Cost Effectiveness of Breast Cancer Screening and Prevention – A Systematic Review with a Focus on Risk-Adapted Strategies

Nikolai Mühlberger¹, Gaby Sroczynski¹, Artemisa Gogollari¹, Beate Jahn¹, Nora Pashayan², Ewout Steyerberg^{3,4}, Martin Widschwendter⁵, Uwe Siebert^{1,6,7,8}

- Institute of Public Health, Medical Decision Making and Health Technology Assessment, Department of Public Health, Health Services Research and Health Technology Assessment, UMIT – University for Health Sciences, Medical Informatics and Technology, Eduard-Wallnoefer-Zentrum I, A-6060 Hall i.T., Austria;
- Institute of Epidemiology and Healthcare, Department of Applied Health Research, UCL University College London, 1-19 Torrington Place, London WC1E 7HB, UK;
- 3) Department of Public Health, Erasmus MC, PO Box 9600, 3000 CA Rotterdam, The Netherlands;
- 4) Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands;
- 5) EGA Institute for Women's Health, Department of Women's Cancer, UCL University College London, 74 Huntley St, Rm 340, LondonWC1E 6AU, UK;
- 6) ONCOTYROL Center for Personalized Cancer Medicine, Division of Health Technology Assessment and Bioinformatics, Innsbruck, Austria;
- 7) Harvard T.H. Chan School of Public Health, Center for Health Decision Science, Department of Health Policy and Management, Boston, MA, USA;
- 8) Harvard Medical School, Institute for Technology Assessment and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA

Corresponding Author:

Uwe Siebert, MD, MPH, MSc, ScD

Institute of Public Health, Medical Decision Making and Health Technology Assessment, Department of Public Health, Health Services Research and Health Technology Assessment, UMIT – University for Health Sciences, Medical Informatics and Technology

Eduard-Wallnoefer-Zentrum 1, A-6060 Hall i.T., Austria Phone.: +43-50-8648-3930, Fax: +43-50-8648-

6739310,

Email: public-health@umit.at

Declarations Funding

This study is part of the FORECEE (4C) project funded by the European Union's Horizon 2020 research and innovation programme under grant agreement number 634570 and The Eve Appeal.

The funding agreement ensured the authors' independence in designing the study, analyzing and interpreting the data, writing, and publishing. All authors had full access to all of the data in the study and can take responsibility for the integrity of the data and the accuracy of the data analysis.

Conflicts of Interest/Competing interests

All authors have completed a unified conflict of Interest declaration form and declare that no company had supported the submitted work. There were no other relationships or activities than those disclosed.

Dr. Mühlberger, Dr. Sroczynski, MD Gogollari, Dr. Jahn, Dr. Pashayan, Prof. Steyerberg, Prof. Widschwendter, and Prof. Siebert report grants from European Union's Horizon 2020 research and innovation programme (grant agreement number 634570) during the conduct of the study. Dr. Pashayan also reports research grant from Breast Cancer Now (grant reference number 2017NovPRI 0241). Ms. Gogollari was partly funded by the Erasmus-Western Balkans mobility programme (ERAWEB), a project funded by the European Commission. The authors declare no other potential conflicts of interest.

Ethical Approval

Ethics approval was not required for this literature review, as no patient-related individual data were used.

Consent to participate

Not applicable

Consent for publication

Not applicable

Availability of data and material

Not applicable

Code availability

Not applicable

Authors' contributions

Nikolai Mühlberger: Systematic literature search and data extraction. Qualitative and quantitative analyses and interprof results. Results visualization and documentation. First draft manuscript writing.

Gaby Sroczynski: Project coordinator. Development of study design and research questions. Qualitative analysis interpretation of results. Results visualization and

documentation. Manuscript writing and discussion.

Artemisa Gogollari: Systematic literature search and data extraction. Qualitative analyses and interpretation of results. Manuscript writing and discussion.

Beate Jahn: Qualitative analyses and interpretation of results. Manuscript review and discussion.

Nora Pashayan: Discussion and interpretation of results. Manuscript review and discussion.

Martin Widschwendter: FORECEE project lead. Discussion and interpretation of results. Manuscript review and discuss

Ewout Steyerberg: Discussion and interpretation of results. Manuscript review and discussion.

Uwe Siebert: guarantor of this study. Responsible key researcher of the project. Qualitative analyses and interpretation results. Manuscript writing and discussion.

Acknowledgement

We thank the Erasmus-Western Balkans mobility programme (ERAWEB), a project funded by the European Commission funding student exchange program (Artemisa Gogollari).

Abstract

Objectives Benefit and cost effectiveness of breast cancer screening are still matters of controversy. Risk-adapted strategies are proposed to improve its benefit-harm and cost-benefit relations. Our objective was to perform a systematic review on economic breast cancer models evaluating primary and secondary prevention strategies in the European health care setting, with specific focus on model results, model characteristics, and risk-adapted strategies.

Methods Literature databases were systematically searched for economic breast cancer models evaluating the cost effectiveness of breast cancer screening and prevention strategies in the European health care context. Characteristics, methodological details and results of the identified studies are reported in evidence tables. Economic model outputs are standardized to achieve comparable costeffectiveness ratios.

Results Thirty-two economic evaluations of breast cancer screening and seven evaluations of primary breast cancer prevention were included. Five screening studies and none of the prevention studies considered risk-adapted strategies. Studies differed in methodologic features. Only about half of the screening studies modeled overdiagnosis-related harms, most often indirectly and without reporting their magnitude. All models predict gains in life expectancy and/or quality-adjusted life expectancy at acceptable costs. However, risk-adapted screening was shown to be more effective and efficient than conventional screening.

Conclusions Economic models suggest that breast cancer screening and prevention are cost effective in the European setting. All screening models predict gains in life expectancy, which has not yet been confirmed by trials. European models evaluating

risk-adapted screening strategies are rare, but suggest that risk-adapted screening is

 more effective and efficient than conventional screening.

Keywords

breast cancer screening; breast cancer prevention; cost effectiveness; decision

analysis; risk stratification; overdiagnosis

Introduction

Breast cancer (BCa) is the most frequently diagnosed cancer and the third most frequent cause of cancer death overall (most frequent cause of cancer death in women) in Europe [1]. Breast cancer mortality has declined over the last decades in most European countries, which can be attributed to improved treatment and early detection [2-4]. Many European countries are currently running a mammography-based screening program with biennial or triennial screening rounds within the age range of 45 or 50 to 70 or 75 years. However, there is an increasing debate about the overall mortality benefit, the benefit-harm balance and the cost effectiveness of screening, in particular, because of its still unproven effect on overall mortality and potential harms due to false positive results, overdiagnosis and overtreatment [5-12], which are usually assessed by decision-analytic modeling [13-15]. Overdiagnosis is difficult to assess in empirical studies and estimates show wide variation. Estimates derived from trials suggest that 11-22% of the breast cancer cases detected by screening might be overdiagnosed [7].

Risk factors for breast cancer include hereditary and non-hereditary factors. Best known hereditary factors are mutations in the *BRCA* genes, which are involved in the production of not strictly tumor specific tumor suppressor proteins. *BRCA* mutations have been shown to be associated with multifold risk increases in both, breast and ovarian cancer, accounting for 5-10% of the breast and 15% of the ovarian cancer cases overall [16,17]. Women with detected *BRCA* mutation have preventive options to reduce their cancer risk, including prophylactic salpingo-oophorectomy and mastectomy, or chemoprevention. Therefore, genetic and non-genetic risk profiles can be used to develop risk-adapted screening and management strategies, which have the potential to provide more favorable benefit-harm and cost-benefit relations,

by reducing interventional harms in individuals with unfavorable benefit expectation. This can be achieved either by excluding individuals at low risk from screening or by assigning them to a less aggressive screening protocol (e.g., screening with a longer screening interval). To decide on the implementation of new health technologies, including risk-adapted strategies, scientific evidence on incremental benefit and cost effectiveness is needed from health-economic models comparing their long-term benefits, harms and costs against alternative strategies, including the current

standard of care [18-20].

Up to date numerous health-economic models evaluating breast cancer screening and prevention have been published and there are a number of reviews on economic breast cancer models. However, each review has unique inclusion criteria, different methodological approaches, and specific focusses [21-30], mostly on either primary or secondary prevention, leaving comparative knowledge gaps.

Therefore, our objective was to perform a comprehensive and systematic semiquantitative review on economic breast cancer models evaluating both primary and secondary prevention strategies in the European health care setting, with specific interest on model results, model characteristics, and risk adapted strategies. Specifically, this review was performed to provide answers to the following research questions:

- 1. Are breast cancer screening and prevention predicted to be cost effective in the European setting?
- 2. What are the methodological features of the applied models, particularly, are overdiagnosis-related harms accounted for?

3. What risk-adapted strategies are modeled, and how do they perform compared to

conventional screening?

Results are discussed in the context of the ongoing debate about the benefits and harms of breast cancer screening.

Methods

Literature search and study selection

We performed a systematic literature search for economic breast cancer models evaluating the cost effectiveness of breast cancer screening and prevention strategies in the European health care context published in English language. Medical, economic and health technology assessment databases (i.e., PubMed, Ovid Medline, Embase, EconLit, Cochrane Library, CRD database) were searched up to April 2018 using MESH and search term combinations for breast cancer, detection or prevention, effectiveness, costs, and modeling. Records identified through database searches were screened for eligibility by abstract and full-text assessment. Publications meeting the inclusion criteria were selected for data extraction and qualitative synthesis. Publications were excluded, if they did not present a complete economic evaluation [31], did not consider the European health care context, were published in other languages than English, or did not represent a full research article. Reasons for exclusions were documented for each excluded study. Screening of titles and abstracts, study selection, and data extraction were performed independently by two reviewers. Disagreements were resolved by discussion. If necessary, a third party opinion was consulted.

Extraction of study and model characteristics

Characteristics and methodological details of the included studies were extracted using a standardized assessment form distinguishing between screening and primary prevention studies. Extracted data comprise the following items: a) First author, year, and country, b) Study objectives and target population, c) Compared strategies and assumed adherence rates, d) Type, analysis, and analytic time horizon of the model, e) Type of economic evaluation, perspective, included cost categories, discounting, and consideration of overdiagnosis-related harms, f) Reported outcome measures, g)

Applied sensitivity analyses, h) Model validation.

Models were considered to account for overdiagnosis-related harms, if (1) overdiagnosis was modeled explicitly via model inputs or indirectly by simulating cancer genesis and frequency of cancer detection up to death in presence and absence of screening, and if (2) effects of diagnostic and therapeutic procedures on quality of life were considered.

Results are reported in evidence tables. To summarize the extracted data, frequencies of study characteristics and methodological model details were assessed. Studies modeling risk-adapted strategies were presented in more detail.

Extraction and processing of study results

The data extraction and processing of the results of the economic studies included several steps to make results comparable [32]. First, we extracted expected values for costs, life years and/or quality-adjusted life years (QALY) of the included strategies. Second, expected values were expressed as increments (i.e., differences), for example life-years gained (LYG), QALYs gained or incremental costs in comparison to no intervention. This harmonization step was performed, because some studies reported costs and health outcomes incremental to no intervention but did not present outcome predictions for the no intervention strategy itself. Third, we followed the economic standard for the calculation of incremental cost-effectiveness ratios (ICER) or cost-utility ratios (ICUR) by comparing cost and health effects of each strategy to the next less expensive and economically rational strategy. Economically irrational strategies, that are either more costly and less effective than others (dominance), or yield additional health at higher costs than more effective strategies (extended dominance) were identified and excluded from the calculation of ICERs or ICURs. In addition, we converted costs based on different years or different currencies into current euros. Currency transformation was performed using gross domestic product purchasing power parities (GDP-PPP for the countries of the European Union) [33]. Inflation adjustment to current euros (2017) was based on national consumer price indices (CPI) [34]. Results of the incremental analyses performed on processed data were presented as a synopsis in comprehensive and standardized comparative evidence tables.

Results

Literature search and selection

Fig. 1 displays the PRISMA flow diagram depicting the steps and results of the literature search and selection process. Our search yielded 1988 non-duplicate records. Of those, 1810 were excluded by abstract screening. The remaining 178 publications were assessed for eligibility by full-text screening. Of those, 139 did not meet the inclusion criteria and were excluded for reasons specified in Fig. **1**. The remaining 39 publications, which comprised 32 economic evaluations of breast cancer screening strategies and seven economic evaluations of primary breast

cancer prevention strategies, met the inclusion criteria and were selected for the comparative synthesis in the evidence tables.

Study and model characteristics

Table 1 presents characteristics and methodological details of the 39 studies. The upper part of the table presents details of the 32 breast cancer screening studies sorted by year of publication.

Of these 32 screening studies, eight evaluated screening in the UK setting [35-42], six focused on the Netherlands [43-48], seven on Spain [49-55], three on Switzerland [56-58], and two on Germany [59,60]. Screening in Austria [61], Denmark [62], France [63], Norway [64] and Slovenia [65] was each evaluated by single country-specific studies. One single study evaluated screening in several country settings, including Spain, France, UK and the Netherlands [66].

Ten screening studies evaluated hypothetical screening programs or strategies. Six studies evaluated existing screening programs. Sixteen evaluated modifications or extensions of already established screening programs.

Twenty-nine studies evaluated screening in women with average breast cancer risk (either exclusively or additionally), of which 21 included strategies comparable to currently established breast cancer screening programs, like biennial or triennial mammography screening within the age range of 45-75 years. Three studies focused on screening in high risk populations only, either in women with *BRCA* mutations (two studies) or with a family history of breast cancer (one study).

Regarding the methodological modeling approach, discrete event simulation (DES) models were the predominant model type used in 15 studies

[49,59,50,43,36,52,44,56,37,47,42,60,48,66,64]. Of those, ten were based on the

Dutch MISCAN model. State-transition models were used by six studies [63,46,57,39,65,61] and mathematical models (e.g., equation- or regression-based models) were used in five studies [35,51,62,58,55]. The remaining studies used other types of models, including two decision trees [53,54], two life-table models [40,41], and two mixed models combining different model types [45,38].

Thirteen models can be classified as population models considering the actual age structure of the local target population. All but five models considered a lifetime-time horizon, appropriate to account for the long-term consequences of screening.

More than half of the screening studies (18/32) and two thirds (14/21) of the

screening studies, including strategies comparable to currently established breast cancer screening programs, performed a cost-utility analysis, which is the type of analysis required to account for all kinds of non-fatal health consequences, including most harms caused by overdiagnosis- and overtreatment. Sixteen studies, including 12 with strategies resembling currently established breast cancer screening programs, accounted for overdiagnosis-related harms at least partly and most often in an indirect way. However, model predictions on overdiagnosis and overtreatment are often not reported, particularly not in older studies. In addition, consecutive harms are rarely specified explicitly but modeled indirectly via relative utility reductions applied in the post-diagnosis phase. The economic evaluations adopted different perspectives including different cost categories. Twenty studies where performed from the payer's perspective including only direct medical costs. One study was performed from the perspective of insurance members including direct medical and non-medical costs and costs of other diseases in gained lifetime. Seven studies were performed from the perspective of the health care system including direct medical costs and program costs. The remaining studies were unclear about the perspective

or did not include all costs relevant for the specified perspective. Only one of the studies applied a societal perspective including indirect costs in a scenario analysis. Discounting was applied in 25 of the 32 economic evaluations. Among those, 22 applied equal discount rates for costs and effects, two used different discount rates for costs and effects, and one applied discounting only for costs. The remaining seven studies did not use any discounting.

Reported outcome measures for effectiveness and efficiency depended on the type of economic evaluation. Some studies did not present ICERs or ICURs but more condensed outcomes based on cost-effectiveness ratios and willingness-to-pay (e.g.,

Thirty studies reported systematic uncertainty analyses. Most frequently performed types of analysis were (series of) univariate deterministic sensitivity analyses and

cost effective screening intervals or upper age bounds).

scenario analyses. Ten studies performed multivariate probabilistic sensitivity analyses.

Twenty-one of the 32 screening studies addressed model validation. Of those, eight validated their model against observed data, eleven against observed data and other models, and two against other models only.

Although several studies evaluated a variety of screening algorithms differing in screening ages, screening intervals and screening tests, adaptation of screening algorithms to breast cancer risk was only considered by five studies [37,45,58,40,55]. Jacobi et al. [45] assessed optimal starting ages of screening for women with familial predisposition without *BRCA* mutation depending on the number, relationship degree and age at diagnosis of the affected relatives. O'Mahony et al. [58] derived optimal screening intervals depending on hypothetical breast cancer risk. Gray et al. [37] evaluated mammography screening with intervals based on personalized risk

estimations and/or breast density dependent added ultrasound. Vilaprinyo et al. [55] evaluated mammography screening with risk-group specific intervals and age ranges accounting for breast density, family history and history of prior breast biopsy. Finally, Pashayan et al. [40] evaluated screening targeted only at women beyond certain thresholds of a risk score integrating genetic and non-genetic risk factors. All five studies considering risk-adaptated screening applied different modeling approaches.

Jacobi et al. [45] used a mixed-methods approach combining two models and external calculations. First, a prediction model was used to estimate breast cancer risks for different family history constellations. Second, these risk estimates were applied in a DES like screening model to simulate tumor onset and growth in different familial risk groups up to the point of tumor detection. Finally, outputs of the simulation model were further processed outside the models to derive long-term clinical and economic outcomes compared among strategies. Whether the complex multi-model approach used by Jacobi et al. accounts for overdiagnosis is unclear.

O'Mahony et al. [58] apply a simplified mathematical equation model applicable for rapid assessment of optimal risk-adapted screening intervals, when estimates from more complex economic models are not yet available. Overdiagnosis might be partially accounted for in this model.

Gray et al. [37] developed a DES model simulating the lifetime history of 100 million women depending on individual breast cancer risk, breast density and different screening options, including no screening, current screening without riskstratification, and screening with risk-dependent intervals and/or additional ultrasound for women with high breast density. Individual breast cancer risk was assigned via microsimulation. As this model simulates cancer onset and progression and the frequency of cancer detection with and without screening up to the time of death, overdiagnosis is indirectly accounted for.

Vilaprinyo et al. [55] applied a mathematical equation model to simulate the lifetime history of 100,000 women divided into four risk groups (low, moderate-low, moderatehigh, high) defined by breast density, family history and prior breast biopsy and differing in BCa incidence. Risk group distribution and relative risks used to model risk-group specific incidences were derived from the Risk Estimation Dataset of the Breast Cancer Surveillance Consortium and published studies. Risk-stratified screening strategies were compared to currently established screening strategies and no screening. Overdiagnosis was explicitly modeled assuming that 15% of mammography-detected cancers are overdiagnosed.

Pashayan et al. [40] extended a life-table model previously developed for the economic evaluation of the UK national breast cancer screening program. To evaluate risk-stratified screening, relative risks associated with specific risk-scores were used to derive breast cancer incidence and mortality in different risk groups. Predicted outcomes for risk-based screening strategies were compared to outcome predictions for no screening and current standard screening. As in the original life-table model overdiagnosis was explicitly modeled assuming that 19% of the cancers detected during the active screening period are overdiagnosed.

The lower part of Table 1 summarizes characteristics and methodological details of the seven primary prevention studies sorted by year of publication.

Five studies evaluated primary prevention in the UK setting [67-71], one study focused on Norway [72] and one on Germany [73]. Different from the preceding screening models, all prevention models considered not only breast cancer, but also ovarian cancer.

While the Norwegian and German studies evaluated prophylactic salpingooophorectomy and/or mastectomy in BRCA mutation carriers, the five British studies evaluated BRCA or polygenic screening followed by prophylactic surgery. Specifically, three studies evaluated population-based BRCA mutation screening in Jewish populations with elevated mutation prevalence against currently recommended family history based BRCA screening [68,69,71]. One study evaluated BRCA screening in ovarian cancer patients and their relatives against no screening [67], and one study evaluated polygenetic screening against family history based BRCA screening in the general population [70]. Risk adaptation was not considered in any of the prevention studies. Three of the British studies by Manchanda et al. used a decision tree model [68-70], whereas the remaining studies applied state-transition models [67,73,72,71]. Six models applied cohort simulation and a lifelong time horizon. One model used microsimulation over a 50 year time horizon. One study performed only cost-effectiveness analysis based on life-years, four studies performed only cost-utility analysis based on QALYs, and two studies performed both. All studies were performed from a payer's perspective including direct medical costs, with one exception, that is, the Norwegian study also applied a societal perspective, including also non-medical and indirect costs (costs due to productivity losses). All studies of primary interventions used equal discount rates for

costs and effects.

Uncertainty was analyzed via one-way deterministic sensitivity and scenario analyses in the Norwegian study. All other studies additionally applied multivariate probabilistic sensitivity analysis. One model was validated against observed data and other models, five models were validated against other models only, and one study did not address validation.

Study results

Table 2 presents the results of incremental cost-effectiveness and/or cost-utility analyses performed on processed data of the original studies. The first part of Table 2 shows analyses of screening studies sorted by country and publication year. Incremental analyses are only presented for 25 of the 32 screening studies, since seven studies did not report appropriate data to derive ICERs and/or ICURs.

Fig. 2 summarizes ICERs and ICURs of screening strategies reflecting currently established breast cancer screening programs in comparison to no screening, sorted by year of publication. Almost all estimates fall far below 30,000 Euros per life-year or QALY gained. The only exception is the ICUR of 64,433 Euros per QALY gained calculated from the study of Vilaprinyo et al. [55]. Higher ratios beyond 100,000 Euro per QALY or life year gained are only found for screening up to much higher ages in some studies, or when risk-adapted screening strategies with different risk thresholds are compared against each other in incremental analysis (see Table 2). Fig. 2 also indicates that all models published before 2003 predict ICERs or ICURs considerably below 20.000 Euros per life-year or QALY gained, while thereafter at least some of the models yield estimates above this threshold.

Of the five studies evaluating risk-adapted screening strategies, the studies by Jacobi et al. and O'Mahony et al. presented only highly processed results, which did not allow for incremental cost-utility or cost-effectiveness analyses. However, the study by Jacobi et al. [45] suggested that screening for women with familial predisposition below the age of 50 is only cost effective, if at least two relatives are affected of whom one is a first degree relative diagnosed below the age of 50. The study by

O'Mahony et al. [58] showed how the length of the economically optimal screening interval decreases with increasing breast cancer risk. The studies by Gray et al., Vilaprinyo et al. and Pashayan et al. provided data for incremental analysis. Data from Gray et al. [37] indicate that screening with risk-adapted intervals would be more expensive than current non-stratified screening, but provide additional QALYs at lower incremental costs, which indicates extended dominance. Data from Vilaprinyo et al. [55] indicate that screening with risk-group specific intervals and age ranges would provide more QALYs and be less costly than current non-risk adapted screening, which indicates dominance in the strong sense. A similar result was shown by Pashayan et al. [40] for risk-adapted screening restricted to women with a median or higher risk-score.

The second part of Table 2 presents incremental cost-effectiveness and/or cost-utility analyses performed on processed result data of the seven prevention studies considering breast and ovarian cancer.

Data from the two studies evaluating prophylactic salpingo-oophorectomy and/or mastectomy in *BRCA* mutation carriers suggest that prophylactic surgery is a cost effective option for mutation carriers. The Norwegian study [72] comparing prophylactic surgery to no intervention yielded an ICER below 3000 EUR/LYG for the payer's perspective and below 1000 EUR/LYG for the societal perspective, respectively. The German study [73] indicated that prophylactic surgery is cost-saving (dominant), that is yielding more life-years and QALYs at lower costs than standard care with intensified surveillance.

The remaining five British studies evaluated genetic screening followed by prophylactic surgery. Three of those suggest that population-based *BRCA* screening in Jewish populations with elevated *BRCA* prevalence might be a dominant or highly

cost effective option with costs per QALY gained below 1000 Euro, when compared to currently recommended family-history based BRCA screening [68,69,71]. The fourth study evaluating *BRCA* screening in ovarian cancer patients and their relatives against no screening yielded an ICUR below 5000 Euro/QALY [67]. The fifth study yielded an ICUR below 25,000 Euro/QALY for polygenetic screening in the general population, when compared to current family history based *BRCA* screening [70].

Discussion

We performed a comprehensive and systematic semi-quantitative review on European economic breast cancer models on both screening studies and primary prevention studies to integrate and compare results. This review included 32 screening and 7 primary prevention studies.

All models predict gains in life expectancy and/or quality-adjusted life expectancy. at acceptable costs. Almost all comparisons with no intervention strategies yielded incremental cost-effectiveness ratios lower than 30,000 EUR per LYG or QALY gained, which is a commonly accepted willingness-to-pay threshold in Europe [74]. In view of the ongoing controversy about the benefits and harms of breast cancer screening an almost uniform result like that, even in more recent studies, merits attention. Main arguments of screening critics are (1) that screening-related reductions in advanced breast cancer incidence and breast cancer mortality shown in trials seem to be not in line with observational data from screened and unscreened populations, and thus might be only marginal in real world settings [11], (2) that so far none of the trials has shown a statistically significant effect of screening on overall survival [7], and (3) that potential gains in lifetime are opposed by harms and

potential losses in quality of life due to overdiagnosis and overtreatment, which could strongly hamper the benefit-harm relation and reduce the cost effectiveness of screening [12,8,7,9]. About half of the included studies accounted for overdiagnosisrelated harms, at least indirectly. However, the magnitude of overdiagnosis and the spectrum of considered harms most often remained unclear. Therefore, it is difficult to judge whether all relevant harms and costs due to overdiagnosis and overtreatment have been accounted for. In particular, economic evaluations with indirect consideration of overdiagnosis tend to lack transparency, because cancer detection rates in the absence and presence of screening are rarely reported in economic studies. Thus, it is often impossible for the reader to quantify the underlying magnitude of overdiagnosis, unless it is calculated and reported by the authors. It is also difficult to tell how strongly the inclusion of overdiagnosis-related harms affected specific model results. However, compared to earlier studies accounting for overdiagnosis, more recent studies indicate considerably larger discrepancy between cost per life-year and cost per QALY gained, which largely might be due to more complete consideration of overdiagnosis. In view of lacking convincing evidence for a beneficial effect of screening on overall mortality, it seems guite optimistic that all screening models predict gains in life years and thus reductions in overall mortality. The underlying model assumption that avoidance of breast cancer death automatically translates into increased life expectancy seems to be questionable, given that biological lifetime is finite and there is a multitude of competing causes of death, which could at least partly fill the gap, when a specific cause of death is eliminated. In this case, breast cancer screening might rather be seen as an option to avoid particularly undesired causes of death than as an option to prolong life [10,75]. This view is also supported by recent benefit-harm analyses by Zahl et al. [76], which

predict overall QALY losses by BCa screening, if reductions in BCa mortality are assumed to translated only in part into reductions of overall mortality. A recent modeling study by Heijnsdijk et al. [77] simulating the power of breast cancer screening trials suggests that a sample size of 300,000 women in each study arm and a 16-26 year follow-up would be needed to detect a significant difference in overall mortality, which by far exceeds the magnitude of existing trials. However, the simulation also indicates that reductions in BCa mortality do not fully translate into reductions in overall mortality, as some women will die from other causes in the same period of time, if they are prevented from breast cancer death. As revealed by the above discussion of our findings, existing health economic breast cancer screening models, like most models, at least partly rely on yet unconfirmed assumptions. Therefore, benefit-harm and cost-effectiveness ratios predicted by these models

should rather be understood as a best guess, based on the evidence and knowledge available at a time, rather than the truth.

Risk-adapted strategies are suited to optimize the overall benefit-harm-cost balance of clinical interventions by assigning each risk group the most beneficial and cost effective intervention strategy and thus avoid unnecessary harms and costs. As the benefit-harm ratio of preventive measures, including screening, is likely to increase with risk, low-risk groups could be excluded from screening or be managed less intensely than high-risk groups. To identify and evaluate optimal intervention strategies for different risk groups is a domain of decision-analytic modeling. Therefore, another objective of our review was to investigate which risk-adapted strategies have been considered by European health-economic studies and how these strategies perform compared to currently established conventional screening. Only five of the included studies evaluated risk-adapted breast cancer screening strategies, one focusing on screening in a high-risk population [45] and four on screening in the general population [37,58,40,55]. Among the latter, the studies by O'Mahony et al. [58], Gray et al. [37] and Vilaprinyo et al. [55] evaluated risk-adapted screening intervals, or risk-adapted intervals and age ranges, whereas Pashayan et al. [40] evaluated risk-based restrictions of the target population. Data provided by Gray et al., Vilaprinyo et al. and Pashayan et al. accounted for overdiagnosis-related harms and were suited to evaluate risk-adapted screening against the currently established screening strategy in incremental analyses. Results indicate that all three risk-adapted screening approaches might be more effective and more efficient (dominant in the strong or extended sense) than current screening.

Risk adaptation was not an issue in any of the reviewed prevention models, most likely since all studies, except one, a priori focused exclusively on high-risk populations and non-risk adapted strategies were predicted to be highly beneficial and cost effective even without risk adaptation.

Health-economic breast cancer screening models have been assessed in several previous reviews with different focusses [21-30]. In contrast to previous reviews, the particular strength of our systematic review is that (1) it includes both primary prevention and screening studies, which provides an broad overview on how breast cancer is modeled by European health economic models, without regard of the evaluated intervention (2) it also focuses on risk-adapted strategies, and (3) it focuses strongly on the results of comprehensive modeling studies and aspects relevant to the ongoing debate on the benefit-harm ratio of breast cancer screening such as overdiagnosis-related harms, the unclear effect of screening on overall mortality, and potential improvements by risk-adapted strategies. A further and

extremely important feature of our work is that we used extracted model outputs to perform truly (stepwise) incremental cost-effectiveness analyses comparing strategies to the next less costly non-dominated strategy, which provides costeffectiveness ratios relevant to decision makers [18,19,14,78]. To improve comparability of study results all cost data were converted to 2017 Euros based on PPP and CPI. In addition, we used data from studies including strategies similar to established screening programs to derive comparable ICERs and/or ICURs for currently established screening compared to no screening. A 2017 review by Arnold et al. [21] already has reviewed economic models evaluating risk-adapted breast cancer screening without geographic restriction. However, this review focused primarily on cost and utility parameters of the models and all included studies, except one, were from countries outside Europe. A more recent review on personalized breast cancer screening, besides experimental and observational studies, also included mathematical models [79]. However, the focus of this review was neither on influential methodological details and assumptions of the models, nor on cost effectiveness.

Our review has several limitations. Firstly, the review is restricted to economic studies conducted in Europe. Therefore, the review does not include all existing models. However, the restriction seems justified from a European perspective, given that cost effectiveness depends on local epidemiology, treatment patterns and costs, which is also relevant for European BCa screening guidelines [80,81]. Secondly, our search focused on studies listed in electronic databases. Thus, it cannot be ruled out that further studies exist in the gray literature. However, as our search was performed in a variety of databases, this risk is low. Thirdly, our review includes economic

evaluations published over a time period of almost three decades. Within that period

breast cancer treatment has significantly improved [82]. Since more effective treatment reduces the potential for health gains by early detection and treatment, cost per life year or QALY gained derived from older models are likely to be lower than ICERs in the modern setting. However, as shown by our review, also more recent economic models suggest that breast cancer screening provides additional health at acceptable cost. Nevertheless, it should be noted that this finding is inconsistent with screening-related QALY losses found in the recent benefit-harm analyses by Zahl et al. [76], who in their model explicitly tried to factor in the effectiveness of modern breast cancer treatment. A considerable decline of screening benefits over time has also been shown by Birnbaum et al. [83], who simulated and compared the expected outcomes of a virtual screening trial performed in 1975, 1999 and 2015, given the standard of care available at that times. According to the simulation, the trial performed in 1975 would have shown an absolute 10-year risk reduction of 5 deaths per 10,000 women, while the same trial in 2015 would have shown only a reduction of 3 death per 10,000. Fourthly, our synthesis is based only on the information given in the publications, which is not always comprehensive due to the limited word count allowed in scientific journals. Particularly, the judgement of benefit-harm predictions and ICURs is often hampered by scarce information on overdiagnosis, overtreatment and considered disutilities, which makes it difficult to judge whether all relevant harms due to overdiagnosis and overtreatment have been accounted for. Fifthly, a weakness lies in the methodological heterogeneity of the included studies themselves. For example, apart from differing model types, model assumptions, time horizons and perspectives, several studies did not perform discounting, or used different rates for discounting health outcomes and costs, which is not in line with current guidelines for economic evaluations such as the EUnetHTA

Guideline [84] and may strongly impair the comparability of ICERs and ICURs. Finally, it may be regarded as a limitation of our study that no risk of bias (RoB) assessment of the included studies was performed. RoB assessment was omitted for two reasons. First of all, our objective was not to judge, which of the included models are least biased, and to come up with a most valid estimate of an (unbiased) "pooled" ICER, which would have required a much more focused review. Instead, we intended to provide a comprehensive overview of the CEA models used to evaluate the cost

effectiveness of breast cancer screening and prevention strategies in Europe, including their findings and methodological approaches and features, which are relevant for the ongoing controversy about the benefit of breast cancer screening. The second reason for not performing a RoB assessment was that currently there is no commonly accepted RoB checklist for model based economic evaluations [85]. The most comprehensive and appropriate tool might be the ECOBIAS checklist for bias in economic evaluation [86]. However, even this checklist needs further evaluation and is likely to provide very subjective results, as it is up to the reviewer to decide whether certain types of biases assessed by the checklist are relevant in the study context or not.

Conclusions

From our comprehensive and systematic review, it can be concluded that European economic models almost unanimously suggest that breast cancer screening and primary prevention are cost effective in the European setting, even in more recent studies when overdiagnosis-related harms are accounted for more explicitly. However, it also is shown that all models assume that reductions in breast cancer mortality translate into gains in life-expectancy, which has not been convincingly

shown in trials yet. European models evaluating risk-adapted screening strategies are still rare. However, existing evaluations suggest that risk-adapted screening should be more effective and efficient than conventional screening. Therefore, future evaluations of breast cancer screening should more strongly focus on risk-adapted strategies. What is needed are strong and reliable predictors of breast cancer risk that can be translated into optimized and individualized screening algorithms with risk-adapted intervals or target selection in order to maximize benefits and minimize

harms for screened women.

References

- Ferlay, J., Steliarova-Foucher, E., Lortet-Tieulent, J., Rosso, S., Coebergh, J.W., Comber, H., Forman, D., Bray, F.: Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. European journal of cancer (Oxford, England : 1990) 49(6), 1374-1403 (2013). doi:10.1016/j.ejca.2012.12.027
- Amaro, J., Severo, M., Vilela, S., Fonseca, S., Fontes, F., La Vecchia, C., Lunet, N.: Patterns of breast cancer mortality trends in Europe. Breast 22(3), 244-253 (2013). doi:10.1016/j.breast.2013.02.007
- Autier, P., Boniol, M., La Vecchia, C., Vatten, L., Gavin, A., Hery, C., Heanue, M.: Disparities in breast cancer mortality trends between 30 European countries: retrospective trend analysis of WHO mortality database. BMJ (Clinical research ed.) 341, c3620 (2010). doi:10.1136/bmj.c3620
- De Angelis, R., Sant, M., Coleman, M.P., Francisci, S., Baili, P., Pierannunzio, D., Trama, A., Visser, O., Brenner, H., Ardanaz, E., Bielska-Lasota, M., Engholm, G., Nennecke, A., Siesling, S., Berrino, F., Capocaccia, R., Group, E.-W.: Cancer survival in Europe 1999-2007 by country and age: results of EUROCARE--5-a population-based study. Lancet Oncol **15**(1), 23-34 (2014). doi:10.1016/S1470-2045(13)70546-1
- 5. Chetlen, A., Mack, J., Chan, T.: Breast cancer screening controversies: who, when, why, and how? Clin Imaging **40**(2), 279-282 (2016). doi:10.1016/j.clinimag.2015.05.017
- Jorgensen, K.J., Kalager, M., Barratt, A., Baines, C., Zahl, P.H., Brodersen, J., Harris, R.P.: Overview of guidelines on breast screening: Why recommendations differ and what to do about it. Breast **31**, 261-269 (2017). doi:10.1016/j.breast.2016.08.002
- 7. Nelson, H.D., Cantor, A., Humphrey, L., Fu, R., Pappas, M., Daeges, M., Griffin, J.: Screening for Breast Cancer: A Systematic Review to Update the 2009 U.S. Preventive Services Task Force Recommendation. In: Screening for Breast Cancer: A Systematic Review to Update the 2009 U.S. Preventive Services Task Force Recommendation. U.S. Preventive Services Task Force Evidence Syntheses, formerly Systematic Evidence Reviews. Rockville (MD) (2016)
- Marmot, M.G., Altman, D.G., Cameron, D.A., Dewar, J.A., Thompson, S.G., Wilcox, M.: The benefits and harms of breast cancer screening: an independent review. Br J Cancer **108**(11), 2205-2240 (2013). doi:10.1038/bjc.2013.177

- Welch, H.G., Prorok, P.C., O'Malley, A.J., Kramer, B.S.: Breast-Cancer Tumor Size, Overdiagnosis, and Mammography Screening Effectiveness. The New England journal of medicine 375(15), 1438-1447 (2016). doi:10.1056/NEJMoa1600249
- 10. Adami, H.O., Kalager, M., Valdimarsdottir, U., Bretthauer, M., Ioannidis, J.P.A.: Time to abandon early detection cancer screening. Eur J Clin Invest, e13062 (2018). doi:10.1111/eci.13062
- 11. Autier, P., Boniol, M.: Mammography screening: A major issue in medicine. European journal of cancer (Oxford, England : 1990) **90**, 34-62 (2018). doi:10.1016/j.ejca.2017.11.002
- Autier, P., Boniol, M., Koechlin, A., Pizot, C., Boniol, M.: Effectiveness of and overdiagnosis from mammography screening in the Netherlands: population based study. BMJ (Clinical research ed.) 359, j5224 (2017). doi:10.1136/bmj.j5224
- Caro, J.J., Briggs, A.H., Siebert, U., Kuntz, K.M., Force, I.-S.M.G.R.P.T.: Modeling good research practices--overview: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-1. Medical decision making : an international journal of the Society for Medical Decision Making **32**(5), 667-677 (2012). doi:10.1177/0272989X12454577
- 14. Siebert, U.: When should decision-analytic modeling be used in the economic evaluation of health care? [Editorial]. The European Journal of Health Economics **4**(3), 143–150 (2003).
- Siebert, U., Alagoz, O., Bayoumi, A.M., Jahn, B., Owens, D.K., Cohen, D.J., Kuntz, K.M.: Statetransition modeling: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-3. Medical decision making : an international journal of the Society for Medical Decision Making 32(5), 690-700 (2012). doi:10.1177/0272989X12455463
- 16. National Cancer Institute: BRCA Mutations: Cancer Risk and Genetic Testing (Fact Sheet). Available at: <u>https://www.cancer.gov/about-cancer/causes-prevention/genetics/brca-fact-sheet#r4</u>, Accessed: November 2019. (2015).
- 17. Levy-Lahad, E., Friedman, E.: Cancer risks among BRCA1 and BRCA2 mutation carriers. Br J Cancer **96**(1), 11-15 (2007). doi:10.1038/sj.bjc.6603535
- 18. Gold, M.R., Siegel, J.E., Russell, L.B., Weinstein, M.C.: Cost-Effectiveness in Health and Medicine. Oxford University Press Inc., New York (1996)
- 19. Hunink, M., Glasziou, P., Siegel, J., Weeks, S., Pliskin, J., Elstein, A., Weinstein, M.: Decision making in health and medicine. Integrating evidence and values. Cambridge University Press, Cambridge (2001)
- 20. Weinstein, M.C.: High-priced technology can be good value for money. Annals of internal medicine **130**(10), 857-858 (1999).
- Arnold, M.: Simulation modeling for stratified breast cancer screening a systematic review of cost and quality of life assumptions. BMC health services research 17(1), 802 (2017). doi:10.1186/s12913-017-2766-2
- 22. Barratt, A.L., Les Irwig, M., Glasziou, P.P., Salkeld, G.P., Houssami, N.: Benefits, harms and costs of screening mammography in women 70 years and over: a systematic review. The Medical journal of Australia **176**(6), 266-271 (2002).
- 23. Brown, D.W., French, M.T., Schweitzer, M.E., McGeary, K.A., McCoy, C.B., Ullmann, S.G.: Economic evaluation of breast cancer screening: A review. Cancer practice **7**(1), 28-33 (1999).
- 24. De Koning, H.J.: Breast cancer screening; cost-effective in practice? European journal of radiology **33**(1), 32-37 (2000).
- 25. Koleva-Kolarova, R.G., Zhan, Z., Greuter, M.J., Feenstra, T.L., De Bock, G.H.: To screen or not to screen for breast cancer? How do modelling studies answer the question? Current oncology (Toronto, Ont.) **22**(5), e380-382 (2015). doi:10.3747/co.22.2889
- Koleva-Kolarova, R.G., Zhan, Z., Greuter, M.J., Feenstra, T.L., De Bock, G.H.: Simulation models in population breast cancer screening: A systematic review. Breast 24(4), 354-363 (2015). doi:10.1016/j.breast.2015.03.013
- 27. Mandelblatt, J., Šaha, S., Teutsch, S., Hoerger, T., Siu, A.L., Atkins, D., Klein, J., Helfand, M.: The cost-effectiveness of screening mammography beyond age 65 years: a systematic review for the U.S. Preventive Services Task Force. Annals of internal medicine **139**(10), 835-842 (2003).

- Petelin, L., Trainer, A.H., Mitchell, G., Liew, D., James, P.A.: Cost-effectiveness and comparative effectiveness of cancer risk management strategies in BRCA1/2 mutation carriers: a systematic review. Genetics in medicine : official journal of the American College of Medical Genetics (2018). doi:10.1038/gim.2017.255
- 29. Rashidian, A., Barfar, E., Hosseini, H., Nosratnejad, S., Barooti, E.: Cost effectiveness of breast cancer screening using mammography; a systematic review. Iranian journal of public health **42**(4), 347-357 (2013).
- Schiller-Fruhwirth, I.C., Jahn, B., Arvandi, M., Siebert, U.: Cost-Effectiveness Models in Breast Cancer Screening in the General Population: A Systematic Review. Applied health economics and health policy (2017). doi:10.1007/s40258-017-0312-3
- 31. Drummond, M.F., Sculpher, M.J., Claxton, K., Stoddart, G.L., Torrance, G.W.: Methods for the Economic Evaluation of Health Care Programmes, 4th ed. Oxford University Press, (2015)
- 32. Siebert, U.: Using Decision-Analytic Modelling to Transfer International Evidence from Health Technology Assessment to the Context of the German Health Care System. Health Technology Assessment Vol 15. (Series of the German Institute for Medical Documentation and Information commissioned by the Federal Ministry of Health and Social Security). DIMDI, Cologne (2005)
- 33. OECD statistics. Purchasing Power Parities for GDP and related indicators. Available at: <u>https://stats.oecd.org/Index.aspx?DataSetCode=PPPGDP</u> Accessed: April 2018. <u>https://stats.oecd.org/Index.aspx?DataSetCode=PPPGDP</u>. Accessed April 2018
- 34. OECD statistics. National CPI weights. Available at:

https://stats.oecd.org/Index.aspx?DataSetCode=MEI_CPI_WEIGHTS Accessed: April 2018. https://stats.oecd.org/Index.aspx?DataSetCode=MEI_CPI_WEIGHTS. Accessed April 2018

- 35. Baker, R.D.: Use of a mathematical model to evaluate breast cancer screening policy. Health care management science 1(2), 103-113 (1998).
- 36. Boer, R., Koning, H., Threlfall, A., Warmderdam, P., Street, A., Friedman, E., Woodman, C.: Cost effectiveness of shortening screening interval or extending age range of NHS breast screening programme: computer simulation study. BMJ (Clinical research ed.) (1998).
- 37. Gray, E., Donten, A., Karssemeijer, N., van Gils, C., Evans, D.G., Astley, S., Payne, K.: Evaluation of a Stratified National Breast Screening Program in the United Kingdom: An Early Model-Based Cost-Effectiveness Analysis. Value in health : the journal of the International Society for Pharmacoeconomics and Outcomes Research 20(8), 1100-1109 (2017). doi:10.1016/j.jval.2017.04.012
- 38. Madan, J., Rawdin, A., Stevenson, M., Tappenden, P.: A rapid-response economic evaluation of the UK NHS Cancer Reform Strategy breast cancer screening program extension via a plausible bounds approach. Value in Health (2010).
- 39. Norman, R.P., Evans, D.G., Easton, D.F., Young, K.C.: The cost-utility of magnetic resonance imaging for breast cancer in BRCA1 mutation carriers aged 30-49. The European journal of health economics : HEPAC : health economics in prevention and care **8**(2), 137-144 (2007). doi:10.1007/s10198-007-0042-9
- 40. Pashayan, N., Morris, S., Gilbert, F.J., Pharoah, P.D.P.: Cost-effectiveness and Benefit-to-Harm Ratio of Risk-Stratified Screening for Breast Cancer: A Life-Table Model. JAMA Oncol (2018). doi:10.1001/jamaoncol.2018.1901
- Pharoah, P.D., Sewell, B., Fitzsimmons, D., Bennett, H.S., Pashayan, N.: Cost effectiveness of the NHS breast screening programme: life table model. BMJ (Clinical research ed.) 346, f2618 (2013). doi:10.1136/bmj.f2618
- 42. Rafia, R., Brennan, A., Madan, J., Collins, K., Reed, M.W., Lawrence, G., Robinson, T., Greenberg, D., Wyld, L.: Modeling the Cost-Effectiveness of Alternative Upper Age Limits for Breast Cancer Screening in England and Wales. Value in health : the journal of the International Society for Pharmacoeconomics and Outcomes Research 19(4), 404-412 (2016). doi:10.1016/j.jval.2015.06.006

64 65

43. Boer, R., de Koning, H.J., van Oortmarssen, G.J., van der Maas, P.J.: In search of the bes

1 age limit for breast cancer screening. European journal of cancer (Oxford, England **31a**(12), 2040-2043 (1995).

- 44. de Koning, H.J., van Ineveld, B.M., van Oortmarssen, G.J., de Haes, J.C., Collette, H.J., Hendriks, J.H., van der Maas, P.J.: Breast cancer screening and cost-effectiveness; policy alternatives, quality of life considerations and the possible impact of uncertain factors. Int J Cancer 49(4), 531-537 (1991).
- 45. Jacobi, C.E., Nagelkerke, N.J., van Houwelingen, J.H., de Bock, G.H.: Breast cancer screening, outside the population-screening program, of women from breast cancer families without proven BRCA1/BRCA2 mutations: a simulation study. Cancer epidemiology, biomarkers &
 - prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology **15**(3), 429-436 (2006). doi:10.1158/1055-9965.epi-05-0223
- 46. Koleva-Kolarova, R.G., Daszczuck, A.M., de Jonge, C., Abu Hantash, M.K., Zhan, Z.Z., Postema, E.J., Feenstra, T.L., Pijnappel, R.M., Greuter, M.J.W., de Bock, G.H.: A modelling study to evaluate the costs and effects of lowering the starting age of population breast cancer screening. Maturitas **109**, 81-88 (2018). doi:10.1016/j.maturitas.2017.12.009
- Obdeijn, I.M., Heijnsdijk, E.A., Hunink, M.G., Tilanus-Linthorst, M.M., de Koning, H.J.: Mammographic screening in BRCA1 mutation carriers postponed until age 40: Evaluation of benefits, costs and radiation risks using models. European journal of cancer (Oxford, England : 1990) 63, 135-142 (2016). doi:10.1016/j.ejca.2016.05.012
- Sankatsing, V.D., Heijnsdijk, E.A., van Luijt, P.A., van Ravesteyn, N.T., Fracheboud, J., de Koning, H.J.: Cost-effectiveness of digital mammography screening before the age of 50 in The Netherlands. International Journal of Cancer **137**(8), 1990-1999 (2015).
- 49. Arrospide, A., Rue, M., van Ravesteyn, N.T., Comas, M., Soto-Gordoa, M., Sarriugarte, G., Mar, J.: Economic evaluation of the breast cancer screening programme in the Basque Country: retrospective cost-effectiveness and budget impact analysis. BMC Cancer **16**(1), 344 (2016). doi:10.1186/s12885-016-2386-y
- 50. BEEMSTERBOER, P.M.M., WARMERDAM, P.G., BOER, R., BORRAS, J.M., MORENO, V., VILADIU, P., DE KONING, H.J.: Screening for breast cancer in Catalonia. Which policy is to be preferred? 8(3), 241-246 (1998). doi:10.1093/eurpub/8.3.241
- 51. Carles, M., Vilaprinyo, E., Cots, F., Gregori, A., Pla, R., Roman, R., Sala, M., Macia, F., Castells, X., Rue, M.: Cost-effectiveness of early detection of breast cancer in Catalonia (Spain). BMC Cancer (2011).
- 52. Comas, M., Arrospide, A., Mar, J., Sala, M., Vilaprinyo, E., Hernandez, C., Cots, F., Martinez, J., Castells, X.: Budget impact analysis of switching to digital mammography in a populationbased breast cancer screening program: a discrete event simulation model. PloS one 9(5), e97459 (2014).
- 53. Garuz, R., Forcen, T., Cabases, J., Antonanzas, F., Trinxet, C., Rovira, J., Anton, F.: Economic evaluation of a mammography-based breast cancer screening programme in Spain. European Journal of Public Health (1997).
- 54. Posso, M., Carles, M., Rue, M., Puig, T., Bonfill, X.: Cost-Effectiveness of Double Reading versus Single Reading of Mammograms in a Breast Cancer Screening Programme. PloS one **11**(7), e0159806 (2016). doi:10.1371/journal.pone.0159806
- 55. Vilaprinyo, E., Forne, C., Carles, M., Sala, M., Pla, R., Castells, X., Domingo, L., Rue, M.: Costeffectiveness and harm-benefit analyses of risk-based screening strategies for breast cancer. PloS one **9**(2), e86858 (2014). doi:10.1371/journal.pone.0086858
- 56. Gelder, R., Bulliard, J.L., Wolf, C., Fracheboud, J., Draisma, G., Schopper, D., Koning, H.J.: Costeffectiveness of opportunistic versus organised mammography screening in Switzerland. European Journal of Cancer (2009).
- 57. Neeser, K., Szucs, T., Bulliard, J.L., Bachmann, G., Schramm, W.: Cost-effectiveness analysis of a quality-controlled mammography screening program from the Swiss statutory health-care

perspective: quantitative assessment of the most influential factors (Structured abstract). Value in Health (2007).

- 58. O'Mahony, J.F., van Rosmalen, J., Mushkudiani, N.A., Goudsmit, F.W., Eijkemans, M.J., Heijnsdijk, E.A., Steyerberg, E.W., Habbema, J.D.: The influence of disease risk on the optimal time interval between screens for the early detection of cancer: a mathematical approach. Medical decision making : an international journal of the Society for Medical Decision Making 35(2), 183-195 (2015). doi:10.1177/0272989x14528380
- Beemsterboer, P.M., de Koning, H.J., Warmerdam, P.G., Boer, R., Swart, E., Dierks, M.L., Robra, B.P.: Prediction of the effects and costs of breast-cancer screening in Germany. Int J Cancer 58(5), 623-628 (1994).
- 60. Ruile, G., Djanatliev, A., Kriza, C., Meier, F., Leb, I., Kalender, W.A., Kolominsky-Rabas, P.L.: Screening for breast cancer with Breast-CT in a ProHTA simulation. Journal of comparative effectiveness research **4**(6), 553-567 (2015). doi:10.2217/cer.15.42
- 61. Schiller-Fruehwirth, I., Jahn, B., Einzinger, P., Zauner, G., Urach, C., Siebert, U.: The Long-Term Effectiveness and Cost Effectiveness of Organized versus Opportunistic Screening for Breast Cancer in Austria. Value in health : the journal of the International Society for Pharmacoeconomics and Outcomes Research **20**(8), 1048-1057 (2017). doi:10.1016/j.jval.2017.04.009
- Gyrd-Hansen, D.: Cost-benefit analysis of mammography screening in Denmark based on discrete ranking data. International journal of technology assessment in health care 16(3), 811-821 (2000).
- 63. Arveux, P., Wait, S., Schaffer, P.: Building a model to determine the cost-effectiveness of breast cancer screening in France. European journal of cancer care **12**(2), 143-153 (2003).
- 64. van Luijt, P.A., Heijnsdijk, E.A., de Koning, H.J.: Cost-effectiveness of the Norwegian breast cancer screening program. Int J Cancer **140**(4), 833-840 (2017). doi:10.1002/ijc.30513
- 65. Rojnik, K., Naversnik, K., Mateovic-Rojnik, T., PrimicZakelj, M.: Probabilistic cost-effectiveness modeling of different breast cancer screening policies in Slovenia. Value in Health (2008).
- 66. van Ineveld, B.M., van Oortmarssen, G.J., de Koning, H.J., Boer, R., van der Maas, P.J.: How costeffective is breast cancer screening in different EC countries? European journal of cancer (Oxford, England : 1990) **29a**(12), 1663-1668 (1993).
- 67. Eccleston, A., Bentley, A., Dyer, M., Strydom, A., Vereecken, W., George, A., Rahman, N.: A Cost-Effectiveness Evaluation of Germline BRCA1 and BRCA2 Testing in UK Women with Ovarian Cancer. Value in health : the journal of the International Society for Pharmacoeconomics and Outcomes Research **20**(4), 567-576 (2017). doi:10.1016/j.jval.2017.01.004
- 68. Manchanda, R., Legood, R., Burnell, M., McGuire, A., Raikou, M., Loggenberg, K., Wardle, J., Sanderson, S., Gessler, S., Side, L., Balogun, N., Desai, R., Kumar, A., Dorkins, H., Wallis, Y., Chapman, C., Taylor, R., Jacobs, C., Tomlinson, I., Beller, U., Menon, U., Jacobs, I.: Costeffectiveness of population screening for BRCA mutations in Ashkenazi jewish women compared with family history-based testing. Journal of the National Cancer Institute **107**(1), 380 (2015). doi:10.1093/jnci/dju380
- 69. Manchanda, R., Patel, S., Antoniou, A.C., Levy-Lahad, E., Turnbull, C., Evans, D.G., Hopper, J.L., Macinnis, R.J., Menon, U., Jacobs, I., Legood, R.: Cost-effectiveness of population based BRCA testing with varying Ashkenazi Jewish ancestry. American journal of obstetrics and gynecology **217**(5), 578.e571-578.e512 (2017). doi:10.1016/j.ajog.2017.06.038
- 70. Manchanda, R., Patel, S., Gordeev, V.S., Antoniou, A.C., Smith, S., Lee, A., Hopper, J.L., MacInnis, R.J., Turnbull, C., Ramus, S.J., Gayther, S.A., Pharoah, P.D.P., Menon, U., Jacobs, I., Legood, R.: Cost-effectiveness of Population-Based BRCA1, BRCA2, RAD51C, RAD51D, BRIP1, PALB2
 Mutation Testing in Unselected General Population Women. Journal of the National Cancer Institute (2018). doi:10.1093/jnci/djx265
- 71. Patel, S., Legood, R., Evans, D.G., Turnbull, C., Antoniou, A.C., Menon, U., Jacobs, I., Manchanda, R.: Cost effectiveness of population based BRCA1 founder mutation testing in Sephardi

1

Jewish women. American journal of obstetrics and gynecology **218**(4), 431.e431-431.e412 (2018). doi:10.1016/j.ajog.2017.12.221

- 72. Norum, J., Hagen, A.I., Maehle, L., Apold, J., Burn, J., Moller, P.: Prophylactic bilateral salpingooophorectomy (PBSO) with or without prophylactic bilateral mastectomy (PBM) or no intervention in BRCA1 mutation carriers: a cost-effectiveness analysis. European Journal of Cancer (2008).
- 73. Muller, D., Danner, M., Rhiem, K., Stollenwerk, B., Engel, C., Rasche, L., Borsi, L., Schmutzler, R., Stock, S.: Cost-effectiveness of different strategies to prevent breast and ovarian cancer in German women with a BRCA 1 or 2 mutation. The European journal of health economics : HEPAC : health economics in prevention and care (2017). doi:10.1007/s10198-017-0887-5
- 74. Schwarzer, R., Rochau, U., Saverno, K., Jahn, B., Bornschein, B., Muehlberger, N., Flatscher-Thoeni, M., Schnell-Inderst, P., Sroczynski, G., Lackner, M., Schall, I., Hebborn, A., Pugner, K., Fehervary, A., Brixner, D., Siebert, U.: Systematic overview of cost-effectiveness thresholds in ten countries across four continents. Journal of comparative effectiveness research 4(5), 485-504 (2015). doi:10.2217/cer.15.38
- 75. Prasad, V., Lenzer, J., Newman, D.H.: Why cancer screening has never been shown to "save lives"--and what we can do about it. BMJ (Clinical research ed.) 352, h6080 (2016). doi:10.1136/bmj.h6080
- 76. Zahl, P.H., Kalager, M., Suhrke, P., Nord, E.: Quality-of-life effects of screening mammography in Norway. Int J Cancer (2019). doi:10.1002/ijc.32539
- 77. Heijnsdijk, E.A.M., Csanadi, M., Gini, A., Ten Haaf, K., Bendes, R., Anttila, A., Senore, C., de Koning, H.J.: All-cause mortality versus cancer-specific mortality as outcome in cancer screening trials: A review and modeling study. Cancer Med 8(13), 6127-6138 (2019). doi:10.1002/cam4.2476
- 78. Weinstein, M.C., Stason, W.B.: Foundations of cost-effectiveness analysis for health and medical practices. The New England journal of medicine **296**(13), 716-721 (1977). doi:10.1056/NEJM197703312961304
- 79. Roman, M., Sala, M., Domingo, L., Posso, M., Louro, J., Castells, X.: Personalized breast cancer screening strategies: A systematic review and quality assessment. PloS one **14**(12), e0226352 (2019). doi:10.1371/journal.pone.0226352
- Cardoso, F., Kyriakides, S., Ohno, S., Penault-Llorca, F., Poortmans, P., Rubio, I.T., Zackrisson, S., Senkus, E.: Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol (2019). doi:10.1093/annonc/mdz173
- 81. European Commission Initiative on Breast Cancer (ECIBC): European guidelines on breast cancer screening and diagnosis. Available at: <u>https://healthcare-quality.jrc.ec.europa.eu/european-breast-cancer-guidelines</u>, Accessed: November 2019. (2019).
- 82. Zurrida, S., Veronesi, U.: Milestones in breast cancer treatment. Breast J **21**(1), 3-12 (2015). doi:10.1111/tbj.12361
- Birnbaum, J., Gadi, V.K., Markowitz, E., Etzioni, R.: The Effect of Treatment Advances on the Mortality Results of Breast Cancer Screening Trials: A Microsimulation Model. Annals of internal medicine 164(4), 236-243 (2016). doi:10.7326/M15-0754
- 84. European Network for Health Technology Assessent (EUnetHTA): Guideline Methods for health

economic evaluations - A guideline based on current practices in Europe. Availabel at:

https://www.eunethta.eu/wpcontent/uploads/2018/03/Methods_for_health_economic_evaluations.pdf. https://www.eunethta.eu/wp-

content/uploads/2018/03/Methods_for_health_economic_evaluations.pdf (2015) November
2019

 Philips, Z., Bojke, L., Sculpher, M., Claxton, K., Golder, S.: Good practice guidelines for decisionanalytic modelling in health technology assessment: a review and consolidation of quality assessment. Pharmacoeconomics 24(4), 355-371 (2006). doi:10.2165/00019053-200624040-00006 86. Adarkwah, C.C., van Gils, P.F., Hiligsmann, M., Evers, S.M.: Risk of bias in model-based ec evaluations: the ECOBIAS checklist. Expert Rev Pharmacoecon Outcomes Res **16**(4),5 (2016). doi:10.1586/14737167.2015.1103185 Table 1 Characteristics of economic studies modeling breast cancer screening (upper part) and breast cancer primary prevention strategies (lower part).
 Studies in both parts of the table are presented by year of publication.

21 22 23 24 25 26	Author Year Setting	Objectives Target population (P)	Compared strategies Adherence (A)	Model type Analysis approach (A) Tin horizon (H)	Economic evaluation Perspective (P) Incl. cost categories (C) Discounting (D) OverDx-related harms (O)*	Outcomes	Sensitivity and scenario analyses	Validation
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	<u>Screening</u> de Koning 1991 NL [44]	Evaluation of different mammography screening strategies P: Women age 40+	5 mammography screening strategies at different ages and intervals vs no screening A: 65-75% (age dependent)	DES closed population model (MISCAN) A: Microsimulation H: 27 years (lifetime)	CEA, CUA P: Payer, (insurance members in scenario analysis) C: Direct medical costs (scenario analysis incl. direct non-medical costs and costs of other diseases in gained lifetime) D: 5% (costs and effects)	Mortality reduction, LYG, QALYs gained, costs, ICER, ICUR	Deterministic SA, scenario analyses	Against observed data
43 44 45 46 47 48 49 50 51 52 53 56 57 5 5 5 5 5 5 5 5 5 5	van Ineveld 1993 ES, FR, UK, NL [66]	Evaluation of hypothetical mammography screening programs in different EC countries P: Women age 50+	Biennial mammography screening at age 50-70 vs no screening A: 65-75% (age dependent)	DES closed population model (MISCAN) A: Microsimulation H: 27 years (lifetime)	O: Considered CEA P: Health care system C: Program costs and direct medical costs D: 5% (costs and effects) O: n.a.	Mortality reduction, LYG, costs, ICER	Scenario analyses	Partly, but not reported (Dutch model against observed data)
63 64 65								30

15 16								
17 18 19 20 21 22	Author Year Setting	Objectives Target population (P)	Compared strategies Adherence (A)	Model type Analysis approach (A) Time horizon (H)	Economic evaluation Perspective (P) Incl. cost categories (C) Discounting (D)	Outcomes	Sensitivity and scenario analyses	Validation
23 24 25 26 27 28 29 30	Beemsterb oer 1994 DE [59]	Evaluation of hypothetical mammography screening in Germany P: Women age 40+	Biennial mammography screening at age 50-70 vs no screening A: 47%	DES closed population model (MISCAN) A: Microsimulation H: 27 years (lifetime)	CEA, CUA P: Payer C: Direct medical costs D: 5% (costs and effects)	Mortality reduction, LYG, QALYs gained, costs, ICER, ICUR	Deterministic SA, scenario analyses	Not reported
31 32 33 34 35 36 37 38 39 40 41	Boer 1995 NL [43]	Evaluation of different upper age limits of mammography screening P: Women age 50+	Mammography screening with different upper age bounds and intervals vs no screening A: 21-75% (age dependent), 100% in benefit-harm analysis	DES closed population model (MISCAN) A: Microsimulation H: 27 years (lifetime)	O: Considered CUA P: Insurance members (society?) C: Direct medical and non- medical costs (costs of other diseases in gained lifetime?) D: 5% (costs and effects)	Mortality reduction, LYG, QALYs gained, costs, ICUR	Scenario analyses (best- and worst-case analyses)	Against observed data
42 43 44 45 46 47 48 9 51 52 53 54 55 56 57 8 59	Garuz 1997 ES [53]	Evaluation of hypothetical mammography screening programs P: Women age 45+	Biennial mammography screening with starting age 50 and 45 and no screening A: 70%	Cycled decision tree to model effects and CE (open population model), Markov model to calculate cost parameters A: Staggered cohort simulation (decision tree), Microsimulation (Markov model) H: 25 years (program duration)	 O: Partly considered CEA P: Health care system C: Program costs and direct medical costs D: 6% (costs and effects) O: n.a. 	Mortality reduction, LYG, costs, ICER	Deterministic SA, scenario analyses	Not reported
60 61 62 63 64 65								31

17 10 Model type Validation Author Objectives Compared strategies Economic evaluation Outcomes Sensitivity エフ Year Target population (P) Adherence (A) Analysis approach (A) Perspective (P) and ∠u Settina Time horizon (H) Incl. cost categories (C) scenario 21 Discounting (D) analyses 22 23 OverDx-related harms (O)* Baker Evaluation of different Mammography Maximum-likelihood Quasi CBA (costs expressed Mortality Scenario Against 24 screening at different model in month of life lost, where 8 reduction. analysis observed mammography 1998 25 26 27 ages and intervals and screens equal one month of (doubling the data and screening strategies YLL. UK [35] no screenina cost of month other A: Analytical solution lite lost) costs of P: Women age 48+ cancer (i.e., of life lost) models 28 A. 100% H[.] Lifetime P: Health care system 29 cost of screening + 30 C: Costs of screening and cost of YLL 31 cost of life lost (one month of due to 32 life equals the costs of 8 cancer) 33 screens = $\pounds200$) 34 35 D: Not applied 36 37 38 O: n.a. CEA **Beemsterb** Evaluation of Mammography DES closed population Mortality Deterministic Partly, but 39 model (MISCAN) SA. hypothetical screening at different reduction. oer not 40 1998 ages and intervals vs no P: Paver LYG. mammography scenario reported 41 ES A: Microsimulation costs. (dutch screening programs screening analyses 42 **ICER** (Catalonia) C: Direct medical costs model 43 P: Women age 40+ H: 27 years (lifetime) A: 69-75% (age [50] against 44 45 dependent) D: 5% (costs and effects) observed data) 46 47 O: n.a. CEA 48 Boer Evaluation of 2 mammography DES closed population Mortality Not reported Against model (MISCAN) 49 1998 hypothetical changes to screening strategies with reduction. observed 50 UK [36] the NHS mammography P: Payer LYG, extended upper age data 51 screening program bound and shorter A: Microsimulation costs, **ICER** 52 interval vs no screening C: Direct medical costs 53 P: Women age 50+ H: 27 years (lifetime) and established NHS 57 dependent) 54 program 55 56 A: 68-74% (age 58 59 60 61

15 16

62

- 16 17

D: 6% (costs and effects) O: n.a.

15								
17 18 19 20 21 22	Author Year Setting	Objectives Target population (P)	Compared strategies Adherence (A)	Model type Analysis approach (A) Time horizon (H)	Economic evaluation Perspective (P) Incl. cost categories (C) Discounting (D)	Outcomes	Sensitivity and scenario analyses	Validation
23 24 25 26 27 28 29 30 31 32 33 34	Gyrd- Hansen 2000 DK [62]	Evaluation of hypothetical mammography screening programs P: Women age 50+	12 mammography screening strategies at different ages and intervals and no screening A: 71-92% (depending on education and strategy)	Regression model (ordered logit model) A: Numeric solution (discrete ranking modeling) H: 30 years, according to mortality risk presented on interview cards (lifetime)	OverDx-related narms (O)* CBA P: unclear (Screening candidate?) C: Out-of-pocket costs for screening, intangible costs, cost of statistical life D: Not applied	Reduction in BCa mortality, Utility, Marginal WTP per extra test	Not reported	Not applied (primarily method- logical work)
35 36 37 38 39 40 41 42 43 44	Arveux 2003 FR [63]	Evaluation of a decentralized mammography screening program P: Women age 50+	Biennial decentralized mammography screening at age 50-65 vs no screening A: 54%	State-transition closed population model A: Cohort simulation H: 20 years	O: n.a. CEA P: Health care system C: Program costs and direct medical costs D: 5% (costs only)	Mortality reduction, LYG, costs, ICER	Deterministic SA (costs and attendance)	Against observed data and other models
$\begin{array}{c} 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 56\\ 57\\ 58\\ 50\\ 61\\ 1\end{array}$	Jacobi 2006 NL [45]	Identification of risk- dependent optimal early starting ages of screening (below age 50) in women with a family history of breast cancer without <i>BRCA</i> mutation P: Women age 30+ without <i>BRCA1/2</i> mutation differing in familial breast cancer risk	Mammography screening with different intervals and starting ages below age 50 vs biennial screening at age 50-75 (current standard) A: Not reported (100%)	Jonker genetic model (to derive the lifetime risks of BCa in familiy risk strata), DES-like screening model modeling cancer detection among specified risk groups, (calculation of LYG and costs performed outside the model) A: Microsimulation H: Not reported (lifetime)	 O. n.a. CEA, CUA P: Not specified (cannot be derived from included cost components) C: Costs of screening and diagnosis D: Not reported (none) O: Unclear 	Lower age bounds for cost effective screening based on ICUR (underlying LYG and QALYs gained, costs, ICER, ICUR are not presented in detail),	Scenario analyses	Not applied

15 16								
17 18 19 20 21 22	Author Year Setting	Objectives Target population (P)	Compared strategies Adherence (A)	Model type Analysis approach (A) Time horizon (H)	Economic evaluation Perspective (P) Incl. cost categories (C) Discounting (D) OverDy-related barms (O)*	Outcomes	Sensitivity and scenario analyses	Validation
23 24 25 26 27 28 29 30 31 32 33	Neeser 2007 CH [57]	Evaluation of a quality- controlled mammography screening program vs established opportunistic screening P: Women age 40+	Quality-controlled mammography screening program vs opportunistic screening A: 70% (quality- controlled program, 20% (opportunistic screening)	State-transition model (Markov model) A: Cohort simulation (different age cohorts) H: Lifetime and 10 years	CEA P: Statutory health insurances C: Direct medical costs covered by insurance D: 0-3% for costs and 0- 1.5% for effects	10 year mortality and NNS, LE, lifetime costs, ICER	Deterministic and probabilistic SA	Against observed data
34 35 36 37 38 39 40 41 42	Norman 2007 UK [39]	Evaluation of breast cancer screening with and without MRI in <i>BRCA</i> 1 mutation carriers below age 50 P: Women age 30-49	Annual mammography, annual MRI, mammography and MRI in parallel, and no screening A: Not reported (100%)	State-transition model (Markov model) A: Cohort simulation (different age cohorts) H: Lifetime	O: n.a. CUA P: Payer C: Direct medical costs D: 3.5% (costs and effects)	QALYs gained, lifetime costs, ICUR	Deterministic and probabilistic SA	Not reported
42 43 44 45 46 47 48 49 50	Rojnik 2008 SL [65]	with <i>BRCA</i> 1 mutation Evaluation of hypothetical mammography screening policies P: Women age 40+	36 mammography screening strategies at different ages and intervals, and no Screeffing	State-transition model (Markov model) H: Lifetime A: Cohort simulation	O: Unclear CEA, CUA P: Payer D: 3% (costs and effects) O: C: Direct medical costs Considered	QALYs, lifetime costs, ICWR, (LYG and ICER presented in	Deterministic and probabilistic SA	Against observed data and other models

15 16 17								
18 19 20 21 22	Author Year Setting	Objectives Target population (P)	Compared strategies Adherence (A)	Model type Analysis approach (A) Time horizon (H)	Economic evaluation Perspective (P) Incl. cost categories (C) Discounting (D) OverDx-related harms (O)*	Outcomes	Sensitivity and scenario analyses	Validation
23 24 25 26 27 28 29 30	Gelder 2009 CH [56]	Evaluation of existing organized and opportunistic mammography screening P: Women age 50+	No screening and 5 scenarios of organized and opportunistic biggenation of the scenario of the scenario screen and op/MSP m	DES closed population model (MISCAN) A: Microsimulation H: Lifetime (20 years for Mortality predictions)	CEA, CUA P: Payer C: Direct medical costs D: 3% (costs and effects)	Mortality reduction, LYG, QALYs, Gains, CER, IC	Deterministic SA, scenario malyses	Against observed data
31 32 33 34 35 36 37	Madan 2010 UK [38]	Evaluation of a mapotheticapholdicionaling round below age 50 (rapid- response analysis)	A: 40-80% (depending on scenario) ଫୋଟ୍ସୋମ୍ଟ୍ରମିକ୍ରମିନ୍ଦ୍ର Screening at ages 47-49	Recisiານາ ^{ະເສດ} ແມ່ໃສ່tion H: Life	O: Considered ti <mark>ne</mark> ayer C: Direct medical costs	QALYs Marteliteosts, IC reduction,	CDeterministic and abilistic SA ('plausible boun method)	Not applied ds"
38 39 40 41 42 43	Carles	Evaluation of different hypothetical mammograph screening strategies	20 mammography screenir strategies at different ages intervals, and no screening y A: 75% (100% in	Mathematical equation mod And (Lee and Zelen stochastic model)	D: 3.5% (costs and effects) el O: Partly considered (?) CEA, P: Payer	Lives extended, LYG. QALYs gained, costs, I	Deterministic SA CUR scenario analys	A, e & gainst other mode
44 45 46	2011 ES [51]	P: Women age 40+	scenario analysis)	H: Until age 79 (lifetime)	C: Direct medical costs D: 3% (costs and effects) O: Conside	red		
47 48 49 50 51 52 53 54 55 56 57 58 59 60								
61 62 63 64 65								35

15 16 17								
18 19 20 21 22	Author Year Setting	Objectives Target population (P)	Compared strategies Adherence (A)	Model type Analysis approach (A) Time horizon (H)	Economic evaluation Perspective (P) Incl. cost categories (C) Discounting (D) OverDx-related harms (O)*	Outcomes	Sensitivity and scenario analyses	Validation
23 24 25 26 27 28 29 30 31	Pharoah 2013 UK [41]	Evaluation of the NHS breast screening program P: Women age 50+	Triennial mammography screening at ages 50-70 vs no screening A: 75% (100% in scenario analysis)	Life table model A: Life table calculations (based on 35 year follow- up data) H: Until age 85 (lifetime)	CUA P: Health care system C: Program costs and direct medical costs D: 3.5% (costs and effects)	Incidence and mortality reduction, LYG, QALYs gained, costs, ICUR	Probabilistic SA scenario analyses	Against observed data and other models
32 33 34 37 38 39 40	Comas 35 2014 36 ES	Evaluation of the budgetar impact of switching to digit mammography screening [52] P: Women age 50+	yBiennial digital mammogra tascreening vs biennial film- mammography at ages 50- A: 79% (initial screening, 8 (consecutive screenings)	npbgS dynamic population m -6% Microsimulation 3% 20 years (2010-2029)	oBAA (plus screening effect on incidence and mortality) P: Health care system C: Program costs and direct m costs	Incidence and mortality reducti costs edical	Probabilistic SA csocenario analys	Against observed e s ata
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	Vilaprinyo 2014 ES [55]	Evaluation of risk-based screening strategies (risk k on breast density, family h and history of breast biops P: Women age 40+ divider four risk groups (differing i cancer incidence)	Mammography screening risk depending intervals ar Dage ranges (2601 risk ada is Preening strategies) vs ur Screening and no screenin d A Not reported n	with nd pHathematical equation mod iform and Zelen stochastic gmodel) A: Analytical solution H: Until age 79 (lifetime)	D: Not applied O: n.a. Benefit-harm analyses, CEA, C P: Health care system C: Direc medical costs D: 3% (costs and effects) O: Considered (15% of mammograms)	CWAves extended, QALYs stgained, false positive ar false negative c overdiag- nosec cases, interval cancers costs, ICER, ICUR	Deterministic SA scenario analys nd ases, I	A, e&gainst observed data and other models
59 60 61 62 63 64 65								36

15 16 17 18 19 20 21 22	Author Year Setting	Objectives Target population (P)	Compared strategies Adherence (A)	Model type Analysis approach (A) Time horizon (H)	Economic evaluation Perspective (P) Incl. cost categories (C) Discounting (D) OverDx-related harms (O)*	Outcomes	Sensitivity and scenario analyses	Validation
23 24 25 26 27 28 29 30	Sankatsing 2015 NL [48]	Evaluation of digital mammography screening below age 50 P: Women age 40+	Digital mammography scre differing in starting age bel and intervals A: 80%	eDFF6 model simulating the h ovf 60 year old women (MIS) A: Microsimulation H: Lifetir	istory, CUA (in Appendix) P: Pa CAN) C: Direct medical costs ne D: 3.5% (costs and effects), scenario analysis with 4% for a and 1.5% for effects	ay lel ortality reduct LYG, QALYs gained, costs, I ICUR costs	idDeterministic S/ scenario analys CER,	∖Against observed e d ata
31 32 33 34 35 36 37 38 39 40	O'Mahony 2015 CH [58]	Identification of risk- deper optimal screening intervals (using a simplified model)	Mammography screening on a disk t adapted intervals (risk a adapted screening) A: Not applicable (100%)	Mathematical equation moc Mapid first estimation tool) A: Analytical solution	O: Considered CUA lel P: Health care system C: Program costs and direct medical costs for screening	Optimal screen interval given B risk and WTP p QALY gained	ingeterministic S/ Ga scenario analys er	A, æ ≜ gainst MISCAN model
41 42 43 44		P: Women age 50+with different risk of cancer onset (preclinical		H: Not reported (lifetime)	and diagnosis (treatment costs not incl.)			
45 46		incidence)			D: Not applied			
47 48 49 50 51	Ruile 2015 DE [60]	Evaluation of switching from digital mammography to breast CT (prospective HTA	Biennial CT screening vs digital mammography screening at ages 50-69	DES dynamic population model combined with systems dynamic model	O: Partly considered BIA (plus screening effect on incidence) P: Payer	Stage-shift (stage specific incidence),	Deterministic SA, scenario analyses	Not applied
52 53		analysis)	A: 54% (mammography), 54-	A: Microsimulation	C: Direct medical costs	costs		
54 55		P: Women age 50+	72% (CT)	H: 12 years (2016-2027)	D: Not applied			
56 57					O: n.a.			
58 59 60 61 62 63 64 65								37

15 16								
17 18 19 20 21 22	Author Year Setting	Objectives Target population (P)	Compared strategies Adherence (A)	Model type Analysis approach (A) Time horizon (H)	Economic evaluation Perspective (P) Incl. cost categories (C) Discounting (D)	Outcomes	Sensitivity and scenario analyses	Validation
23 24 25 26 27 28 29 30 31 32	Arrospide 2016 ES [49]	Evaluation of the established mammography screening program in terms of cost effectiveness and budget impact P: Women age 50+	Biennial mammography screening at ages 50-69 vs no screening A: 80% (50% and 30% in scenario analyses)	DES dynamic population model A: Microsimulation (multi- cohort and single cohort simulation) H: Lifetime, (BIA 15 years 1996-2011)	CUA, BIA P: Payer C: Direct medical costs D: CUA (3% costs and effects), BIA (no discounting)	QALYs gained, lifetime costs, annual costs (BIA), ICUR	Probabilistic SA scenario analyses	Against observed data and other models
32 33 34 35 36 37 38 39 40 41	Obdeijn 2016 NL [47]	Evaluation of postponed mammography screening in <i>BRCA</i> 1 mutation carriers P: Women age 25+ with <i>BRCA</i> 1 mutation	Annual MRI from age 25-60, annual digital mammography from from age 60274 (Eggicial gigitaline) rom age and strat with annual mammography postponed to age 40	DES model simulating the history of women with BRACA1 mutation born in A? Microsificulation H: tegy / Lifetime	O: Partly considered CEA P: Payer ତି: ହି%ଙ୍ଟେମ୍ଟେସ୍ଟେମ୍ବେଣ୍ଟେର) O: n	BCa incidence and mortality ingles, diation ingles, diation ingles, and the second	Deterministic SA, scenario analyses	Against observed data
41 42 43 44 45 46 47 48 95 51 52 53 54 55 56 57 58	Rafia 2016 UK [42]	Evaluation of extending the NHS mammography scree program beyond age 70 P: Women age 50+	A: Not reported (might be i appendix) Triennial mammography screening with additional screening rounds after age (up to age 90) vs screening ending at age 69 A: Not reported (might be i appendix)	n DES model 70 A: Microsimulation H: Lifetime n	CEA, CUA P: Health care system C: Invitation costs and direct medical costs D: 3.5% (costs and effects) O: considered	Mortality reduct LYG, QALYs gained, costs, ICER, ICUR Partly	tion, Deterministic S, scenario analys	A,Against observed sedata and other models
59 60 61 62 63 64 65								38

15 16								
18 19 20 21 22	Author Year Setting	Objectives Target population (P)	Compared strategies Adherence (A)	Model type Analysis approach (A) Time horizon (H)	Economic evaluation Perspective (P) Incl. cost categories (C) Discounting (D) OverDx-related barms (O)*	Outcomes	Sensitivity and scenario analyses	Validation
23 24 25 26 27 28 29 30 31 32	Posso 2016 ES [54]	Evaluation of double reading vs. single reading of digital mammograms in a population screening program P: Women age 50+	Double reading (current standard), single reading, prevalence screening with double reading and incidence screening with single reading A: 58.7%	Decision tree A: Cohort simulation H: 4 years (one screening round plus 2 years follow- up)	CEA P: Payer C: Direct medical costs of screening and diagnosis D: Not applied	Detection rates, costs, ICER (costs per additionally detected cancer)	Deterministic SA	Not reported
33 34 35 36 37 38 39 40 41 42 43 44	Gray 2017 UK [37]	Evaluation of potential stratified national breast screening programs and identification of model drivers P: Women age 50+ differing in breast cancer risk and breast density (masking)	Mammography screening with risk dependent intervals and/or breast density dependent added ultrasound vs current triennial screening and no screening A: Not reported	DES model A: Microsimulation H: Lifetime	 O: n.a. CUA P: Payer C: Direct medical costs D: 3.5% (costs and effects), scenario analysis with 3.5% for costs and 1.5% for effects, and scenario without discounting 	QALYs, gained costs, ICUR	Deterministic SA, probabilistic SA, scenario analyses	Not applied
$\begin{array}{c} 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61 \end{array}$	van Luijt 2017 NO [64]	Evaluation of the Norwegian national breast cancer screening program P: Women age 50+	National biennial screening program vs no screening A: observed data (not reported)	MISCAN (newborn cohort model (base case) and closed population model considering actual age structure (scenario) calibrated to national epidemiologic data) A: Microsimulation H: Lifetime	 O: Considered CUA, (CEA not reported) P: Payer and societal C: Base case: direct medical costs of screening, diagnosis and treatment; Scenario: Direct medical cost, direct non-medical costs, indirect costs D: 3.5% (costs and effects) O: Considered 	Various events rates, QALYs gained, costs, ICURs (LYG not reported)	Scenario analyses	Against observed data and other models
62 63 64 65								39

15 16								
17 18 19 20	Author Year Setting	Objectives Target population (P)	Compared strategies Adherence (A)	Model type Analysis approach (A) Time horizon (H)	Economic evaluation Perspective (P) Incl. cost categories (C)	Outcomes	Sensitivity and scenario	Validation
21 22	U				Discounting (D)		analyses	
23 24	Schiller- Fruehwirth	Evaluation of the Austrian national breast	Organized biennial screening vs	State-transition model	CEA	Mortality reduction,	Deterministic SA.	Against observed
25 26 27	2017 AT [61]	cancer screening program	opportunistic screening and no screening	A: Microsimulation	P: Payer	LYG, costs,	probabilistic SA,	data and other
28		P: Women age 45+	A: organized screening	H: Lifetime	C:Direct medical costs	ICER	scenario analvses	models
29 30 31			60%, opportunistic screening 45-55% (age		D: 3% (costs and effects)			
32			dependent)		O: n.a.			
33 34	Koleva- Kolarova	Evaluation of additional mammography	Biennial mammography screening from age 46-	State-transition model	CEA	Various events rates,	Deterministic SA,	Against observed
35	2018 NL [46]	screening rounds below age 50	74 or 48-74 vs current biennial screening from	A: Microsimulation	P: Payer	LYG, costs,	scenario analyses	data and other
37		P: Women age 46+	age 50-74	H: Lifetime	C:Direct medical costs	ICER		models
38 39 40		-	A: Not reported		D: Base-case 4% costs and 1.5% effects, scenario			
41 42					analysis 3% costs and effects			
43 44					O: n.a.			
45 46	Pashayan 2018	Evaluation of potential risk-stratified screening	Triennial digital mammography	Life table model	CEA, CUA	Various events rates	Deterministic SA,	Against observed
40	UK [40]	accounting for genetic and non-genetic risk	screening from age 50- 69 depending on risk	A: Life table simulation	P: Health care system	incl. over- diagnosis,	probabilistic SA,	data and other
48 49		factors (combined risk score)	thresholds vs triennial	H: Until age 85 (lifetime)	C: Program costs and direct medical costs of treatment	LYĞ, QALYs	scenario analyses	models
50 51		P: Women age 50	screening (current standard) and no		and risk assessment	gained,		
52 53		differing in breast cancer risk score	screening		D: 3.5% (costs and effects)	ICER, ICUR		
55			A: 75% (100% and 90%		O: Considered (19% of			
56 57			in scenario analyses)		cancers detected during screening period)			
58 59	Prevention							
60 61	models							
62								40
ьз 64								

17								
18 19 20 21 22	Author Year Setting	Objectives Target population (P)	Compared strategies Adherence (A)	Model type Analysis approach (A) Time horizon (H)	Economic evaluation Perspective (P) Incl. cost categories (C) Discounting (D) OverDx-related harms (O)*	Outcomes	Sensitivity and scenario analyses	Validation
23 24 25 26 27 28	Norum 2008 NO [72]	Evaluation of prophylactic bilateral salpingo-oophorectomy with and without prophylactic bilateral mastectomy	Prophylactic bilateral salpingo-oophorectomy with or without prophylactic bilateral mastectomy vs no intervention	State-transition model (Markov model) A: Cohort simulation	CEA P: Payer, insurance members, society	LYG, lifetime costs, ICER	Deterministic SA, scenario analyses	Against observed data (cancer incidence) and other
 29 30 31 32 33 34 		P: Women age 30 with BRCA1 mutation	A: 100% (Salpingo- oophorectomy plus mastectomy), 70-100%, (Salpingo-oophorectomy	n. onthage roo (meanie)	Direct medical and horse medical costs, indirect costs (depending on perspective) D: 3% (costs and effects)			models
35 36	Manchanda	Evaluation of population-	alone) Population-based	Decision tree	O: n.a. CEA, CUA	LYG,	Deterministic	Against
37 38	2015 UK [68]	based genetic screening for <i>BRCA</i> 1/2 gene	genetic screening for BRCA1/2 mutation followed by prophylactic	A: Cohort simulation	P: Payer	QALYs gained, costs	and probabilistic SA	other models
39 40		P: Ashkenazi Jewish	salpingo-oophorectomy and annual MRI-	H: Lifetime	C: Direct medical costs	ICUR	scenario analvses	
41 42 43		women age 30+	mammography or prophylactic mastectomy		D: 3.5% (costs and effects)			
43 44 45 46 47			vs screening in women with strong family history only (family history based screening)		O: n.a.			
48 ⊿q			A: 71%					
	Müller 2017	Evaluation of different strategies to prevent	Prophylactic bilateral mastectomy (PBM),	State-transition model	CEA, CUA	LYG, QALYs	Deterministic and	Against other
52	DE [73]	breast and ovarian cancer in <i>BRCA</i> 1/2	prophylactic bilateral salpingo-oophorectomy	A: Cohort simulation	P: Payer	gained, costs.	probabilistic SA.	models
53 54		mutation carriers	(PBSO), PBM plus PBSO, PBM plus	H: Lifetime (until age 105)	C: Direct medical costs	ICER ICUR	scenario analyses	
55 57		P: Women age 30 with BRCA1/2 mutation	delayed PBSO at age 40 vs intensified		D: 3% (costs and effects)		,	
58			surveillance		O: n.a.			
59 60 61			A: not reported					
62 63 64 65								41

17								
18 19 20 21 22	Author Year Setting	Objectives Target population (P)	Compared strategies Adherence (A)	Model type Analysis approach (A) Time horizon (H)	Economic evaluation Perspective (P) Incl. cost categories (C) Discounting (D) OverDx-related harms (O)*	Outcomes	Sensitivity and scenario analyses	Validation
23 24	Manchanda 2017	Evaluation of population- based genetic screening	Population-based genetic screening for	Decision tree	CUA	LYG (only not discounted),	Deterministic and	Against other
25 26	UK [69]	for <i>BRCA</i> 1/2 gene mutations for women	BRCA1/2 mutation followed by prophylactic	A: Cohort simulation	P: Payer	QALYs gained,	probabilistic SA,	models
27 28		with different degrees of Ashkenazi Jewish	salpingo-oophorectomy and/or prophylactic	H: Until age 83 (lifetime)	C: Direct medical costs	costs, ICUR	scenario analyses	
29 30		ancestry	mastectomy vs family history based screening		D: 3.5% (costs and effects)		·	
32		P: Ashkenazi Jewish women age 30+	A: n.r. for screening		O: n.a.			
33 34 25	Eccleston 2017	Evaluation of genetic screening for <i>BRCA</i> 1/2	BRCA1/2 mutation screening in ovarian	State-transition closed population model	CUA	Various events,	Deterministic and	Against other
36 37	UK [67]	gene mutations in women with ovarian	cancer patients and their relatives with the option	simulating British cancer patients and their	P: Payer	QALYs gained,	probabilistic SA,	models
38 30		cancer and relatives of detected mutation	of prophylactic salpingo- oophorectomy and/or	relatives	C: Direct medical costs	costs, ICUR	scenario analyses	
40 41		carriers	mastectomy in affected relatives vs no <i>BRCA</i>	A: Microsimulation	D: 3.5% (costs and effects)			
41 42 42		P: British ovarian cancer patients and fist- and	testing	H: 50 years	O: n.a.			
43		second degree relatives	A: 100%		C: Direct medical costs			
44	Patel	Evaluation of population-	Population-based	State-transition model	CUA D: 3.5% (costs and effects) O:	LYG (only not	Deterministic	Not
46 47 48	2018 UK [71]	based genetic screening for <i>BRCA</i> 1 gene mutations	genetic screening for satisfy genetic screening for MRU/manup genetic masteries or prophylastic masteries	H: Until age 83 (lifetime) A: Cohort simulation ning	P: Payer	gained,	scenario analys probabilistic SA,	segenoried
49			family history based scree	ning				
50		P: Sephardi Jewish	Tarmy mistory based serve	Thing				
51		women age 30+	A: n.r. for screening					
52			5					
53								
54								
55								
57								
58								
59								
60								

 Author Year Setting 2 	Objectives Target population (P)	Compared strategies Adherence (A)	Model type Analysis approach (A) Time horizon (H)	Economic evaluation Perspective (P) Incl. cost categories (C) Discounting (D) OverDx-related harms (O)*	Outcomes	Sensitivity and scenario analyses	Validation
Manchanda 2018 2018 UK [70] 7 8 9 0 11 2 3 3 4 5 6 7	Evaluation of population- genetic panel screening f high/moderate- penetrand ovarian and breast cance mutations (Panel: <i>BRCA1</i> <i>BRCA2</i> , <i>RAD51C</i> , <i>RAD5</i> <i>BRIP</i> 1, and <i>PALB2</i>) P: Non-Jewish women of general population age 30	ba 3ep lulation-based and fa for history based panel scre ce followed by prophylactic er gatipingo- oophorectomy 1, MRI/mammography scre 1Dor prophylactic mastecto chemoprevention vs curr family history based BRA thecreening 0+ A: 71%	milØecision tree ening A: Cohort simulation H: and enibigetime my or ent ACA1/2	CUA P: Payer C: Direct medical costs D: 3.5% (costs and effects) O	Various event r LYG, QALYs gained, costs, ICUR : n.a.	a tes terministic a probabilistic S/ ICa⊡anario analy	ndAgainst other mo A, ses
 0 simulation, IC 1 NNS: number 3 lost, n.a.: not a 4 5 6 7 8 9 0 1 2 3 4 	ER: incremental cost-effect needed to screen, OverDx applicable	tiveness ratio, ICUR: incren	nental cost-utility ratio, LE: life	e expectancy, LYG: life year gair	ned, n.a.: not app ess-to-pay, YLL:	licable, year of life	
5 6 7 8 9 50							

Table 2 Incremental cost-effectiveness and/or cost-utility analyses performed on discounted data from economic breast cancer screening (upper part) and
 Table 2 Incremental cost-effectiveness and/or cost-utility analyses performed on discounted data from economic breast cancer screening (upper part) and

prevention studies (lower part) with all cost data converted to 2017 Euros. Depending on the underlying modeling approach displayed costs and effects either represent population totals or average individual values. Analyses in the upper and lower part of the table are presented by country and year of publication.

21 repr	resent popula	ition totals or average individua	il values. Analyse	es in the upper ar	nd lower part of th	e table are prese	ented by country	and year of pub	lication.	
23 Stu 24 25	udy	Compared Strategies	Costs over no intervention*	LY over no intervention*	QALYs over no intervention*	Incremental Costs	Incremental LYs	Incremental QALYs	ICER (EUR/LY)	ICUR (EUR/QALY)
26 <u>Sc</u>	creening for b	preast cancer (Mammography	<u>v. MRI)</u>							
27										
²⁰ Sch	chiller-	No screening	0	0						
29 Fru	uehwirth,	MG 45-69, 2y (organized)	701	0.0320		701	0.0320		21,901	
30 201	017, AT [61]	MG 45-69, 2y (opportunist.)	713	0.0230		12	-0.0090		D	
31										
32 Ne	eser	No screening	0	0						
30 200	007, CH [57]	(opportunistic)	000	0.000		000	0.000			
35		MG 70-death, 2y	602	0.008		602	0.008		ED	
36		MG 60-death, 2y	781	0.014		179	0.006		ED	
37		MG 50-death, 2y	918	0.020		137	0.006		ED	
38		MG 40-death, 2y	975	0.022		57	0.002		44,304	
39 Go	oldor	No scrooping	0	0	0					
40 200		Organized MG 50-69, 2v	201 210 180	34.000	31 506	301 310 180	34 000	31 506	11 500	12 517
41 (80	0% adhar)	Opportunistic MG 50-69, 2y	802 818 000	33,700	31,500	108 169 120	-300	-345	п,599 П	12,317 D
42		Opportunistic MO 30-03, Zy	002,010,303	55,700	51,101	400,403,420	-300	-0+0	D	D
43 0'	Mahony	No screening								
44 20	115 CH [58]	MG strategies	nr		nr					CUAna
45		ine strategies								••••
46 Be	eemsterboer	No screening	0	0	0					
47 199	94. DE [59]	MG 50-70. 2v	3.096.008.904	206,500	197.000	3.096.008.904	206.500	197.000	14.993	15.716
48	, []		-,,	,	-)	-,,	,	- ,	,	-, -
49										
50 Ru	uile	DMG 50-69, 2	n.r.	n.a.	n.a.				CEA n.a	CUA n.a
51 20')15, DE [60]	Breast CT 50-69, 2	n.r.	n.a.	n.a.				CEA n.a	CUA n.a
52										
53 Gy	yrd-Hansen	No screening								
55 200	000, DK [62]	MG strategies	n.r.		n.r.					CUA n.a
56										
57 var	in Ineveld	Model Spain								
<u> </u>			0	0						
58	93, ES, FR,	No screening	070 400 000	70.000			70 000		44 004	
58 NL	993, ES, FR, _, UK [66]	MG 50-70, 2y	876,423,693	79,000		876,423,693	79,000		11,094	
58 NL 59 60 Ca	993, ES, FR, L, UK [66]	No screening MG 50-70, 2y	876,423,693	79,000		876,423,693	79,000		11,094	
58 NL 59 60 Ga 61	993, ES, FR, _, UK [66] aruz	No screening MG 50-70, 2y No screening	876,423,693 0	79,000 0		876,423,693	79,000		11,094	
58 NL 59 60 Ga 61	993, ES, FR, _, UK [66] aruz	No screening MG 50-70, 2y No screening	876,423,693 0	79,000 0		876,423,693	79,000		11,094	

64 65

Study	Compared Strategies	Costs over no intervention*	LY over no intervention*	QALYs over no intervention*	Incremental Costs	Incremental LYs	Incremental QALYs	ICER (EUR/LY)	ICUR (EUR/QALY)
1997, ES [53]	MG 50-65, 2y	disc. data n.r.	disc. data n.r.					3,739	
Beemsterboer 1998, ES (Catalonia) [50]	No screening MG 50-64, 3y MG 50-69, 3y MG 50-64, 2y MG 50-69, 2y	0 102,254,455 129,504,136 147,579,717 171,593,572	0 11,991 15,734 17,049 19,447		102,254,455 27,249,680 18,075,582 24,013,855	11,991 3,743 1,315 2,398		8,528 7,280 ED 11,336	
	MG 45-64, 2y MG 40-64, 2y MG 50-64, 1y	180,637,290 231,272,624 250,343,845	17,559 18,566 22,864		9,043,717 50,635,335 19,071,220	-1,888 1,007 4,298		D D 23,047	
Carles 2011. ES [51]	No screening MG 50-69. 2v	0 19.612.974	0 4.691	0 3.614	19.612.974	4.691	3.614	4.181	5.427
2011, ES [51]	MG 50-69, 2y MG 50-70, 2y MG 50-74, 2y MG 45-69, 2y MG 45-79, 2y MG 45-79, 2y MG 45-79, 2y MG 50-69, 1y MG 40-69, 2y MG 40-70, 2y MG 50-74, 1y MG 40-79, 2y MG 50-74, 1y MG 45-69, 1y MG 45-79, 1y MG 40-69, 1y MG 40-74, 1y MG 40-74, 1y	19,612,974 $21,074,810$ $23,998,484$ $29,480,371$ $32,404,044$ $40,565,965$ $40,809,604$ $41,662,342$ $43,002,359$ $46,047,852$ $48,362,426$ $51,529,739$ $59,204,381$ $59,326,200$ $66,757,203$ $77,599,157$ $82,959,225$ $90,390,227$ $101,232,182$	4,691 4,812 4,990 5,842 5,008 6,038 6,075 6,528 6,630 6,751 6,929 6,781 6,947 6,800 7,917 8,170 8,190 9,117 9,370 9,390	3,614 3,722 3,891 4,447 3,881 4,633 4,625 5,003 4,943 5,051 5,220 5,234 5,210 5,199 5,979 6,210 6,175 6,756 6,987 6,952	19,612,974 $1,461,837$ $2,923,673$ $5,481,887$ 0 $2,923,673$ $8,161,921$ $243,639$ $852,738$ $1,340,017$ $3,045,493$ $2,314,575$ $3,167,313$ $7,674,642$ $121,820$ $7,431,003$ $10,841,954$ $5,360,067$ $7,431,003$ $10,841,954$	4,691 121 178 852 -834 1,030 37 453 102 121 178 -148 166 -147 1,117 253 20 927 253 20	3,614 108 169 556 -566 752 -8 378 -60 108 169 14 -24 -11 780 231 -35 581 231 -35	4,181 ED ED 8,573 D ED ED ED ED ED D 14,384 ED ED 19,694 29,372 542 098	5,427 ED ED 11,846 D 15,719 D ED ED ED ED D 20,002 ED D 30,416 32,169
	MG 40-79, Ty	101,232,162	9,390	0,952	10,641,954	20	-35	542,090	U
Comas 2014, ES [52]	MG 50-69, 2y DMG 50-69, 2y	disc. data n.r. disc. data n.r.	n.r. n.r.	n.r. n.r.				CEA n.a	CUA n.a
Vilaprinyo	No screening	0		0					45

15 16 17										
18 19 20	Study	Compared Strategies	Costs over no intervention*	LY over no intervention*	QALYs over no intervention*	Incremental Costs	Incremental LYs	Incremental QALYs	ICER (EUR/LY)	ICUR (EUR/QALY)
21 22 23 24	2014, ES [55]	L risk: MG 50-69, 5y ML risk: MG 45-74, 5y MH risk: MG 45-74, 5y	1,379		0.023403	1,379		0.023403		ED
25 26 27 28 29		H risk: MG 45-74, 1y L risk: MG 50-69, 5y ML risk: MG 45-74, 5y MH risk: MG 45-74, 5y H risk: MG 40-74, 1y	1,383		0.023683	5		0.000280		ED
30 31 32 33		MG 50-69, 2y L risk: MG 50-74, 5y ML risk: MG 50-74, 5y	1,503 1,511		0.023333 0.028602	120 7		-0.000350 0.005269		D D
34 35 36 37 38 39		MH risk: MG 40-74, 1y H risk: MG 40-74, 1y L risk: MG 45-74, 5y ML risk: MG 45-74, 5y MH risk: MG 45-74, 1y H risk: MG 40-74, 1y	1,511		0.029628	0		0.001026		50,994
40 41 42		MG 45-74, 2y	1,664		0.028488	153		-0.001140		D
42 43 44	Arrospide 2016, ES [49]	No screening MG 50-69, 2y	0 37,036,774		0 8,666	37,036,774		8,666		4,274
45 46 47	Posso 2016, ES [54]	No screening DMG reading strategies	n.a. n.a.	n.a. n.a.	n.a. n.a.				CEA n.a.	
48 49 50 51 52	van Ineveld 1993, ES, FR, NL, UK [66]	Model France No screening MG 50-70, 2y	0 1,387,973,925	0 155,000		1,387,973,925	155,000		8,955	
53 54 55	Arveux 2003, FR [63]	No screening MG 50-65 2v	0 40 874 326	0 1 522		40 874 326	1 522		26 856	
56 57 58 59 60 61 62 63 64 65	de Koning 1991, NL [44]	No screening MG 50-65, 3y MG 50-70, 2y MG 50-75, 2y MG 50-70, 1.3y MG 40-70, 2y	0 208,028,844 364,441,509 414,493,562 513,033,541 541,187,821	0 41,000 61,000 64,500 70,000 64,000	0 39,300 57,500 59,500 66,000 59,500	208,028,844 156,412,665 50,052,053 98,539,979 28,154,280	41,000 20,000 3,500 5,500 -6,000	39,300 18,200 2,000 6,500 -6,500	5,074 7,821 14,301 17,916 D	5,293 8,594 ED 17,481 D 46

17										
18	Study	Compared Strategies	Costs	LY	QALYs	Incremental	Incremental	Incremental	ICER	ICUR
19 20			over no intervention*	over no intervention*	over no intervention*	Costs	LYs	QALYs	(EUR/LY)	(EUR/QALY)
2 2	van Inovold	Model Netherlands								
23										
24	1993, ES, FR,	No screening	0	0						
25	NL, UK [66]	MG 50-70, 2y	364,441,683	61,000		364,441,683	61,000		5,974	
2õ	Deer 1005 NI									
27	B0er 1995, NL	Optimistic Model								
28	[43]	No screening	0		0					
29		MG 50-66, 2y	104		0.018577	104		0.018577		5,592
20		MG 50-68, 2y	113		0.020029	9		0.001452		6,208
31		MG 50-70, 2y	122		0.021292	9		0.001263		7,000
32		MG 50-72, 2y	130		0.022365	8		0.001073		7,806
32 22		MG 50-74, 2y	138		0.023218	8		0.000853		9,617
აა ექ		MG 50-76. 2v	146		0.023993	8		0.000775		10.007
34		MG 50-78, 2v	154		0.024645	8		0.000652		11.525
35		MG 50-80, 2v	161		0.025109	8		0.000464		16.343
30		MG 50-82 2v	168		0 025427	7		0.000318		22 058
37		MG 50-84 2v	175		0.025620	, 6		0.000193		33 308
38		MG 50-86 2v	180		0.025727	6		0.000107		53 797
39		MG 50-88 2v	185		0.020727	5		0.000107		100,707
40		MG 30-88, 2y	105		0.023112	5		0.000043		109,917
41		Passimistic Model								
42		Ne sereening	0		0					
43			0		0 04 0 4 7 2	205		0.040470		40.400
44		MG 50-66, 2y	225		0.018473	225		0.018473		12,188
45		MG 50-68, 29	247		0.019923	21		0.001450		14,798
46		MG 50-70, 2y	269		0.021128	22		0.001205		18,436
47		MG 50-72, 2y	291		0.022170	23		0.001042		21,700
48		MG 50-74, 2y	315		0.022967	24		0.000797		29,820
49		MG 50-76, 2y	341		0.023607	26		0.000640		40,447
50		MG 50-78, 2y	370		0.024024	29		0.000417		69,764
51		MG 50-80, 2y	403		0.024159	33		0.000135		241,154
52		MG 50-82, 2y	438		0.024083	36		-0.000076		D
53		MG 50-84, 2y	473		0.023864	35		-0.000219		D
54		MG 50-86, 2y	511		0.023529	37		-0.000335		D
55		MG 50-88, 2y	548		0.023124	37		-0.000405		D
56										
57	Jacobi	No screening								
58	2006 NI [45]	MG strategies	n.r.		n.r.					CUA n.a
59	2000, NE [40]									
60	Sankatsing	No screening	0	0	0					
61	2015 NI [/8]	DMG 50-74 2v	130	0 041	0 054	139	0 041	0 054	3 400	2 581
62	2013, NL [40]		100	0.041	0.004	109	0.041	0.004	0,400	47

18 19 20	Study	Compared Strategies	Costs over no intervention*	LY over no intervention*	QALYs over no intervention*	Incremental Costs	Incremental LYs	Incremental QALYs	ICER (EUR/LY)	ICUR (EUR/QALY)
21		DMG 49+50-74, 2y	161	0.044	0.058	22	0.003	0.004	ED	ED
22		DMG 48-74, 2y	166	0.046	0.061	5	0.002	0.003	5,420	3,872
23		DMG 45-74, 2v	214	0.052	0.069	47	0.006	0.008	7.887	5.915
24		DMG 45-49. 1v + 50-74. 2v	286	0.056	0.075	73	0.004	0.006	ED	ED
25		DMG 40-74. 2v	312	0.061	0.08	25	0.005	0.005	10.889	8,909
26		DMG 40-49 $1v + 50-74 2v$	484	0.07	0.092	172	0.009	0.012	19 078	14 309
27			101	0.01	01002		01000	01012	10,010	1,000
28 29 30	Obdeijn 2016, NL [47]	MRI 25-60, 1y + DMG 40- 60, 1y + 60-74, 2y MRI 25-60, 1y + DMG 30-	10,812	23		546	0		276 670	
31 32		60, 1y + 60-74, 2y	11,000	25		0+0	U		270,070	
33										
34	Koleva-	No screening	0	0		00 700	4 0454		50	
35	Kolarova,	MG 50-74, 2y	29,702	1.3151		29,702	1.3151		ED	
36	2018, NL [46]	MG 48-74, 2y	31,128	1.4282		1,426	0.1131		21795	
37		MG 46-74, 2y	32,622	1.4925		1,494	0.0643		23248	
38	von Luiit	Bayar's parapactiva								
39		No scrooping	0		0					
40	2017, NO [04]		0		0	011		0.0054		0.007
41 42		MG 50-69, 2y	211		0.0254	211		0.0254		8,327
43		Societal perspective								
44		No screening	0		0					
45		MG 50-69, 2y	357		0.0254	357		0.0254		14,072
46	D · · ·		<u>_</u>							
47	Rojnik	No screening	0	0	0					
48	2008, SL [65]	MG 50-65, 3y	191	0.0403	0.0359	191	0.0403	0.0359	4,730	5,310
49	(only	MG 45-65, 3y	254	0.0518	0.0465	64	0.0115	0.0106	5,545	6,015
50	undominated	MG 45-70, 3y	296	0.0583	0.0521	41	0.0065	0.0056	6,381	7,407
51	strategies	MG 40-70, 3y	395	0.0701	0.0626	100	0.0118	0.0105	8,442	9,487
52	presented)	MG 40-75, 3y	411	0.0718	0.064	16	0.0017	0.0014	9,215	11,189
53		MG 40-80, 3y	435	0.0737	0.0654	24	0.0019	0.0014	12,541	17,020
54		MG 40-80, 2y	645	0.0797	0.0697	210	0.0060	0.0043	35,062	48,924
55		Madal III								
56			0	0						
5/	1993, ES, FR,	No screening	0	0		000 000 404	050.000		0.040	
58 59	NL, UK [66]	MG 50-70, 2y	968,238,121	252,000		968,238,121	252,000		3,842	
60	Baker	No screening								
61	1998, UK [35]	MG strategies	n.r.	n.r.					CEA n.a.	
62 63 64 65										48

15 16										
17 18 19 20	Study	Compared Strategies	Costs over no intervention*	LY over no intervention*	QALYs over no intervention*	Incremental Costs	Incremental LYs	Incremental QALYs	ICER (EUR/LY)	ICUR (EUR/QALY)
21 22	D									
23 24 25 26	Boer 1998, UK [36]	No screening MG 50-64, 3y MG 50-69, 3y MG 50-64, 2y	0 61,175,956 78,400,255 80,380,059	0 12,251 15,161 14,987		61,175,956 17,224,298 1,979,804	12,251 2,910 -174		4,994 5,919 D	
27	Norman	Ago 40-49 years								
28 29 30 31 32	2007, UK [39]	Age 40-49 years No screening MG 40-49, 1y MRI 40-49, 1y MG +MRI 40-49, 1y	0 2,813 5,792 6,591		0 0.575 0.792 0.864	2,813 2,979 799		0.575 0.217 0.072		4,892 ED 13,074
33 34 35 36 37 38		Age 30-39 years No screening MG 30-39, 1y MRI 30-39, 1y MG +MRI 30-39, 1y	0 2,331 5,340 6,103		0 0.265 0.402 0.432	2,331 3,009 762		0.265 0.137 0.030		8,796 21,966 25,413
39	Ma da a	Marana and a s	<u>^</u>		0					
40 41 42	Madan 2010, UK [38]	No screening MG 47-49, 3y	0 75		0 0.00175	75		0.00175		42,947
43 44 45	Pharoah 2013. UK [41]	No screening MG 50-70. 3v	0 47.576.392	0 6.907	0 2.040	47.576.392	6.907	2.040	6.888	23.322
45 46 47 48 49 50 51 52 53 54	Rafia 2016, UK [42]	No screening MG 50-69, 3y MG 50-72, 3y MG 50-75, 3y MG 50-78, 3y MG 50-81, 3y MG 50-84, 3y MG 50-87, 3y MG 50-90, 3v	n.r. 0 49 97 145 193 240 286 331	n.r. 0 0.00653 0.01116 0.01430 0.01616 0.01703 0.01735 0.01747	n.r. 0 0.00512 0.00866 0.01097 0.01225 0.01270 0.01265 0.01234	49 49 48 48 47 47 47	0.00653 0.00462 0.00314 0.00186 0.00088 0.00032 0.00012	0.00512 0.00354 0.00231 0.00127 0.00045 -0.00005 -0.00031	7,430 10,562 15,163 25,643 53,997 145,870 361.677	9,470 13,806 20,633 37,382 104,036 D D
55 56	Gray 2017	A 51 ·	<u></u>							
57 58 59 60 61 62 63 64	UK [37]	A: No screening B: MG 50-70, 3y (current standard)	0 464		0 0.0176	464		0.0176		ED 49
64 65										

15 16 17										
18 19 20	Study	Compared Strategies	Costs over no intervention*	LY over no intervention*	QALYs over no intervention*	Incremental Costs	Incremental LYs	Incremental QALYs	ICER (EUR/LY)	ICUR (EUR/QALY)
21 22 23 24 25		C: Screening with risk adapted intervals (risk stratification <3.5%; 3.5- 8%; >8%) D: Strategy B with suppl.	509		0.0200	45		0.0024		25,469
26 27 28 29		US or MRI for women with high breast density E: Screening with risk	640		0.0183	131		-0.0017		D
30 31 32		adapted intervals (risk stratification tertiles) F: Strategy C with suppl.	696		0.0262	56		0.0079		30,076
33 34		high breast density	709		0.0205	14		-0.0057		D
35 36 37 38	Pashayan 2018 UK [40]	No screening DMG 50-69, 3y (for 75th risk percentile)	0 21,729,584 33,594,658	0 4,177 6,167	0 1,689 2,028	21,729,584 11,865,074	4,177 1,990	1,689 339	5,202 ED	12,866 35,035
39 40		DMG 50-69, 3y (for 50th risk percentile)	45,088,946	8,198	1,916	11,494,288	2,030	-111	5,810	D
41 42 43 44 45		DMG 50-69, 3y (independent of risk) DMG 50-69, 3y (for 25th risk percentile)	48,471,568	7,423	2,069	3,382,622	-774	152	D	361,634
46 47	Prevention stra	ategies in women at high risl	k for breast canc	<u>er</u>						
48 49 50 51 52 53 54	Müller 2017, DE [73]	No intervention PBM + PBSO at age 30 PBM + delayed PBSO PBSO PBM Intensified surveillance	n.r. 29,434 30,810 34,802 37,307 45,480	n.r. 19.86 19.53 19.32 18.49 17.65	n.r. 17.66 17.28 16.71 16.27 14.96	1,376 3,992 2,505 8,173	-0.33 -0.21 -0.83 -0.84	-0.38 -0.57 -0.44 -1.31	D D D D	D D D D
55 56 57 58 59 60	Norum 2008, NO [72]	Payer's perspective No intervention PBSO PBSO + PBM Societal perspective	0 6,742 15,702	0 3.1 6.4		6,742 8,960	3.1 3.3		2,175 2,715	
61 62 63		No intervention	0	0						50

olddy	Compared Strategies	Costs over no intervention*	LY over no intervention*	QALYs over no intervention*	Incremental Costs	Incremental LYs	Incremental QALYs	ICER (EUR/LY)	ICUR (EUR/QALY)
	PBSO + PBM	3,947	6.4		3,947	6.4		617	
	РВЗО	4,950	3.1		1,002	-3.3		D	
Manchanda 2015, UK [68]	No <i>BRCA</i> screening Pop. based <i>BRCA</i> screening with PBSO/PBM	n.r. 2140	n.r. 23.205	n.r. 23.141				_	
	FH based <i>BRCA</i> screening with PBSO/PBM	2221	23.180	23.110	82	-0.025	-0.031	D	Ε
Manchanda 2017, UK [69]	Jewish grandparents								
	No BRCA screening	n.r.	n.r.	n.r.					
	Pop-based BRCA	2,032	only undisc.	23.15					
	screening with PBSO/PBM	0.404		00.40	100		0 0000		-
	FH-based BRCA screening with PBSO/PBM	2,134	only undisc.	23.12	103		-0.0300		L
	Women with 3 Ashkenazi								
	No BRCA screening	n.r.	n.r.	n.r.					
	Pop-based BRCA	1,979	only undisc.	23.16					
	screening with PBSO/PBM								
	FH-based BRCA screening	2,047	only undisc.	23.13	68		-0.0300		C
	with PBSO/PBM								
	Women with 2 Ashkenazi								
	Jewish grandparents								
	No BRCA screening	n.r.	n.r.	n.r.					
	Pop-based BRCA	1,928	only undisc.	23.16					
	screening with PBSO/PBM								
	FH-based BRCA screening	1,956	only undisc.	23.14	28		-0.0200		C
	WITH PBSO/PBIN								
	Women with 1 Ashkenazi								
	Jewish grandparent								
	No BRCA screening	n.r.	n.r.	n.r.					
	FH-based BRCA screening	1,862	only undisc.	23.15					
	with PBSO/PBM			a a :=			0 0 <i>t</i> = <i>t</i>		
	Pop-based BRCA	1,876	only undisc.	23.17	14		0.0151		942

17										
18 19 20	Study	Compared Strategies	Costs over no intervention*	LY over no intervention*	QALYs over no intervention*	Incremental Costs	Incremental LYs	Incremental QALYs	ICER (EUR/LY)	ICUR (EUR/QALY)
∠ I วว										
22 23 24 25	Eccleston 2017, UK [67]	No <i>BRCA</i> screening in ovarian cancer patients and relatives <i>BRCA</i> 1/2 screening in	0 3,427,258		0 706	3,427,258		706		4,854
20 27 28		ovarian cancer patients and relatives with PBSO/PBM								
29 30 31 32 33	Patel 2018, UK [71]	No <i>BRCA</i> screening FH-based <i>BRCA</i> screening Pop-based <i>BRCA</i> screening	n.r. 1,844 1,920	n.r. only undisc. only undisc.	n.r. 22.42 23.42	75		1.0006		75
34										
35 36 37	Manchanda 2018, UK [70]	No genetic screening FH-based <i>BRCA</i> 1/2 screening	n.r. 1,732	n.r. 23.76	n.r. 23.69					
38		FH-based Panel screening		1,73: 23.76	23.69		0.0	000		
39		Pop-based Panel screening		1,94: 23.77	23.70		0.0	007		

⁴⁰ * Values are standardized to be incremental to no intervention, unless estimates for no intervention were not modeled or reported, which is indicated by n.r. in ⁴¹ the no intervention row. In this instance average expected values are reported (not incremental to no intervention).

42 CEA: cost-effectiveness analysis, CUA: cost-utility analysis, D: dominance, DMG: digital mammography, ED: extended dominance, FH: family history, ICER: 43 incremental cost-effectiveness ratio, ICUR: incremental cost-utility ratio, LY: life year, MG: mammography, L risk: low risk group, ML risk: medium-low risk

44 group, MH risk: medium-high risk group, H risk: high risk group, MRI: magnetic resonance imaging, n.a.: not applicable, n.r.: not reported, PBM: prophylactic

⁴⁵/_{4δ} bilateral mastectomy, PBSO: prophylactic bilateral salpingo-oophorectomy, Pop: population, QALY: quality-adjusted life year. Costs were converted to 2017 47 Euro using gross domestic product purchasing power parities for the countries of the European Union (GDP-PPP) and national consumer price indices (CPI).

Fig. 1 PRISMA flow diagram: steps and results of the literature search and the selection process. CEA: Cost-effectiveness analysis

Fig. 2 Cost effectiveness in costs per life-year and/or QALY gained over no screening by different screening strategies reflecting currently established screening programs for women at average risk. Studies are presented by year of publication.

Strategies are described by screening test, age range and interval of screening. DMG: digital mammography, MG: mammography, QALY: quality-adjusted life year, y: year. Costs were converted to 2017 Euros using gross domestic product purchasing power parities for the countries of the European Union (GDP-PPP) and national consumer price indices (CPI).

