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Abstract
Colonoscopy remains the gold standard investigation for colorectal cancer 
screening as it offers the opportunity to both detect and resect pre-malignant and 
neoplastic polyps. Although technologies for image-enhanced endoscopy are 
widely available, optical diagnosis has not been incorporated into routine clinical 
practice, mainly due to significant inter-operator variability. In recent years, there 
has been a growing number of studies demonstrating the potential of convolu-
tional neural networks (CNN) to enhance optical diagnosis of polyps. Data 
suggest that the use of CNNs might mitigate the inter-operator variability 
amongst endoscopists, potentially enabling a “resect and discard“ or ”leave in“ 
strategy to be adopted in real-time. This would have significant financial benefits 
for healthcare systems, avoid unnecessary polypectomies of non-neoplastic 
polyps and improve the efficiency of colonoscopy. Here, we review advances in 
CNN for the optical diagnosis of colorectal polyps, current limitations and future 
directions.

Key Words: Artificial intelligence; Deep learning; Convolutional neural networks; 
Computer aided diagnosis; Optical diagnosis; Colorectal polyps
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Core Tip: A convolutional neural network (CNN) is a specific type of artificial 
intelligence deep learning. These networks may play an important role in the coming 
years in assisting endoscopists to optically diagnose colorectal polyps. CNNs can 
mitigate the inter-operator variability amongst endoscopists, potentially enabling a 
“resect and discard” or “leave in” strategy to be adopted. This would improve the 
efficiency of colonoscopy, reduce healthcare costs and reduce adverse events for 
patients by avoiding unnecessary resections of non-neoplastic polyps. In this article, we 
expand on the most relevant studies in this field and discuss limitations and future 
directions that will determine fulfilment of the potential of CNN in the optical 
diagnosis of colorectal polyps.

Citation: Kader R, Hadjinicolaou AV, Georgiades F, Stoyanov D, Lovat LB. Optical diagnosis 
of colorectal polyps using convolutional neural networks. World J Gastroenterol 2021; 27(35): 
5908-5918
URL: https://www.wjgnet.com/1007-9327/full/v27/i35/5908.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i35.5908

INTRODUCTION
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide[1] 
and thus, a significant burden on global healthcare systems. Most CRCs develop in a 
relatively predictable, stepwise sequence from mutation-accumulating neoplastic 
polyps, such as adenomas and sessile serrated lesions (SSL)[2]. Current evidence-
based societal guidelines unequivocally accept colonoscopy to be the gold standard 
tool for screening of CRC[3]. Colonoscopy offers the opportunity to both detect and 
resect neoplastic polyps[4] and its implementation, especially as part of bowel cancer 
screening programs, has been linked to a significant reduction in the incidence of the 
CRC and CRC-related mortality[5].

Over 90% of polyps detected at colonoscopy are either small (6-9 mm) or diminutive 
(≤ 5 mm), entities that are thought to harbour a very low risk for developing into CRC
[6]. Furthermore, almost half of these polyps are non-neoplastic in nature; and 
frequently hyperplastic[7]. Accurate differentiation of neoplastic from non-neoplastic 
polyps can prevent the unnecessary resection of the latter, avoiding an intervention 
which is not cost-effective and which carries risks of significant morbidity[8].

Recent years have seen significant research activity in the use of artificial 
intelligence (AI), particularly convolutional neural networks (CNN), to optically 
diagnose colorectal polyps. The field is gaining increasing momentum. The aim of this 
review article is to summarise and critically appraise the available medical literature 
related to advances in CNN for optical diagnosis of colorectal polyps and highlight the 
field’s current limitations and future directions.

OPTICAL DIAGNOSIS
The term “optical diagnosis” refers to the use of advanced imaging techniques for real-
time, in-vivo polyp characterisation and evaluation to guide therapeutic decisions[9]. 
Accurate optical diagnosis of diminutive polyps would enable identification of 
hyperplastic polyps in the rectosigmoid region, where they are commonly found, and 
allow the endoscopist to confidently take a “diagnose and leave” approach instead of 
resecting the lesion. Equally, for diminutive adenomas, accurate optical diagnosis 
would prompt the endoscopist to remove the lesion on the spot and discard the 
specimen without the need for histological assessment (“resect and discard”strategy)
[9].

The American Society of Gastrointestinal Endoscopy established the Preservation 
and Incorporation of Valuable endoscopic Innovations (PIVI) to provide thresholds 
that are required of endoscopic technology in order to implement a “resect and 
discard”(PIVI 1) and “diagnose and leave” (PIVI 2) strategy[9]. PIVI 1 requires ≥ 90% 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/1007-9327/full/v27/i35/5908.htm
https://dx.doi.org/10.3748/wjg.v27.i35.5908
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concordance in post-polypectomy surveillance intervals when comparing the 
combination of optical diagnosis for diminutive adenomas with histopathology 
assessment of all other polyps against decisions based solely on histopathology 
evaluation of all identified polyps[10]. PIVI 2 requires a technology to achieve a 
negative predictive value (NPV) of ≥ 90% for diminutive adenomatous polyps in the 
rectosigmoid region[9].

There has been extensive research in image enhanced endoscopy (IEE), such as 
narrow band imaging (NBI), to assist endoscopists in optical diagnosis to characterise 
diminutive polyps[11-13]. Using IEE, expert endoscopists in academic centres have 
consistently demonstrated an optical diagnosis accuracy that exceeds PIVI thresholds
[14-16], however, studies have often found community and non-expert endoscopists to 
fall short of these minimal thresholds[17]. An example is the multi-centre DISCARD-2 
study which evaluated the optical diagnosis accuracy of 28 community endoscopists 
using NBI. Disappointingly, the endoscopists’ optical diagnosis derived colonoscopy 
surveillance intervals only matched 68% of the histopathology derived intervals[18]. 
Although widely available, technologies for optical diagnosis has not been 
incorporated into routine clinical practice with one of the main barriers being the inter-
operator variability amongst endoscopists[19].

WHAT IS A CONVOLUTIONAL NEURAL NETWORK? 
AI is the ability of computers to perform tasks that traditionally require human 
intelligence (Figure 1)[20]. Machine learning (ML) is a subset of AI, whereby 
computers continuously learn from data without explicit human programming[21]. 
This can be used to predicate a polyp’s histology. ML models can be trained using 
unsupervised or supervised techniques. Unsupervised learning is when the input and 
output data are not paired. Supervised ML is more labour intensive as it requires 
paired input and output data for training. An example of a supervised ML model for 
optical diagnosis is to annotate a bounding box around a polyp (input data), 
commonly referred to as a region of interest, and label it with the histology of the 
polyp (output data). The model automatically learns to extract features that allow it to 
differentiate polyp subtypes and output a diagnosis based on the histology classi-
fication system it was trained with but the annotation process is time consuming for 
the clinician.

Deep learning is a subset of ML, whereby algorithms use multiple layers within a 
neural network[22], mimicking the human brain, to extract high level features from 
input data. CNNs are the most commonly used network in the application of deep 
learning to optically diagnose polyps. They provide an objective output, bypassing the 
human inter and intra-operator variability, and can develop classification algorithms 
without exhaustive effort as they do not require human-crafted feature extraction or 
extensive pre-processing of data[23].

Building a CNN model typically involves three separate datasets; a training set, a 
validation set and a test set[24]. The training set is used to develop the model so that it 
predicts a label (e.g., adenomatous or hyperplastic polyp for polyp characterisation) 
based on features extracted from the endoscopic image by the algorithm itself. The 
validation set is used to avoid over-fitting into the training dataset through fine tuning 
of the hyperparameters of the model. Finally, the testing set is used as an independent 
dataset to evaluate the generalisability of the CNN. With smaller datasets, cross-
validation can be used to assess the model’s robustness. In cross-validation, the data is 
split into equal parts (e.g., 4 parts), with one part held out as a validation dataset. This 
process is repeated multiple times, with the results of each split eventually pooled 
together to decide how robust the model is[24]. CNNs evaluated using cross-
validation should still be assessed against an independent test set to examine their 
generalisability[24].

CONVOLUTIONAL NEURAL NETWORKS AND OPTICAL DIAGNOSIS
It is only in the last few years that the use of CNNs in optical diagnosis of colorectal 
polyps has been extensively investigated, with various studies emerging (Table 1). 
Many of these studies have in fact demonstrated the capability of CNNs to surpass the 
PIVI 2 threshold in order to support a “leave in” strategy for rectosigmoid hyperplastic 
polyps (Table 2). This was first demonstrated by Chen et al[25], who used a single 
centre, retrospective, still image dataset of 2157 polyps to train a CNN and reported a 
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Table 1 Summary of the studies on convolutional neural network algorithms for the optical diagnosis of colorectal polyps

Ref. Study design 
(training/testing)

Multi-
centre 
study

Dataset Image 
quality Classification system Lesion number 

(training/testing)
SSL 
excluded

Endoscopic 
processor

Image modality 
(training)

Real-time 
capability

Komeda et al
[37]

Retrospective Single Video Not 
specified

Adenoma/non-adenoma Not specified/10 No Not specified WLI, NBI, 
chromoendoscopy

Not specified

Chen et al[25] Retrospective/prospective Single Still HQ Hyperplastic/neoplastic 2157/284 Yes Olympus 260 + 290 Magnified NBI Real-time 
(approximately 450 
ms)

Byrne et al
[23]

Retrospective/prospective Single Video All images NICE Type 1/NICE Type 2 220/125 Yes Olympus 190 NBI-NF Real-time ( 
approximately 50 
ms)

Zachariah et 
al[26]

Prospective Two Still Adequate 
and HQ

Adenomatous/serrated polyp 5278/634 No Olympus 190 
(90%), 180 (7%), 
Pentax i10(3%)

WLI, NBI, i-SCAN Real-time ( 
approximately 13 
ms)

Ozawa et al
[38]

Retrospective/prospective Single Still HQ Hyperplastic/adenomatous/SSL/CRC/other WLI: 17566/783  
NBI: 2865/290

No Olympus 260 + 290 WLI, NBI Real-time 
(approximately 20 
ms)

Jin et al[31] Retrospective/prospective Single Still HQ Hyperplastic/adenomatous 2150/300 Yes Olympus 290 NBI-NF Real-time 
(approximately 10 
ms)

Song et al[39] Retrospective/prospective Single Still HQ Serrated polyp/benign adenoma/MSM/DSMC 624/545 No Olympus 290 NBI-NF Real-time ( 
approximately 20-
40 ms)

Rodriguez-
Diaz et al[28]

Retrospective/prospective Two Still Not 
specified

Neoplastic (adenomas, CRC)/non-neoplastic 
(hyperplastic, normal)

607/280 Training: 
Yes  
Testing: 
No 

Olympus 190 NBI-NF, NBI (digital 
magnification)

Real-time 
(approximately 100 
ms)

van der 
Zander et al
[27]

Retrospective/prospective Not 
specified

Still HQ Benign (hyperplastic)/pre-malignant 
(adenomatous, SSL, T1 CRC)

398/60 No Fujifilm, Pentax WLI, BLI, i-SCAN Real-time 
(approximately 
14.8 ms)

SSL: Sessile serrated lesion; WLI: White light imaging; BLI: Blue light imaging; NBI: Narrow band imaging; NBI-NF: Narrow band imaging–near focus; NICE: NBI International Colorectal Endoscopic; HQ: High-quality; CRC: Colorectal 
cancer; MSMC: Mucosal or superficial submucosal cancer; DSMC: Deep submucosal cancer.

sensitivity for identifying adenomas of 96.3% , specificity 78.1%, and NPV of 91.5% 
when evaluating a test set of 284 colonic and rectal diminutive adenomatous and 
hyperplastic polyps. Using colonic diminutive polyps is a common strategy to assess 
against PIVI 2 due to difficulties in obtaining large datasets of diminutive rectosigmoid 
polyps. An important limitation of this study is that it used magnified narrow-band 
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Table 2 Summary of the per-polyp results of studies on convolutional neural network algorithms for the optical diagnosis of colorectal 
polyps (cross-validation results not included)

Ref. Image Modality 
(testing)

Sensitivity 
(%)

Specificity 
(%)

PPV 
(%)

NPV 
(%)

Accuracy for 
neoplasia (%)

PIVI 1 
achieved (%)

PIVI 2 
achieved (%)

Komeda et al[37] Not specified - - - - 70 - -

Chen et al[25] Magnified NBI 96.3 78.1 89.6 91.5 90.1 - Yes (91.5)

Byrne et al[23] NBI-NF 98 83 90 97 94 - Yes (97)

NBI - - - 96.5 93.1 Yes (98.3) Yes (96.5)Zachariah et al
[26]

WLI - - - 88.9 92.8 Yes (90.8) No (88.9)

NBI 97 - 84 88 - - -Ozawa et al[38]1

WLI 98 - 85 88 - - -

Jin et al NBI-NF 83.3 91.7 93.3 78.6 86.7 - -

NBI-NF (test set 
1)

84.1 74 88.3 67.7 - - -Song et al[39]

NBI-NF (test set 
2)

88.5 72.1 88.6 84.7 - - -

Rodriguez-Diaz 
et al[28]

NBI-NF (90%) + 
NBI (10%)

95 88 - 93 - Yes (94 (20/90 
LC))

Yes (98 (6/68 
LC))

van der Zander et 
al[27]

WLI + BLI 95.6 93.3 97.7 87.5 95.0 - No (87.5)

1Per frame analysis reported only.
WLI: White light imaging; BLI: Blue light imaging; NBI: Narrow band imaging; NBI-NF: Narrow band imaging–near focus; PIVI: Preservation and 
Incorporation of Valuable endoscopic Innovations; PPV: Positive predictor value; NPV: Negative predictor value; LC: Low-confidence.

Figure 1 The relationship between convolutional neural networks, deep learning, machine learning and artificial intelligence.

imaging (NBI) data. This recently developed modality is not yet readily available in 
most endoscopy departments, although it will become more widely used with time.

Byrne et al[23] further advanced the field by training a CNN with NBI-near focus 
(NBI-NF) which is more commonly used in Europe and North America. It was trained 
with 220 polyp positive videos and when tested against 125 diminutive polyps which 
were collected prospectively, the model diagnosed 106 polyps with high confidence, 
achieving a sensitivity for identifying NBI International Colorectal Endoscopic (NICE) 
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type 1 polyps of 98%, specificity 83% and NPV of 97%. A novelty worth highlighting 
in this study was the use of images derived from videos, an approach that reduces 
selection bias compared to retrospective still images as endoscopists usually capture 
high quality polyp views that are free from motion blur and surface artifact. An 
additional advantage of this CNN is that it simplified the clinical workflow as it 
automatically diagnoses polyps without requiring a still image of the polyp to be 
captured. Limitations of the study are that SSLs, normal tissue and lymphoid 
aggregates were excluded from the final analysis and the videos used to train and test 
the CNN were captured from colonoscopies performed by a single expert endoscopist 
and hence, potentially less generalisable to novice users.

The most commonly used imaging modalities amongst community endoscopists are 
white light imaging (WLI) and NBI without magnification. Using a large retrospective 
still image training set of 5278 polyps and tested against 634 polyps, Zachariah et al[26]
’s CNN fell short of PIVI 2 in WLI (NPV of 88.9% and accuracy 92.8%) but achieved 
the threshold in NBI without magnification (NPV of 90.8% and accuracy 93.1%). This 
study advanced the field as it demonstrated the capabilities of CNNs to optically 
diagnose polyps in standard NBI modality and also to differentiate adenomas from 
serrated polyps through the inclusion of SSLs in its dataset.

Whilst the majority of CNNs have been trained and tested using Olympus data, 
studies are emerging using data from other manufacturers. van der Zander et al[27] 
recently developed a CNN using Fujifilm data in high definition white light (HDWL) 
and blue light imaging (BLI). The CNN was more efficacious when it used a unique 
multimodal imaging approach where it combined both HDWL and BLI images of the 
same polyp in its decision process compared to a single imaging modality. When 
evaluated against 60 prospectively collected diminutive polyps, it did not reach the 
PIVI 2 threshold with a NPV of 87.5% but did achieve an optical diagnosis accuracy of 
95% (sensitivity for identifying pre-malignant polyps 95.6% and specificity 93.3%) and 
demonstrated superiority to both expert and novice endoscopists in human 
benchmark testing.

In comparison to PIVI 2, there are fewer studies evaluating the performance of 
CNNs against PIVI 1. The CNN presented in Zachariah et al[26] reached PIVI 1 
thresholds in both WLI and NBI with normal magnification, achieving concordance 
with histology-based colonoscopy surveillance intervals in 90.9% and 98.3% of 
patients, for each respective modality. Rodrigues-Diaz et al[28] used a single centre 
retrospective still image dataset to train a CNN with 607 polyps and tested against 90 
diminutive polyps where it achieved a high confidence diagnosis in 78% of cases, with 
a 94% agreement with histology-based colonoscopy surveillance intervals. Tested 
against 68 rectosigmoid polyps, the model diagnosed 88% of polyps with high 
confidence, achieving PIVI 2 thresholds with a NPV of 97%.

There is also potential to expand the use of optical diagnosis CNNs outside of the 
”resect and discard” and “leave in strategy”. A dilemma that can complicate issuing 
post-polypectomy surveillance intervals is discrepancies between endoscopic and 
histological diagnosis and classification of polyps with tissue fragmentation in the 
specimen retrieval process playing an important role. Shahidi et al[29]’s proof of 
concept study used a CNN to resolve discrepancies in polyps ≤ 3 mm in size. Tested 
against 900 polyps that were ≤ 3 mm and optically diagnosed as adenomatous by an 
expert endoscopist, the CNN diagnosed the adenomas with high confidence in 644 
polyps, with 256 polyps deemed to be of sub-optimal imaging quality. However, of 
these high confidence diagnoses, the pathologists diagnosed 15.4% as normal mucosa, 
13.2% as hyperplastic polyp and 0.3% as SSL. In this context, a CNN could help to 
mitigate against the risk of under-surveillance.

Whilst CNN’s diagnostic accuracy excels in many studies, without real-time 
capabilities, they would have no clinical utility. Prior to the era of deep learning, 
computer aided diagnosis algorithms lacked real-time capability, but most CNNs do 
not share this problem and often process data at a rate that exceeds the 25 frames per 
second that is generated in a video recording of a colonoscopy procedure. Given the 
excellent performance in ex-vivo studies and the real-time capabilities displayed by 
CNNs, the future appears promising for their integration in colonoscopy.

TRANSPARENCY OF CONVOLUTIONAL NEURAL NETWORKS 
The complexity of CNN models’ decision process is often referred to as a “black box” 
and represents an important barrier to its acceptance by both clinicians and patients
[30]. Opening the ‘’black box’’ to display the raw features which informed the CNN’s 
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Figure 2 Illustration of coloured heatmaps, overlaid to the polyp, which demonstrates the regions that most likely contributed to the 
convolutional neural networks’s diagnosis. A, B, C, D: Original narrow band imaging (NBI) of polyps; a, b, c, d: Coloured heatmap overlaid on the NBI 
image; Red: Higher probability that this region informed the convolutional neural networks (CNN)’s diagnosis; Blue: Lower probability that this region informed the 
CNN’s diagnosis. Images adapted and modified with permission from the publisher[31]. Citation: Jin EH, Lee D, Bae JH, Kang HY, Kwak MS, Seo JY, Yang JI, Yang 
SY, Lim SH, Yim JY, Lim JH, Chung GE, Chung SJ, Choi JM, Han YM, Kang SJ, Lee J, Chan Kim H, Kim JS. Improved Accuracy in Optical Diagnosis of Colorectal 
Polyps Using Convolutional Neural Networks. Gastroenterology 2020; 158(8): 2169-2179. Copyright© The Authors 2020. Published by Elsevier.

decision is important for transparency especially from a safety standpoint[28]. 
Transparency can help identify biases within the neural network and aid root-cause 
analyses in cases of patient harm, for example, if a neoplastic polyp that subsequently 
develops into a CRC is originally misdiagnosed as non-neoplastic by the CNN model.

For polyp characterisation, important steps have been taken to open the black box. 
Jin et al[31] developed a CNN that generated a coloured heat map, overlaid to the 
polyp, to help the endoscopist comprehend the specific aspects of the image that 
contributed to the CNN’s prediction (Figure 2). This could help the endoscopist to 
decide which information is relevant and which decisions are truly based on 
appropriate image analysis. If, for example, the heatmap is overlaid to normal mucosa, 
then the endoscopist would quickly be able to appreciate this and disregard the CNN’s 
diagnosis.

More recently, in order to further enhance CNN transparency, Rodriguez-Diaz et al
[28] developed a colour coded segmentation model (Figure 3). In this model, the CNN 
divides the polyp into distinct segments to allow the endoscopist to identify the 
specific regions within the image that is informing the CNN’s decision. The CNN 
predicts the histology of each subregion of the segmented polyp, with high confidence 
neoplastic diagnoses coloured in red, high confidence non-neoplastic in green, and 
low confidence/indeterminate diagnoses in yellow, with the final predication 
resulting from an aggregate of all the analysed regions. The end result is a detailed 
spatial colour coded histology map of the polyp surface, which the endoscopist can 
visualise and incorporate into their decision process[28], enhancing the interpretability 
of this CNN model in comparison to others. However, an important limitation to this 
advanced CNN is that it currently lacks the ability to operate at a video rate.

Further research in the interpretability of CNN models is required to improve its 
acceptance[32] and accelerate its translation to clinical practise.

LIMITATIONS AND FUTURE DIRECTIONS
Despite the promise shown by CNNs this far, it is crucial to recognise that there are 
various limitations that need to be overcome before they can become part of the 
endoscopic clinical workflow. The most significant limitations are the reliance on 
retrospective datasets[33], which are inherently subject to selection bias, and the lack 
of prospective studies and randomised controlled trials[34]. Most studies train and test 
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Figure 3 Spatial colour coded histology map which allows the user to visualise the sub-regions of the polyp surface that contributed to 
the convolutional neural networks’s decision process. A: Hyperplastic polyps; B: Adenomatous polyps; C: Sessile serrated lesions; Red: High-confidence 
neoplastic diagnosis; Green: High-confidence non-neoplastic diagnosis; Yellow: Indeterminate or low-confidence diagnosis. Adapted from Ref. [28]. Citation: 
Rodriguez-Diaz E, Baffy G, Lo WK, Mashimo H, Vidyarthi G, Mohapatra SS, Singh SK. Real-time artificial intelligence-based histologic classification of colorectal 
polyps with augmented visualization. Gastrointest Endosc 2021; 93: 662-670. Copyright© The Authors 2021. Published by Elsevier.

CNNs using high quality images of polyps, free from “noise” such as motion blur and 
polyp surface artifact (e.g., mucus, stool or blood). The extent to which CNNs pre-
clinical results are reproducible in the real-world setting, where ‘noise’ is frequently 
encountered, remains to be seen.

To the best of our knowledge, there have been no prospective randomised 
controlled clinical trials evaluating optical diagnosis CNN in-vivo. This is partly due to 
clinical trials being time consuming and expensive, and an alternative pragmatic 
approach could be the use of a benchmark test in the form a publicly available external 
dataset to compare different CNN models[35]. No such datasets currently exist for 
polyp characterisation and therefore the generalisability of CNN models remains 
poorly understood. Generalisability refers to the CNN performance with different 
endoscope models and clinical settings from the site that the data was generated to 
train the CNN. To date, only one study[36] has evaluated generalisability, and this was 
limited to a small testing set of 69 polyp images from two population cohorts 
(Australian and Japanese) using two separate endoscope manufactures (Olympus and 
Fujifilm). Despite the small test-set, this study highlighted the concerns of generalis-
ability as the operator area under the curve fell from 94.3% for the internal set, to 
84.5% and 90.3% for the external testing sets (NBI and BLI respectively).



Kader R et al. Convolutional neural networks in colonoscopy

WJG https://www.wjgnet.com 5916 September 21, 2021 Volume 27 Issue 35

Another important limitation is that studies often exclude polyps that are not 
adenomas or hyperplastic polyps, restricting the possible classification outputs of 
CNNs. This, in turn, limits their clinical utility as polyps such as SSL and inflam-
matory polyps would be misclassified due to limitations in the initial training phase of 
the CNNs when the categorisation system is established.

Research in this field is likely to continue to expand and future directions to 
consider include: (1) Guidelines to identify the role of CNNs in the clinical workflow, 
specifically, whether it is a second reader, a concurrent reader or a provider of an 
independent diagnosis[30]; (2) Prospective multi-centre randomised clinical trials; (3) 
Publicly available external datasets for benchmark testing and evaluation of the 
generalisability of CNN models in different clinical settings and population cohorts; 
and (4) Acquiring datasets inclusive of all polyp sub-types to advance CNN classi-
fication systems.

CONCLUSION
In summary, this is an exciting time for the endoscopy community. CNNs diagnostic 
performance has excelled in ex-vivo studies and in human benchmarking testing. 
CNNs are likely to be a key adjunct in optically diagnosing polyps and have renewed 
optimism that implementation of a “resect and discard” and “leave in” strategy is 
feasible due to the potential to alleviate the inter-operator variability amongst 
endoscopists. This would bring significant financial benefits to healthcare systems, 
avoid unnecessary polypectomies of non-neoplastic polyps and improve the efficiency 
of colonoscopy. However, prospective multi-centre randomised controlled trials and 
publicly available datasets for benchmark testing are required to further evaluate the 
efficacy and generalisability of CNNs. Furthermore, with these models now emerging 
in endoscopy units, it’s imperative that guidelines are developed to establish their role 
in the clinical workflow.
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