The impact of assisted reproductive technology treatments on maternal and offspring outcomes in singleton pregnancies: A review of systematic reviews

Joanna Melville, MBBS, Aisling Stringer, MBBS, Naomi Black, MBBS, Siobhan Quenby, PhD, Stephen D. Keay, MD, Anna L. David, PhD, Ephia Yasmin, MD, Bassel H. Al Wattar, PhD.

PII: S2666-5719(21)00020-7

DOI: https://doi.org/10.1016/j.xfnr.2021.09.003

Reference: XFNR 28

To appear in: F&S Reviews

- Received Date: 21 July 2021
- Revised Date: 2 September 2021

Accepted Date: 7 September 2021

Please cite this article as: Melville J, Stringer A, Black N, Quenby S, Keay SD, David AL, Yasmin E, Al Wattar BH, The impact of assisted reproductive technology treatments on maternal and offspring outcomes in singleton pregnancies: A review of systematic reviews, *F&S Reviews* (2021), doi: https://doi.org/10.1016/j.xfnr.2021.09.003.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

1 The impact of assisted reproductive technology treatments on maternal and offspring outcomes in singleton pregnancies: A review of systematic reviews 2 Joanna Melville^{1†} MBBS, Aisling Stringer^{1†} MBBS, Naomi Black^{1,2} MBBS, Siobhan Quenby^{1,2} 3 PhD, Stephen D. Keay² MD, Anna L David^{3,4} PhD, Ephia Yasmin^{3,4} MD, Bassel H.Al Wattar^{3,4} 4 PhD. 5 6 ¹Warwick Medical School, University of Warwick, Coventry, UK 7 ²Centre of Reproductive Medicine, University Hospital of Coventry and Warwickshire, 8 9 Coventry, UK ³Elizabeth Garrett Anderson Institute for Women's Health, University College London, UK 10 11 ⁴Reproductive Medicine Unit, University College London Hospitals, London, UK [†]The authors consider that the first two authors should be regarded as joint First Authors. 12 13 Corresponding author: Dr.Naomi Black, Life sciences building, Warwick Medical School, 14 University of Warwick, Coventry, UK, CV4 7HL. Email: Naomi.Black.1@warwick.ac.uk 15 Running title: Maternal and offspring outcomes in ART pregnancies 16 Funding: None 17 Declaration of interest: The authors report no conflict of interest. 18 Disclaimer: None 19

21 Abstract:

Objectives: Assisted reproductive technology (ART) treatments are commonly used to aid
 conception in subfertile couples. We aimed to evaluate the risks of adverse maternal and
 offspring outcomes in singleton pregnancy conceived with different ART treatments and
 techniques.

Evidence review: We searched MEDLINE, EMBASE, CENTRAL and HTA until December 2020
for all systematic reviews evaluating adverse outcomes in pregnancies conceived with
various ART techniques, autologous or donor gametes, and embryo development stages.
We assessed review quality using the AMSTAR2 tool risk (RR) or odds ratio (OR) with 95%
confidence intervals (CI) from the top quality reviews for each of the outcomes of interest
across the identified ART treatments and population subgroups.

Results: We included 24 systematic reviews, most reported on observational studies.
Compared to spontaneous conception, ART pregnancies had a higher risk of placenta previa
(PP) (RR 3.71, 95%CI 2.67-5.16), antepartum haemorrhage (APH) (RR 2.11, 95%CI 1.86-2.38),
preterm birth (PTB) (RR 1.71, 95%CI 1.59-1.83), very preterm birth (VPTB) (RR 2.12, 95%CI
1.73-2.59), small for gestational age (SGA) (RR 1.35, 95%CI 1.20-1.52), low birthweight
(LBW) (RR 1.61, 95%CI 1.49-1.75) and very low birthweight (VLBW) (RR 2.12, 95%CI 1.842.43).

Frozen vs fresh embryo transfer was associated with a lower risk for PTB (RR 0.90, 95%Cl
0.84-0.97), SGA (RR 0.61, 95%Cl 0.56-0.67), LBW (RR 0.72, 95%Cl 0.67-0.77) and VLBW (RR
0.76, 95%Cl 0.69–0.82). Embryo transfer at blastocyst vs cleavage showed higher risk for
PTB (RR 1.10, 95%Cl 1.01-1.20) and large for gestational age (LGA) (RR 1.12, 95%Cl 1.031.21) with lower risk for SGA (RR 0.84, 95%Cl 0.76-0.92).

- 44 Using donor vs autologous oocytes increased the odds of PTB (OR 1.57, 95%CI 1.33-1.86),
- 45 LBW (OR 1.94, 95%CI 1.10-3.41) and VLBW (OR 1.37, 95%CI 1.22–1.54) as well as maternal
- 46 complications (postpartum haemorrhage OR 1.96, 95% CI 1.20-3.20, gestational diabetes OR
- 47 1.27 95%CI 1.03-1.56, hypertensive disorders of pregnancy OR 2.63, 95%CI 2.17-3.18, and
- 48 caesarean section OR 2.28, 95%Cl 2.14-2.42).
- 49 Conclusions: ART treatments are associated with increased risks of adverse maternal and
- 50 offspring outcomes, especially with donor oocytes. The characteristics of ART treatment
- 51 should be incorporated into prenatal care planning to mitigate those risks.
- 52 **PROSPERO registration:** CRD42020182612, registered 03/09/2020.
- 53
- 54 keywords: in-vitro fertilisation, pregnancy, maternity, assisted conception, antenatal,
- 55 intrapartum, offspring, systematic review.
- 56

57 Highlights:

- -Assisted reproductive technology (ART) treatments are common, however, their impact on
- 59 maternal and offspring outcomes remains uncertain.
- 60 -Compared to spontaneous conception, ART pregnancies had higher risk of placental
- 61 abnormalities, fetal growth abnormalities, hypertensive disorders of pregnancy, gestational
- 62 diabetes, caesarean section.
- -Frozen vs fresh embryo transfer was associated with a lower risk for preterm birth and fetalgrowth abnormalities.
- 65 -Embryo transfer at blastocyst vs cleavage showed higher risk for preterm birth and fetal
- 66 growth abnormalities.
- 67 -Donor vs autologous oocytes increased the odds of preterm birth and other maternal
- 68 complications (postpartum haemorrhage, gestational diabetes, hypertensive disorders of
- 69 pregnancy).
- -Our findings highlight the increased risk of adverse maternal and offspring outcomes in ART
- 71 pregnancies which varied per the ART treatments and techniques used.
- 72 -There is a need to incorporate the characteristics of ART treatments at the time of
- 73 pregnancy booking to mitigate ensuing risks in the antenatal and intrapartum period.

75 Introduction:

The past few decades saw the widespread adoption of assisted reproductive technology
(ART) as a mainstream treatment for subfertility, offering hope to thousands of affected
couples worldwide(1,2). To date, over 8 million children were born with ART treatments and
more than 2.5 million cycles are performed yearly(3).

Several interventions were introduced to improve the safety and effectiveness of ART 80 treatments in the pre-conception period such as single best embryo transfer(4) and elective 81 embryo freezing in women at risk of ovarian hyperstimulation(5). However, most of the 82 morbidity associated with ART treatments manifest during pregnancy and labour, increasing 83 84 the risk of several adverse maternal and offspring outcomes(6–9). Some of these risks, such as abnormal placentation, could be directly linked to the process of ART (10), while others 85 are attributed to inherent demographic or medical factors in women undergoing ART such 86 87 as advanced maternal age and obesity which increase the risk of perinatal mortality in this cohort(11). Often, these risks go unrecognised leading to suboptimal antenatal and 88 89 intrapartum care for women with ART pregnancies(12,13). Highlighting the increased risk status in this cohort is particularly relevant as care for subfertile women is often segregated 90 91 among fertility and maternity teams leading to fragmented care and inadequate antenatal 92 risk assessment screening process. Several systematic reviews and meta-analyses aimed to 93 evaluate the maternal and offspring risk associated with different ART treatments within 94 different subfertile population groups (9,10,14). However, the permeation of this evidence 95 to inform clinical practice and evidence-based guidelines remains heterogeneous. Comprehensive evidence synthesis is therefore needed to evaluate these outcomes across 96 all ART treatments and identify optimal interventions and screening pathways to mitigate 97

	Journal Pre-proor
98	those risks in the antenatal and intrapartum period. We aimed to address this research need
99	by conducting a comprehensive review of systematic reviews to evaluate the risks of
100	adverse perinatal outcomes (up to 28 days post-delivery) in women with singleton
101	pregnancy following ART treatments.
102	
103	Methods:
104	We conducted our review using a prospectively registered protocol (CRD42020182612) and
105	reported in line with established guidelines(15).
106	
107	Search strategy
108	We searched electronic databases (MEDLINE, EMBASE, Cochrane CENTRAL and HTA) from
109	inception to December 2020 for all systematic reviews that met our inclusion criteria. We
110	used several MeSH terms and keywords (Appendix 1) and combined them using the Boolean
111	operators AND/OR to screen for relevant citations. No search filters or language restrictions
112	were applied. We performed complementary searches in Google Scholar and Scopus to
113	identify any missed citations and also manually searched the bibliographies of potentially
114	relevant articles.
115	
116	Review selection and inclusion
117	Two authors (AS and JM) independently screened the titles and abstracts to identify
118	relevant citations. Then, we screened full-text articles against our inclusion criteria.

Discrepancies were resolved through consultation with the senior author (BHA). We 119 included all systematic reviews that reported on maternal or offspring outcomes of interest 120 in women with a singleton pregnancy following any ART treatment. Reviews that reported 121 122 partially on the selected outcomes were included. We excluded reviews that reported exclusively on pregnancies conceived following ovulation stimulation, intrauterine 123 insemination, gamete intrafallopian transfer and those reporting exclusively on multiple 124 pregnancies, immediate outcomes of conception, first-trimester pregnancy outcomes 125 following ART, and longterm neonatal outcomes (beyond 28 days of age). Non-systematic 126 and narrative reviews were excluded, as well as those reporting on animal or laboratory 127 128 findings.

129

130 Quality assessment

We aimed to systematically evaluate and identify the best quality systematic review to 131 summarise evidence on each of the outcomes of interest identified across the different ART 132 treatments and subgroups. Therefore, we assessed the quality of included reviews in 133 duplicate (AS and JM) using the AMSTAR2 tool(16). Reviews were assessed for their 134 135 methodological quality in the following domains: if they were prospectively registered with a defined PICO question, conducted a comprehensive literature search; described the study 136 selection and inclusion criteria sufficiently; reported and investigated sources of bias; 137 138 reported and adjusted for heterogeneity and sources of bias in included studies, and if they used an adequate meta-analysis methodology. We generated an overall confidence rating 139 based on the weaknesses of each review and categorised them into high, moderate, low or 140 critically low quality. 141

142

143

144 Outcomes

- 145 We reported on the following adverse maternal and offspring outcomes selected a priori in
- line with the core outcome set for fertility treatments (17): abnormal placentation
- 147 (antepartum haemorrhage, abnormally invasive placenta, placenta previa, placental

abruption), prematurity (preterm labour, very preterm labour, admission to the offspring

- unit), birth weight (small for gestational age, low birth weight, large for gestational age),
- 150 maternal morbidity in pregnancy (postpartum haemorrhage, gestational diabetes, pre-
- 151 eclampsia, pregnancy-induced hypertension, maternal admission to HDU, caesarean
- section), perinatal mortality (stillbirth and offspring death), and fetal congenital anomalies.
- 153 Definitions of reported outcomes are detailed in Appendix 2.

154

155 Data extraction and evidence synthesis

We extracted data in duplicate (AS and JM) using a piloted electronic collection tool on the following characteristics: the review publication year and journal, inclusion-exclusion criteria, type and number of included primary studies, characteristics of included population, characteristics of evaluated ART interventions, all relevant maternal and offspring outcomes, prospective registration, and the overall risk of bias and quality of included primary studies in each review.

- 162 We mapped out the evidence across included reviews and summarised effect estimates for
- 163 each of the pre-selected outcomes using the most up to date review, with the largest

164	sample size and best quality as per AMSTAR2 tool. We reported on dichotomous outcomes
165	using risk ratio (RR), odds ratio (OR) or Peto odds ratio (pOR) and for continuous outcomes
166	using weighted mean difference (WMD), mean difference (MD) or standardized mean
167	difference (SMD) with 95% confidence intervals (CI). Where possible we reported each
168	outcome first in ART vs spontaneous conception pregnancies then reported on the effect
169	estimates within available subgroups based on oocyte source and embryo development
170	stage. The reviews' characteristics were described using percentages and natural
171	frequencies.
172	
470	
173	Results:
174	Characteristics of included reviews
175	Our search identified 1967 citations, of these we reviewed 108 articles in full against our
176	inclusion criteria and included 24 systematic reviews (Figure 1). Most reviews included
177	observational studies (23 reviews included cohort studies; 8 included case-control studies; 5
178	included RCTs). A third of the included reviews compared maternal and offspring outcomes
179	between assisted and spontaneously conceived pregnancies (8 reviews, 268 primary studies
180	and 16,352,609 women). Eight reviews compared outcomes between different embryo
181	development stages and subgroups (5 blastocyst vs cleavage, 3 frozen vs fresh) and only two
182	reviews specifically compared pregnancy outcomes in donor vs autologous oocytes (Table
183	1). Most reviews were conducted in Europe (6 UK, 2 Greece, 1 Spain, 1 Italy, 1 Denmark).
184	Five were from Asia (4 China, 1 India) and five were from North America (4 Canada, 1 USA).

186 *Quality of included reviews*

The overall quality of included reviews was moderate with most reviews scoring high for 187 188 having a defined PICO question, justifying their inclusion criteria, using duplicate study 189 selection and data extraction process, and using appropriate statistical analysis methods 190 (Figure 2). Six reviews were registered prospectively (6/24, 25%) and twelve provided a 191 justification for excluded studies (12/24, 50%). Only three reviews fully assessed the risk of bias in included studies and accounted for it when interpreting results (3/24, 13%) while two 192 193 thirds (16/24, 67%) explained detected heterogeneity. Only five reviews were judged to be of high quality (5/24, 21%) with high confidence in the review results, while 14 (14/24, 58%) 194 were of moderate quality and five (5/24, 21%) reviews were of low quality (Figure 2, 195 Appendix 3). 196

197

198 ART vs spontaneous conception

- 199 Overall, ART pregnancies were associated with a higher risk for maternal and offspring
- adverse outcomes (Table 2). The risk of abnormal placentation (placenta previa RR 3.71,
- 201 95%CI 2.67-5.16; placental abruption RR 1.83, 95%CI 1.49-2.24) and the risk of antepartum
- haemorrhage (RR 2.11, 95%CI 1.86-2.38) were higher in ART pregnancies. There was also a
- significant risk of preterm (RR 1.71, 95%CI 1.59-1.83) and very preterm birth (RR 2.12, 95%CI
- 1.73-2.59) compared to spontaneous conception (Figure 3).

205

Babies conceived with ART were more likely to be small for gestational age (RR 1.35, 95%CI
1.20-1.52), have low birth weight (RR 1.61, 95%CI 1.49-1.75), and very low birth weight (RR

208	2.12, 95%CI 1.84-2.43). There was also a higher risk of perinatal mortality (RR 1.57, 95%CI
209	1.46-1.70) and admission to the neonatal unit (RR 1.58, 95%CI 1.42-1.77), although neonata
210	death was not different between both groups (RR 1.30, 95% CI 0.08-21.33) (Figure 3). There
211	was also a higher risk of congenital abnormalities RR 1.48 (95% CI 1.29-1.70) (Table 2).
212	
213	Mothers conceiving with ART were at higher risk of hypertensive disorders of pregnancy (RR
214	1.49, 95%CI 1.39-1.59) including pre-eclampsia (RR 1.29, 95%CI 1.06-1.57) and pregnancy-
215	induced hypertension (RR 1.30, 95%Cl 1.04-1.62). Additional maternal risks with ART
216	pregnancies included gestational diabetes mellitus (RR 1.53, 95%Cl 1.39-1.69), caesarean
217	section (RR 1.58, 1.48-1.70) and postpartum haemorrhage (RR 1.29, 95%CI 1.06-1.57)
218	(Figure 3). Evidence on the risks associated with single embryo transfer compared to
219	spontaneous conception was of limited quality and low confidence (Table 2).

220

221 Embryo development subgroups

There was a lower risk of preterm birth with frozen versus fresh embryo transfer (RR 0.90,
95%CI 0.84-0.97). Embryo transfer at blastocyst stage or with fresh blastocyst stage was
associated with a higher risk of preterm birth compared to cleavage stage transfer (RR 1.10,
95%CI 1.01-1.20 and RR 1.15, 95%CI 1.05-1.25 respectively). There was no difference when
comparing frozen blastocyst with cleavage stage transfer (RR 1.11, 95%CI 0.99-1.25) (Table
3).

The use of frozen embryos was associated with a lower risk for small for gestational age (RR
0.61, 95%CI 0.56-0.67), low birth weight (RR 0.72, 95%CI 0.67-0.77) and very low birth

230	weight RR 0.76 (95%CI 0.69–0.82) in addition to a higher risk for large for gestational age
231	(RR 1.54, 95%CI 1.48-1.61). Blastocyst embryo transfer compared to transfer at cleavage
232	stage was associated with lower risk for small for gestational age (RR 0.84, 95%CI 0.76-0.92)
233	higher risk for large for gestational age (RR 1.12, 95%Cl 1.03-1.21), but did not affect
234	perinatal mortality (RR 1.48, 95%Cl 1.09-2.02). There was limited evidence to assess these
235	outcomes within fresh vs frozen subgroups (Table 2 and Table 3).
236	Maternal outcomes were similar across the different embryo development subgroups
237	though there was evidence of a higher risk of hypertensive disorders of pregnancy with
238	frozen versus fresh embryo transfer (RR 1.29, 95%Cl 1.07-1.56).
239	
240	Oocytes

The use of donor vs autologous oocytes in ART pregnancies increased the odds of preterm 241 242 birth (OR 1.57, 95% CI 1.33-1.86) and very preterm birth (OR 1.80, 95% CI 1.51-2.15) (Table 4). Low birth weight (OR 1.94, 95%CI 1.10-3.41) and very low birth weight (OR 1.37, 95%CI 243 1.22–1.54) were more common with donor oocytes (Table 4). This is in contrast to the odds 244 245 for small for gestational age which were lower in ART pregnancies with donor compared to 246 autologous oocytes (OR 0.83, 95%CI 0.78-0.89) and no difference in the odds of large for gestation age (OR 0.89, 95%CI 0.57-1.40). 247 Maternal pregnancy complications were also higher with donor compared to autologous 248 oocytes, including odds of postpartum haemorrhage (OR 1.96, 95% CI 1.20-3.20), 249

250 gestational diabetes (OR 1.27 95% CI 1.03-1.56), hypertensive disorders of pregnancy (OR

251 2.63, 95% CI 2.17-3.18), preeclampsia (OR 2.64, 95% CI 2.29-3.04), pregnancy-induced

hypertension (OR 2.16, 95% CI 1.79-2.62); and caesarean section (OR 2.28, 95% CI 2.142.42). Those risks were overall consistent for both fresh and frozen embryo transfer with
donor oocytes, although the evidence on the different subgroups was limited to a small
number of observational studies (Table 4).

256

257 Discussion:

258 Summary of main findings

Our findings show an overall increase in the risk of adverse maternal and offspring 259 outcomes associated with pregnancies of assisted conception compared to spontaneous 260 conception. These risks were prevalent across the different ART treatments used which 261 262 suggest a higher association with adverse pregnancy outcomes in this cohort. This is particularly relevant as most antenatal guidelines propose standardised risk screening 263 264 pathways to identify women at risk of adverse pregnancy outcomes(18–30), but, ART pregnancies are not uniformly identified as a high-risk group in available guidelines(31). 265 266 The risk of placental pathology, including placental previa, abruption and haemorrhage, was particularly high with ART treatments which highlight the importance of early screening and 267 268 assessment to mitigate the risk of serious maternal morbidity in this cohort. Similarly, ART treatments increased the risk of preterm birth and suboptimal fetal growth especially with 269 donor oocyte conception, which could emphasise the value of routine serial ultrasound fetal 270 measurement and cervical length screening in these pregnancies. 271

272

The risk of adverse maternal and offspring outcomes varied across the evaluated subgroups per type of ART treatment and source of gametes used. Incorporating these risks into the antenatal and intrapartum care plan could therefore help to generate a more individualised risk assessment and optimise patients' counselling. Still, available evidence was of poor quality to enable accurate assessment of several important outcomes (e.g stillbirth) across all relevant subgroups (e.g. donor oocyte).

279

280 Strength and limitations

We employed a comprehensive methodology to identify the best quality evidence and
generate risk estimates on pre-selected outcomes of interest. We registered our review
prospectively and evaluated the quality of included reviews using the AMSTAR2 tool(16).
We elected to use the most up to date, most comprehensive and top quality reviews as per
AMSTAR2 to offer balanced evidence synthesis and reduce the risk of bias across included
reviews.

287

The evidence summarised here is largely observational depicting an association between different ART treatments and adverse pregnancy outcomes. Establishing causality requires comparative research which is outside the scope of our review. Our findings have several limitations. Firstly, we were unable to report on all relevant outcomes (e.g. stillbirth) due to the variation and the quality of outcomes reporting. Additionally, the definitions of several outcomes may have varied across included reviews and their primary studies. This increased the uncertainty in reported effect estimates, especially within small subgroups. For

example, we detected conflicting evidence of higher risk for low birth weight and a lower
risk for small for gestation age with the use of donor vs autologous oocytes. Confidence in
this evidence is low especially given the reported statistical heterogeneity (l²>70)(14).
Majority of the included reviews reported using pooled risk or odds ratio highlighting
statistical significance for included outcomes. It is important, however, to consider the
absolute risk and event rate, particularly for rare outcomes to accurately evaluate their
clinical significance.

302 Clearly, several effect modifiers could impact the risk of adverse outcomes in couples seeking ART such as BMI, cause of subfertility, smoking status and other comorbidities. This 303 304 is particularly relevant when comparing certain subgroups such as the effect of maternal age in the autologous vs donor oocytes groups. Other outcomes such as preterm birth and 305 low birth weight could be iatrogenic and driven by other complications (e.g. pre-eclampsia). 306 We were unable to adjust for these factors across included reviews which could only be 307 308 accounted for in an individual patient data meta-analysis. Similarly, we were unable to assess the risk of publication bias often featured in observational studies. To reduce the risk 309 310 of compounding bias, we used the AMSTAR tool to objectively evaluate and select the best quality reviews that accounted for such effect modifiers and other sources of bias in their 311 primary analysis. Therefore, we argue that our review summarised the best quality evidence 312 pending future efforts to produce a detailed individual patient data meta-analysis using 313 primary data. 314

Lastly, our selected outcomes were focused to evaluate short term maternal and offspring morbidity in ART pregnancies. Several important medium and longer-term outcomes (e.g. offspring neurodevelopment) are seldom reported in follow up cohorts of ART

	Journal Pre-proof
318	pregnancies(32). Incorporating these outcomes in future evidence synthesis is important to
319	better evaluate the overall risks associated with ART treatments.
320	
321	Implications for clinical practice
322	Our findings suggest the need for effective implementation of modified prenatal care
323	pathways that highlight ART treatments as a contributing risk factor for adverse maternal
324	and offspring outcomes. While some antenatal guidelines identify the added risk with ART
325	treatments(33), a comprehensive risk assessment process is needed at booking for the
326	pregnancy taking into account the different ART treatments used.
327	
328	Several simple interventions could be adopted in practice to screen for the prenatal risks in
329	women with ART pregnancies. However, studies are required to evaluate the cost-
330	effectiveness of such interventions and aid their implementation into different care settings
331	in collaboration with all relevant stakeholders(34).
332	Effective collaboration among fertility and obstetric healthcare professionals is needed to
333	raise awareness on the health needs of women with ART pregnancies and to enable
334	continuity care from the pre-conception to the post-partum period(35–37). This is
335	particularly relevant in countries where ART treatments are offered in small private fertility
336	units with no direct links to maternity care hospitals(38). As such, comprehensive multi-
337	disciplinary care pathways are needed to address this health need and optimise the care of
338	women with ART pregnancies.
220	

340 Future research need

341	ART is evolving rapidly with novel techniques introduced regularly to improve the chances of
342	conception and pregnancy rates. However, there remains less focus on improving maternal
343	and child health once ART treatments are concluded. Longterm follow up studies are still
344	needed to evaluate the safety and effectiveness of these treatments and to better counsel
345	couples in the pre-conception period. As more women with multi-morbidity rely on ART
346	treatments to start their families, there is a need for specialised antenatal and intrapartum
347	care services to mitigate ensuing risks in this high risk group(39).
348	
349	Currently, several screening pathways are adopted uniformly in antenatal care guidelines to
350	detect early disease in high-risk pregnancies such as serial fetal growth scanning and regular
351	blood pressure measurement(31). There is a need to evaluate the suitability and
352	effectiveness of these interventions in women with ART pregnancies and whether any
353	additional screening measures are needed. For example, early scanning for cervical length
354	assessment and placental localisation could be helpful to better plan the antenatal care of
355	women at risk of preterm birth and placenta praevia within tertiary specialised settings(40-
356	42). Similarly, certain biomarkers could facilitate early detection of fetal growth
357	abnormalities particularly in higher-risk subgroups such as pregnant women with donor
358	oocytes(43). Prospective studies are needed to evaluate the cost-effectiveness of such
359	measures in clinical practice.
360	

Poor outcomes reporting limited our ability to synthesise precise evidence on maternal and
offspring risk in this cohort. While a standardised core outcome set currently exists for
studies on fertility treatment(44), its uptake and impact on evidence synthesis remain

364	unclear. We encourage future researchers to adopt the suggested minimal standardised
365	reporting on core outcomes to aid future evidence synthesis and provide clarity to counsel
366	couples undertaking ART treatments. Similarly, most of the included reviews and their
367	primary studies focused on singleton pregnancies without considering these outcomes in
368	multiple pregnancies. Giving that ART remains a major cause for twin pregnancy, evaluating
369	these outcomes in such subgroups is of great importance to inform future clinical practice.
370	
371	Conclusion: ART treatments are associated with increased risks of adverse maternal and
372	offspring outcomes, especially with donor oocytes. The characteristics of ART treatment
373	should be incorporated into prenatal care planning to mitigate those risks.
374	
375	Acknowledgement: None
376	
377	Data availability: Some or all datasets generated during and/or analysed during the current
378	study are not publicly available but are available from the corresponding author on
379	reasonable request.
380	
381	Authors contribution: JM, AS, and NB ran the search, extracted data and conducted the
382	initial analysis. SQ, SDK, EY, and AD contributed equally to the data interpretation and the
383	final manuscript. BHA conceived the idea, wrote the protocol and the final manuscript and

388	References:		
389	1.	Human Fertilisation and Embryology Authority. HFEA. Fertility Treatment 2017:	
390		Trends and Figures. 2019;Available at:	
391		https://www.hfea.gov.uk/media/2894/fertility-treatment-2017-trends-and-figures-	
392		may-2019.pdf. Accessed April 18 th , 2021.	
393	2.	Society for assisted reproduction Technology. National Summary Report.	
394		2017;Available at:	
395		https://www.sartcorsonline.com/rptCSR_PublicMultYear.aspx?ClinicPKID=0.	
396		Accessed April 18 th , 2021.	
397	3.	European Society of Human Reproduction and Embryology. More than 8 million	
398		babies born from IVF since the world's first in 1978. 2018; Available at:	
399		https://www.eshre.eu/Annual-Meeting/Barcelona-2018/ESHRE-2018-Press-	
400		releases/De-Geyter. Accessed April 18 th , 2021.	
401	4.	Gelbaya TA, Tsoumpou I, Nardo LG. The likelihood of live birth and multiple birth after	
402		single versus double embryo transfer at the cleavage stage: a systematic review and	
403		meta-analysis. Fertil Steril 2010;94:936–45.	
404	5.	Zech J, Brandao A, Zech M, Lugger K, Neururer S, Ulmer H, et al. Elective frozen-	
405		thawed embryo transfer (FET) in women at risk for ovarian hyperstimulation	
406		syndrome. Reprod Biol 2018;18:46–52.	
407	6.	Maheshwari A, Pandey S, Shetty A, Hamilton M, Bhattacharya S. Obstetric and	
408		perinatal outcomes in singleton pregnancies resulting from the transfer of frozen	
409		thawed versus fresh embryos generated through in vitro fertilization treatment: a	

		Journal Pre-proof
410		systematic review and meta-analysis. Fertil Steril 2012;98:368–77.
411	7.	Maheshwari A, Kalampokas T, Davidson J, Bhattacharya S. Obstetric and perinatal
412		outcomes in singleton pregnancies resulting from the transfer of blastocyst-stage
413		versus cleavage-stage embryos generated through in vitro fertilization treatment: a
414		systematic review and meta-analysis. Fertil Steril 2013;100:1615–21.
415	8.	Insua MF, Cobo AC, Larreategui Z, Ferrando M, Serra V, Meseguer M. Obstetric and
416		perinatal outcomes of pregnancies conceived with embryos cultured in a time-lapse
417		monitoring system. Fertil Steril 2017;108:498–504.
418	9.	Pandey S, Shetty A, Hamilton M, Bhattacharya S, Maheshwari A. Obstetric and
419		perinatal outcomes in singleton pregnancies resulting from IVF/ICSI: a systematic
420		review and meta-analysis. Hum Reprod Update 2012;18:485–503.
421	10.	Iacovelli A, Liberati M, Khalil A, Timor-Trisch I, Leombroni M, Buca D, et al. Risk factors
422		for abnormally invasive placenta: a systematic review and meta-analysis. J Matern
423		Neonatal Med 2020;33:471–81.
424	11.	Pinborg A, Loft A, Schmidt L, Andersen AN. Morbidity in a Danish national cohort of
425		472 IVF/ICSI twins, 1132 non-IVF/ICSI twins and 634 IVF/ICSI singletons: health-
426		related and social implications for the children and their families. Hum Reprod
427		2003;18:1234–43.
428	12.	Younger M, Hollins-Martin C, Choucri L. Individualised care for women with assisted
429		conception pregnancies and midwifery practice implications: an analysis of the
430		existing research and current practice. Midwifery 2015;31:265–70.
431	13.	Ludwig AK, Katalinic A, Steinbicker V, Diedrich K, Ludwig M. Antenatal care in

		Journal Pre-proof
432		singleton pregnancies after ICSI as compared to spontaneous conception: data from a
433		prospective controlled cohort study in Germany. Hum Reprod 2006;21:713–20.
434	14.	Moreno-Sepulveda J, Checa MA. Risk of adverse perinatal outcomes after oocyte
435		donation: a systematic review and meta-analysis. J Assist Reprod Genet
436		2019;36:2017–37.
437	15.	Moher D. a Liberati, J. Tetzlaff, DG Altman, P. Grp, Preferred reporting items for
438		systematic reviews and meta-analyses: the PRISMA statement (Reprinted from
439		Annals of Internal Medicine). Phys Ther 2009;89:873–80.
440	16.	Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: a critical
441		appraisal tool for systematic reviews that include randomised or non-randomised
442		studies of healthcare interventions, or both. bmj 2017;358:j4008.
443	17.	Duffy JMN, AlAhwany H, Bhattacharya S, Collura B, Curtis C, Evers JLH, et al.
444		Developing a core outcome set for future infertility research: an international
445		consensus development study. Fertil Steril 2021;115:191–200.
446	18.	American Academy of Pediatrics (and) the American College of Obstetricians and
447		Gynecologists. Guideline for Perinatal Care. 2017;(8th Edition). Available at:
448		https://www.acog.org/clinical-information/physician-faqs/-
449		/media/3a22e153b67446a6b31fb051e469187c.ashx. Accessed April 18 th , 2021.
450	19.	BC Perinatal Health Program. BCPHP. Obstetric Guideline 19. Maternity Care
451		Pathway,. 2010;Available at:
452		http://www.perinatalservicesbc.ca/Documents/Guidelines-
453		Standards/Maternal/MaternityCarePathway.pdf. Accessed April 18 th , 2021.

```
22
```

		Journal Pre-proof
454	20.	Minakami H, Maeda T, Fujii T, Hamada H, Iitsuka Y, Itakura A, et al. Guidelines for
455		obstetrical practice in Japan: Japan Society of Obstetrics and Gynecology (JSOG) and
456		Japan Association of Obstetricians and Gynecologists (JAOG) 2014 edition. J Obstet
457		Gynaecol Res 2014;40:1469–99.
458	21.	Ginekologiczne PT. Rekomendacje Polskiego Towarzystwa Ginekologicznego w
459		zakresie opieki przedporodowej w ciąży o prawidłowym przebiegu. Gin Pol
460		2005;76:517–27.
461	22.	Organization WH. Integrated management of pregnancy and childbirth: Pregnancy,
462		childbirth, postpartum & newborn care. A Guid Essent Pract 2003;
463	23.	The Hong Kong College of Obstetricians and Gynaecologists. Guidelines on Antenatal
464		Care. 2008;Available at:
465		https://www.hkcog.org.hk/hkcog/Download/Guidelines_on_Antenatal_Care_%28Par
466		t_II%29_2008.pdf. Accessed April 18 th , 2021.
467	24.	Maternal Health Division Department of Family Welfare Ministry of Health & Family
468		Welfare Government of India. Guidelines for ante-natal care and skilled attendance at
469		birth. 2005;Available at: http://nhmmeghalaya.nic.in/guidelines/gfac.pdf. Accessed
470		April 18 th , 2021.
471	25.	Minakami H, Hiramatsu Y, Koresawa M, Fujii T, Hamada H, Iitsuka Y, et al. Guidelines
472		for obstetrical practice in Japan: Japan Society of Obstetrics and Gynecology (JSOG)
473		and Japan Association of Obstetricians and Gynecologists (JAOG) 2011 edition. J
474		Obstet Gynaecol Res 2011;37:1174–97.

475 26. Interventions E. Commodities and guidelines for reproductive, maternal, newborn

		Journal Pre-proof
476		and child health: a global review of the key interventions related to reproductive,
477		maternal, newborn and child health (RMNCH). Geneva WHO 2011;
478	27.	Akkerman D, Cleland L, Croft G, Eskuchen K, Heim C, Levine A, et al. Routine prenatal
479		care. Bloom Inst Clin Syst Improv 2012;7:2003–13.
480	28.	National Collaborating Centre for Women's and Children's Health (UK). Antenatal
481		Care: Routine Care for the Healthy Pregnant Woman. London: RCOG Press; 2008 Mar.
482	29.	Kirkham C, Harris S, Grybowski S. Evidence-based prenatal care: Part I. General
483		prenatal care and counseling issues. Am Fam Physician 2005;71:1307–16.
484	30.	Council AH. Clinical practice guidelines: Antenatal care-module I. Canberra: Australian
485		Government Department of Health and Ageing. 2012.
486	31.	Abalos E, Chamillard M, Diaz V, Tuncalp Ö, Gülmezoglu AM. Antenatal care for
487		healthy pregnant women: a mapping of interventions from existing guidelines to
488		inform the development of new WHO guidance on antenatal care. BJOG An Int J
489		Obstet Gynaecol 2016;123:519–28.
490	32.	Bergh C, Wennerholm U-B. Long-term health of children conceived after assisted
491		reproductive technology. Ups J Med Sci 2020;125:152–7.
492	33.	Royal Collegue of Obstetricians and Gynaecologists; The Investigation and
493		Management of the Small–for–Gestational–Age Fetus. Green–top Guideline No. 31.
494		2013;Available at:
495		https://www.rcog.org.uk/globalassets/documents/guidelines/gtg_31.pdf. Accessed
496		April 18 th , 2021.
497	34.	García-Martín M, Amezcua-Prieto C, Al Wattar BH, Jørgensen JS, Bueno-Cavanillas A,

		Journal Pre-proof
498		Khan KS. Patient and Public Involvement in Sexual and Reproductive Health: Time to
499		Properly Integrate Citizen's Input into Science. Int J Environ Res Public Health 2020;
500		17:8048.
501	35.	O'Kelly AC, Scott N, Yeh DD. Delivering Coordinated Cardio-Obstetric Care from
502		Preconception through Postpartum. Cardiol Clin 2021;39:163–73.
503	36.	Kim SY, Deputy NP, Robbins CL. Diabetes during pregnancy: Surveillance,
504		preconception care, and postpartum care. J Women's Heal 2018;27:536–41.
505	37.	Ker C-R. A comprehensive update on stillbirth prevention: from preconception to
506		postpartum, individuals to public health administrations. Curr Obstet Gynecol Rep
507		2018;7:172–8.
508	38.	Ledger WL, Anumba D, Marlow N, Thomas CM, Wilson ECF, Group) C of MBSG
509		(COMBS. Fertility and assisted reproduction: The costs to the NHS of multiple births
510		after IVF treatment in the UK. BJOG An Int J Obstet Gynaecol 2006;113:21–5.
511	39.	Sazonova A, Källen K, Thurin-Kjellberg A, Wennerholm U-B, Bergh C. Factors affecting
512		obstetric outcome of singletons born after IVF. Hum Reprod 2011;26:2878–86.
513	40.	Ville Y, Rozenberg P. Predictors of preterm birth. Best Pract Res Clin Obstet Gynaecol
514		2018;52:23–32.
515	41.	Werner EF, Han CS, Pettker CM, Buhimschi CS, Copel JA, Funai EF, et al. Universal
516		cervical-length screening to prevent preterm birth: a cost-effectiveness analysis.
517		Ultrasound Obstet Gynecol 2011;38:32–7.
518	42.	Jauniaux E, Bhide A, Kennedy A, Woodward P, Hubinont C, Collins S, et al. FIGO
519		consensus guidelines on placenta accreta spectrum disorders: Prenatal diagnosis and

520 screening. Int J Gynecol Obstet 2018;140:274-80.

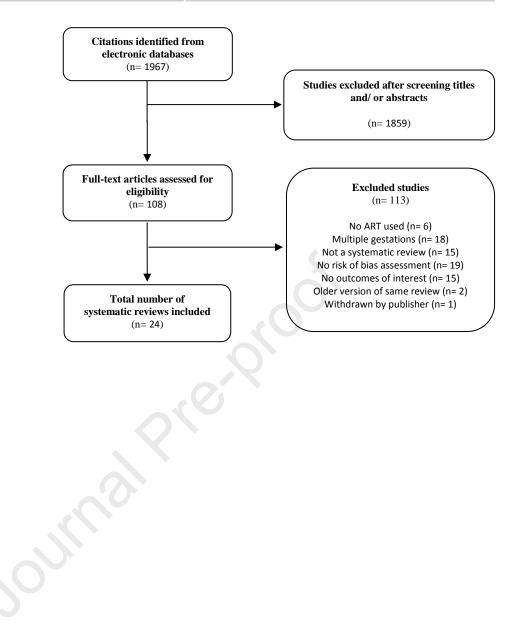
- 43. 521 Gaccioli F, Aye ILMH, Sovio U, Charnock-Jones DS, Smith GCS. Screening for fetal
- growth restriction using fetal biometry combined with maternal biomarkers. Am J 522
- Obstet Gynecol 2018;218:S725–37. 523
- Duffy JMN, AlAhwany H, Bhattacharya S, Collura B, Curtis C, Evers JLH, et al. 524 44.
- Developing a core outcome set for future infertility research: an international 525

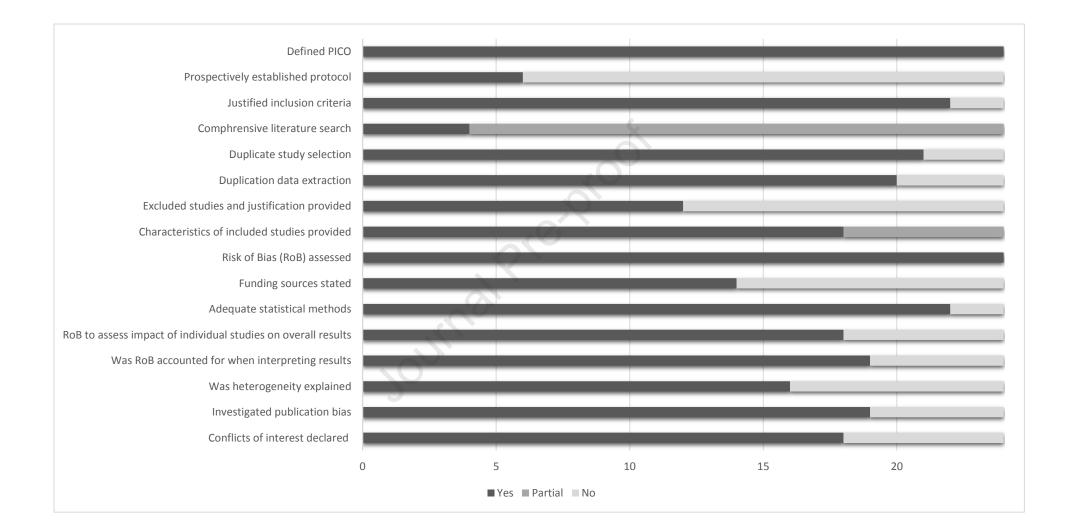
consensus development study. Hum Reprod 2020;35:2725-34. 526 outral provide

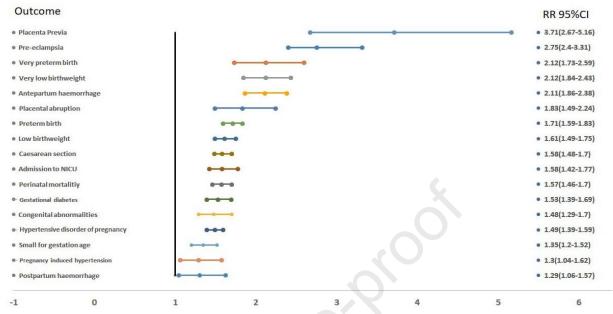
527

529 Figure legends

- 530 Figure (1): Selection and inclusion process for systematic reviews evaluating maternal and
- 531 offspring outcomes in singleton pregnancies following assisted reproductive technology.


532


- **Figure (2):** Quality assessment for systematic reviews systematic reviews evaluating the risk
- 534 of adverse maternal and offspring outcomes associated with singleton pregnancies
- 535 following assisted reproductive technology using the AMSTAR2.


536

- 537 **Figure (3):** Forest plot of adverse maternal and offspring outcomes in singleton pregnancies 538 following assisted reproductive technology compared to spontaneous conception.
- 539
- 540

ounalpre.q

*NICU: Neonatal intensive care unit.

**Pre-eclampsia estimates converted from OR to RR for visualisation purposes.

Table (1): Characteristics of included systematic reviews evaluating the risk of adverse maternal and offspring outcomes associated with singleton pregnancies following assisted reproductive technology compared to spontaneous conception.

Author (year)	Country	Included study types	ART group	Comparison group	Total number of studies*	Total number intervention group **	Outcomes included in this review	ROB or quality tool used	Review quality (AMSTAR2)
Adams (2017)	Australia	Cohort studies	Donor sperm IVF	Non-donor sperm (IVF or spontaneous conception)	8	> 424238	Congenital abnormalities	Modified Joanna Briggs Institute Meta Analysis Statistics Assessment and Review Instrument	Moderate
Alviggi (2018)	Italy	Cohort studies	Blastocyst stage transfer (Fresh and frozen)	Cleavage stage transfer (Fresh and frozen)	14	339500	Preterm birth, very preterm birth, small for gestational age, low birth weight, very low birth weight, large for gestational age, perinatal mortality	(a) Newcastle- Ottawa scale (b) GRADE	Moderate
Armstrong (2019)	United Kingdom	RCTs	Time lapse series with conventional morphological assessment using still TLS images	Conventional incubation and assessment	14	90231	Stillbirth	(a) Cochrane risk of bias tool (b) GRADE	High
Bosdou (2020)	Greece	Cross-sectional, matched and unmatched	IVF/ICSI	Spontaneous conception	38	1934494	Gestational diabetes	Newcastle-Ottawa Scale	High
Chen (2018)	China	Cohort studies	IVF / ICSI	Spontaneous conception	34	6864336	Congenital anomalies	Newcastle-Ottawa Scale	Moderate
Dar (2014)	Canada	Cohort studies	Blastocyst stage transfer	Cleavage stage transfer	6	77195	Preterm birth , very preterm birth, low birth weight, very low birth weight, congenital abnormalities	Newcastle-Ottawa Scale	Moderate
Grady (2012)	Canada	Cohort studies, case-control	IVF (single embryo transfer)	Spontaneous conception	16	2109	Placenta previa, placental abruption, preterm birth, , very preterm birth, admission to neonatal unit, small for gestational age, low birth weight, very low birth weight. gestational diabetes, preeclampsia, neonatal death	(a) Newcastle- Ottawa scale (b) Cochrane handbook for RCTs	Low
Hansen (2013)	Australia	Cohort studies	(a) IVF (b) ICSI	Spontaneous conception	45	91879	Congenital anomalies	CASP	Low
Jeve (2016)	United Kingdom	Cohort studies, case-control	Oocyte donation IVF	IVF with autologous oocyte	11	81752	Pre-eclampsia, pregnancy induced hypertension	(a) Newcastle- Ottowa scale (b) Cochrane risk of	Moderate

Kamath (2017)	India	RCT, cohort studies	Stimulated IVF	Natural cycle or modified natural cycle IVF	34	97698	Preterm birth, very preterm birth, small for gestational age, large for gestational age, low birth weight, very low birth weight, large for gestational age, congenital	bias tool (a) CASP (b) Cochrane risk of bias tool	Low
Maheshwari (2013)	United Kingdom	Cohort studies	Blastocyst stage transfer	Cleavage stage transfer	8	> 687082	abnormalities Placenta previa, placental abruption, preterm birth, , very preterm birth, small for gestational age, low birth weight, very low birth weight, preeclampsia, perinatal mortality, congenital abnormality	CASP	Moderate
Maheshwari (2018)	United Kingdom	RCT, cohort studies	Frozen embryo IVF	Fresh embryo IVF	26	not reported	Antepartum haemorrhage, preterm birth, very preterm birth, small for gestational age, low birth weight, very low birth weight, admission to neonatal unit, large for gestational age, hypertensive disorders of pregnancy, , perinatal mortality, congenital abnormalities	CASP	High
Martins (2016)	Brazil	Cohort studies	Blastocyst stage transfer	Cleavage stage transfer	12	195325	Placenta previa, abnormal placentation, placenta abruption, antepartum haemorrhage, preterm birth, , very preterm birth, small for gestational age, low birth weight, very low birth weight, large for gestational age, postpartum haemorrhage gestational diabetes, hypertensive disorders of pregnancy, , Caesarean section, perinatal mortality, stillbirth, congenital abnormalities	(a) Newcastle- Ottawa Scale (b) GRADE	High
Mascarenhas (2017)	United Kingdom	Cohort studies	Oocyte donation IVF (Fresh and frozen)	Autologous oocyte IVF (Fresh and frozen)	7	97700	Preterm birth, very preterm birth, low birth weight, very low birth weight	CASP	Low
Masoudian (2016)	Canada	Cohort studies, case-control	Oocyte donation IVF/ICSI	IVF/ICSI/spontane ous conception	19	86515	Preeclampsia, pregnancy induced hypertension	MINORS criteria (Methodological Index for Non- Randomized Studies)	Moderate
		Cohort studies,	Oocyte donation	Autologous oocyte	23	410628	Placenta previa, placental abruption,	(a) Newcastle-	Moderate

				Lou	rnal Pre-pro	of			
				JOU	imai Pie-pi	501			
(2019)			frozen)	frozen)			small for gestational age, low birth weight, very low birth weight, large for gestational age, postpartum haemorrhage gestational diabetes, hypertensive disorders of pregnancy, preeclamsia, pregnancy induced hypertension, caesarean section	(b) GRADE	
Pandey (2012)	United Kingdom	Cohort studies	(a) IVF/ICSI (b) Frozen embryo transfer (c) Single embryo transfer	Spontaneous conception	30	not stated	Preterm birth, very preterm birth, admission to neonatal unit, small for gestational age, low birth weight, very low birth weight, gestational diabetes, hypertensive disorders of pregnancy, pregnancy induced hypertension, caesarean section, perinatal mortality, congenital abnormalities	CASP	High
Qin (2016)	China	Cohort studies	IVF/ICSI	Spontaneous conception	50	2441611	Placenta previa, placental abruption, antepartum haemorrhage, preterm birth, very preterm birth, small for gestational age, low birth weight, very low birth weight, postpartum haemorrhage, gestational diabetes, pregnancy induced hypertension, caesarean section, perinatal mortality, congenital abnormalities	Modified Newcastle- Ottawa Scale	Moderate
Sha (2018)	China	RCT, cohort studies	Frozen embryo transfer	Fresh embryo transfer	31	257922	Preterm birth, low birth weight	Newcastle-Ottawa Scale	Moderate
Storgaard (2016)	Denmark	Cohort studies	Oocyte donation	(a) IVF/ ICSI (b) Spontaneous conception	35	> 1134000	Preterm birth, small for gestational age, low birth weight, postpartum haemorrhage gestational diabetes hypertensive disorders of pregnancy, pre-eclampsia caesarean section	(a) Swedish Agency for Health Technology Assessment and Assessment of Social Services (b) GRADE	Moderate
Thomopoulos (2016)	Greece	Cohort studies	(a) Oocyte donation (b) ICSI (c) IVF (d) IVF/ICSI	Spontaneous conception	66	7038029	Hypertensive disorders of pregnancy, preeclampsia, h	Novel assessment tool	Moderate
Vermey	Australia	Cohort studies	Frozen embryo	Non-ART	33	6178944	Placenta previa, placental abruption	(a) Modified	Moderate

				JU	umai i ic-p	51001			
(2018)			transfer					Newcastle-Ottawa	
Wang (2017)	China	Cohort studies	Blastocyst stage transfer	Cleavage stage transfer	12	450155	Preterm birth, very preterm birth, small for gestational age, low birth weight, very low birth weight, large for gestational age	Scale (b) GRADEPRO Newcastle-Ottawa Scale	Moderate
Zhao (2016)	China	Cohort studies	IVF/ICSI	Frozen embryo transfer	13	126911	Stillbirth	Newcastle-Ottawa Scale	Low

*Total number of studies included in the systematic review regardless of eligibility, number of studies may vary per outcome

** Total number of women included in the systematic review regardless of eligibility, number of women may vary per outcome

South

Table (2): Risk of adverse maternal and offspring outcomes associated with singleton pregnancies following assisted reproductive technology compared to spontaneous conception.

Outcome	Comparison	Systematic review	Primary studies (participants)	Risk/Odds ratio (95% confidence intervals)
Placenta previa	ART vs SC	Qin 2016	12(984623)	RR 3.71 (2.67-5.16)*
	Single ET v SC	Grady 2012	1(15306)	RR 6.02 (2.79-13.01)*
	Frozen ET vs SC	Vermey 2018	2(607335)	OR 2.42 (0.63-9.30)
Placental abruption	ART vs SC	Qin 2016	7(95974)	RR 1.83 (1.49-2.24)*
	Single ET vs SC	Grady 2012	1(15306)	RR 0.47 (0.03-7.55)
	Frozen ET vs SC	Vermey 2018	2(607335)	OR 1.15 (0.69-1.91)
Antepartum haemorrhage	ART vs SC	Qin 2016	2(50638)	RR 2.11 (1.86-2.38)*
Pre-term labour	ART vs SC	Qin 2016	36(1422887)	RR 1.71 (1.59-1.83)*
	Donor oocyte vs SC	Storgaard 2016	2(not reported)	OR 2.30 (1.09-4.87)*
	Single ET vs SC	Pandey 2012	2(593267)	RR 1.53 (1.40-1.67)*
	Frozen ET v SC	Pandey 2012	3(39150)	RR 1.39 (1.20-1.61)*
Very pre-term labour	ART vs SC	Qin 2016	25(1381560)	RR 2.12 (1.73-2.59)*
	Single ET vs SC	Pandey 2012	2(586951)	RR 1.80 (1.4-2.24)*
	Frozen ET vs SC	Pandey 2012	3(36203)	RR 1.45 (0.98-2.13)
Small for gestation age	ART vs SC	Qin 2016	14(834861)	RR 1.35 (1.20-1.52)*
	Single ET vs SC	Grady 2012	1(15306)	RR 1.78 (0.96-3.30)
	Donor oocyte vs SC	Storgaard 2016	2(not stated)	OR 1.29 (0.91-1.83)

Low birth weight	ART vs SC Single ET vs SC Frozen ET vs SC Donor oocyte vs SC	Qin 2016 Pandey 2012 Pandey 2012 Storgaard 2016	36(1192602) 2(650087) 3(35253) 2(not stated)	RR 1.61 (1.49-1.75)* RR 1.70 (1.53-1.89)* RR 1.27 (1.05-1.52)* OR 1.94 (1.10-3.41)*
Very low birth weight	ART vs SC Single ET vs SC Frozen ET vs SC	Qin 2016 Pandey 2012 Pandey 2012	30(1107410) 2(593267) 3(36203)	RR 2.12 (1.84-2.43)* RR 1.94 (1.54-2.45)* RR 1.51 (1.01-2.27)*
Postpartum haemorrhage	ART vs SC	Qin 2016	5(40183)	RR 1.29 (1.06-1.57)*
Gestational diabetes	ART vs SC Single ET vs SC	Bosdou 2020 Grady 2012	37(1893599) 1(15306)	RR 1.53 (1.39-1.69)* RR 1.69 (1.19-2.42)*
Hypertensive disorder of pregnancy	ART vs SC	Pandey 2012	15(606314)	RR 1.49 (1.39-1.59)*
	Single ET vs SC	Pandey 2012	2(593267)	RR 1.58 (1.40-1.77)*
Pre-eclampsia	ART vs SC Single ET vs SC Donor oocyte vs SC	Jackson 2004 Grady 2012 Jeve 2016	6(219382 1(15306) 4(10799)	OR 1.55 (1.23- 1.95) RR 1.36 (0.61-3.04) OR 2.90 (1.98-4.24)*
Pregnancy induced hypertension	ART vs SC Donor oocyte vs other ART	Qin 2016 Masoudian 2016	13(95600) 6(2345)	RR 1.30 (1.04-1.62)* OR 2.86 (2.10-3.90)*
Caesarean section	ART vs SC Frozen ET vs SC Single ET vs SC Donor oocyte vs SC	Qin 2016 Pandey 2012 Pandey 2012 Storgaard 2016	28(777545) 3(39150) 2(593267) 2(not stated)	RR 1.58 (1.48-1.70)* RR 1.76 (1.65-1.87)* RR 1.49 (1.43-1.56)* OR 2.38 (2.01-2.81)*
Perinatal mortality	ART vs SC	al mortality Qin 2016	22(1369264)	RR 1.57 (1.46-1.70)*
r ennatal montanty	Single ET vs SC	Pandey 2012	2(593267)	RR 1.23 (0.38-4.04)

oui		$\mathbf{D}_{\mathbf{r}}$			
oui					

Neonatal death	Single ET vs SC	Grady 2012	1(15306)	RR 1.30 (0.08-21.33)
Admission to neonatal unit	ART vs SC	Pandey 2012	5(7628)	RR 1.58 (1.42-1.77)*
	Single ET vs SC	Grady 2012	1(15306)	RR 1.97 (0.98-3.95)
Congenital abnormalities	ART vs SC Donor sperm vs SC	Chen 2018 Adams 2017	34(6764336) 1(2933742)	RR 1.48 (1.29-1.70)* RR 1.46 (1.07-2.00)*

*statistical significance

**ART: assisted reproductive technology, SC: spontaneous conception, ET: embryo transfer.

Johnald

Table (3): Adverse maternal and offspring outcomes associated with assisted conception across different embryo development stages.

Outcome	Population	Systematic review	Primary studies (participants)	Risk/Odds ratio (95% confidence intervals)
Placenta previa	Blastocyst vs Cleavage	Martins 2016	3(82926)	RR 1.37 (0.88-2.13)
Abnormal placentation	Blastocyst vs Cleavage	Martins 2016	1(48158)	RR 0.99 (0.57-1.74)
Placental abruption	Blastocyst vs Cleavage	Martins 2016	4(83299)	RR 1.06 (0.68-1.64)
Antepartum haemorrhage	Frozen vs Fresh ET	Maheshwari 2018	5(63155)	RR 0.82 (0.66-1.03)
	Blastocyst vs Cleavage	Martins 2016	1(4202)	RR 0.76 (0.51-1.13)
Pre-term labour	Frozen vs Fresh ET	Maheshwari 2018	20(280622)	RR 0.90 (0.84-0.97)*
	Stimulated vs Natural Frozen ET	Kamath 2017	4(97698)	RR 1.27 (1.03-1.58)*
	Blastocyst vs Cleavage	Alviggi 2018	13(193827)	RR 1.10 (1.01-1.20)*
	Fresh Blastocyst vs Cleavage	Alviggi 2018	2(106629)	RR 1.15 (1.05-1.25)*
	Frozen Blastocyst vs Cleavage	Alviggi 2018	2(39044)	RR 1.11 (0.99-1.25)
Very pre-term labour	Frozen vs Fresh ET	Maheshwari 2018	12(253304)	RR 0.85 (0.74-0.97)*
	Stimulated vs Natural Frozen ET	Kamath 2017	3(97493)	RR 4.22 (1.45-12.31)*
	Blastocyst vs Cleavage	Martins 2016	8(146988)	RR 1.14 (1.04-1.24)*
	Fresh Blastocyst vs Cleavage	Alviggi 2018	7(103742)	RR 1.16 (1.02-1.31)*
	Frozen Blastocyst vs Cleavage	Alviggi 2018	2(39044)	RR 0.78 (0.57-1.07)
Small for gestation age	Frozen vs Fresh ET	Maheshwari 2018	10(142462)	RR 0.61 (0.56-0.67)*
	Stimulated vs Natural Frozen ET	Kamath 2017	1(97278)	RR 1.95 (1.03-3.67)*
	Blastocyst vs Cleavage	Alviggi 2018	7(176492)	RR 0.84 (0.76-0.92)*
	Fresh Blastocyst vs Cleavage	Alviggi 2018	5(90115)	RR 0.84 (0.76-0.94)*
	Frozen Blastocyst vs Cleavage	Alviggi 2018	2(39044)	RR 0.59 (0.32-1.06)

Low birth weight	Frozen vs Fresh ET Stimulated vs Natural Frozen ET Blastocyst vs Cleavage Fresh Blastocyst vs Cleavage Frozen Blastocyst vs Cleavage	Maheshwari 2018 Kamath 2017 Alviggi 2018 Alviggi 2018 Alviggi 2018	20(280044) 4(97278) 11(188966) 8(102590) 2(39044)	RR 0.72 (0.67-0.77)* RR 1.95 (1.03-3.67)* RR 0.97 (0.90-1.04)* RR 1.01 (0.94-1.10) RR 0.81 (0.58-1.14)
Very low birth weight	Frozen vs Fresh ET	Maheshwari 2018	13(260226)	RR 0.76 (0.69–0.82)*
	Stimulated vs Natural Frozen ET	Kamath 2017	2(96705)	RR 5.32 (1.04-27.18)*
	Blastocyst vs Cleavage	Alviggi 2018	7(98270	RR 0.99 (0.86-1.14)
	Fresh Blastocyst vs Cleavage	Alviggi 2018	6(55024)	RR 0.97 (0.82-1.15)
	Frozen Blastocyst vs Cleavage	Alviggi 2018	2(39044)	RR 0.80 (0.30-2.16)
Large for gestation age	Frozen vs Fresh ET	Maheshwari 2018	7(57031)	RR 1.54 (1.48-1.61)*
	Stimulated vs Natural Frozen ET	Kamath 2017	1(364)	RR 0.94 (0.46-1.93)
	Blastocyst vs Cleavage	Alviggi 2018	5(86228)	RR 1.12 (1.03-1.21)*
	Fresh Blastocyst vs Cleavage	Alviggi 2018	4(42928)	RR 1.14 (0.97-1.35)
	Frozen Blastocyst vs Cleavage	Alviggi 2018	2(39044)	RR 1.18 (1.09-1.27)*
Postpartum haemorrhage	Blastocyst vs Cleavage	Martins 2016	2(34768)	RR 1.25 (0.85-1.84)
Gestational diabetes	Blastocyst vs Cleavage	Martins 2016	2(30939)	RR 0.76 (0.56-1.01)
Hypertensive disorder of pregnancy	Frozen vs Fresh ET	Maheshwari 2018	5(98656)	RR 1.29 (1.07-1.56)*
1 0 7	Blastocyst vs Cleavage	Martins 2016	4(83299)	RR 0.96 (0.81-1.14)
Pre-eclampsia	Blastocyst vs Cleavage	Maheshwari 2013	2(13143)	RR 1.04 (0.83-1.30)
Caesarean section	Blastocyst vs Cleavage	Martins 2016	3(82926)	RR 1.05 (1.00-1.11)
Perinatal mortality	Frozen vs Fresh ET Blastocyst vs Cleavage	Maheshwari 2018 Martins 2016	12(102483) 2(43278)	RR 0.92 (0.78-1.08) RR 1.48 (1.09-2.02)*

ournal	nro	$\alpha f'$
	μυ	

	Fresh Blastocyst vs Cleavage	Alviggi 2018	3(36666)	RR 1.35 (0.95-1.92)
	Frozen Blastocyst vs Cleavage	Alviggi 2018	1(7795)	RR 1.80 (1.07-3.01)*
Stillbirth	Frozen vs Fresh ET	Zhao 2016	6(72685)	OR 0.99 (0.651.24)
	Blastocyst vs Cleavage	Martins 2016	4(67680)	RR 1.08 (0.86-1.35)
	TLS vs conventional incubation	Armstrong 2019	1(76)	OR 1.00 (0.13-7.49)
Admission to neonatal unit	Frozen vs Fresh ET	Maheshwari 2018	5(19565)	RR 0.99 (0.84-1.18)
Congenital abnormalities	Stimulated vs natural cycle ET	Kamath 2017	1(205)	0.9% versus 4.3%
	Blastocyst v cleavage	Martins 2016	5(44834)	RR 0.97 (0.85-1.12)
	Frozen vs Fresh ET	Maheshwari 2018	6(133481)	RR 1.01 (0.87-1.16)
*statistical significance	FIOZEII VS FIESII ET	Walleshwall 2018	0(153481)	NN 1.01 (0.87-1.10)

**ET: embryo transfer

Table (4): Adverse maternal and offspring outcomes associated with assisted conception across different types of oocytes.

Outcome	Comparison	Systematic review	Primary studies (participants)	Risk/Odds ratio (95% confidence intervals)
Placenta previa	Donor vs autologous oocyte	Moreno 2019	4(28405)	OR 0.63 (0.33-1.20)
	Donor vs autologous oocyte (Fresh ET)	Moreno 2019	3(21115)	OR 0.53 (0.24-1.17)
	Donor vs autologous oocyte (Frozen ET)	Moreno 2019	2(7037)	OR 0.87 (0.16-4.79)
Placental abruption	Donor vs autologous oocyte	Moreno 2019	4(28405)	OR 1.15 (0.52-2.53)
	Donor vs autologous oocyte (Fresh ET)	Moreno 2019	2(20821)	OR 0.65 (0.23-2.25)
	Donor vs autologous oocyte (Frozen ET)	Moreno 2019	2(7037)	OR 1.43 (0.43-4.71)
Pre-term labour	Donor vs autologous oocyte	Moreno 2019	16(348052)	OR 1.57 (1.33-1.86)*
	Donor vs autologous oocyte (Fresh ET)	Moreno 2019	11(229377	OR 1.44 (1.20-1.74)*
	Donor vs autologous oocyte (Frozen ET)	Moreno 2019	5(37935)	OR 1.96 (1.38-2.78)*
Very pre-term labour	Donor vs autologous oocyte	Moreno 2019	6(147718)	OR 1.80 (1.51-2.15)*
	Donor vs autologous oocyte (Fresh ET)	Moreno 2019	5(134460)	OR 1.68 (1.10-2.59)*
	Donor vs autologous oocyte (Frozen ET)	Moreno 2019	3(9514)	OR 2.93 (1.65-5.20)*
Small for gestation age	Donor vs autologous oocyte	Moreno 2019	8(120100)	OR 0.83 (0.78-0.89)*
	Donor vs autologous oocyte (Fresh ET)	Moreno 2019	3(32606)	OR 1.19 (0.64-2.25)
	Donor vs autologous oocyte (Frozen ET)	Moreno 2019	4(36614)	OR 1.61 (1.21-2.15)*
Low birth weight	Donor vs autologous oocyte	Moreno 2019	12(257928)	OR 1.25 (1.20-1.30)*
	Donor vs autologous oocyte (Fresh ET)	Moreno 2019	10(220645)	OR 1.25 (1.13-1.38)*
	Donor vs autologous oocyte (Frozen ET)	Moreno 2019	4(36614)	OR 1.83 (1.45-2.30)*
Very low birth weight	Donor vs autologous oocyte	Moreno 2019	7(200773)	OR 1.37 (1.22-1.54)*

	Donor vs autologous oocyte (Fresh ET)	Moreno 2019	7(194089)	OR 1.36 (1.23-1.52)*		
	Donor vs autologous oocyte (Frozen ET)	Moreno 2019	3(9514)	OR 3.08 (1.66-5.73)*		
Large for gestation age	Donor vs autologous oocyte	Moreno 2019	3(30262)	OR 0.89 (0.57-1.40)		
	Donor vs autologous oocyte (Fresh ET)	Moreno 2019	2(20821)	OR 0.75 (0.20-2.81)		
	Donor vs autologous oocyte (Frozen ET)	Moreno 2019	2(7037)	OR 1.13 (0.57-2.25)*		
	Maternal morbidity in pregnancy					
Postpartum haemorrhage	Donor vs autologous oocyte	Moreno 2019	3(28111)	OR 1.96 (1.20-3.20)*		
	Donor vs autologous oocyte (Fresh ET)	Moreno 2019	2(20821)	OR 1.90 (0.77-4.72)		
	Donor vs autologous oocyte (Frozen ET)	Moreno 2019	2(7037)	OR 1.76 (1.33-2.34)*		
Gestational diabetes	Donor vs autologous oocyte	Moreno 2019	7(38289)	OR 1.27 (1.03-1.56)*		
	Donor vs autologous oocyte (Fresh ET)	Moreno 2019	5(29499)	OR 1.28 (1.01-1.61)*		
	Donor vs autologous oocyte (Frozen ET)	Moreno 2019	3(8358)	OR 1.12 (0.72-1.76)		
			, , , , , , , , , , , , , , , , , , ,	, , ,		
Hypertensive disorder of pregnancy	Donor vs autologous oocyte	Moreno 2019	8(11049)	OR 2.63 (2.17-3.18)*		
	Donor vs autologous oocyte (Fresh ET)	Moreno 2019	4(1203)	OR 2.62 (1.93-3.55)*		
	Donor vs autologous oocyte (Frozen ET)	Moreno 2019	1(243)	OR 3.34 (1.52-7.36)*		
Pre-eclampsia	Donor oocyte vs other ART	Masoudian 2016	15(16553)	OR 2.24 (1.42-3.53)*		
	Donor vs autologous oocyte	Moreno 2019	11(54755)	OR 2.64 (2.29-3.04)*		
	Donor vs autologous oocyte (Fresh ET)	Moreno 2019	5(29499)	OR 3.17 (2.67-3.75)*		
	Donor vs autologous oocyte (Frozen ET)	Moreno 2019	3(8358)	OR 1.75 (1.23-2.49)*		
Pregnancy induced hypertension	Donor oocyte vs other ART	Masoudian 2016	6(2345)	OR 2.86 (2.10-3.90)*		
	Donor vs autologous oocyte	Moreno 2019	10(13277)	OR 2.16 (1.79-2.62)*		
	Fresh donor vs Fresh autologous oocyte	Moreno 2019	2(9209)	OR 1.64 (1.26-2.13)*		
	Donor vs autologous oocyte (Frozen ET)	Moreno 2019	2(1564)	OR 2.22 (1.43-3.46)*		
Caesarean section	Donor vs autologous oocyte	Moreno 2019	7(54044)	OR 2.28 (2.14-2.42)*		
	Donor vs autologous oocyte (Fresh ET)	Moreno 2019	5(32743)	OR 1.62 (1.39-1.89)*		
	Donor vs autologous oocyte (Frozen ET)	Moreno 2019	3(9514)	OR 1.76 (1.54-2.01)*		

*statistical significance

** ART: assisted Reproductive technology, ET: embryo transfer