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Gravity and matter are universally coupled, and this unique universality provides us with an intriguing
way to quantify quantum aspects of space-time in terms of the number of gravitons within a given box. In
particular, we provide a limit on the number of gravitons if we trace out the matter degrees of freedom. We
obtain the universal bound on the number of gravitons, which would be given by Ng ≈ ðm=MpÞ2. Since the
number of gravitons also signifies the number of bosonic states they occupy, the number of gravitons
indirectly constrain the system’s gravitational entropy. We show that it saturates the Bekenstein bound on
the gravitational area law of entropy. Based on these observations, we ascertain that the gravitons
permeating in the observable Universe are always Ng ≫ 1.
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I. INTRODUCTION

Within the general theory of relativity, the dynamics of
space-time is intertwined by both matter and the gravita-
tional degrees of freedom. If both matter and the gravita-
tional degrees of freedom are quantum in nature, then their
interplay will pave an important role in any quantum theory
of gravity [1]. However, there is no experimental proof yet
to show that gravity is quantum in nature.
Like other forces of nature, the spin-2 graviton is

thought to be the carrier of the gravitational interaction,
and it is responsible for the gravitational attraction between
two massive bodies. A graviton can be canonically quan-
tized around a weak curvature background [2], and we can
attribute both on-shell and off-shell degrees of freedom to
the massless graviton. The former is responsible for
describing independent dynamical modes, while the
latter describes how the force is being mediated between
two massive bodies. One of the interesting features
of the gravitational interaction is that it is universal,
and it is governed by Newton’s constant G ∼ 1=M2

p, where
Mp ∼ 1.2 × 1019 GeV.
Niels Bohr once argued that in a double-slit experiment

with an electron that the photon which mediates electro-
magnetic interaction ought to be quantum if the electron is a
bonafide quantum entity, see [3]. The purported weakness
of the universal gravitational interaction with the matter
precluded a similar argument favoring the quantum nature
of a graviton. A similar weakness in the gravitational
interaction was poignantly used by Dyson to point out that
it would be extremely challenging to detect gravitons [4].
Although very tiny, a quantum graviton interaction with

matter can leave an indelible mark in classical/quantum
systems [5–10].
In fact, just quantum mechanics, along with the special

theory of relativity, suggests that a graviton exchange
between two quantum superposed masses can provide a
bonafide quantum feature if the two quantum systems are
allowed to interact solely gravitationally. In fact, the two
quantum systems can be entangled by a graviton exchange
in a Feynman diagram, which can be tested via a scheme
known as the quantum gravity induced entanglement of
masses (QGEM) [9,11]. In any given experiment, the
number of gravitons, either on shell or off shell, can leave
a detectable mark on observations. In most typical cases, for
general open systems, the number of quanta is also indica-
tive of whether a quantum system can be approximated by
the mean field or a statistical ensemble.1

This paper aims to point out that there is a universal
bound implied by any quantum interaction of a graviton
with the matter degrees of freedom. For the time being, we
neglect any other interaction besides gravity. This universal
behavior can be studied by tracing out the matter degrees of
freedom; we show that the occupation number of gravitons
is always proportional to the area law of such a gravita-
tional system. Intriguingly, such a behavior can be thought
to be universal from the point of view of Bekenstein’s

1Number or density plays an important role. There are roughly
400 microwave photons per cubic centimeter, and their fluctua-
tions have been discovered in terms of two-point temperature
correlations by the latest Planck experiments [12]. However, we
still do not know whether these fluctuations are classical or
quantum [13,14].
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bound on a gravitational entropy [15] (while it has been
argued that physically realistic local quantum Hamiltonians
in the ground state follow the area law of entanglement
entropy [16,17]). Since in a thermodynamic system, the
entropy is proportional to the number of gravitons, and
entropy is saturated by the area law; it is no wonder that by
tracing out all the matter degrees of freedom we obtain
that the area law always bounds the occupation number of
gravitons.

II. GRAVITON COUPLING TO MATTER

To set up our computation, let us assume that we work in
a world line of a particle in a Fermi-normal coordinate, and
without loss of generality, let us assume that the particle
motion is in the x-axis. Let us consider an ideal matter
following a geodesic trajectory, xμ (the situation of an
observer following a generic timelike curve can be ana-
lyzed similarly without affecting the final results). We start
from the general relativistic point-particle Lagrangian,2

L ¼ −m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν _xμ _xν

q
; ð1Þ

where m is the mass of the system, and gμν is the metric
expressed in Fermi normal coordinates. In particular, we
write the metric as gμν ¼ ημν þ hμν, where ημν is the
Minkowski metric, and hμν is the space-time curvature
perturbation near the geodesic up to order Oðx2Þ.
Let us assume that the matter is moving slowly; the

dominant contribution to the dynamics is given by [18],

g00 ¼ −ð1þ ḧ11x2Þ; ð2Þ

where ḧ11 ¼ 2R0101 is the “þ” component of the gravita-
tional waves usually discussed in the transverse-traceless
(TT) coordinates, and R is the Riemann tensor (here ḧ11 ≡
ḧ11ðt; 0Þ denotes only a number evaluated on the reference
geodesic).
Now, let us use Eqs. (1) and (2), and we can then readily

find the interaction Lagrangian between graviton and
matter degrees of freedom,

Lint ¼
m
4
ḧ11x2: ð3Þ

Let us now expand the gravitational fluctuation in terms of
Fourier modes,3 see Refs. [19],

hijðt; xÞ ¼
Z

dk

ffiffiffiffiffiffiffiffiffiffi
Gℏ
π2ωk

s
gk;λeλ

ijðnÞe−iðωkt−k·xÞ þ H:c:; ð4Þ

where G is the Newton’s constant, ωk ¼ k, k ¼ kkk,
n ¼ k=kkk, and gk;λ is the annihilation operator. In
Eq. (4), we also implicitly assume the summation over
the polarizations,4

P
λ, where e

λ
jk denote the basis tensors

for the two polarizations, λ ¼ 1, 2. From Eqs. (3) and (4),
we however see that only eλ

11ðnÞ is relevant, and we can
write also the corresponding kinetic term for the massless
graviton field to be

Hgrav ¼
Z

dkℏωkg
†
k;λgk;λ

¼
X
λ

Z
dk

ℏωk

4
½P2

k;λ þ Y2
k;λ�; ð5Þ

where

Yk;λ ¼ gk;λ þ g†k;λ Pk;λ ¼ iðg†k;λ − gk;λÞ: ð6Þ

The interaction Hamiltonian can be derived from the
interaction Lagrangian in Eq. (3), and by using Eq. (4),
we obtain [20]

Hint ¼ −m
X
λ

Z
dkeλ11ðnÞCkYk;λx2; ð7Þ

where x is the position operator of the particle, and

Cλk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Gℏω3

k

16π2

s
: ð8Þ

The interaction in Eq. (7) assumes long-wavelength grav-
itons such that the cutoff frequency is ω̄ ¼ 2π=l. We note
that by combining Eqs. (5) and (7), we find the relevant part
of the gravitational Hamiltonian,

H¼
X
λ

Z
dk

ℏωk

4
½P2

k;λþY2
k;λ�−m

X
λ

Z
dkeλ11ðnÞCkYk;λx2:

ð9Þ

The key points here are that we treat both matter and
graviton on an equal footing, when it comes to being
quantum in nature, and we are dealing with a self-
gravitating quantum system of mass m, whose interaction
with the graviton is determined by Eq. (7).

2We assume c ¼ 1 here, and we work with the ð−;þ;þ;þÞ
signature, and μ ¼ 0; 1; 2; 3.

3The notion of Fourier modes implicitly assumes that we
are in asymptotically flat space-time and free from curvature
singularities.

4The basis tensors satisfy the completeness relation:P
λe

λ
ijðnÞeλ

klðnÞ¼PikPjlþPilPjk−PijPkl, where Pij≡PijðnÞ¼
δij−ninj. For later convenience we write the integralR
dnP11ðnÞP11ðnÞ ¼ 32π=15.
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III. TRACING OUT MATTER DEGREES OF
FREEDOM

Supposewe consider the mean field approximation of the
matter sector in Eq. (9), i.e., x2 → hx2i, which is applicable
in our case, because the gravitational coupling to matter
degrees of freedom is very weak, suppressed byG ∼ 1=M2

p.
Furthermore, we are far away from any pathologies in
space-time, which allows us to work within the leading
order contribution in G ∼ 1=M2

p; it is a good assumption
that the states of the graviton and the matter sector are
factorizable. From Eq. (9), we thus find a displaced
harmonic trap for the gravitational field,

H ¼
X
λ

Z
dk

ℏωk

4
½P2

k;λ þ ðYk;λ − αλ;kÞ2�; ð10Þ

where the center is given by αλ;k ≡ 2m
ℏωk

eλ11ðnÞCkhx2i. Now,
let us suppose that the gravitational field mode gk;λ is in a
ground state, centered around αλk, which can be described
by a displaced coherent state,

jαλki ¼ DðαλkÞj0i ¼ eα
λ
k½g†k;λþgk;λ�j0i: ð11Þ

By choosing the gravitational field to be in the ground state
of the displaced harmonic trap, we envisage that the matter
system and the gravitational field have reached a steady
state; a different choice for the gravitational field state will
not change significantly the final result as long as the
state remains centered and confined around the same
minimum. For such a displaced quantum state, we can
compute the expectation values h·i; here, we are interested
in the mean value and fluctuations of the number operator
Nk;λ ≡ g†k;λgk;λ, where the gravitons follow the commuta-

tion relations ½gk;λ; g†k0;λ0 � ¼ δðk − k0Þδλ;λ0 .
We find the occupation number of gk;λ gravitons in the

ground state to be

hNk;λi ¼ jαλkj2 ¼
�
2m
ℏωk

eλ11ðnÞCkhx2i
�

2

: ð12Þ

The total number of gravitons can be then computed by
summing and integrating over all the graviton modes,

Ng≡
X
λ

Z
dkhNk;λi¼

X
λ

Z
dk

�
2m
ℏωk

eλ11ðnÞCkhx2i
�
2

:

ð13Þ

By using Eq. (8) and footnote 4, we note that

Ng ¼
Z

k2dk
4m2

ℏ2ω2
k

Z
dn

X
λ

eλ11ðnÞeλ11ðnÞC2khx2i2 ð14Þ

reduces to

Ng ¼
8m2G
15πℏ

hx2i2
Z

ω̄

0

dωkω
3
k; ð15Þ

where ω̄ is the cutoff frequency for a box of side l.

IV. NUMBER OF GRAVITONS

We can perform the integration in Eq. (15), and by using
ω̄ ¼ 2π=l, we find a factor ð2π=lÞ4=4. Furthermore, we
note that hx2i2 ≤ l4=24. We then find that the l dependence
goes away from the numerator and the denominator in
Eq. (15), leaving us with a straightforward relationship,
where the number of gravitons is simply given by the mass
m and Newton’s constant G,

Ng ≤
4π3

30

Gm2

ℏ
¼ 4π2

30

�
Area
4Gℏ

�
: ð16Þ

In the above, by area, we mean the area corresponding to
the Schwarzschild radius of mass m, given by Rs ¼ 2Gm,
which is also the natural length scale over which the above
number of gravitons are confined. The same result, aside
minor numerical factors, is obtained for a relativistic
energy-momentum tensor.5

Since the entropy of a black hole is proportional to the area
of the hole, the number of gravitons found above naturally
scales as Bekenstein’s entropy Ng ∼ Sg, or specifically, it is
consistent with the bound set by Bekenstein, i.e., Ng ∼ Sg <
2πER=ℏ, whereE is totalmass energy of the system, andR is
the characteristic radius, in the black hole case ER ∼ 2Gm2

[15]. At this point, it has not avoided our attention that the
gravitational entropy is indeed holographic [21,22].
An intriguing feature of the above expression is that the

number of gravitons signifies how we may be able to
quantify the quantum nature of space-time itself. If we can
squeeze the matter within the Schwarzschild radius, the
number of gravitons saturates the black hole entropy. In
general relativity, the Schwarzschild radius is the only
length scale that appears if we place a mass m in an
asymptotically flat space-time. In fact, from Eq. (16), we
can roughly estimate the number of gravitons to be

Ng ≈ ðm=MpÞ2: ð17Þ

For a solar mass blackhole, m ∼ 1033 g, Mp ∼ 10−5 g, and
Ng ∼ 1076. The large Ng ≥ 1 sets a barrier for any massive

5Suppose we had taken an example of a relativistic
energy-momentum tensor Tμν, where the graviton-matter inter-
action would be dictated by the interaction

ffiffiffiffi
G

p
hμνTμν, then

quantizing the graviton in a transverse traceless (TT) gauge, we
would get a similar answer barring the numerical factors,
Ng ≤ ð32π3=105ÞðGm2=ℏÞ.
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quantum system, whose mass exceeds that of the
gravitational mass m ≥ Mp ∼ 10−5 g. From Bohr’s corre-
spondence principle, we may be able to treat such a self-
gravitating system approaching toward a classical limit.
The notion that large values of Ng can be associated with

classical behavior is further reinforced by computing the
quantum fluctuations,

ΔNg ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hN2i − hNi2

q
; ð18Þ

of the total number operator N ≡P
λ

R
dkNk;λ. We have

already calculated hNi ¼ Ng, and using the commutation
relations ½gk;λ; g†k0;λ0 � ¼ δðk − k0Þδλ;λ0 we can show hN2i ¼
Ng þ N2

g (see, for example, [23]). Inserting the expectation
values back in Eq. (18), we then find that the fluctuations
grow only as ΔNg ¼

ffiffiffiffiffiffi
Ng

p
. Hence, we find that the relative

quantum fluctuations follow as

ΔNg=Ng ∼ 1=
ffiffiffiffiffiffi
Ng

p
; ð19Þ

in line with the expectation that the system appears classical
for large values of Ng ≫ 1.
A curious reader would wonder if we were to trace the

graviton degrees of freedom instead of matter degrees of
freedom. In such a case, Yk;λ → hYk;λi in Eq. (9), and we
would be left with a simple harmonic oscillator potential.
For such a system, the occupation number Nm will not
follow the area law.We can further ask whether the area law
is a generic property for all massless fields or specific to the
matter-graviton coupling. We recall that the quadratic
nature of the coupling ∼x2 in Eq. (3) was critical: we
have shown Ng ∝ hx2i, where hx2i is always nonzero,
leading to the area law. In contrast, a linear coupling, e.g.,
∼x, can always be canceled by a change of the reference
frame and should thus not play a role in the derivation of the
area law. More generally, one can expect the emergence of
an area law whenever the coupling gives rise to a length
scale; while for other types of interactions (such as the
electromagnetic), one is left without such an interpretation.

V. APPLICATIONS AND FEATURES

Let us now provide another intriguing connection to
what we have just found in Eqs. (16) and (17). In Refs. [24–
27], see Ref. [28] for earlier discussions, a very interesting
idea has been developed, a corpuscular nature of a black
hole. A black hole is perceived to be a Bose-Einstein
condensate of a large number of weakly interacting
gravitons, where the authors have found exactly a similar
scaling as in Eq. (17) but from a different point of view.
They did not have to trace out the matter degrees of
freedom explicitly. Instead, they argued that a black hole
could be justly described by an ensemble of Ng ≫ 1
gravitons. The authors further argued that the number of

gravitons will suppress the effective interaction of a
gravitons, i.e., given by αg ≤ 1=Ng. For a large Ng ≫ 1,
the black hole behaves like a coherent system, albeit a
leaky one. The graviton escape signifies the Hawking
evaporation of a black hole. Such a gravitational system
with Ng ≫ 1 can be perceived to be approaching a
classicalization limit, where extracting quantum features
will become extremely hard.
The other limiting case, when Ng ≪ 1, provides us with

an intriguing possibility of extracting the quantum nature of
a graviton. This limit arises when m ≤ 10−5 g; for such a
system, the number of gravitons is less than one irrespec-
tive of the size of the box. Therefore, it seems that
nature provides us with a window of opportunity where
it might be possible to construct experiments cleverly to
study the quantum nature of gravity for m ≤ 10−5 g.
Indeed, if m ≪ 10−5 g, it will be again harder to probe
or extract any quantum features. It has been experimentally
possible to create macromoleculesm ∼ 10−19 g over spatial
superposition for ∼0.25 μm or atoms m ∼ 10−21 g over
∼0.5 m) [29,30]. In all these cases, Ng ∼ 10−28 or 10−32,
way too small to observe any detectable features of
quantum gravity.
The situation appears to be quite familiar in cosmology

as well if we were to assume that a world line can describe
the entire observable patch of the Universe. In that case, the
mass contained in the Universe would bem ∼ ρ × V, where
ρ ¼ H2ðtÞM2

p is the constant energy density of the
Universe, and V ∼H−3ðtÞ is the observable volume, which
would scale with the Hubble expansion rate HðtÞ of the
Universe. If we were now to compute the occupation
number of gravitons within my observable patch of the
Universe, we would find

Ng ∼ ðMp=HðtÞÞ2: ð20Þ

In the current Universe, H ∼ 10−42 GeV, which gives
Ng ∼ 10121, which indicates that the space-time is perhaps
very close to a classical description, and the number of
gravitons again scales as the area law, Ng ∼ Area=4G,
because the observable area of the Universe will scale
as ∼H−2ðtÞ.
On the other hand, we already have a constraint on the

largest scale in the Universe indirectly. Since we have not
seen any primordial gravitational waves, or the B-mode
polarization in the cosmic microwave background radia-
tion, we believe that the scale of cosmic inflation cannot be
arbitrarily large. The latest Planck data place an upper
bound on H ∼Hinf ∼ 1013 GeV [12]. Of course, we have
invoked here primordial inflation as a mechanism to seed
the fluctuations in the cosmic microwave background
radiation. However, even for such a high energy probe,
the number of gravitons present in the Hubble radius during
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inflation would behave nearly classically, i.e., Ng ∼ 1012

and ΔNg=Ng ∼ 10−6.
Finally, we can ask how robust our analysis is with

regard to the nature of classical gravity. Note that we have
not assumed any specific form of gravitational action. The
only assumption we have made here is that the gravitons
can be described by the massless degrees of freedom in a
harmonic oscillator state with the minimal coupling to
matter degrees of freedom given by G ∼ 1=M2

p, which is
valid for gravitational theories beyond three spatial dimen-
sions. However, this argument will change if we insist on
studying any higher derivative extension of gravity, which
will bring inevitably a new scale in the problem, say Ms <
Mp in four space-time dimensions, see [31,32]. For such
class of theories of gravity, we have to tread the occupation
number of gravitons carefully case by case.

VI. CONCLUSION

We briefly conclude by highlighting that we have
provided a rather model-independent constraint on the
occupation number of gravitons in a quantum system
determined by its mass and Mp by tracing out the matter

degrees of freedom. The occupation number is bounded
by the area law, which is a reminiscence to Bekenstein’s
bound. Our bound suggests that the occupation number
of gravitons in the black hole geometry will be bounded by
the area of a black hole, which is also the gravitational
entropy of the object. For mass m ≥ 10−5 g, the number
of gravitons occupied within the gravitational radius,
i.e., the Schwarzschild radius, is much larger than one.
In an optimal bound on mass, m ∼ 10−5 g would be ideal
for extracting any quantum behavior of a graviton.
Furthermore, tracing out the matter degrees of freedom
renders the space-time fairly classical within the observable
patch of the Universe.
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