowski C: 

Computational discovery of dynamic cell line specific Boolean networks 

from multiplex time-course data. PLoS Comput. Biol. 2018, 14:e1006538. 

29.  Ostrowski M, Paulevé L, Schaub T, Siegel A, Guziolowski C: Boolean 

network identification from perturbation time series data combining 

dynamics abstraction and logic programming. BioSystems 2016, 149:139–

153. 

30.  Dorier J, Crespo I, Niknejad A, Liechti R, Ebeling M, Xenarios I: Boolean 

regulatory network reconstruction using literature based knowledge with 

a genetic algorithm optimisation method. BMC Bioinformatics 2016, 

17:410. 

31.  ** Gjerga E, Trairatphisan P, Gabor A, Koch H, Chevalier C, Ceccarelli F, 

Dugourd A, Mitsos A, Saez-Rodriguez J: Converting networks to predictive 

logic models from perturbation signalling data with CellNOpt. 

Bioinformatics 2020, 36:4523–4524. 

An updated collection of Bioconductor R packages for building logic-based models of 

signalling networks from perturbation data and prior knowledge to handle more 

efficiently large datasets. 

 

32.  Terfve C, Cokelaer T, Henriques D, MacNamara A, Goncalves E, Morris MK, 

van Iersel M, Lauffenburger DA, Saez-Rodriguez J: CellNOptR: a flexible 

toolkit to train protein signaling networks to data using multiple logic 

formalisms. BMC Syst. Biol. 2012, 6:133. 

33.  Barman S, Kwon Y-K: A Boolean network inference from time-series gene 

expression data using a genetic algorithm. Bioinformatics 2018, 34:i927–

i933. 

34.  Palli R, Palshikar MG, Thakar J: Executable pathway analysis using 

ensemble discrete-state modeling for large-scale data. PLoS Comput. Biol. 

2019, 15:e1007317. 

35.  Moignard V, Woodhouse S, Haghverdi L, Lilly AJ, Tanaka Y, Wilkinson AC, 

Buettner F, Macaulay IC, Jawaid W, Diamanti E, Nishikawa SI, Piterman N, Kouskoff 

V, Theis FJ, Fisher J, Göttgens B: Decoding the regulatory network of early blood 

development from single-cell gene expression measurements. Nat Biotechnol. 2015, 

33(3):269-276. 
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36.  Lim CY, Wang H, Woodhouse S, Piterman N, Wernisch L, Fisher J, Göttgens 

B: BTR: training asynchronous Boolean models using single-cell 

expression data. BMC Bioinformatics 2016, 17:355. 

37.  ** Aghamiri SS, Singh V, Naldi A, Helikar T, Soliman S, Niarakis A: 

Automated inference of Boolean models from molecular interaction maps 

using CaSQ. Bioinformatics 2020, 36:4473–4482. 

Describes a “map-to-model framework” using CaSQ, a software tool that infers 

Boolean rules based on the topology and semantics of molecular interaction maps, 

creating annotated, fully executable large-scale Boolean networks. 

 

38.  Chaouiya C, Naldi A, Thieffry D: Logical modelling of gene regulatory 

networks with GINsim. Methods Mol. Biol. 2012, 804:463–479. 

39.  Helikar T, Kowal B, McClenathan S, Bruckner M, Rowley T, Madrahimov A, 

Wicks B, Shrestha M, Limbu K, Rogers JA: The Cell Collective: toward an 

open and collaborative approach to systems biology. BMC Syst. Biol. 

2012, 6:96. 

40.  Müssel C, Hopfensitz M, Kestler HA: BoolNet--an R package for generation, 

reconstruction and analysis of Boolean networks. Bioinformatics 2010, 

26:1378–1380. 

41.  ** Hall BA, Fisher J: Constructing and Analysing Computational Models of 

Cell Signaling with BioModelAnalyzer. Curr. Protoc. Bioinformatics 2020, 

69:e95. 

Describes a comprehensive protocol to construct and analyse large-scale Boolean 

models with BMA.  

 

42.  Paterson YZ, Shorthouse D, Pleijzier MW, Piterman N, Bendtsen C, Hall BA, 

Fisher J: A toolbox for discrete modelling of cell signalling dynamics. 

Integr Biol (Camb) 2018, 10:370–382. 

43.  Cook B., Fisher J, Krepska E, Piterman N: Proving Stabilization of 

Biological Systems. In: Jhala R., Schmidt D. (eds) Verification, Model 

Checking, and Abstract Interpretation. VMCAI. Lecture Notes in Computer 

Science 2011, 6538: 134-149. 

44.  Cook B., Fisher J., Hall B.A., Ishtiaq S., Juniwal G., Piterman N: Finding 
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Cell Response to Checkpoint Inhibitors. Front. Physiol. 2020, 11:558606. 

Describes two approaches to cope with analysing complex, large-scale logic-based 

models.  Local model verification is inspired by unit testing, and input propagation 

helps to assess the impact of constraints on the dynamical behaviour. 

Jo
urn

al 
Pre-

pro
of

https://sciwheel.com/work/bibliography/9765190
https://sciwheel.com/work/bibliography/9765190
https://sciwheel.com/work/bibliography/9765190
https://sciwheel.com/work/bibliography/9765190
https://sciwheel.com/work/bibliography/9765190
https://sciwheel.com/work/bibliography/9765190


 

 

Table 1: Brief overview of relevant modelling software and their main features 

Tool Features Environment SBML-Qual 

support 

Annotation 

Support 

 Tools for automated inference of logic-based models 

CaSQ Inference of BNs from 

molecular interaction 

maps 

Python Yes Yes 

Caspots Inference of BNs from 

time-series omic data 
Python No  No 

CellNOpt Inference of BNs from 

time-series omic data 
R/Bioconductor Yes  No 

BONITA Inference of BNs from 

transcriptomic data 
R/Bioconductor  No No 

Tools for analysis of logic-based models 

GINsim Logical network analysis; 

in silico simulations; 

reduction functionality; 

possibility for exhaustive 

attractors’ search; 

updating scheme: 

synchronous and 

asynchronous 

Java Yes Yes 

Cell 

Collective 

BN analysis; real-time  in 

silico simulations; 

topological analysis; 

updating scheme: 

synchronous and 

asynchronous 

Javascript, web-based Yes Yes 
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BoolNet BN analysis;  in silico 

simulations; different 

options for attractors’ 

search including 

heuristics; updating 

scheme: synchronous 

and asynchronous 

R/ Bioconductor Yes No 

BMA Stability analysis;  in 

silico simulations; 

exhaustive search for 

attractors; linear 

temporal logic; updating 

scheme: synchronous 

Web-based, optional 

CLI 
No Yes 

 Frameworks for integrative analysis of logic-based models with constrained based metabolic models 

FlexFlux BN and FBA analysis R/Bioconductor  Yes No 

BooleaNet 

and 

COBRApy 

BN and FBA analysis 

Python  No No 
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