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Abstract 

Humans hold social motives that are expressed in social preferences and influence how they 

evaluate and share payoffs. Established models in psychology and economics quantify social 

preferences such as general social value orientation, which captures people’s tendency to be 

prosocial or individualistic. Prosocials further differ by how much they maximize joint gains 

or minimize inequality. Functional neuroimaging studies have linked increased amygdala 

activity in prosocials to payoff inequality between self and other. However, it is unclear 

whether amygdala lesions alter social motives. We used two tasks to test a patient with 

selective bilateral amygdala lesions and three healthy samples (a priori matched control 

sample N = 20, online sample N = 603, student sample N = 40), which allowed us to assess 

and model social motives across a relatively large number of participants. In a social value 

orientation task, the patient was categorized as prosocial and her social value orientation score 

did not differ from healthy participants. Importantly, the patient differed in prosocial 

motivation by maximizing joint gains rather than minimizing payoff inequality. In a joint 

payoff evaluation task, Bayesian model comparisons revealed that participants’ evaluations 

were best described by models, which link participants’ evaluations to the payoff magnitude 

and to inequality. Overall, amygdala lesions did not seem to alter general social value 

orientation but shifted prosocial motivation toward maximizing joint gains. 
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Highlights 

• We tested social motives in an amygdala lesions patient and three healthy samples 

• The amygdala lesion patient was prosocial as the majority of healthy participants 

• The patient differed in underlying prosocial motivation by maximizing joint gains 

• In contrast, most healthy prosocial participants minimized inequality 

• Joint payoff evaluations were best described by models including inequality aversion 
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Introduction 

The functioning of social groups builds upon individuals cooperating and sharing 

payoffs with each other. Humans hold social motives that are expressed in their social 

preferences and influence how they evaluate and share payoffs with each other (MacCrimmon 

& Messick, 1976). Psychological and economic models assume that individuals’ preferences 

for payoff allocations depend—in addition to self-gains—on several social motives such as 

maximizing joint gains and minimizing inequality (Fehr & Schmidt, 1999; Murphy et al., 

2011). Functional neuroimaging studies have linked individual differences in amygdala 

responses to social motives during the evaluation of allocations (Haruno & Frith, 2010; Liu et 

al., 2019). Here, we investigated whether amygdala lesions have an impact on social 

preferences and motives in the context of sharing monetary payoffs between oneself and an 

anonymous other by testing a patient with selective bilateral amygdala lesions and comparing 

her to an a priori matched control sample. 

Social Value Orientation (SVO) refers to how individuals evaluate and allocate 

payoffs for themselves and others (Messick & McClintock, 1968). General SVO can be 

measured on a continuous scale that captures the amount of a common payoff a person is 

willing to sacrifice for another person’s payoff (Murphy et al., 2011). To facilitate the 

interpretability of the continuous SVO scores, people can be classified into at least four 

different SVO categories that partition the possible range of SVO scores. Empirically, most 

people are prosocials (maximizing own and others’ payoffs and minimizing inequality) and 

many are individualists (maximizing own payoffs). Fewer people are categorized as 

competitive (maximizing the difference between own and others’ payoffs) or altruistic 

(maximizing others’ payoffs) (Murphy et al., 2011). With additional SVO items, prosocials 

can be further positioned on two continua: One for joint gain maximization (maximizing the 

sum of one’s own and another person’s payoffs) and another for inequality aversion 
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(minimizing the difference between one’s own and another person’s payoffs). These two 

continua are typically compiled into one so-called prosocial motivation score. 

Distinct SVO categories have repeatedly been associated with differences in 

cooperative behavior. In laboratory experiments, prosocials contribute more to group interests 

than individualistic and competitive persons (e.g. De Cremer & Van Lange, 2001). In real 

life, prosocials engage more in behavior that facilitates long-term collective interests, such as 

pro-environmental actions (Joireman et al., 2001) or volunteering (Van Lange et al., 2011). 

Several functional neuroimaging studies in humans suggest that individual differences 

in SVO relate to differences in amygdala activity when allocation options are presented 

(Haruno et al., 2014; Haruno & Frith, 2010; Liu et al., 2019; Tanaka et al., 2017). 

Specifically, prosocials and individualists differed in their dorsal amygdala activity related to 

the absolute difference between payoffs for the self and for another person—a measure of 

overall inequality (Haruno & Frith, 2010). That is, while amygdala activity was positively 

correlated with absolute payoff differences in prosocials during payoff presentation, it was 

slightly negatively correlated with absolute payoff differences in individualists (Haruno & 

Frith, 2010). A recent functional neuroimaging study refined this picture (Liu et al., 2019): 

Greater deviations of the currently presented allocation from the individually preferred 

allocation elicited greater amygdala activity on a trial-by-trial basis. In addition, amygdala 

activity related to deviations from the preferred allocation positively correlated with 

inequality aversion in prosocials but not individualists (Liu et al., 2019). 

Animal studies provide further evidence for the importance of the amygdala for 

prosocial preferences. Electrophysiological measurements in rhesus macaques revealed 

enhanced synchronization between the basolateral amygdala and the rostral anterior cingulate 

gyrus for prosocial decisions in contrast to suppressed synchronizations in antisocial decisions 

(Dal Monte et al., 2020). Bilateral lesions in the basolateral amygdala in rats resulted in lower 
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preferences for mutual rewards, indicating that the integrity of the basolateral amygdala 

facilitates prosocial preferences (Hernandez-Lallement et al., 2016). 

Thus, human and animal studies point toward a role of the amygdala for social 

motives but it is unclear if amygdala lesions influence prosocial preferences in humans. Here, 

our primary aim was to investigate the impact of selective bilateral amygdala lesions on 

allocation decisions and preferences by comparing a patient with amygdala lesions to a group 

of a priori age- and gender-matched healthy individuals. In secondary, exploratory analyses, 

we compared the patient to a larger group of participants that was matched post hoc. Based on 

the neuroimaging findings that show relationships between amygdala activity and prosocial 

preferences (Haruno & Frith, 2010; Liu et al., 2019), we hypothesized a less prosocial SVO 

(i.e., less prosocial payoff allocations) in a patient with Urbach-Wiethe (UW) syndrome (a 

disease characterized by amygdala calcification) than in controls. In addition, we tested how 

well different social motives—such as inequality aversion—describe participants’ evaluations 

of given payoff allocations, by comparing eight different economic models. 

We adopted the same tasks as Haruno & Frith (2010) and used two complementary 

approaches to assess social motives. First, the SVO task provides an individual 

characterization of social preferences by having participants choose between different payoff 

options for the self and another person. The SVO task is similar to so-called “dictator games” 

(Engel, 2011) in the sense that one person single-handedly determines how allocations should 

be split between the self and another person. This other person has no say in the decision. 

Primary items (Figure 1a & 1d) in the SVO task assess general SVO and secondary items 

(Figure 1b & 1d-e) specify the type of prosocial motivation. Second, in the joint payoff 

evaluation (JPE) task, participants evaluate the desirability for a series of given joint payoff 

pairs. We extended the modeling approach of Haruno and Frith (2010) and compared how 

well eight different economic models describe participants’ evaluations in the JPE task. We 
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assessed three healthy samples to provide distributions of SVO and to identify the model that 

best describes participants’ evaluations of monetary allocations. Specifically, we tested one 

control sample for the UW patient. We also tested two additional samples to characterize the 

behavior of a wider population. That is, our primary aim was to compare the UW patient with 

an a priori matched control group. Our secondary aims were to compare the patient to a larger 

post hoc matched sample and to provide data on social motives of a relatively large number of 

participants. 

 

Methods 

Participants 

UW patient. One of two female monozygotic twins (age 43 years) with Urbach-

Wiethe (UW) syndrome—a congenital disorder leading to amygdala calcification (Newton et 

al., 1971)—was tested at the University of Bonn. Both patients have been characterized 

neurologically and behaviorally in earlier studies (Hurlemann et al., 2007; Talmi, Hurlemann, 

Patin, & Dolan, 2010). In this study, the patient previously called BG or patient 2 was tested. 

Her twin sister was not tested because she suffered from a psychiatric condition (Scheele et 

al., 2019). Below, we list several earlier findings obtained from the same lesion patient. The 

patient has an average intelligence but exhibits impairments in phonemic fluency and short-

term concentration (Talmi et al., 2010). She shows impairments in the recognition of fearful 

facial expressions (Becker et al., 2012; Hurlemann et al., 2007) and in the prioritization of 

threatening facial expressions (Bach et al., 2015). She has aberrations in startle responses 

during fear-eliciting scenes, in threat processing (Becker et al., 2012). In approach-avoidance 

conflict tasks, she shows reduced loss adaptation (Korn et al., 2017) and decreased vigor of 

escape from threat (Bach et al., 2019). Furthermore, she has a smaller and less complex social 

network (Becker, 2012). 
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Healthy samples. In total, we acquired three separate healthy samples (for which we 

specify details in the next sections): First, an age- and gender-matched control sample was 

tested in the laboratory. Second, we acquired an online sample that allowed us to compare the 

UW patient to a rather large subgroup of this online sample that was matched post hoc for 

secondary, exploratory analyses. Third, a student sample was tested in the laboratory. For 

interested readers, we report the behavioral results from the full online sample and the student 

sample, but we did not compare the UW patient to these two samples. Inclusion criteria for all 

healthy samples were age between 18 and 60 and German mother tongue. Additional 

exclusion criteria for the laboratory samples were self-reported psychiatric or neurological 

diagnoses or drug abuse. In all samples and for all analyses, we excluded participants with 

intransitive answers on the SVO measure (see the paragraph on SVO scores below). 

Following specific methodological conventions and considerations, further participants 

needed to be excluded for specific analyses (see below and Supplementary Table 1 for 

details). 

(1) An age- and gender-matched control sample (original N = 23; after exclusion for 

intransitive answers N = 20, age: M = 41.60, SD = 3.91) was recruited from the general 

population and tested at the Psychiatric University Hospital Zurich. 

(2) A more diverse online sample (original N = 628; after exclusion for intransitive 

answers N = 603, 377 female, 4 participants chose not to disclose their gender; age: 

M = 37.70, SD = 11.64) was recruited via SoSci Panel, which is associated to a German 

online survey system called SoSci Survey (Leiner, 2019). The administrators of the SoSci 

Panel offered the opportunity to invite participants who had signed up for the SoSci panel out 

of interest and receive no monetary reimbursement. Participants of the online sample were 

tested via SoSci Survey and completed a series of unrelated tasks (described in Korn et al., 

2018). This allowed us to compare the UW patient to a rather large matched subgroup of this 
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online sample by choosing—post hoc—female participants within the age range of 36 - 49 

years (to match the age range of the control sample) (N = 91, age: M = 41.99, SD = 3.60). We 

label this subsample “online subgroup.” 

(3) To provide more evidence that the general findings in the two tasks hold, we 

additionally tested a student sample (original N = 41; after exclusion for intransitive answers 

N = 40, 26 female; age: M = 24.35, SD = 3.81) at the University Medical Center Hamburg-

Eppendorf. 

 Self-reported income range. The UW patient did not differ from the control sample 

and the matched subgroup of the online sample with respect to self-reported income ranges. 

Participants were asked to indicate their monthly income range on a scale with the lowest 

option (no personal income) and the highest option (above 6500 CHF or above 4000 €; in the 

online sample, participants also had the option to not indicate their income range). Income 

ranges for the two currencies were converted using current information about Swiss and 

German purchasing power parities acquired from the Federal Statistical Office of Switzerland 

(BFS, 2018). A Bayesian single-case analysis (for details see methods section) revealed that 

an estimated 88.77% (95% CI [74.28, 97.23], p = .225, two-tailed) of the control sample and 

63.23% (95% CI [54.90, 71.14], p = .735, two-tailed) of the online subgroup would have a 

lower income than the UW patient, indicating no significant income differences between the 

UW patient and the healthy controls. An exploratory analysis revealed no association between 

income level and primary SVO scores (Spearman’s r = -.05, p = .836, N = 20) in the control 

group. Furthermore, income level and prosocial motivation scores were not significantly 

correlated (Spearman’s r = -.09, p = .758, N = 15) in the prosocial participants of the control 

group (secondary items are only interpretable in prosocial participants; see methods section 

below for details). We found no significant correlation between income level and primary 

SVO scores (Spearman’s r = -.02, p = .857, N = 91) in prosocial participants of the matched 
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subgroup of the online sample. Likewise, we found no association between income level and 

the prosocial motivation scores (Spearman’s r = .05, p = .699, N = 66) in prosocial 

participants of the online subgroup. 

Reimbursement and ethics. The laboratory samples (i.e., the UW patient, the control, 

and student samples) received a show-up fee plus a variable amount depending on their own 

and on another participants’ decisions in the SVO task. Participants in the online sample 

participated out of interest and did not receive monetary reimbursement. Therefore, 

participants of the online sample made hypothetical choices. Participants in the laboratory 

gave written informed consent prior to data collection and the study (including the form of 

taking consent) was approved by the local ethics committees. As mentioned above, the online 

sample was recruited via the SoSci Panel. These participants had voluntarily signed up to 

receive invitations to online studies and chose freely to take part in our study. They were 

informed about the study similar to the participants in the laboratory and could freely stop 

taking part in the online study. Due to the online format, participants did not give explicit 

informed consent in written form. Before conducting the online experiment, we consulted the 

ethics committee in Zurich: At the time point of testing, online studies were deemed exempt if 

they used this type of questionnaire stimuli and if they only collected data from participants 

who remained anonymous (i.e., we collected no contact information at all and had never 

intended to do so). We only included participants who completed the relevant sections (i.e. 

demographic questions, SVO and JPE task) of the online study. 

Tasks 

All participants performed the SVO Slider Measurement (Murphy et al., 2011) and a 

joint payoff evaluation (JPE) task (Haruno & Frith, 2010). Moreover, the UW patient and the 

control and student samples completed a series of unrelated tasks (Bach et al., 2019; the 

remaining tasks will be reported elsewhere). Data of the laboratory samples were acquired 
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using the MATLAB (Mathworks, Natick, MA) toolbox Cogent 

(http://www.vislab.ucl.ac.uk/cogent.php). Data of the online sample were acquired via SoSci 

Survey (Leiner, 2019).  

In both tasks, participants were asked to respond to payoff combinations for 

themselves and another anonymous person. The anonymous other person was introduced as 

another participant in the same study. It was made clear that the other person would be 

reimbursed based on the participant’s decisions in the SVO task, just as the participant was 

reimbursed based on another person’s decisions in the SVO (except for the participants of the 

online sample who made hypothetical choices). 

SVO Slider Measurement. We adopted a commonly used task (Murphy et al., 2011) 

to identify participants’ SVO using the six primary items for the general SVO score and the 

nine secondary items for the prosocial motivation score. Figure 1 provides an outline and 

Supplementary Figure 1 visualizes a specific example item in detail. Participants were asked 

to indicate their preferred allocation of payoffs for themselves and another anonymous person 

sequentially for each item. Specifically, each SVO item consists of a continuum of 9 different 

options for joint payoffs for self and another person. 

Primary items (used for calculating the SVO scores) are delimited by a circle (centered 

at 50 points with a diameter of 50 points; Figure 1c). Intermediate payoff options lie on a line 

between the endpoints on the circle. For example, item 6 ranges from the first option with 100 

points for self and 50 points for other to the ninth option with 85 points for self and 85 points 

for other (Figure 1a & c). A more prosocial participant would choose one of the options close 

to 85 for self and 85 for other, while a more individualistic participant would choose one of 

the options close to 100 for self and 50 for other. 

Secondary items (used for calculating the prosocial motivation scores) allow a 

differentiation between two different motivations for being prosocial: joint gain maximization 
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and inequality aversion. For example, item 9 ranges from the first option with 100 points for 

self and 70 points for other to the ninth option with 50 points for self and 100 points for other 

(Figure 1b & d-e; Supplementary Figure 1). An inequality averse participant would choose 

one of the options close to the identity line, while a joint-gain-maximizing participant would 

choose one of the options closer to the upper right corner of the item space. Supplementary 

Figure 2 visualizes (absolute) inequality and join gain of all secondary items. 

See the section on Data analysis below for details on the calculation of the SVO score 

from primary items and of the prosocial motivation score from secondary items. One decision 

was randomly chosen and participants were paid accordingly (they received the payoff for self 

from their choice and the payoff for other from another participant’s choice). 
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Figure 1: SVO task and allocation plane for primary and secondary items 

a. Example of one of the six primary SVO slider items. b. Example of one of the nine secondary SVO slider 

items. c. Allocation plane for the six primary items with payoffs for the self on the x-axis and payoffs for the 

other on the y-axis. The circle delimits the endpoints of the primary items. Black lines indicate payoffs for the 

nine options of each primary item. The item depicted in (a) corresponds to the bold line ranging from (100, 50) 

to (85, 85). The locations of the four idealized SVO categories (altruistic, prosocial, individualistic, and 

competitive) are mapped. d. & e. Allocation plane for the nine secondary items with payoffs for the self on the 

x-axis and payoffs for the other on the y-axis. Black lines indicate payoffs for the nine options of each secondary 

item. The item depicted in (b) corresponds to the bold line ranging from (100, 70) to (50, 100). d. The color map 

illustrates the gradient of inequality between payoffs for self and other across the allocation plane. Absolute 

inequality is lowest on the identity line. e. The same nine secondary items as in (d) are depicted but here the 

color map illustrates the gradient of joint gain (joint payoffs) across the allocation plane. Joint gain is highest at 

the rightmost and uppermost point of the allocation plane. See Supplementary Figure 1 for numerical details on 

an exemplary item. See Supplementary Figure 2 for the depiction of the SVO and JPE items in terms of 

(absolute) inequality and joint gain. See Supplementary Figures 3 & 4 for choice distributions across the SVO 

items. 

 

Joint Payoff Evaluation (JPE) Task. All participants subsequently performed a task 

established by Haruno and Frith (2010). Pairs of payoffs for the participant and an anonymous 

other were presented sequentially in a randomized order. For example, the payoff 

combination for item 1 is 23 points for self and 177 points for other (see Supplementary 

Figure 2 & Supplementary Table 2 for all 36 items). As in the SVO task, payoff combinations 

were defined by two orthogonal dimensions: outcomes for self and outcome for other. Payoffs 

were uniformly sampled from a circle (centered at 100 points with a diameter of 100 points). 

That is, all payoff options lie on the circle. In contrast to the SVO task, participants were not 

asked to choose among different options. Instead, in the JPE task participants were asked to 

rate each single pair of payoffs on a 4-point Likert scale (1 = least preferable, 4 = most 

preferable). The social context was controlled in both tasks since participants did not meet the 
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other person and did not receive feedback about the other person’s choices. Participants’ 

evaluations were used as dependent variables in economic models (see below). The laboratory 

samples completed all 36 items of the task. The online sample only completed 12 of the 36 

items (every third item) due to time constraints in the online assessment, which also included 

unrelated tasks (described in Korn et al., 2018). 

Data Analysis 

All statistical analyses were done using MATLAB (Mathworks, Natick, MA) and all 

statistical tests are two-tailed. Bar charts were produced in R (R Core Team, 2019) using the 

package “ggplot2” (Wickham, 2016) and the raincloud plots of Figure 2 were produced in R 

using the packages “ggplot2” and “RainCloudPlots” (Allen et al., 2018; Allen et al., 2019).  

Use of samples. Our primary results were derived from data acquired in the laboratory 

from a matched control sample: We compared the results of the UW patient to the control 

sample in the SVO task and the JPE task. In addition, as secondary, exploratory analyses, we 

provide a comparison with the age- and gender-matched subgroup of the online sample, 

which allowed us to compare the UW patient to a larger sample that was tested in a similar 

but less comparable design (i.e., tasks were done online and participants answered only one-

third of the items in the JPE task). For interested readers, we also provide the behavioral 

results of the full online sample and the student sample. 

SVO scores. The SVO score was computed from the six primary items. The SVO 

score is the polar angle in a Cartesian coordinate system with payoffs to self on the x-axis and 

payoffs to the other person on the y-axis. This angle captures how much a participants were 

willing to sacrifice their own payoff for the other person’s payoff. The smaller the angle, the 

more a participant cares for self and the closer the angle to 90°, the more a participant cares 

for the other person (Figure 1c). Continuous SVO scores were used for analyses and are 

depicted in Figure 2a. Based on these continuous SVO scores and on the bins established by 
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Murphy et al. (2011), participants were assigned to one of the four categories (altruistic, 

prosocial, individualistic, and competitive). For example, per definition, an ideal individualist 

would choose the option that maximizes the payoff for self on each of the items. This 

principle leads to specific idealized boundaries between the four SVO types. Category 

boundaries were set symmetrically between the idealized SVO type scores (for details see 

Murphy et al., 2011). 

Prosocial motivation scores. To identify the underlying motivation of prosocial 

preferences, we followed the procedure described in Murphy et al. (2011) for analyzing the 

nine secondary items of the SVO task. (The code provided by Murphy and colleagues and our 

publicly available code provide details). 

First, an “inequality distance score” quantifies how distant the chosen payoff options 

are from the options that ideally minimize absolute inequality for the secondary items of the 

SVO task. Essentially, the payoff ranges of the nine secondary items intersect the diagonal 

identity line (Figure 1d & e). The closer a chosen payoff option is to the identity line, the 

more equal are the payoffs for self and other (Figure 1d; Supplementary Figures 1 & 2). 

Second, a “joint-gain distance score” quantifies how distant the chosen payoff options 

are from the options that ideally maximize joint gain for the secondary items of the SVO task. 

The more to the upper right corner of the coordinate system a chosen option is the higher is 

the joint gain (Figure 1e; Supplementary Figures 1 & 2). 

These two scores are combined into participants’ “prosocial motivation score,” which 

is a single index ranging from 0 (perfect inequality aversion) to 1 (perfect joint gain 

maximization). That is, this prosocial motivation score is calculated as the inequality distance 

score divided by the sum of the inequality distance score and the joint-gain distance score. 

Based on this prosocial motivation score, each participant with consistent prosocial choices in 

primary and secondary items can be categorized as inequality averse (prosocial motivation 
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score ≤ 0.5) or joint gain maximizing (> 0.5). In addition to participants’ SVO scores and 

categories, the rank order of participants’ social preferences can be assessed to check if 

participants make prosocial choices on the secondary items. We followed the 

recommendations by Murphy et al. (2011) and only analyzed prosocial motivation scores 

from participants who were categorized as prosocials on both primary and secondary items 

(see Supplementary Table 1). 

Comparison of SVO and prosocial motivation scores. To investigate whether the 

UW patient differs in her social preferences from the healthy population, we compared her 

SVO score—and because she was prosocial also her prosocial motivation scores (see 

results)—to the control sample and a matched subgroup of the online sample. 

We conducted a Bayesian single-case analysis using the SingleBayes software 

(Crawford & Garthwaite, 2007), which applies Bayesian Monte Carlo methods to test the null 

hypothesis that a patient’s score is an observation from the control population. Bayesian 

single-case analyses are considered robust against deviations from normal distribution 

(Crawford & Garthwaite, 2006), and provide Bayesian p values, and point (percentile) and 

interval estimates (Bayesian credibility intervals [CI]) for the percentages of the control 

groups that would obtain a lower score than the UW patient. 

Model-based analyses of the JPE task. We compared eight different economic 

models that tested for different social motives. These economic models took the form of 

linear regressions on each individual participant’s evaluations of the desirability of a joint 

payoff (on a scale from 1 to 4) in the JPE task. In line with Haruno and Frith (2010) and Liu 

et al. (2019), the models assume participants’ utility of the given payoff pairs to be linear 

functions of different predictors (plus an intercept term). 
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Results 

SVO task: Comparison of SVO scores between the UW patient and controls 

The UW patient was categorized as prosocial, as was the majority of the control 

sample (80%) and the other healthy samples (79-81%; see Table 1 for distributions of SVO 

categories across all samples). Testing for our primary hypothesis, we found no evidence for a 

difference in SVO scores between the UW patient (SVO score = 33.43) and the healthy 

control sample (M = 32.78, SD = 15.02) (see Figure 2a for overall SVO scores and 

Supplementary Figure 3 for choice distributions across all primary items). That is, using a 

Bayesian single-case method, we found that an estimated 51.64% of the control sample (95% 

CI [34.57, 68.58], p = .967) would have a lower SVO score than the UW patient, indicating 

no difference between the patient and the healthy population. Additionally, in exploratory 

analyses, the UW patient did not differ from the matched subgroup of the online sample 

(online subgroup: M = 31.24, SD = 12.4; percentile estimated = 56.95, 95% CI [48.76, 64.9], 

p = .861). In other words, the UW patient was quite close to the mean of the tested healthy 

samples in terms of her general SVO score. 

 

Table 1. Distribution of SVO categories across all samples. 
 

UW patient Control 

sample 

Online 

subgroup  

Online 

sample 

Student 

sample 

Altruistic 0 0 0 1 (<1) 0 

Prosocial 1 16 (80) 74 (81) 474 (79) 32 (80) 

Individualistic 0 3 (15) 16 (18) 120 (20) 8 (20) 

Competitive 0 1 (5) 1 (1) 8 (1) 0 
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Total N 1 20 91 603 40 

Participants in the categories according to SVO are given as N (%). This table lists all participants who are 

categorized as prosocial according to the primary items. See Supplementary Table 1 for exclusion criteria. 

 

SVO task: Comparison of prosocial motivation scores between the UW patient and 

controls 

Since the UW patient was categorized as prosocial, we could look into the secondary 

items to identify her underlying prosocial motivation (as the secondary items are only 

applicable if a participant made prosocial choices in the primary items). The UW patient 

differed from the majority of prosocials in her prosocial motivation score. While 100% of the 

prosocials in our control sample (and 88-94% of the participants in the other healthy samples) 

were motivated to minimize inequality, the UW patient was motivated to maximize joint 

gains (see Figure 2b, Table 2, and Supplementary Figure 4 for distributions of prosocial 

motivation scores, categories, and choice patterns, respectively). The Bayesian single-case 

analysis showed that an estimated 99.5% of the healthy population would have a lower 

prosocial motivation score, i.e., would be more inequality averse, than the UW patient (UW 

patient: score = 0.651; control sample: M = 0.207, SD = 0.142, percentile estimate = 99.54, 

95% CI [96.87, 99.99], p = .009). The UW patient did also differ from the matched subgroup 

of the online sample (online subgroup: M = 0.193, SD = 0.171, percentile estimate = 99.5, 

95% CI [98.43, 99.93], p = .009). Thus, even at the Bonferroni corrected alpha level of p < 

.025 the difference in prosocial motivation scores of the UW patient and the control group 

was robust. 

The proscocial motivation score combines inequality aversion and joint gain 

maximization. Therefore, we analyzed the respective scores separately. The UW patient did 

not differ from controls in her inequality distance score (UW patient: score = 0.16; control 
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sample: M = 0.08, SD = 0.07, percentile estimate = 85.62, 95% CI [68.06, 96.3], p = .288; 

online subgroup: M = 0.06, SD = 0.05, percentile estimate = 97.43, 95% CI [94.26, 99.21], 

p = .051; Figure 2c). But she differed in her joint-gain distance score (UW patient: 

score = 0.09; control sample: M = 0.27, SD = 0.05, percentile estimate = 0.18, 

95% CI [0.00, 1.46], p = .004; online subgroup M = 0.25, SD = 0.06, percentile 

estimate = 0.51, 95% CI [0.07, 1.6], p = .01; Figure 2d). 

 

Table 2. Distribution of prosocial motivation across all samples. 
 

UW patient Control 

sample 

Online 

subgroup 

Online 

sample 

Student 

sample 

Prosocial – IA 0 15 (100) 62 (94) 382 (88) 23 (88) 

Prosocial – JG 1 0 4 (6) 50 (12) 3 (12) 

Total N 1 15 66 432 26 

Participants are given as N (%). Prosocial motivation scores are given for all participants who are prosocial 

according to primary and secondary items (which is why the total numbers can be lower than the number of 

prosocials listed in Table 1). IA = Inequality aversion, JG = Joint gain maximization. See Supplementary Table 1 

for exclusion criteria. 
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Figure 2. SVO scores and prosocial motivation scores  

Raincloud plots showing the distribution of (a) SVO scores, (b) prosocial motivation scores, (c) inequality 

distance scores, and (d) joint-gain distance scores. We compared the UW patient to the age- and gender-matched 

control sample and the online subgroup. The UW patient did not differ from these healthy individuals with 

respect to SVO but showed a higher prosocial motivation score—and specifically a lower joint-gain distance 

score—which indicates relatively higher joint gain maximization. Data from the online sample and the student 

sample are depicted for interested readers but were not directly compared to the UW patient. 

Prosocial motivation scores, inequality distance scores, and joint-gain distance scores are depicted for 

participants categorized as prosocial according to their SVO scores (i.e., for participants with SVO scores 

between 22.45 and 57.15). The prosocial motivation score is calculated as the inequality distance score divided 

by the sum of the inequality distance score and the joint gain distance score. Therefore, the prosocial motivation 

scores range from 0 (perfect inequality aversion) to 1 (perfect joint gain maximization). 

The central mark indicates the median, boxes depict 25- and 75-percentiles. The upper (and lower) 

whiskers extend from the upper (and lower) edges of the box to the largest (and smallest) value within a range of 

maximal 1.5 times the interquartile range. All data points including extreme data points are shown. For 
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visualization, we also plot estimated distributions. Note that the kernel density estimation for the density plot 

generates data that fall outside the bounds of the original data. Therefore, the values on the y-axis in (b) extend 

to 1.2 although the maximum score is bounded to 1. See Supplementary Figures 3 & 4 for choice distributions 

on all SVO items. 

 

The prosocial motivation score of the UW patient is very unlikely to have arisen by 

chance, i.e., by the patient making random choices. We simulated 10,000 random answers for 

the nine secondary items according to a uniform distribution (i.e., equal probabilities for 

choosing each of the nine options for each item). As expected due to random answers, only a 

subset of 6.2 % (i.e., 620) of these 10,000 simulated “participants” were prosocial on both 

primary and secondary items. The score of the UW patient (or score at least as extreme in the 

joint gain direction) was only obtained in 0.005 % of these 620 simulated participants. Taken 

together, this speaks for a difference in the underlying motivation for prosocial preferences in 

the UW patient compared to the healthy population. 

JPE task: Comparison of economic models for allocation evaluations 

For allocation evaluations in the JPE task, the Inequality & Joint-gain model 

performed best in the UW patient (i.e., had the lowest Bayes factor; Figure 3). The Fehr-

Schmidt model was a close runner-up and performed second best. The Fehr-Schmidt model 

considers the payoff for self, disadvantageous inequality (self gets less than other), and 

advantageous inequality (other gets less than self). Mathematically, the Fehr-Schmidt model 

for the JPE task is equivalent to the model formulation used by Haruno and Frith (2010) and 

to a formulation that replaces payoffs for self by joint gains (see Appendix in the 

Supplementary Material). 

In all healthy samples, the Inequality & Joint-gain model fitted second best and the 

Fehr-Schmidt model fitted best (using Bayesian model comparisons according to fixed-effects 
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analyses based on log-group Bayes factors; Figure 3). These fixed-effects analyses neglect 

variability between participants. We therefore, performed random-effects analyses by 

calculating protected exceedance probabilities. We found that the Inequality & Joint-gain 

model had higher protected exceedance probabilities than the Fehr-Schmidt model in all 

healthy samples (Supplementary Table 4). This implies that the Inequality & Joint-gain model 

performed better (i.e. had a lower BIC) in more participants than the Fehr-Schmidt model 

(Supplementary Table 5)—but for those participants, for whom the Fehr-Schmidt model was 

better, it tended to be better by a larger margin. 

Taken together, two related models performed well in the JPE task across samples. 

Both models consider inequality and gain magnitudes. However, the employed version of the 

JPE task did not allow a good distinction between the fit of the Inequality & Joint-gain model 

and the Fehr-Schmidt model. We therefore cannot conclude that a different economic model 

better explained the evaluations of the UW patient. 

 

 

Figure 3. Model comparisons in the JPE task according to fixed-effects analyses 

Log-group Bayes factors relative to the first model (Individualism). The presented fixed-analyses according to 

log-group Bayes factors assume that every participant uses the same model. The Inequality & Joint-gain model 

performed best in the UW patient. The Fehr-Schmidt model performed best in all healthy samples. Lower 
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numbers indicate better model fit. See Supplementary Tables 4 & 5 for random-effects analyses, which assume 

that different participants may use different models. ERC, Equity, Reciprocity, Competition model. 

 

JPE task: Comparison of parameter estimates from the inequality & join-gain model 

between the UW patient and controls 

 We tested whether parameter estimates from the Inequality & Joint-gain model 

differed between the UW patient and healthy participants (both in the control sample and in 

the online subgroup). Using Bayesian single-case analysis, we found no evidence for 

differences in the two parameter estimates of interest: 1) inequality (patient: estimate = -.011; 

control sample: M  = -0.011, SD = 0.004, percentile estimate = 50.01%, 

95% CI [32.66, 67.37], p = .999; online subgroup: M = -0.007, SD = 0.005, percentile 

estimate = 19.48%, 95% CI [13.23, 26.8], p = .39) and (2) joint-gain (patient: 

estimate = 0.005; control sample: M = 0.0036, SD = 0.002, percentile estimate = 71.2%, 

95% CI [53.63, 85.59], p = .576; online subgroup: M  = 0.004, SD = 0.002, percentile 

estimate = 73.02%, 95% CI [65.05, 80.18], p = .54). Parameter estimates are numerically 

small because the predictors are in a range from 0 to 200 and the dependent variables are 

ratings in a range from 1 to 4. 

In sum, we found no evidence for differences between the UW patient and controls in 

their evaluations of the payoff allocations included in the used JPE task. 

 

Discussion 

This case study investigated the impact of amygdala lesions on allocation decisions 

and preferences. In addition, we provide rather large datasets of healthy participants to 

characterize various social motives in a wider population. Based on previous neuroimaging 
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findings and evidence in nonhuman primates and rodents, we hypothesized that the UW 

patient would have less prosocial preferences due to the amygdala lesions and that this would 

be reflected in her SVO score and possibly the parameters of the economic model describing 

allocation preferences. We did not find evidence for a less prosocial SVO in the UW patient 

compared to the healthy population. Since the UW patient was categorized as prosocial, we 

looked into the prosocial motivation score, which describes the underlying motivations for 

prosocial SVO. We found that the UW patient’s motivation was to maximize joint gains 

rather than to minimize inequality. All three of our healthy samples showed similar 

distributions for prosocial motivation scores. Strikingly, a Bayesian single-case analysis 

revealed that an estimated 99.5% of the healthy control sample would have a lower prosocial 

motivation score than the UW patient. The distinctiveness of the UW patient’s prosocial 

motivation score was driven by higher joint gain maximization rather than lower inequality 

aversion. The prosocial motivation score of the UW patient is unlikely to have arisen by 

chance (as determined by simulations). 

In addition, we compared several economic models on participants’ evaluations of 

joint payoffs in the JPE task and found that the Inequality & Joint-gain model and the Fehr-

Schmidt model were the two best performing models—both of which include metrics for 

inequality and joint- or self-gain. We found no differences in parameter estimates of the UW 

patient and control groups. Apart from questions of power and specificity with regard to the 

used version of the JPE task, it could be that a choice context is needed to detect an effect that 

would correspond to the difference between the UW patient and controls in prosocial 

motivation as revealed by the SVO task: In the JPE task, participants make judgments 

indicating their evaluation of joint gain and inequality. In contrast, the secondary items of the 

SVO task force participants to make a decision between these competing motives. 
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This study was motivated by a neuroimaging finding that the amygdala was the only 

brain region in which prosocials and individualists differed with respect to tracking the 

absolute inequality between payoffs for self and other (Haruno & Frith, 2010). A recent 

neuroimaging study suggested that the amygdala encodes a social-value-distance signal in 

prosocials (Liu, 2019). Our results speak against a generally less prosocial SVO in a patient 

with amygdala lesions but are complementary to the neuroimaging findings that showed intra- 

and inter-individual relationships of the amygdala with metrics of inequality (Haruno & Frith, 

2010; Liu et al., 2019). Thus, the amygdala might be functionally and causally involved in 

setting the specific motivation for prosocial allocations. To determine whether this specific 

motivation is encoded in the amygdala further studies combining a computational approach 

with neuroimaging will be needed (Charpentier & O’Doherty, 2018). Mathematically 

speaking, the UW patient maximized the sum of the payoffs to self and other rather than 

minimized the differences between the two payoffs. This makes specific predictions for future 

neuroimaging studies that could pit these (and potentially other) prosocial motivations against 

each other. Neuroimaging studies could also elucidate the interplay of the amygdala with 

other brain regions such as the (dorso-)medial prefrontal cortex (Banks et al., 2007) or the 

insula (Bebko et al., 2015). 

Our findings suggest the intriguing possibility that the amygdala might have a rather 

specific role in the processing of social motives with respect to trading off the maximization 

of joint gains versus the minimization of inequality. Finer-grained underlying prosocial 

motivations could also be captured in mathematically defined economic models specified for 

tasks that separate these prosocial motivations (e.g., by generating allocation tasks that sample 

the whole allocation plane for self and other). In this sense, our findings could help inform 

novel modeling and theorizing in psychology and behavioral economics. 
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We note the general limitation of case studies in terms of sample size. Furthermore, 

UW syndrome leads to amygdala calcification early in life, hence compensatory mechanisms 

might have promoted the development of a prosocial preference. A conceptual replication in 

patients who acquired amygdala lesions later in life would be desirable (Bach et al., 2019). 

Our findings cannot disentangle the role of different subregions of the amygdala (such as the 

basolateral amygdala or the central-medial amygdala) since the UW patient tested here shows 

calcifications in the entire bilateral amygdala (Hurlemann et al., 2007). Human lesion studies 

commonly consider the amygdala as a unified structure; with the exception of studies on 

lesions patients with selective basolateral amygdala damage (de Gelder et al., 2014; Klumpers 

et al., 2015; Koen et al., 2016; Rosenberger et al., 2019; van Honk et al., 2013). The available 

neuroimaging studies on social motives did not try to separate amygdala nuclei which would 

require high resolution and possibly an independent method to identify them on an individual 

basis (e.g. Abivardi & Bach, 2017; Bach, Behrens, Garrido, Weiskopf, & Dolan, 2011). Thus, 

testing prosocial preferences in patients with more specific lesions would be interesting. 

We deem it generally interesting to extend our approach to more vivid tasks with live 

social interactions and non-monetary incentives because the amygdala has been related to 

multiple social learning processes (Hurlemann et al., 2010; Olsson & Phelps, 2007). 

Specifically, an intriguing recent study showed that participants with selective basolateral 

amygdala damage did not learn to adjust their behavior to the trustworthiness of their 

interaction partners in a repeated trust game (Rosenberger et al., 2019). It would be 

worthwhile to see whether the prosocial motivation to maximize joint gain, which might be 

linked to the amygdala, leads to impaired adaptation during repeated interactive decisions 

(such as in dictator games, which correspond to the SVO task, trust games, or prisoners’ 

dilemma). Relatedly, live social interactions often entail emotional facial expressions. Since 

UW patients show aberrations in processing fearful or threatening facial expressions (Bach et 
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al., 2015; de Gelder et al., 2014), it would be interesting to test if social motives would change 

if the interaction partners enact emotional facial expressions. 

To summarize, while our results do not support a generally less prosocial SVO in the 

UW patient, they indicate a shift toward the motivation for maximizing joint gain in the UW 

patient with respect to healthy controls. 
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Supplementary Material 

 

Supplementary Methods 

Economic models for the JPE task. 

(1) Individualism model: ! = # ∗ $&'() 

In the individualism model, utility (U) depends linearly on the payoff for self ($Self).  

(2) Prosocial model: ! = # ∗ $&'() + + ∗ $,-ℎ'/ 

In the prosocial model (McClintock, 1972), utility (U) is a weighted sum of the linear 

payoffs for self ($Self) and other ($Other). 

(3) Altruism model: ! = + ∗ $,-ℎ'/ 

In the altruism model, utility (U) solely depends on the payoff for other ($Other). 

(4) Joint-gain model: ! = # ∗ ($&'() + $,-ℎ'/) 

The joint gain-model considers the total welfare of self and other but does not 

distinguish between payoffs for self and other. 

(5) Inequality model: ! = # ∗ 234($&'() − $,-ℎ'/) 

The inequality model considers the absolute difference between the payoffs for self 

and other. 

(6) Inequality & Joint-gain model: 

! = # ∗ 234($&'() − $,-ℎ'/) + 	+ ∗ 	($&'() + $,-ℎ'/) 

The Inequality & Joint-gain model is a linear combination of the inequality model and 

the joint-gain model. 
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(7) Fehr-Schmidt model: 

! = # ∗ $&'() + + ∗ max($,-ℎ'/ − $&'(), 0) + < ∗ max	($&'() − $,-ℎ'/, 0) 

The Fehr-Schmidt (Fehr & Schmidt, 1999) model separately considers the payoff for 

the self, disadvantageous inequality (self gets less than other), and advantageous inequality 

(other gets less than self). Here, beta represents disadvantageous inequality aversion and 

gamma represents advantageous inequality aversion. If the difference between $Other and 

$Self is a negative value, the term max($Other - $Self,0) sets the result to zero (and keeps the 

result if it is a positive value). The same holds for the difference between $Self and $Other 

($Self - $Other). Both, disadvantageous and advantageous inequality aversion are supposed to 

affect the utility negatively. Parameters were not restricted to enable the possibility of 

altruistic and competitive motives. This model is equivalent to the model used by Haruno and 

Frith (2010) but has a different parameterization (i.e., this parameterization distinguishes 

between payoffs to self and other but collapses advantageous and disadvantageous inequality 

aversion into absolute inequality aversion; see Appendix in the Supplementary Material). The 

Fehr-Schmidt model is also equivalent to a formulation that includes a regressor for joint-gain 

(i.e., $&'() + $,-ℎ'/) instead of a regressor for pure self-gain (i.e., $&'()). 

(8) ERC (Equity, Reciprocity, Competition) model: 

! = # ∗ $&'() +
+
2 ∗ >

$&'()
$&'() + $,-ℎ'/ −

1
2@

!
 

The ERC model (Bolton & Ockenfels, 2000) considers (quadratic and normalized) 

inequality (but does not explicitly distinguish between advantageous and disadvantageous 

inequality). 

Model fitting and model selection. For model fitting, we excluded participants who 

showed no variance in the JPE task at all (i.e., they selected the same evaluation option on 



37 
 

each trial; see Supplementary Table 1). Regression models were fitted using the MATLAB 

function regress, which minimizes the sum of squared errors (also known as residual sum of 

squares, RSS). Parameter estimates were unbounded. 

For model selection, we used the Bayesian information criterion (BIC). BIC depends 

on model fit (calculated as RSS) and includes a penalty for model complexity (that depends 

on the number of parameters, k), according to the following standard formula (Burnham & 

Anderson, 2004; Hurvich & Tsai, 1990), where n is the number of trials per participant: 

ABC = D ∗ ln G
H&&
D I + J ∗ ln	(D) 

First, we performed fixed-effects analyses, under the assumption that every participant 

uses the same model: BIC values are summed over participants to obtain log-group Bayes 

factors. The model with the lowest log-group Bayes factors is preferred. Second, we 

performed random-effects analyses under the assumption that different participants may use 

different models. We used the function spm_BMS in the MATLAB toolbox SPM 

(https://www.fil.ion.ucl.ac.uk/spm/) to calculate protected exceedance probabilities, which 

measure how likely it is that any given model is more frequent than all other models in the 

population. 
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Supplementary Figure 1. Example items of the SVO task and the JPE task. 

a. Example item of one of the secondary items of the SVO task and corresponding joint gain and inequality 

values. Black dots visualize the 9 options of the item. Circles around the dots indicate the example option 

corresponding to the numbers. b. Example items of the JPE task and corresponding joint gain and inequality 

values. Black dots display all 36 items of the JPE task (see Supplementary Table 2 for a list of these 36 items). 

Circles around the dots indicate the example item corresponding to the numbers a. & b. Blue values above the 

dots indicate the joint gain, red values below the dots indicate the inequality between payoffs for self and other 

for the corresponding option/item. Secondary items of the SVO comprise different combinations (higher/lower) 

of joint gain and inequality. See Figure 1 for a visualization of all SVO items. See Supplementary Figure 2 for 

the depiction of the SVO and JPE items in terms of (absolute) inequality and joint gain. See Supplementary 

Figures 3 & 4 for choice distributions across the SVO items. 
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Supplementary Figure 2. Items of the SVO task and the JPE task in terms of (absolute) 

inequality and joint gain. 

Left column: The nine options of each of the nine SVO secondary items are depicted. Right column: The 36 

items of the JPE task are depicted. These 36 items are positioned on a circle in the coordinate system with payoff 

for self and payoff for other as axes (see Supplementary Figure 1). In the coordinate system of Supplementary 

Figure 1, the diagonal identity line (with a slope of 1 and an intercept of 0, i.e., at an angle of 45°) corresponds to 

inequality of 0 between payoffs for self and other (see also Figure 1c). The orthogonal diagonal line (with a 

slope of -1 and an intercept of 0, i.e., at an angle of 135°) corresponds to joint gain (see also Figure 1d). That is, 

the axes for the JPE items can be rotated by an angle of 45° to switch from axes in terms of self and other 

payoffs (Supplementary Figure 1) to axes in terms of inequality and joint gain.  
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Supplementary Figure 3. Choice distributions on the SVO primary items. 

a. All nine options for the six primary items are depicted. The numbers of participants in the control sample who 

chose the respective options are color-coded. b. For better visualization, these numbers are shown as histograms. 
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Supplementary Figure 4. Choice distributions on the SVO secondary items. 

Same logic as in Supplementary Figure 3 for the SVO secondary items. 
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Supplementary Table 1. Sample sizes according to the used exclusion criteria for different analyses. 
Criteria Descriptions of exclusion or inclusion criteria Control Online 

subgroup 

Online sample Student 

(1) Tested participants No participants excluded 23 (100) 97 (100) 628 (100) 41 (100) 

(2) Transitive in SVO task 

primary items 

Participants with intransitive choices in the primary items of SVO task 

excluded; this exclusion criterion was used for all analyses 

20 (86.96) 91 (93.81) 603 (96.02) 40 (97.56) 

(3) Not deterministic in JPE 

task 

Participants with a choice variance of 0 in the JPE task were excluded 

because they made deterministic choices; this exclusion criterion was used 

for modeling the JPE data 

19 (82.61) 86 (88.66) 586 (93.31) 40 (97.56) 

(4) Prosocials in SVO primary 

items 

Participants with a prosocial SVO scores according to primary items of SVO 

task; this inclusion criterion was used for calculating the proportion of 

prosocials in Table 1 

16 (69.57) 74 (76.29) 474 (75.48) 32 (78.05) 

(5) Prosocials in SVO primary 

and secondary items 

Participants with prosocial SVO scores according to both the primary and 

the secondary items of the SVO task; this inclusion criterion was used for all 

analyses and plots that describe prosocial motivation; the numbers 

correspond to the proportion of prosocials in Table 2 

15 (65.22) 66 (68.04) 432 (68.79) 26 (63.41) 

Participants are given as N (% of tested participants) 
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Supplementary Table 2. Items of the JPE task  

Item number Payoff self Payoff other 
1 36 177 
2 23 164 
3 13 150 
4 6 134 
5 2 117 
6 0 100 
7 66 6 
8 83 2 
9 100 0 
10 117 2 
11 134 6 
12 150 13 
13 198 117 
14 194 134 
15 187 150 
16 177 164 
17 164 177 
18 150 187 
19 2 83 
20 6 66 
21 13 50 
22 23 36 
23 36 23 
24 50 13 
25 134 194 
26 117 198 
27 100 200 
28 83 198 
29 66 194 
30 50 187 
31 164 23 
32 177 36 
33 187 50 
34 194 66 
35 198 83 
36 200 100 
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Supplementary Table 4. Model comparisons in the JPE task according to random-

effects analyses 

Model Control sample Online 

subgroup 

Online sample Student sample 

Individualism 0 0 0 0 

Prosocial 0.003 0 0 0 

Altruism 0 0 0 0 

Joint-gain 0 0 0 0 

Inequality 0 0 0 0 
Inequality & 

Joint-gain  

0.984 0.931 1 0.806 

Fehr-Schmidt 0.005 0.069 0 0.072 
Equity, 

Reciprocity, 

Competition 

(ERC) 

0.007 0 0 0.122 

Higher protected exceedance probabilities indicate better model fit according to random-effects analyses, which 

assume that different participants may use different models. Protected exceedance probabilities are rounded to 

three decimal places. 
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Supplementary Table 5. Model comparisons in the JPE task according to number of 

participants for which the model performed best in terms of BIC 

Model UW patient Control sample Online 

subgroup 

Online sample Student sample 

Individualism 0 0 7 51 0 

Prosocial 0 2 10 81 2 

Altruism 0 0 2 12 0 

Joint-gain 0  0 2 18 0 

Inequality 0 1 2 22 2 
Inequality & 

Joint-gain  

1 11 34 238 15 

Fehr-Schmidt 0 2 21 109 9 
Equity, 

Reciprocity, 

Competition 

(ERC) 

0 3 8 55 12 

Total N 1 19 86 586 40 
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Appendix 

Here, we show that the Fehr-Schmidt model is equivalent to the model used by Haruno and 

Frith (2010) but with a different parameterization. Two regression models are equivalent if a 

linear combination of the regressors of the first model results in the regressors of the second 

model. Below, we first list the two models again: 

Fehr-Schmidt model: 

(1) !!" = #!" ∗ $&'() + +!" ∗ max($01ℎ'3 − $&'(), 0) + 8!" ∗ max	($&'() − $01ℎ'3, 0) 

Haruno-Frith model: 

(2) !#! = ##! ∗ $&'() + +#! ∗ $01ℎ'3 + 8#! ∗ abs	($&'() − $01ℎ'3) 

Now, we want to show that !!$ =	!#! 	for any scalars $&'() and $01ℎ'3. That is, we want to 

show that the parameters of the Fehr-Schmidt model can be expressed by the parameters of 

the Haruno-Frith model (without any dependence on the regressors). Because the models 

contain the “max” and the “abs” operators, we treat $&'() ≥ $01ℎ'3 and $&'() < $01ℎ'3 

separately. 

For $&'() ≥ $01ℎ'3, the Fehr-Schmidt model (1) is 

!!" = #!" ∗ $&'() + +!" ∗ 0 + 8!" ∗ ($&'() − $01ℎ'3) 

For $&'() ≥ $01ℎ'3, the interior of the first “max” operator equates to zero. Rearranging 

gives 

(3) !!" = (#!" + 8!") ∗ $&'() − 8!" ∗ $01ℎ'3 

For $&'() ≥ $01ℎ'3, the Haruno-Frith model (2) is 

!#! = ##! ∗ $&'() + +#! ∗ $01ℎ'3 + 8#! ∗ ($&'() − $01ℎ'3) 

That is, the “abs” operator can be omitted (because $&'() − $01ℎ'3 ≥ 0). Rearranging gives 
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(4) !#! = (##! + 8#!) ∗ $&'() + (+#! − 8#!) ∗ $01ℎ'3 

Thus, the two models can be reduced to expressions that only contain $&'() and $01ℎ'3 as 

regressors. Fitting a regression with these two regressors to the same data will result in 

identical parameter estimates regardless of the notation used in (3) or (4). Therefore, we can 

equate the parameter estimate for $&'() in the two formulations (3) and (4). 

(5) #!" + 8!" = ##! + 8#! 

Analogously, we can equate the parameter estimate for $01ℎ'3 in the two formulations (3) 

and (4). 

(6) −	8!" = +#! − 8#! 

Solving for the parameters of the Fehr-Schmidt model in (5) and (6) yields 

#!" = ##! + +#! and 

8!" = −+#! + 8#! 

Now, we consider the other case in the same way. For $&'() < $01ℎ'3, the Fehr-Schmidt 

model (1) is 

!!" = #!" ∗ $&'() + +!" ∗ ($01ℎ'3 − $&'()) + 8!" ∗ 0 

For $&'() < $01ℎ'3, the interior of the second “max” operator equates to zero. Rearranging 

gives 

(7) !!" = (#!" −	+!") ∗ $&'() + +!" ∗ $01ℎ'3 

For $&'() < $01ℎ'3, the Haruno-Frith model is 

!#! = ##! ∗ $&'() + +#! ∗ $01ℎ'3 + 8#! ∗ ($01ℎ'3 − $&'()) 
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For $&'() < $01ℎ'3, the interior of the “abs” operator has to be multiplied by -1 (because 

$&'() − $01ℎ'3 < 0). Rearranging gives 

(8) !#! = (##! − 8#!) ∗ $&'() + (+#! + 8#!) ∗ $01ℎ'3 

Again, the two models can be reduced to expressions that only contain $&'() and $01ℎ'3 as 

regressors. We equate the parameter estimate for $&'() in the two formulations (7) and (8). 

(9) #!" − +!" = ##! − 8#! 

We equate the parameter estimate for $01ℎ'3 in (7) and (8). 

(10) +!" = +#! + 8#! 

Solving for the parameters of the Fehr-Schmidt model in (9) and (10) yields 

#!" = ##! + +#! and 

	+!" = +#! + 8#! 

Thus, we can express the parameters of the Fehr-Schmidt model solely in terms of the 

Haruno-Frith model. For the two cases, we obtain the same equivalence for #!" and unique 

equivalences for +!" and 8!". The two models are equivalent. 

An analogous derivation can be made for a model that includes a regressor for joint-gain (i.e., 

$&'() + $01ℎ'3) instead of a regressor for pure self-gain (i.e., $&'()). 


