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Abstract 

 Anthropogenic changes to Earth’s ecosystems are putting global biodiversity 

under ever-increasing pressure. Land-use and climate change are two of the biggest 

pressures facing terrestrial species. These environmental changes, however, are not 

occurring in isolation and, consequently, may interact. One route by which these two 

pressures could interact is through the local-scale climatic changes that occur due to 

land-use change. Human-altered land uses are often hotter and drier than natural 

habitats, which may lead to these land uses (such as agricultural areas) favouring 

certain species. Moreover, environmental changes do not impact species uniformly 

across their distributions. Populations’ climatic positions (i.e., how close the 

environmental climatic conditions populations experience are to their species’ climatic 

tolerance limits) have been found to influence populations’ responses to global climate 

change, but whether they impact responses to land-use change remains unknown. By 

using three of the most comprehensive assemblage databases to date (the PREDICTS, 

Living Planet and BioTIME databases), this thesis investigates the impact of local 

climatic changes on vertebrate responses to land-use changes. I find that human-altered 

land uses are reshaping communities by favouring species affiliated with more extreme 

climatic conditions, especially at tropical latitudes. Further, responses differ across 

species ranges, with populations’ climatic positions influencing abundances within 

human-altered land uses. In particular, those populations experiencing temperatures 

closer to their thermal limits are filtered out of human-altered land uses. In addition, 

population trends were influenced by interactions between land use, habitat loss, 

climatic position, and climate change. These results are likely, at least in part, due to 

the local climatic changes ensuing land-use change. Overall, accounting for these local 

climatic differences between land uses is essential if we are to fully understand the 

impacts of environmental changes on biodiversity, set up suitable conservation and 

management plans to mitigate their effects, and minimise future biodiversity loss.   
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Impact statement  

 The Earth’s ecosystems provide a wealth of goods and services to humans, 

from food and building materials, to pest regulation and soil formation. Beyond these 

provisioning, regulating, and supporting services, nature also provides cultural 

benefits. For example, during the SARS-CoV-2 pandemic, the positive impact of 

nature on mental and physical well-being has been repeatedly highlighted. However, 

with ongoing anthropogenic changes, particularly to Earth’s terrestrial surface and 

climate, biodiversity is being placed under ever-increasing pressure. Subsequently, 

many vertebrate populations are declining, and the benefits humans receive from 

nature are threatened. To reduce further biodiversity loss, major and urgent efforts to 

conserve greater areas of land, restore degraded land, and practise landscape-level 

conservation planning are needed. To make these efforts effective, it is critical that 

information is available on how species respond to land-use changes (both habitat loss 

and restoration), how this differs spatially, and how responses may be impacted by 

ongoing global climate changes.  

This thesis provides novel insights into the impacts of land-use change on 

vertebrate species around the world, how these impacts may differ geographically, and 

the interactive effects between land-use and climate change. Chapter 2 reviews the 

current understanding of how land-use changes impact biodiversity, focusing on the 

effect of the local changes in temperature and precipitation that follow habitat change, 

and highlights key knowledge gaps. This work was published in 2019 in Diversity and 

Distributions (it was one of the most downloaded papers in 2018-2019), and was cited 

in the WWF Living Planet Report (2020). Chapters 3-5 fill many of the knowledge 

gaps highlighted in Chapter 2, significantly contributing to our understanding of the 

impacts of land-use change on biodiversity. Chapter 3 identifies that, globally, human-

altered land uses (e.g., agricultural areas) are favouring vertebrate species affiliated 

with certain climates, and was published in 2019 in Ecography. Chapter 4 builds on 

this by looking at variation across species’ ranges in responses to human land uses and 

highlights the importance of accounting for the position of a population with regard to 

their climatic tolerance limits (i.e., their climatic position). This work was published 

in 2021 in Diversity and Distributions. Further, interactions between anthropogenic 
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pressures have been identified as one of the biggest uncertainties in biodiversity 

change predictions, potentially hindering our ability to produce effective policy and 

management decisions. Chapter 5 investigates such interactions, finding that land-use 

and climate change interact to impact vertebrate population trends, with surrounding 

land-cover type and populations’ climatic positions also playing important roles in 

these interactions. These findings can be taken forward by the field, for example, by 

combining climatic position into trait-environment interactions to gain a clearer 

picture of the mechanisms underlying land-use change responses. The results 

presented in this thesis, which have been presented at major international conferences, 

further our understanding of the impact of anthropogenic pressures on biodiversity and 

add to the information available for conservationists, land-use planners, and policy 

makers, so that we can work towards altering the current trajectory of biodiversity loss 

and preserve the benefits humans receive from nature.  
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Chapter 1: 

Introduction 

 Anthropogenic changes to the Earth’s ecosystems are putting global 

biodiversity under ever-increasing pressure (Steffen, Crutzen, & McNeill, 2007; 

Tilman et al., 2017). Over the last 50 years, human modifications of the world’s 

terrestrial surfaces have accelerated, reshaping animal and plant communities globally 

(Meyer & Turner, 1992; Millennium Ecosystem Assessment, 2005; Pereira, Navarro, 

& Martins, 2012; Steffen, Richardson, et al., 2015). Biodiversity provides multiple 

goods and services on which humans rely, from pollinating our crops and providing 

medicinal resources, to regulating diseases, water, and air quality (Haines-Young & 

Potschin, 2010; WWF, 2018). As such, the loss of biodiversity can negatively impact 

the provision of ecosystem services and, subsequently, human well-being (Carpenter 

et al., 2009; Díaz, Fargione, Chapin, & Tilman, 2006; Millennium Ecosystem 

Assessment, 2005; Newbold, Hudson, Arnell, et al., 2016; TEEB, 2010).  

Currently, the conversion of land for human use is considered the main driver 

of change for terrestrial biodiversity, affecting almost 90% of threatened bird, 

amphibian, and mammal species (Baillie et al., 2004; WWF, 2020). The extensive 

impacts of land-use change are set to continue and increase as the world’s human 

population rises and demands for resources, such as food and wood, escalate (Haddad 

et al., 2015; Newbold et al., 2015; Newbold, Hudson, Hill, et al., 2016; van Vuuren et 

al., 2012). It is predicted, however, that over the next few decades, climate change 

could surpass land-use change to become the greatest global threat to biodiversity 

(Leadley et al., 2010; Newbold, 2018). Climate change is expected to affect every level 

of biodiversity, from that of the biome down to the organism (Bellard, Bertelsmeier, 

Leadley, Thuiller, & Courchamp, 2012; Parmesan, 2006). To minimise future species 

loss and sustain the benefits human derive from ecosystems, it is critical that we 

understand how species are, and will be impacted by these global drivers of change.  

1.1 Land-use change 

 Land-use change is driving substantial modifications to the world’s ecosystems 

(Millennium Ecosystem Assessment, 2005; Pereira et al., 2012). Changes in land use 
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encompass changes to landscape composition, configuration and the intensity of 

human use (Andrén, 1994; de Chazal & Rounsevell, 2009; Seppelt et al., 2016). 

Landscape composition is the number and expanse of different habitat types across a 

landscape, and changes to this result from the conversion of natural habitats (such as 

primary forest or grassland with no history of human disturbance) to human-altered 

land uses (such as agriculture or urban sites), or from the restoration of these human-

altered land uses back to forest or grassland (de Chazal & Rounsevell, 2009; Seppelt 

et al., 2016). Changes to landscape configuration are often due to habitat 

fragmentation, where continuous habitat is subdivided into smaller patches (Andrén, 

1994). Finally, land-use intensity can be altered by varying management practices, the 

use of fertilisers or labour input, for example (Hudson et al., 2014; Seppelt et al., 2016).  

Many studies have explored the impacts of land-use changes on biodiversity. 

For instance, marked reductions have been found in species richness along gradients 

of natural to human-altered land uses, increasing human-use intensity, and increasing 

forest fragment isolation (Haddad et al., 2015; Newbold et al., 2015; Newbold, 

Scharlemann, et al., 2014; Pfeifer et al., 2017). Further, conversion of natural habitat 

to human-altered land uses leads to shifts in ecological assemblages, towards wide-

ranging species and away from certain dietary guilds for example, which can lead to 

biotic and functional homogenisation, respectively, and subsequent deterioration in 

ecosystem functioning (Clavel, Julliard, & Devictor, 2011; Newbold et al., 2018; 

Newbold, Scharlemann, et al., 2014). However, in recent years, focus has shifted away 

from concentrating on the effects of single stressors such as land-use change alone, to 

looking at how drivers of change interact to affect biodiversity (Brook, Sodhi, & 

Bradshaw, 2008; Mantyka-Pringle, Martin, & Rhodes, 2012; Sala et al., 2000). In 

particular, there have been calls to investigate how land-use changes interact with 

climatic changes to impact biodiversity (de Chazal & Rounsevell, 2009; Mantyka-

Pringle et al., 2012; Oliver & Morecroft, 2014).  

1.2 Climate change 

Climatic changes are occurring at the global and local level. Definitions of 

climate change can vary slightly depending on whether the changes are attributed 

solely to human activity; here, I use the term climate change to refer to any changes in 

climatic variables (precipitation, temperature, or wind, for example), including those 
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that are a result of human actions or natural variability (this is the definition also used 

by the Intergovernmental Panel on Climate Change; de Chazal & Rounsevell, 2009; 

Parry, Canziani, Palutikof, van der Linden, & Hansen, 2007). Climate change 

encompasses both changes in the mean of climatic variables, and changes in their 

variability (such as extreme events and changes in variance and/or distribution; Reyer 

et al., 2013; Rummukainen, 2012). Current patterns of global climate change are 

leading to warmer temperatures, increasing frequency of hot extremes, and growing 

contrasts in precipitation between wet and dry regions, and wet and dry seasons 

(Collins et al., 2013). Species are responding to these global climatic changes by 

shifting their ranges and/or habitats, adjusting the timing of phenological events such 

as fledging or seasonal migrations, and adapting through physiological or behavioural 

changes (Bellard et al., 2012; Davies, Wilson, Coles, & Thomas, 2006). However, 

species are not always successful in keeping pace with the climatic changes (e.g., 

Lindström, Green, Paulson, Smith, & Devictor, 2013), and even when they do, the 

changes can have negative impacts on communities and ecosystem services through 

the disruption of species’ interactions (Post & Forchhammer, 2008; Reyer et al., 2013). 

In conjunction with these global climatic changes that many studies focus on, changes 

in climate also occur at the local level. In particular, local changes to temperature and 

precipitation regimes occur following land-use change (Jiang, Fu, & Weng, 2015; 

Nowakowski, Watling, et al., 2017; Senior, Hill, González del Pliego, Goode, & 

Edwards, 2017). However, these local climatic changes mediated by changes in land 

use are often overlooked, especially when (1) investigating how species are impacted 

by habitat changes and (2) exploring mechanisms that could lead to interactions 

between land-use change and global climate change. These knowledge gaps will be 

the focus of this thesis.  

1.3 The impact of the local climatic changes following land-use change on species’ 

responses to habitat change 

 Species’ responses to land-use changes may be being impacted by the 

associated local climatic changes. Human-altered land uses are, on average, hotter and 

drier than natural habitats, and also often experience greater extremes of temperature 

(Britter & Hanna, 2003; De Frenne et al., 2019; Ewers & Banks-Leite, 2013; Frishkoff 

et al., 2016; Senior, Hill, González del Pliego, et al., 2017). This is driven, at least in 
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part, by the differences in vegetation between land uses, such as the presence or 

absence of a canopy layer (discussed in more detail in Chapter 2; Frishkoff et al., 2016; 

Jiang et al., 2015; Senior, Hill, González del Pliego, et al., 2017; De Frenne et al., 

2021). These altered climatic conditions have been suggested to lead to human-altered 

land uses favouring certain species, specifically those that can tolerate the new 

temperature and precipitation regimes (Frishkoff, Hadly, & Daily, 2015; Frishkoff et 

al., 2016; Nowakowski, Frishkoff, Agha, Todd, & Scheffers, 2018; Nowakowski, 

Watling, et al., 2017). Indeed, at a local scale, for both vertebrates and invertebrates, 

species situated in agricultural or urban areas have been found to be able to tolerate, 

or be affiliated with, hotter and drier climates on average, compared to species in 

forested habitats (Barnagaud, Barbaro, Hampe, Jiguet, & Archaux, 2013; Frishkoff et 

al., 2015; Frishkoff et al., 2016; Frishkoff, Ke, Martins, Olimpi, & Karp, 2019; Menke 

et al., 2011; Nowakowski, Watling, et al., 2017; Piano et al., 2017; discussed further 

in Chapter 2). For example, within bird and herpetofauna communities in Europe and 

the Neotropics, respectively, warmer-adapted species were found to be favoured in 

human-altered areas compared to more natural, forested sites (Barnagaud et al., 2013; 

Frishkoff, Gabot, Sandler, Marte, & Mahler, 2019; Frishkoff et al., 2015). For 

terrestrial invertebrate species, these patterns have also been observed at the global 

level, with species’ climatic affiliations (particularly preferences for warmer thermal 

maxima and lower precipitation minima) predicting occurrence within forested or 

agricultural land uses (Waldock, De Palma, Borges, & Purvis, 2020). However, for 

terrestrial vertebrates, whether human-altered land uses are favouring species affiliated 

with certain temperatures or precipitation regimes has yet to be explored globally or 

for a wide range of taxa. Investigating whether the local scale shifts in vertebrate 

community composition towards species with certain climatic affiliations are 

widespread (geographically and taxonomically), will enhance our understanding of the 

impact human-altered land uses have on vertebrates, enabling us to anticipate the 

effects of future land-use changes and identify species at risk. 

 Populations, however, do not respond consistently to environmental changes 

across species’ ranges (Orme et al., 2019; Soroye, Newbold, & Kerr, 2020), and the 

local climatic changes following land-use change may lead to intraspecific variation 

in the impact of this pressure. Within the global climate change literature, it has been 

recognised that a population’s climatic position (i.e., how close the environmental 
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climatic (temperature or precipitation) conditions a population experiences are to their 

species’ climatic tolerance limits) influences their responses to global warming 

(Kingsolver, Diamond, & Buckley, 2013; Soroye et al., 2020). For instance, 

populations experiencing temperatures closer to their upper thermal limit have been 

found, or are predicted, to be more negatively impacted (e.g., lower probability of 

occurrence or greater fitness decline) by warming temperatures (Kingsolver et al., 

2013; Soroye et al., 2020). However, whether a population’s climatic position leads to 

differences across species’ ranges in responses to land-use change has yet to be 

investigated.  

The closest land-use change research has come to explore an effect of climatic 

position is to look at how populations differ in their occurrence within different land 

uses across regional climatic gradients (e.g., precipitation or temperature gradients, or 

seasonal vs. aseasonal regions; Frishkoff et al., 2016; Murray, Nowakowski, & 

Frishkoff, 2021; Srinivasan, Elsen, & Wilcove, 2019). Species have been found to shift 

their habitat use along climatic gradients, with agricultural land more likely to be 

occupied by species in wetter or more seasonal (greater annual temperate variation) 

regions, and forests preferred by the same species in drier or more aseasonal regions 

(Frishkoff et al., 2016; Srinivasan et al., 2019). I predict that this is, at least in part, due 

to an interaction between populations’ climatic positions and the differences in local 

climate between land uses. This is because, similar to responses to global climate 

change, populations already experiencing temperature and precipitation conditions 

close to their tolerance limits may be pushed beyond these limits by local changes in 

climate following land-use change, leading to population declines (Deutsch et al., 

2008; Mitchell et al., 2018; Nowakowski, Frishkoff, Agha, et al., 2018; Nowakowski, 

Watling, et al., 2018). Conversely, populations with greater thermal or precipitation 

buffers (greater differences between their tolerance limits and the ambient climate), 

may be able to tolerate local climatic changes, which may even lead to more favourable 

temperatures or precipitation conditions (Deutsch et al., 2008; Nowakowski, Watling, 

et al., 2018). Consequently, to be able to produce suitable conservation and 

management plans, which account for intraspecific variation in responses to 

environmental changes, the influence of populations’ climatic positions on responses 

to land use needs to be explored, both at a global scale and across time as well as space.  
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1.4 The impact of local climatic changes on land-use and climate change 

interactions 

 There is a pressing need to understand whether, and if so how, global drivers 

of change are interacting with one another (Mantyka-Pringle et al., 2012; Sala et al., 

2000; Titeux et al., 2017). Where two or more pressures occur concurrently, their 

effects may combine additively or interact (Oliver & Morecroft, 2014). Interactions 

can be synergistic, whereby the impact of changes in both pressures is greater than the 

impact from their additive combination, or they can be antagonistic, whereby the 

impact of changes is lower than their combined additive effect (Oliver & Morecroft, 

2014). It is the possibility of synergistic interactions that pose the greatest concern and 

risk to global biodiversity (Brook, Sodhi, & Bradshaw, 2008; Northrup, Rivers, Yang, 

& Betts, 2019). Land-use changes are occurring alongside global climatic changes 

(Collins et al., 2013), which leads to the potential for these two pressures to interact 

(Oliver & Morecroft, 2014). Land-use and global climate change can directly influence 

each other, with changes in land use (such as deforestation and urbanisation) affecting 

global climatic conditions, and changes in climatic variables able to drastically affect 

land systems (Kalnay & Cai, 2003; Longobardi, Montenegro, Beltrami, & Eby, 2016; 

Titeux et al., 2016b). Even though there have been calls to integrate research on these 

two drivers of change, many studies still only focus on either land-use change or 

climate change (e.g., Antão et al., 2020; Daskalova et al., 2020), and studies looking 

at the interaction between them remain rare (but see Mantyka-Pringle et al., 2012; 

Sirami et al., 2017; Spooner, Pearson, & Freeman, 2018). However, the few studies 

that have investigated interactions have found that these two variables can interact 

synergistically (Brodie, 2016; Spooner et al., 2018). For example, rapid changes in 

both climate and land-use can lead to synergistic interactions: Spooner et al. (2018) 

found that, for mammals, population declines were greatest in areas that have 

experienced both high rates of habitat conversion (from natural to agricultural land 

uses) and warming. Further, human-altered land uses can impact the ability of species 

to shift their ranges in response to climate change (Oliver & Morecroft, 2014; Travis, 

2003), with range expansion rates found to be slower in landscapes with less suitable 

habitats (Hill et al., 2001). Synergistic interactions can also result from the expansion 

of human-altered land uses being greater due to shifting climate regimes. For instance, 

the extent of oil-palm expansion impacting on the ranges of Southeast Asian mammal 
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species has been predicted to be up to four times worse if climatic changes are 

accounted for (Brodie, 2016).  

The local climatic changes that ensue land-use change may be another 

mechanism leading to interactions between land-use and climate change. For example, 

the higher hot thermal extremes resulting from the conversion of natural to human-

altered land uses (De Frenne et al., 2019) are acting on top of global warming and the 

increased frequency of heat waves resulting from global climate change (Collins et al., 

2013). Consequently, this could lead to a higher number of species being pushed 

beyond their upper thermal limits than if the two drivers of change were acting 

independently. Again though, the local climatic changes accompanying land-use 

change have not been considered in interaction studies (discussed further in Chapter 

2). In particular, how interactions between land-use and global climate change may 

impact populations differently due to their climatic position has not been explored. 

This limits our ability to both predict those populations most at risk from these drivers 

of change and identify areas that would most benefit from conservation action (such 

as habitat restoration). Understanding how interactions between environmental 

pressures are affecting biodiversity, and how these effects vary across species’ ranges, 

is vital if we are to mitigate the impacts of anthropogenic changes on biodiversity 

around the world (Sala et al., 2000). Indeed, interactions have been identified as one 

of the largest uncertainties when it comes to predicting future biodiversity change (Sala 

et al., 2000). 

1.5 Local climatic changes following land-use change as a source of geographic 

variation in responses to environmental change 

 Geographic variation is key to take into account when studying the impacts of 

global drivers of change in order to be able to prioritise conservation efforts (Powers 

& Jetz, 2019). Due to differences between ecological communities at tropical and 

temperate latitudes, the impact of local climatic changes following land-use change 

may vary, leading to geographic variation in biodiversity responses. Such differences 

between communities could include the factors influencing species’ geographical 

ranges, which have been suggested to differ latitudinally: abiotic factors (such as 

climate) are thought to dominate at temperate latitudes, and biotic factors (such as 

interspecific interactions) are thought to be the main influence at tropical latitudes 
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(Khaliq, Böhning-Gaese, Prinzinger, Pfenninger, & Hof, 2017; MacArthur, 1972; 

Wiens & Donoghue, 2004). However, species at lower latitudes are thought to be 

particularly vulnerable to environmental changes, with the tropics often being 

highlighted as an area of conservation concern (Brook et al., 2008; Newbold et al., 

2018; Newbold, Oppenheimer, Etard, & Williams, 2020; Newbold et al., 2013; 

Pacifici et al., 2017; Sunday et al., 2014; Thuiller, Lavorel, & Araújo, 2005). Reasons 

for this, which could also lead to the local climatic changes being a source of 

geographic variation, include the lower seasonality and historically relatively stable 

climate at tropical latitudes (Janzen, 1967; Pacifici et al., 2017), and the fact that 

tropical species experience temperatures that are often closer to their upper thermal 

limits compared to their temperate counterparts (Deutsch et al., 2008; Sunday et al., 

2014; discussed further in Chapter 2). On top of this, there are a larger number of 

tropical than temperate species (particularly endemic and/or threatened species; 

Barlow et al., 2018; Kearney, Shine, & Porter, 2009), and on average, these species 

also have smaller range sizes (Newbold, Hudson, Hill, et al., 2016; Stevens, 1989). 

Currently, due to the lack of large-scale studies looking at how the local climatic 

changes mediated by land-use change impact species or populations, whether this 

pressure leads to geographical variation in responses to habitat changes remains 

unknown. With the rates of current and future climate changes (relative to historical 

conditions) and land-use changes expected to be greater at tropical compared to 

temperate latitudes (Hurtt et al., 2011; Mora et al., 2013; Pacifici et al., 2017), 

understanding where and why species may be more negatively affected by 

anthropogenic pressures is critical if we are to instigate species conservation and land-

management plans that are tailored towards the taxa and/or areas of concern, and that 

have the greatest chance of being effective.  

1.6 Aims and hypotheses 

 To reduce future terrestrial biodiversity loss, recent work has called for major 

and urgent efforts towards conserving larger areas of natural habitat, restoring 

degraded land, and increasing land-use planning at the landscape-level (Leclère et al., 

2020). In order to make these efforts effective, it is critical we understand the 

interspecific and spatial variation in responses to land-use change (both loss of natural 

habitat and habitat restoration). Furthermore, with land-use changes occurring 
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concurrently to climate change, as mentioned above, a major goal within ecology is to 

enhance our understanding of how these global pressures interact to influence 

biodiversity (Mantyka-Pringle et al., 2012; Oliver & Morecroft, 2014; Sala et al., 2000; 

Titeux et al., 2017). The objective of this thesis is to investigate, globally and across 

both across space and time, whether human-altered land uses are systematically 

favouring certain species depending on their climatic affiliations, whether this varies 

across species’ ranges due to populations’ climatic positions, and whether local 

climatic changes may be leading to interactions between land-use and climate change. 

I start by reviewing the current understanding of how local climatic changes are 

affecting biodiversity responses to land use, as well as critically discussing the 

methods used to explore this topic and identifying key knowledge gaps within the field 

(Chapter 2). Following this, I use three of the most comprehensive compilations of 

vertebrate assemblage records to date to analyse (1) whether human-altered land uses 

are favouring species affiliated with certain climatic regimes, and whether this differs 

between tropical and temperate latitudes (Chapter 3), (2) whether populations’ climatic 

positions influence their relative abundances across land-use types (Chapter 4), and 

(3) whether a population’s climatic position interacts with land use, habitat loss, and 

climate change to affect population trends over time (Chapter 5). My three overarching 

hypotheses are: 

(1) At the community-level, human-altered land uses will favour species 

affiliated with hotter and colder extremes of temperature and drier climates, 

with stronger effects observed at tropical compared to temperate latitudes 

(Chapter 3). 

(2) At the species-level, a population’s climatic position will influence their 

abundance within human-altered land uses. I hypothesise that populations 

experiencing temperatures closer to their hot or cold thermal tolerance 

limits, or precipitation conditions closer to their dry tolerance limit, will be 

filtered out of human-altered land uses to a greater extent than populations 

experiencing climatic conditions further from their tolerance limits 

(Chapter 4).  

(3) I hypothesise that a population’s climatic position will interact with land-

use type, land-use change, and climate change to influence population 

trends over time (Chapter 5). 
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Overall, I aim to fill the knowledge gaps highlighted above and make a critical 

contribution towards enhancing our understanding of how vertebrate species are 

responding to land-use and climate change. As the human population continues to 

grow, and our demands lead to continuing land-use change and accelerating global 

climate change, it is essential that we understand how biodiversity across the globe is 

impacted by these anthropogenic pressures in order to preserve the variety of life on 

Earth and the multiple ecosystem services it provides. 
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Chapter 2: 

Local climatic changes affect biodiversity responses to 

land use: a review   

2.1 Abstract 

Climate and land-use change, the greatest pressures on biodiversity, can 

directly influence each other. One key case is the impact land-use change has on local 

climatic conditions: human-altered areas are often warmer and drier than natural 

habitats. This can have multiple impacts on biodiversity and is a rapidly developing 

field of research. Here, I summarise the current state of understanding on the impact 

that local climatic changes have on biodiversity responses to land-use change, in 

particular looking at whether human-altered land uses favour species with certain 

climatic niches. To do so, I review studies that have identified links between species’ 

climatic niches and the habitats/land-use types they inhabit. I also critically discuss the 

methods used to explore this topic (such as the estimation of fundamental vs. realised 

climatic niches), identify key knowledge gaps by reference to related macroecological 

literature, and make suggestions for further work. I find that assemblages of vertebrate 

and invertebrate species in numerous human-dominated land uses have been found to 

have higher proportions of individuals affiliated with higher temperatures and lower 

precipitation levels than assemblages within natural habitats. However, uncertainty 

surrounds the mechanisms that underlie these observed differences between 

communities across land-use types, and it remains unexplored as to whether these 

trends differ geographically or taxonomically.  Overall, shifts are being observed 

within human-altered land uses to communities with, on average, warmer and drier 

climatic niches. A better understanding of the effects of local climatic changes 

associated with land-use change will enhance our ability to predict future impacts on 

biodiversity, identify the species most at risk from interactions between climate and 

land-use change and set up suitable management and conservation plans. 
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2.2 Introduction  

Rapid human population growth has resulted in increasing exploitation of the 

environment and conversion of land for human use (Foley et al., 2005; Laurance, 

Sayer, & Cassman, 2014; Meyer & Turner, 1992). Understanding the impact of these 

changes on biodiversity has become a widely researched topic (Newbold et al., 2015). 

However, we are still learning about the extensive effects that land-use change has on 

the local environment, and the subsequent impacts on biodiversity (De Frenne et al., 

2019). A rapidly developing field of research, with studies emerging from around the 

world, is the impact that land-use change has on local climatic systems, and its knock-

on effects for biodiversity (e.g., Frishkoff et al., 2015; Menke et al., 2011; Piano et al., 

2017; Senior, Hill, González del Pliego, et al., 2017). Conversion of primary (natural, 

undisturbed) habitats to human-dominated land uses (such as agriculture and urban 

areas) causes changes to land cover and vegetation structure, which can directly impact 

local climatic conditions (Sampaio et al., 2007; Senior, Hill, González del Pliego, et 

al., 2017). Often, areas of land converted for human use are warmer and drier than 

natural habitats (Britter & Hanna, 2003; Frishkoff et al., 2016). With the importance 

of integrating thermal biology into landscape ecology recently being highlighted 

(Nowakowski, Watling, et al., 2018), and the effects of local precipitation changes also 

beginning to be acknowledged (Frishkoff et al., 2016), it is crucial that these changes 

in local climatic systems are incorporated into studies aiming to understand species’ 

responses to land-use change. 

The climatic changes caused by land-use change can affect local biodiversity, 

either directly through changes in temperature, precipitation or moisture levels, or 

indirectly through changes in vegetation structure or resource availability (Barnagaud, 

et al., 2013; Frishkoff et al., 2016). As a result, this can lead to alterations in 

community composition (Frishkoff et al., 2016). The studies that have investigated the 

impacts on biodiversity caused by these climatic changes so far have primarily focused 

on exploring differences in species’ climatic affiliations between habitats/land uses. 

With land conversions set to continue (Foley et al., 2005), understanding their 

influence on local climatic conditions and the subsequent effects on biodiversity is 

both timely and vital in order to predict future biodiversity changes and set up suitable 

management and conservation plans (Oliver & Morecroft, 2014; Tomimatsu et al., 

2013). 
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 I aim to enhance understanding of how local climatic changes (mediated by 

land-use change) influence species’ responses to land use. In order to do this, I briefly 

review how land-use change impacts the local climate (along with how this varies 

spatially), and then present a recap of key terms commonly used when studying the 

effect of such climatic changes on biodiversity. Following this I arrive at the main 

focus of this review, where I synthesise patterns and identify disparities between 

studies, discuss the potential mechanisms underlying these trends and compare the 

methods currently used to explore this topic. Finally, I highlight knowledge gaps 

within the current literature and suggest directions for future work (some of which will 

be explored later in this thesis).  

2.2.1 The impact of land-use changes on local climatic conditions  

Changes in land use result in modifications to landscape composition (i.e., the 

total amount of different habitat types), landscape configuration (e.g., habitat 

fragmentation, which is the subdivision of continuous habitat into smaller plots) and/or 

in changes to land-use intensity (Andrén, 1994; de Chazal & Rounsevell, 2009; Seppelt 

et al., 2016). Differences in how intensively humans use the land (i.e., ‘land-use 

intensity’), result from variation in management practices and level of external input 

(e.g., use of chemicals/fertilisers and extent of labour; de Chazal & Rounsevell, 2009; 

Seppelt et al., 2016). Taking land used for growing crops as an example, more 

intensive management practices can include larger fields, monocultures (rather than 

mixed crops or crop rotation), application of inorganic fertiliser, use of irrigation 

systems, and high (relative) annual plant biomass removal (Hudson et al., 2014; Peters 

et al., 2019). Conversion of natural to human-dominated land uses (such as cultivated 

or urban land), and from human-dominated land uses back to forest or grasslands 

(creating secondary vegetation; de Chazal & Rounsevell, 2009) both result in changes 

to landscape composition.  

The extent and type of vegetation cover significantly affect a site’s surface 

temperature, precipitation level and moisture availability (Frishkoff et al., 2016; Hong, 

Leach, & Raman, 1995; Jiang et al., 2015; Senior, Hill, González del Pliego, et al., 

2017). Removal of vegetation, through deforestation for example, can lead to 

decreases in evapotranspiration and surface roughness (deviation from a flat surface), 

and rises in surface sensible heat flux (heat transfer from the surface into the 
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atmosphere), which lead to less water entering the atmosphere (a reduction in moisture 

feedback), decreases in precipitation, and increases in surface temperatures (Alkama 

& Cescatti, 2016; Sampaio et al., 2007; Savenije, 1995). Consequently, numerous 

areas transformed for human use are warmer and drier than primary habitats (Britter 

& Hanna, 2003; Frishkoff et al., 2016; Senior, Hill, González del Pliego, et al., 2017). 

Land-use type and precipitation are also linked with variation in moisture level; 

however, their relationship is complex due to the multitude of factors (such as 

topography, soil properties, and age or species of vegetation present) that also affect 

moisture levels (Deng, Yan, Zhang, & Shangguan, 2016; Fu, Wang, Chen, & Qiu, 

2003). 

Within forests, tree canopies buffer temperature extremes, resulting in cooler 

maximum and warmer minimum temperatures compared to cleared land, such as 

pastures (De Frenne et al., 2019; Ewers & Banks-Leite, 2013). Accordingly, increases 

in maximum (hot extremes) and mean temperatures, and decreases in minimum (cold 

extremes) temperatures occur post-deforestation (Alkama & Cescatti, 2016; Findell et 

al., 2017; Medvigy, Walko, & Avissar, 2012). For example, during the day, urban and 

agricultural areas have been recorded to be around 13°C warmer than nearby vegetated 

or forested sites, respectively (Oke, 1973; Senior, Hill, González del Pliego, et al., 

2017). Fewer studies have focused on night time temperatures, but minimum 

temperatures been recorded to be slightly colder (by around 1°C) in non-forested (e.g., 

pastures) or deforested areas compared to below forest canopies (Daily & Ehrlich, 

1996; De Frenne et al., 2019). Colder minima occur due to a greater amount of 

radiation released back to the atmosphere in land uses without a canopy cover (Suggitt 

et al., 2011).  

There is great variation in the magnitude of local climatic changes following 

land-use change (Senior, Hill, González del Pliego, et al., 2017). Temperature changes 

following conversion from primary vegetation depend on the extent of vegetation 

change (i.e., the ultimate land-use type), with croplands and pastures increasing more 

in local temperatures than tree plantations when compared to intact primary forest 

(Senior, Hill, González del Pliego, et al., 2017). Surface runoff levels also differ 

between land-use types, and less moisture recycling and lower rainfall are linked with 

greater surface runoff (Savenije, 1995). Accordingly, highly urbanised areas show the 

greatest decrease in surface moisture when compared to forested areas in comparison 
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to cultivated sites (Jiang et al., 2015). Due to the lack of canopy cover in naturally non-

forested areas (such as grasslands), which reduces buffering of temperature extremes 

(Jarzyna, Zuckerberg, Finley, & Porter, 2016; Villegas, Breshears, Zou, & Royer, 

2010), conversions from grasslands to human-dominated land-use types may not result 

in as large local climatic changes compared to conversion from primary forests. 

Another source of variation is latitude; boreal habitats experience smaller changes in 

mean air temperature following forest clearing than temperate or tropical regions, 

probably due to the effects of snow albedo (Alkama & Cescatti, 2016; Findell et al., 

2017).  

2.2.2 Key terminology 

I summarise here a few terms that are key to this subject area (many are also 

used in related fields). Further on in this review I critically discuss the advantages and 

limitations of the methods introduced below (table 2.1).  

Researchers investigating the effects of climate and its interaction with land-

use change on biodiversity often use the term ‘climatic niche’ (e.g., Castro-Insua, 

Gomez-Rodriguez, Svenning, & Baselga, 2018; Dallas, Decker, & Hastings, 2017; 

Sapes, Serra-Diaz, & Lloret, 2017; Sunday, Bates, & Dulvy, 2012), which aims to 

reflect the climatic elements of a species’ multidimensional niche sensu Hutchinson 

(Hutchinson, 1957; Sapes et al., 2017). Within a species’ fundamental niche 

(Hutchinson, 1957), the climatic elements encompass the species’ physiological 

climatic tolerances, which are often estimated through laboratory tests (Frishkoff et 

al., 2015; Peterson et al., 2011). However, the portions of climatic space that a species 

actually inhabits, it’s realised climatic niche, is also influenced by dispersal barriers 

and biotic interactions (HilleRisLambers, Harsch, Ettinger, Ford, & Theobald, 2013; 

Peterson et al., 2011).  

To produce estimates of species’ fundamental climatic niches, studies often 

approximate thermal tolerances using laboratory experiments and frequently calculate 

critical thermal limits (e.g., Frishkoff et al., 2015; Nowakowski, Watling, et al., 2017). 

These limits are the upper (critical thermal maxima) and lower (critical thermal 

minima) temperatures at which an individual is no longer able to accomplish essential 

behaviours, movement or righting responses, for example (Nowakowski, Watling, et 

al., 2017; Tuff, Tuff, & Davies, 2016). These limits are then used to estimate species’ 
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thermal safety margins, which are the differences between the species’ critical thermal 

maxima or minima and the maximum or minimum body temperatures experienced 

within an environment, respectively (Nowakowski, Watling, et al., 2017; Sunday et 

al., 2014). These thermal safety margins, based on species’ fundamental climatic 

niches, are then used to explore vulnerability to climate change and the role of 

physiology versus behaviour by species to avoid temperature extremes (Sunday et al., 

2014).  

Species’ realised climatic niches can be inferred from their observed spatial 

distribution (e.g., Barnagaud et al., 2013). Studies focusing on realised niches regularly 

use species or community temperature indices within their analyses (Barnagaud et al., 

2013; Devictor, Julliard, Couvet, & Jiguet, 2008). A species temperature index is an 

approximation of the long-term mean temperature experienced by a species throughout 

all or part of its range (e.g., its breeding range; Devictor, Julliard, & Jiguet, 2008; 

Pacifici et al., 2017). Species with higher species temperature indices (warmer-

dwelling species) are those that live in areas with, on average, warmer temperatures 

than species with lower species temperature indices. At the community level, a 

community temperature index is the mean (usually weighted by species abundance) of 

each species’ temperature index in an assemblage (Devictor, Julliard, Couvet, et al., 

2008; Jiguet, Brotons, & Devictor, 2011). Consequently, assemblages with higher 

community temperature indices indicate assemblages composed of greater proportions 

of individuals of warmer-dwelling species, compared to assemblages with lower 

community temperature indices (Jiguet et al., 2011).  

Finally, climatic niche breadth describes the breadth of thermal, precipitation 

or moisture conditions species can tolerate (fundamental niche) or live within (realised 

niche; Barnagaud et al., 2012; Frishkoff et al., 2016; Khaliq et al., 2017). Using 

physiological data, previous studies have used estimates of species’ thermal neutral 

zones as approximations of thermal niche breadths in endotherms (e.g., Khaliq et al., 

2017). The thermal neutral zone is commonly defined as the set of temperatures at 

which an endothermic species is able to maintain their body temperature without 

raising their metabolic rate (Khaliq et al., 2017). When calculating realised climatic 

niche breadths, different methods have been used in the literature; consequently, care 

has to be taken when comparing these niche breadth results between studies. For 

example, estimates of climatic niche breadth have been produced from the standard 
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deviation of a climatic variable (e.g., mean annual temperature) over a species range 

(Frishkoff et al., 2016), as well as from the difference between the average temperature 

in the hottest and coldest 5% grid cells in which a species is present (Barnagaud et al., 

2012).  

2.3 Differences in species- and community-level climatic affiliations between natural 

and human-altered land uses  

2.3.1 Temperature affiliations  

Previous research points towards local temperature as an important ecological 

filter, affecting which species are able to survive within human-dominated land uses 

(Frishkoff et al., 2015; Piano et al., 2017). Across a range of amphibian, reptile and 

bird communities, species within human-altered land-use types, such as pastures, have 

been found to be affiliated with (realised climatic niche), or able to tolerate 

(fundamental climatic niche), higher temperatures (i.e., higher species temperature 

index or critical thermal maxima, respectively) than species within forested primary 

habitats (Barnagaud et al., 2012; Clavero, Villero, & Brotons, 2011; Frishkoff et al., 

2015; Nowakowski, Watling, et al., 2017). For ectotherms in particular, low heat 

tolerances and narrower thermal safety margins (in relation to critical thermal maxima) 

have been linked with greater sensitivity to land-use change (Nowakowski, Watling, 

et al., 2018). This pattern is not limited to vertebrate assemblages; within invertebrate 

communities (such as assemblages of carabid beetles and ants), urbanised and 

agricultural areas contained, on average, warmer-dwelling species (assemblages had 

higher community thermal indices) in comparison to primary habitats (Menke et al., 

2011; Piano et al., 2017). At the individual level, ants from within urban areas were 

also found to tolerate high temperature extremes for longer compared to rural-living 

ants (Angilletta et al., 2007). Changes in community composition with regard to 

average thermal niche have also been detected across gradients of land-use change: the 

community temperature index of French bird communities was found to increase 

(indicating increases in the proportion of individuals of warmer-dwelling species) 

along a gradient of decreasing forest cover and increasing fragmentation (Barnagaud 

et al., 2013). This link between warmer-affiliated species and human-altered habitats 

also leads to interactions between land-use change and elevation: through thermal 

niche tracking, lowland tropical forest species have been found to be able to colonise 
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agricultural areas at higher elevations, leading to large differences in community 

composition between natural and human-altered habitats at higher altitudes (Frishkoff, 

Gabot, et al., 2019). Taken together, these findings suggest that human-altered habitats 

are favouring species with warmer thermal niches. Accordingly, the ability to predict 

species’ occurrence in human-altered sites from species’ realised thermal niches (using 

species temperature indices) has also been found to perform better than or as well as 

other frequently used traits to predict occurrence, such as body size (Frishkoff et al., 

2015).   

Surprisingly, despite the lack of ability of some human-altered land uses to 

buffer minimum temperatures (Suggitt et al., 2011), the few studies comparing 

estimates of invertebrate cold tolerances found no differences between assemblages in 

urban and rural habitats (Angilletta et al., 2007; Piano et al., 2017). As the studies 

investigating differences in minimum thermal tolerance have focused on urban areas 

as the human-impacted land-use type, this result may be a consequence of the urban 

heat island effect (Oke, 1973), which may lead to warmer minimum temperatures 

compared to other human-dominated land uses. In fact, urban areas are often warmer 

at night than rural, agricultural areas, because the heat absorbed during the day by 

streets and buildings is released (Kalnay & Cai, 2003; Runnalls & Oke, 2000). Another 

reason for not finding differences between assemblages in cold tolerances may be 

because the relative magnitude of difference in cool temperatures between natural and 

human-altered land uses is much less than the difference in warm temperatures; 

indeed, the buffering effect of forest canopies has a larger influence on maximum 

compared to minimum temperatures (De Frenne et al., 2019; Ewers & Banks-Leite, 

2013). 

2.3.2 Precipitation and moisture affiliations  

Precipitation niches are also related to association with certain land-use types 

(Frishkoff et al., 2016). Precipitation (and not temperature) niches were correlated with 

habitat use in neotropical bird communities; specifically, agricultural land uses were 

favoured by species associated with drier climates, while those associated with wetter 

climates favoured forests (Frishkoff et al., 2016). Similarly, invertebrate species 

usually inhabiting drier climates were found to a greater extent within agricultural and 

urban assemblages compared with forest assemblages (Menke et al., 2011). These 
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results suggest that human-altered land uses are driving shifts towards communities 

composed of species that can tolerate drier local climates. However, for some 

neotropical reptiles and amphibians, realised precipitation niches were not predictive 

of habitat choices (in this case forested or deforested areas; Frishkoff et al., 2015). This 

is surprising for amphibians, which are dependent on water availability, and may be 

because these ectothermic species can find refugia within their tropical habitats (e.g., 

riparian corridors or remnant trees) and thus persist after changes in local precipitation 

regimes (Frishkoff et al., 2015). Climate refugia were also found to be important for 

anole species in pastures, which were areas of low thermal quality where anole body 

temperatures were often outside preferred thermal ranges (Thompson, Halstead, & 

Donnelly, 2018). Unfortunately, studies are yet to investigate differences in species’ 

tolerances to moisture availability across land uses, potentially owing to difficulties in 

acquiring estimates of moisture tolerances (discussed further below) and the complex 

links between precipitation levels, vegetation cover, soil depth and moisture 

availability (Deng et al., 2016; Fu et al., 2003).   

2.3.3 Climatic niche breadths 

Climatic niche breadth also varies between land-use types (Piano et al., 2017). 

For example, beetle assemblages within more urbanised areas had, on average, wider 

thermal niches, arising from community-averaged thermal preferences for higher 

maximum temperatures but similar minimum temperatures, compared to less-

urbanised assemblages (Piano et al., 2017). Climatic niche breadth could also be 

correlated with traits that allow species to be more resilient to environmental change. 

For instance, thermal and habitat niche breadth were positively correlated for birds 

within France; in particular, six of the eight species that had the widest thermal niches 

(classed as climatic generalists) were also those most tightly associated with urban 

areas (Barnagaud et al., 2012).  

2.4 Potential underlying mechanisms  

The mechanisms underlying these associations between species’ thermal or 

precipitation affiliations and land-use type are not well known. However, by reference 

to literature exploring biodiversity responses to global climate change, I can identify 
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several potential ways in which local climatic changes could affect community 

composition (fig. 2.1). 

 

Figure 2.1: Direct and indirect influences of local climatic changes. Examples of 

the impacts local climatic changes mediated by land-use change (for instance, the 

conversion of a natural habitat to human-dominated land use) may have on 

biodiversity, which could have knock-on effects for local community composition 

and/or biotic interactions. The impacts are split into direct influences (where changes 

in temperature, precipitation or moisture availability affect individuals) and indirect 

Land-use change 

Changes to 

local climatic 

conditions 

Direct influences 

Indirect influences 

Survival1-3 

An individual’s 

metabolism and 

development4,5 

Reproduction6 

Changes in 

vegetation structure, 

microhabitat 

availability or 

thermal refugia7-10 

Changes in the composition or 

activity time of other species 

(competitors, mutualists, 

predators)3,11,12 

Changes in 

disease 

prevalence or 

spread13-15  

Changes in 

resource 

availability or 

time spent 

foraging3,16-18 

1Mitchell et al., 2018; 2Deutsch et al., 2008; 3Porter et al., 2000; 4Merckx et al., 2018; 
5Russell et al., 2002; 6Manning & Bronson, 1990; 7Hannah et al., 2014; 8Kearney et 

al., 2009; 9Karp et al., 2017; 10Betts et al., 2018; 11Post et al., 1999; 12Schweiger et al., 

2012; 13Pounds et al., 2006; 14Harvell et al., 2002; 15Becker & Zamudio, 2011; 
16Bolger et al., 2005; 17Ockendon et al., 2014; 18Sinervo et al., 2010 
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influences (where the climatic changes affect another aspect of an individual’s 

environment, including interacting species, which in turn influences the individual). 

Local climatic changes include changes to temperature, precipitation, and/or moisture 

availability. Many of these potential impacts of local climatic changes originate from 

studies focused on the consequences of global climate change.  

2.4.1 Direct influences of local climatic changes  

Climatic changes can impact individuals directly, with unfavourable body 

temperatures reducing fitness, compromising body functions or causing death 

(Frishkoff et al., 2016; Lovegrove et al., 2014; Mitchell et al., 2018; Porter, Budaraju, 

Stewart, & Ramankutty, 2000; Welbergen, Klose, Markus, & Eby, 2008). For 

example, temperature changes can hinder development and reproduction, with colder 

temperatures leading to greater overnight weight loss in meerkat pups (Russell et al., 

2002), and suppressed ovulation in female mice (Manning & Bronson, 1990). Climatic 

changes can be especially problematic for sessile species and ectothermic species, 

whose movement, reproduction, and development are strongly influenced by ambient 

local temperatures and humidity (Cahill et al., 2012; Deutsch et al., 2008; Walther et 

al., 2002). For instance, higher temperatures, which lead to increased metabolic costs, 

are generally expected to drive shifts towards smaller body sizes in ectotherms 

(Merckx et al., 2018; Sheridan & Bickford, 2011). Conversely, some species may 

benefit from warmer temperatures; for some ectothermic species, slight warming may 

actually increase the length of time that they can spend at optimal core temperatures, 

which would increase the length of time available for activities such as foraging and 

reproduction (Kearney et al., 2009). The direct responses of individuals to climatic 

changes may lead to changes in the local abundance of certain species, subsequently 

causing shifts in community composition (Oliver et al., 2017; Porter et al., 2000). 

Changes in precipitation and temperature may also have interactive direct 

effects on individuals. For example, for species within currently arid or semi-arid 

habitats, further drying may lead to less available drinking water, which can 

compromise thermoregulation abilities and increase the risks from heat stress 

(Mitchell et al., 2018). Thus, differences in community composition may result from 

declines in species that are unable to tolerate the higher temperatures or lower 
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precipitation levels in human-dominated lands, and increases in species that benefit 

from the climatic changes.  

2.4.2 Indirect influences of local climatic changes 

Local climatic changes may also influence which species can inhabit an area 

indirectly (fig. 2.1; Frishkoff et al., 2016). In human-altered land uses, the vegetation 

structure may be analogous to natural vegetation in drier and hotter regions, thus 

favouring species from more arid habitats through bottom-up regulation (Frishkoff et 

al., 2016; Karp et al., 2017). These sites may also be lower quality habitats with fewer 

thermal refugia, consequently compromising individuals’ abilities to cope with local 

climatic changes (Betts, Phalan, Frey, Rousseau, & Yang, 2018; Senior, Hill, González 

del Pliego, et al., 2017). Further, changes in climate may affect food availability (its 

absolute quantity or seasonal availability), foraging costs, or willingness of individuals 

to forage (Levy, Dayan, Porter, & Kronfeld-Schor, 2016; Porter et al., 2000), which in 

turn can affect individuals’ survivorship or reproductive output. For instance, 

reproductive failure in birds during extreme dry conditions has been attributed to lack 

of available food (Bolger, Patten, & Bostock, 2005). As well as prey, climatic changes 

could indirectly impact species through influences on the demographics of other 

species within the community, such as mutualists, hosts or competitors (Oliver & 

Morecroft, 2014; Post, Peterson, Stenseth, & Mclaren, 1999; Walther et al., 2002). For 

instance, if host species decline due to the site’s climate no longer being suitable, then 

species dependent on those hosts may also decline; such mismatches are predicted to 

occur between host-plant-limited butterfly species under future global climate and 

land-use change (Schweiger et al., 2012). Again, these impacts can affect each species’ 

abundance within a community, subsequently changing community structure (Porter 

et al., 2000). 

Changes in disease prevalence due to local climatic changes in human-altered 

land uses may also impact community composition (Pounds et al., 2006). In mammals, 

a higher prevalence of fungal diseases is hypothesised to occur due to increasing global 

temperatures (Garcia-Solache & Casadevall, 2010). Conversely, for tropical 

assemblages of amphibians, changes in local climate following habitat loss has been 

suggested to be one mechanism underlying the lower occurrence and prevalence of the 

chytrid fungus in human-altered compared to natural habitats (Becker & Zamudio, 
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2011). Subsequently, this will affect the composition of amphibian communities in 

these altered land uses. It is likely that similar local-scale changes in temperature, 

precipitation or moisture availability, as a result of land-use change, may also impact 

the prevalence of other diseases through pathogen growth or survival (Harvell et al., 

2002).  

After covering several ways biodiversity may be impacted by local climatic 

changes following land-use change, it is also important to acknowledge that some 

differences in species’ climatic tolerances/affiliations across land uses may not be 

solely linked to climatic change, but instead (at least to some extent) result from habitat 

associations (Barnagaud et al., 2012). The past and present location, and thus climatic 

distribution, of species’ preferred habitats may in part determine their realised climatic 

niches (Barnagaud et al., 2013, 2012). Species' thermal niche breadths have also been 

found to be positively correlated with their habitat niche breadth, whereby bird species 

classed as habitat specialists were also those who experienced less temperature 

variation across their range (Barnagaud et al., 2012). Consequently, the decline of 

species with narrow and cool-adapted climatic niches within human-dominated land 

uses may be due to the negative influence of land-use changes on habitat specialists 

(Devictor, Julliard, & Jiguet, 2008), rather than directly a result of local climatic 

changes. The difficulty in separating and identifying underlying mechanisms lies 

partly in the methods used to establish these patterns (see below; Oliver et al., 2017), 

and the lack of longitudinal data focusing on changes in community composition 

following land-use change (leading to a reliance on space-for-time studies).   

2.5 Common methods – advantages and limitations  

The above studies exploring differences in species’ climatic affiliations across 

land-use types analysed either fundamental or realised climatic tolerance estimates, 

which both have their advantages and limitations (table 2.1). Physiological 

temperature tests, which are used to provide estimates of species’ fundamental thermal 

niches, allow researchers to calculate thermal tolerances under controlled conditions 

(Frishkoff et al., 2015; Nowakowski, Watling, et al., 2017). However, there are several 

potential problems, which can lead to uncertainty regarding how closely the estimated 

tolerance limits correspond to a species’ fundamental niche. First, the measurement 

protocols used to calculate thermal tolerances often differ between studies, rendering 
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the metrics produced incomparable (Araújo et al., 2013). For example, the rate of 

temperature increase or decrease within experiments can influence species’ thermal 

tolerances and survival rates, and hence the estimates of fundamental niche generated 

(Addo-Bediako, Chown, & Gaston, 2000; Hoffmann, Chown, & Clusella-Trullas, 

2013). The measure of performance analysed during the temperature changes (e.g., 

movement or oxygen consumption) also affects the thermal tolerance measures 

produced (Nowakowski, Frishkoff, Agha, et al., 2018). Additionally, using 

temperature limits to describe thermal tolerances has been criticised due to survival 

probability depending on the duration of exposure and the intensity of stress (Rezende, 

Castañeda, & Santos, 2014). Consequently, some researchers suggest using thermal 

tolerance landscapes instead, which plot the probability of survival as a function of 

both the duration of exposure and intensity of thermal stress, thus incorporating both 

aspects influencing thermal tolerance ranges (Rezende et al., 2014). Second, critical 

temperatures are dependent on other factors that may not be taken into account during 

experiments, such as water supply (Araújo et al., 2013; Mitchell et al., 2018). Third, 

calculating thermal tolerances is only possible/desirable for a small number of species, 

with experiments being time-consuming and expensive (Araújo et al., 2013; Rezende 

et al., 2014). These tests are far from ideal for threatened species, or species with strict 

habitat requirements (Hoffmann et al., 2013). Fourth, although widely used to 

calculate thermal tolerances (e.g., Frishkoff et al., 2015; Nowakowski, Watling, et al., 

2017), using physiological tests to quantify precipitation or moisture tolerances is rare 

(Sunday et al., 2012). Finally, using a species’ thermal neutral zone as an estimate of 

thermal niche breadth has also be criticised because animals are able to survive outside 

of this zone and, as such, using this measure may overestimate risk from temperature 

changes (Mitchell et al., 2018). 

To estimate realised climatic niches, climatic tolerances are extracted by 

overlaying climate databases, such as WorldClim (Hijmans, Cameron, Parra, Jones, & 

Jarvis, 2005), on species’ distribution maps (Barnagaud et al., 2012; Menke et al., 

2011), a method that has a set of advantages and limitations. The first advantage is that 

this method is often the only feasible way to estimate climatic niches for the majority 

of species (Oliver et al., 2017). This method can also be readily used to produce 

estimates of precipitation niches (e.g., Frishkoff et al., 2016). However, extracting 

realised tolerances has several limitations. First, due to the observed conservatism of 
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upper thermal limits across lineages, extracting heat tolerances from distribution maps 

may underestimate values for species inhabiting higher latitudes or elevations (Araújo 

et al., 2013). Second, species’ realised niches may be constrained by dispersal 

limitations, biotic interactions such as competition or mutualism, and/or the 

distribution of resources (Araújo et al., 2013; HilleRisLambers et al., 2013; Peterson 

et al., 2011), meaning that realised tolerances may not accurately reflect species’ actual 

climatic tolerances (Araújo et al., 2013). Although, some studies have developed 

methods to remove the issue of dispersal when calculating realised niches, for example 

by focusing on species’ responses along regional climatic and land-use gradients 

(where other variables, such as elevation and temperature, are held constant), then 

using correlative approaches or differences in species abundances to calculate climatic 

affinities or niche centres and breadths (Frishkoff & Karp, 2019; Karp et al., 2017). 

Another biological trait that needs accounting for is migration; species may use 

migration to avoid severe physical conditions in certain areas (Robinson et al., 2009), 

so using their entire distribution may provide inaccurate climatic tolerance estimates. 

Besides these ecological issues, the distribution maps used may have inaccuracies. For 

example, maps drawn up following the precautionary principle have a tendency to 

underestimate species’ geographical ranges (e.g., maps produced by the International 

Union for Conservation of Nature; Herkt, Skidmore, & Fahr, 2017), exacerbated 

because some biodiversity occurrence data sources lack records for large expanses of 

land (e.g., the Global Biodiversity Information Facility; Meyer, Kreft, Guralnick, & 

Jetz, 2015). Yet again, expert-drawn range maps can also overestimate species ranges 

if they include unoccupied/unsuitable areas between locations where a species exists 

(Graham & Hijmans, 2006). These limitations may impact the reliability of the 

climatic tolerances extracted.  

Community temperature indices provide a simple index and are a common and 

powerful method to study changes in average realised climatic niche across or within 

communities (Bowler & Böhning-Gaese, 2017; Frishkoff et al., 2016; Oliver et al., 

2017), but they too have a set of limitations. This practical index allows researchers to 

study these changes in the absence of standardised surveys of species occurrence, 

abundance or population sizes across land-use types and spanning climatic gradients 

(which are rare). However, a drawback of the community temperature index is that, 

because it is a community-level index, the mechanisms underlying differences in this 
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metric cannot be identified and it can disguise qualitatively different trends between 

taxa (Barnagaud et al., 2013; Oliver et al., 2017). Further, species’ identities and 

occurrence are not accounted for when calculating community temperature indices, 

which may result in the presence or absence of an outlier species (which may/may not 

occur for reasons unrelated to the focal environmental factor) unduly influencing 

community temperature index results (Bowler & Böhning-Gaese, 2017). Considering 

which climate variables are used to produce community temperature indices is also 

important; for example, the choice between using mean or extreme temperatures 

within a species’ range will depend on which is more biologically relevant to the study 

taxon and question (Parmesan, Root, & Willig, 2000; Sunday et al., 2014). This could 

cause issues when producing community temperature indices for assemblages, which 

are composed of a variety of species. Similarly, the spatial scale at which temperature 

is measured (i.e., landscape vs. microhabitat), and at which the focal taxon perceives 

the environment also need to be considered (Nowakowski, Frishkoff, Agha, et al., 

2018). Even though there are limitations to these methods of estimating climatic 

tolerances, they have been used extensively when studying responses to local and 

global climatic changes, and are able to capture differences in species- and 

community-level climatic niches across land-use types and over time (Frishkoff et al., 

2015; Oliver et al., 2017).  
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Table 2.1: A summary of the key terms. A summary of the key terms and metrics used in this review, the data sources underlying them, and the 

main advantages and limitations of the metrics calculated. Superscripts refer to the references at the bottom of the table. 

Key term  Metrics calculated  Data sources Main advantages Main limitations 

Fundamental 

climatic niche  

Critical thermal limits  

- Critical thermal maxima 

(CTmax) 

- Critical thermal minima 

(CTmin) 

(these limits are used to 

calculate thermal safety 

margins) 

 

 

Physiological tests 

in the laboratory 
• Calculated under 

controlled conditions 

 

• Metrics produced are often incomparable 

across studies due to different measurement 

protocols1 

• Critical thermal limits are dependent on 

other factors as well as temperature (e.g., 

exposure duration, water supply), which 

may not be taken into account1,2 

• Laboratory tests are only possible for a 

small number of species1,2 

• Rarely used to calculate precipitation or 

moisture tolerance limits3 Example illustration 
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Realised 

climatic niche 

Species temperature 

indices 

(which are used to 

calculate community 

temperature indices)  

Overlaying climatic 

variables on 

species’ spatial 

distributions (range 

maps or occurrence 

data) 

• Can be calculated for 

the majority of species4 

• Can be easily used to 

produce estimates of 

precipitation niches5 

• The indices produced 

are relatively easy to 

understand4 

• Estimates of climatic limits may be 

inaccurate due to influence of dispersal 

barriers, biotic interactions, and resource 

distribution on species’ distributions1,6,7 

• May underestimate the upper thermal 

tolerance limits of species found at high 

latitudes and/or elevations1 

• Relies on accurate species’ distribution 

maps, which are not available for many 

species8. 

• The mechanisms underlying differences 

or changes in these metrics can be difficult 

to identify4 

• The scale of the climatic data used may 

influence results9  

Climatic niche 

breadth 

(fundamental) 

Thermal neutral zone 

 

 

Physiological tests 

in the laboratory   

 

• Calculated under 

controlled conditions 

• Can lead to overestimates of the risk 

posed by climatic changes10 

• Laboratory tests are only possible for a 

small number of species1,2 

Climatic niche 

breadth 

(realised) 

Standard deviation of a 

climatic variable across a 

species’ distribution5  

OR 

The difference between the 

hottest and coldest grid 

cells in a species’ 

distribution11 

Overlaying climatic 

variables onto a 

species’ spatial 

distribution or from 

climatic 

measurements 

taken throughout a 

species’ range 

• Relatively easy to 

produce for a wide range 

of species 

• Metrics produced are often incomparable 

across studies due to different proxies for 

climatic niche breadth used 

• Species’ distribution maps may contain 

inaccuracies8 

• The scale of the climatic data used may 

influence results9 

1Araújo et al., 2013; 2Rezende et al., 2014; 3Sunday et al., 2012; 4Oliver et al., 2017; 5Frishkoff et al., 2016; 6HilleRisLambers et al., 2013; 
7Peterson et al., 2011; 8Herkt et al., 2017; 9Nowakowski, Frishkoff, Agha, et al., 2018; 10Mitchell et al., 2018; 11Barnagaud et al., 2012 
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2.6 Gaps within the literature 

Studying how local climatic changes mediated by land-use change affect local 

communities is a developing research area. By drawing on principles from related 

macroecological literature, in particular that on global climate change and factors 

influencing species’ distributions, I highlight below four important knowledge gaps, 

presenting testable hypotheses where possible (table 2.2). Identifying the mechanisms 

underlying differences in species’ climatic niches between land uses is one of the 

greatest areas of uncertainty and warrants more exploration, but as I have already 

covered this above, it is not included in this section.  
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Table 2.2: Key knowledge gaps. The key knowledge gaps in our understanding of how the local climatic changes resulting from land-use change 

impact communities, along with the conceptual underpinnings for each gap and my hypotheses arising from these. Identifying the mechanisms 

underlying the responses of animals to local climatic changes is also an area of great uncertainty, but this is not mentioned below because potential 

impacts/mechanisms are highlighted in figure 2.1. Superscripts refer to the references at the bottom of the table. 

Gap in the 

literature 

Conceptual underpinning Hypotheses 

Geographic variation Tropical vs. temperate regions 

• The factors influencing species’ distribution limits are suggested to 

differ between tropical and temperate latitudes1,2  

• Tropical species are suggested to be more sensitive to temperature 

changes and live closer to maximum temperature tolerance limits 

than temperate species3-5 

• Temperature differences are greater between open and closed-

canopy areas in tropical compared to temperate regions6,7  

Differences between land uses 

• The magnitude of change in local climate resulting from land-use 

change depends on both the starting natural vegetation (e.g., forest vs. 

grassland) and the final land-use type (e.g., pasture, cropland, or 

urban site)8,9 

 

Increases in temperature due to land-use change from 

natural to human-altered sites will have greater negative 

impacts on tropical than temperate species 

 

 

 

 

 

There will be greater community-level shifts towards 

species with warmer and drier climatic niches following 

land-use changes that result in greater local climatic 

changes (e.g., forested natural habitat to cropland) 

Taxonomic and trait-

based variation 

Endotherms vs. ectotherms  

• Endotherms can thermoregulate through metabolic control, 

whereas ectotherms principally rely on behavioural 

thermoregulation7,10  

• Temperature and precipitation change directly affect the 

development, movement, reproduction and biotic interactions of 

ectotherms3,11 

• Ectotherms frequently operate when their body temperatures are 

close to their maximum temperature tolerance limits12  

 

Temperature and precipitation changes following land-use 

change from natural to human-altered land uses will have 

greater impacts on ectothermic than endothermic species 
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Other trait-based variation 

• Traits such as daily activity pattern (e.g., 

diurnal/nocturnal/crepuscular) and reproductive strategy (e.g., 

viviparous vs. oviparous species) have been linked to temperature 

tolerances and may also be linked to precipitation tolerances13 

Species with traits associated with higher temperature 

and/or lower precipitation tolerance limits will be less 

negatively impacted by the local climatic changes ensuing 

change from natural to human-altered land uses 

Focal climatic 

variables  
• Studying differences across land uses in species’ precipitation or 

moisture niches is rare (but see 14) 

• The ability of individuals to cope with thermal stress is dependent 

on water availability12,13,15 

• It is rare for studies to compare species’ cold tolerances across 

different land-use types (but see 16,17) 

• Human-altered land uses are often drier and (apart from urban 

areas) experience colder minimum temperatures compared to natural 

vegetation14,18,19  

Communities within human-altered sites will, on average, 

consist of species tolerant of drier climates and (apart from 

urban areas) colder minimum temperatures  

Proximity to climatic 

tolerance limits 
• The importance of the proximity of populations to their climatic 

tolerance limits with regard to the potential risk posed by global 

climate change has been highlighted3 

• Climatic changes are suggested to have greater impacts on 

populations with narrower safety margins3,7,20 

• This has rarely been considered in the context of land-use change 

Populations living in environments where they experience 

temperature or precipitation conditions that are closer to 

their maximum thermal or minimum precipitation tolerance 

limits, respectively, will be more negatively impacted by 

land-use changes from natural to human-altered land uses 

Interaction with 

global climate 

change 

• Land-use change is occurring alongside global climate change21 

• Global climate change is resulting in, or predicted to generate, 

hotter temperatures, more extreme heatwaves and greater differences 

between wet and dry seasons in precipitation22 

• How drivers of change such as global climate change and land-use 

change will interact poses great uncertainties23 

Local climatic changes ensuing land-use change has the 

potential to interact synergistically with global climate 

change; for example, with both pressures leading to 

increased temperatures, I predict that ambient temperatures 

will be pushed above critical thermal limits for a larger 

number of species than if the two pressures were acting 

independently 
1Khaliq et al., 2017; 2MacArthur 1972; 3Deutsch et al., 2008; 4Janzen 1967; 5Freeman & Freeman, 2014; 6Kearney et al., 2014; 7Nowakowski, Frishkoff, 

Agha, et al., 2018; 8Senior, Hill, González del Pliego, et al., 2017; 9Jarzyna et al., 2016; 10Sunday et al., 2014; 11Walther et al., 2002; 12Kearney et al., 2009; 
13Clusella-Trullas et al., 2011; 14Friskoff et al., 2016; 15Khaliq et al., 2014; 16Angilletta et al., 2007; 17Piano et al., 2017; 18De Frenne et al., 2019; 19Kalnay & 

Cai, 2003; 20Nowakowski, Watling, et al., 2017; 21IPCC, 2019; 22Collins et al., 2013; 23Oliver & Morecroft, 2014   
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2.6.1 Geographic variation  

The influence of local climatic changes following land-use change may differ 

in strength across space, such as between tropical and temperate latitudes, but this is 

yet to be explored. I hypothesise such latitudinal variation will occur owing to the fact 

that the factors impacting species’ range limits are thought to differ geographically 

(Khaliq et al., 2017; MacArthur 1972). In temperate latitudes, abiotic factors (e.g., 

climate) are thought to be the primary influence on distribution limits, whereas in the 

tropics, biotic factors (interactions with other species) are suggested to prevail (Khaliq 

et al., 2017; MacArthur 1972; Wiens & Donoghue, 2004). For instance, for birds and 

mammals, minimum temperature tolerances appear to limit distributions across 

temperate latitudes while, in the tropics, climatic conditions do not have the same 

influence (Khaliq et al., 2017). On the other hand, due to the current and historic 

stability of the tropical climate, species within this region are suggested to have a 

higher sensitivity to temperature changes (Bonebrake & Deutsch, 2012; Cadena et al., 

2012; Deutsch et al., 2008; Janzen, 1967). For instance, tropical species are living 

closer to their maximum thermal physiological tolerances, with small increases in 

temperature thought to push these species closer to their upper thermal tolerance limit 

proportionally faster than in temperate realms (Deutsch et al., 2008). Elevational shifts 

in tropical montane bird species have also been observed to more closely match 

increases in temperatures compared to those of temperate montane species, supporting 

suggestions that tropical species have a higher sensitivity to warming temperatures 

(Freeman & Freeman, 2014). Conversely, for temperate ectotherms, moderate 

temperature increases following land-use change may be advantageous, increasing the 

time they can spend within their optimal temperature limits (Kearney et al., 2009). 

Temperatures also tend to differ more between closed-canopy and open areas at 

tropical compared to temperate latitudes (although there is seasonal variation; 

Kearney, Isaac, & Porter, 2014; Nowakowski, Frishkoff, Agha, et al., 2018). 

Consequently, due to the higher sensitivity to climatic changes in the tropics, I 

hypothesise that increases in temperatures due to land-use change from natural to 

human-dominated sites will lead to greater negative impacts on species at tropical 

compared to temperate latitudes (investigated in Chapters 3 and 4). 
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The magnitude of local climatic change differs depending on both the starting 

primary vegetation (e.g., forest vs. grassland) and ultimate land-use type (Jarzyna et 

al., 2016; Senior, Hill, González del Pliego, et al., 2017). Consequently, grouping 

together human-altered land uses or only studying a few land uses (such as the focus 

on natural and urban habitats when comparing cold tolerances) may lead to important 

differences being missed. There is also currently little research comparing climatic 

affiliations between communities in non-forested primary habitats and human-

dominated land uses (but see Piano et al., 2017). I hypothesise that there will be greater 

community-level shifts towards species with warmer and drier climatic niches where 

there are larger changes to local climatic conditions following land-use change from 

natural habitats (explored in Chapters 3-5). For example, I hypothesise there will be 

greater shifts following deforestation to create cropland in comparison to conversion 

of grasslands to pastures. Overall, past research points to several mechanisms by which 

the impact of local climatic changes ensuing land-use change could affect species 

differently depending on geographic location. It is vital that these differences are 

understood in order to produce suitable, spatially explicit conservation and 

management plans and identify species at risk from land-use change within different 

regions.  

2.6.2 Taxonomic and trait-based variation  

Species are affected differently by climatic changes (e.g., Oliver et al., 2017; 

Warren et al., 2013), which may lead to species-specific differences in the impact of 

land-use change. Endothermic and ectothermic species, for example, are influenced 

differently by changes in ambient climatic conditions (Jezkova & Wiens, 2016; 

Rolland et al., 2018), thus their responses to these changes following land-use change 

also likely differ. Ectotherms are thought to be more sensitive to climatic changes, a 

result of the direct effect that shifts in temperature and precipitation have on their 

development, movement, biotic interactions, and reproduction (Deutsch et al., 2008; 

Walther et al., 2002). Ectotherms have also been found frequently to operate at body 

temperatures near their maximum temperature tolerance limits (Kearney et al., 2009). 

Further, the removal of natural habitat, which can provide thermal refugia, may also 

impact these species differently. For example, ectotherms predominantly rely on 

behavioural thermoregulation and the presence of microhabitats that can act as thermal 



 

48 

 

refugia, whereas endotherms can thermoregulate through metabolic control 

(Nowakowski, Frishkoff, Agha, et al., 2018; Sunday et al., 2014). Thus, I hypothesise 

that changes in temperature and precipitation following natural to human-dominated 

land-use changes will have greater impacts on ectothermic than endothermic species 

(explored in Chapter 3).  

Even within endotherms and ectotherms, the strategies used for coping with 

environmental changes may vary (Khaliq et al., 2017; Khaliq, Hof, Prinzinger, 

Böhning-Gaese, & Pfenninger, 2014). For instance, to cope with stressful thermal 

conditions, birds are suggested to use physiological adaptations as their main strategy 

whereas, in mammals, behavioural strategies are more common (Khaliq et al., 2014). 

Further, the differences in structure of porous insulation (fur or feathers) between and 

within mammals and birds will also affect their methods of coping with climatic 

change (Porter et al., 2000). For example, feathers allow birds to seal off air flow from 

their skin, a quality that is rarely found in fur (Porter et al., 2000), and may 

consequently impact how animals respond to cold stress. Moreover, wet- and dry-

skinned vertebrate ectotherms may differ in strategies to avoid extreme high 

temperatures, due to the use of evaporative cooling by wet-skinned amphibians that 

can offset heat gain via solar radiation (though this is likely dependent on moisture 

availability; Sunday et al., 2014). Insects also are suggested to differ again in their use 

of behaviour to prevent overheating (Sunday et al., 2014). Consequently, taxonomic 

groups likely respond differently to local climatic changes following land-use change, 

but studies rarely explore how differences in species’ climatic niches across land-use 

types vary between taxa. Importantly, to my knowledge, no studies have yet looked at 

how the climatic niches of mammal communities differ across land uses. Further to 

this, these differences in how species cope with climatic changes may also lead to 

taxonomic differences in the predominant mechanisms underlying the impact of local 

changes in climate. For instance, the loss of thermal refugia may have larger impacts 

on taxa that are not as mobile and rely heavily on refugia to avoid thermal stress. These 

research areas are in need of attention.  

Species’ traits such as daily activity pattern, body mass and reproductive 

strategy may also influence the impact of local climatic changes. Species active during 

the day are more likely to be exposed to stress-inducing high temperatures compared 

to nocturnal species, who instead may face extremes of cold (Kearney & Porter, 2004; 
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Kearney et al., 2009; Navas, 1997). This is reflected in their heat tolerances and 

preferred body temperatures, which are generally higher in diurnal than nocturnal 

species (see Clusella-Trullas, Blackburn, & Chown, 2011). Further, if local climatic 

conditions are more similar between natural and human-altered sites at night than day, 

nocturnal species may be more likely able to survive within human-altered sites 

compared to diurnal taxa (Daily & Ehrlich, 1996). Body mass, which has both direct 

and indirect associations with physiological processes (Gates 1980; Gillooly, Brown, 

West, Savage, & Charnov, 2001), is also related to preferred body temperature, 

although this relationship may vary with precipitation (Clusella-Trullas et al., 2011). 

In terms of reproductive strategy, oviparous squamate species have been found to be 

able to tolerate higher temperatures, on average, than viviparous species (Clusella-

Trullas et al., 2011). Therefore, these traits likely influence how species react to 

temperature and precipitation changes, and thus to climatic alterations after land 

conversion. I hypothesise that species with traits associated with the ability to tolerate 

higher temperatures and/or lower precipitation will be less negatively affected by the 

local climatic changes ensuing land-use change from natural to human-dominated 

sites.  

2.6.3 Focal climatic variables and proximity to climatic tolerances 

When comparing climatic niches across land uses, there has been a tendency 

to focus on temperature, in particular mean and maximum temperatures (e.g., 

Barnagaud et al., 2012; Clavero et al., 2011; Piano et al., 2017), with other climatic 

variables often neglected. However, precipitation niches are important on their own 

(Frishkoff et al., 2016) and, in addition, water availability affects the ability of 

endotherms and ectotherms to cope with thermal stress (Clusella-Trullas et al., 2011; 

Kearney et al., 2009; Khaliq et al., 2014). For example, amphibians’ thermal safety 

margins are contingent on their hydration status (Sunday et al., 2014). Similarly, 

studies rarely consider moisture availability (but see Frishkoff et al., 2015), or species’ 

tolerances to this when studying community composition across land-use types. Local 

moisture availability and precipitation are linked (Savenije, 1995), and certain species 

are dependent on moisture availability (Frishkoff et al., 2015). So, due to human-

dominated land uses generally being hotter and drier than natural habitats (Frishkoff 

et al., 2016), if interactions are occurring between thermal and desiccation stress, there 
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may be greater effects on biodiversity after land conversion than expected just from 

temperature changes (Clusella-Trullas et al., 2011). Consequently, there should be a 

greater focus on precipitation and moisture availability alongside temperature. 

Furthermore, due to land-cover type also influencing minimum temperatures (Suggitt 

et al., 2011), and species’ cold tolerances being closely related to the poleward limits 

of their distributions at temperate latitudes (Khaliq et al., 2017), changes in minimum 

temperatures (e.g., winter or night-time temperatures) could have a marked influence 

on species, but relatively little work has explored this possibility (but see Latimer & 

Zuckerberg, 2017; Piano et al., 2017). Without canopies to buffer minimum 

temperatures (De Frenne et al., 2019), I hypothesise that, in comparison to natural 

forested habitats, communities within human-altered land uses will, on average, be 

able to tolerate lower minimum temperatures (with the exception of urban areas, due 

to the urban heat island effect; investigated in Chapter 3). 

 Another potentially important source of variation in responses to land-use 

change is a population’s proximity to their climatic tolerance limits, a variable 

highlighted in the global climate warming literature (Deutsch et al., 2008; Soroye et 

al., 2020). For example, slight local warming or cooling may have greater impacts on 

the performance of populations that already experience temperatures closer to their hot 

or cold thermal limits (as they will have narrower thermal safety margins) compared 

to those populations with larger safety margins (Deutsch et al., 2008; Nowakowski, 

Frishkoff, Agha, et al., 2018). Very few studies have explored this in the context of 

land-use change (but see Nowakowski, Watling, et al., 2018). I hypothesise that those 

populations in environments with ambient climatic conditions closer to their maximum 

thermal or minimum precipitation tolerance limits will be more negatively impacted 

following natural to human-dominated land-use changes, because of the shift towards 

hotter and drier local conditions following this land-use conversion (investigated in 

Chapters 4 and 5). Identifying whether these potential sources of variation lead to 

differences in responses to land-use change will also help identify the mechanisms 

underlying observed trends.  

Intraspecific variation in responses to land-use change across a species’ 

distribution could also result from the impacts of local climatic changes differing 

between tropical and temperate latitudes, particularly for species with large latitudinal 

range sizes. Calculating realised climatic niches at the species-level using distribution 
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maps may lead to these intraspecific differences being overlooked. This again 

highlights the importance of looking at differences between populations in their 

responses to land-use change. 

2.6.4 Interaction with global climate change and future projections 

 Local climatic changes mediated by land-use change are occurring alongside 

global climate change (Sala et al., 2000), potentially leading to interactions (likely 

synergistic, investigated in Chapter 5; Frishkoff et al., 2015; Guo, Lenoir, & 

Bonebrake, 2018; Kearney et al., 2009). Global climate change is resulting in hotter 

mean temperatures and more extreme hot events (Collins et al., 2013), so rises in local 

temperatures due to land-use change will further increase the temperatures to which 

organisms are exposed (Frishkoff et al., 2016). This may push ambient temperatures 

above critical thermal limits for a greater number of species than if global climate 

change was acting independently. Further, species’ responses to multiple stressors may 

be correlated (Vinebrooke et al., 2004). Early theories looking at the impacts of 

correlated sensitivities to multiple stressors assumed that species were only either 

adversely impacted, or unimpacted (i.e., never benefited) from environmental 

pressures (Vinebrooke et al., 2004). These theories predicted that if species’ 

sensitivities to the stressors were negatively correlated, biodiversity would be severely 

reduced, but positive correlations would lead to smaller overall impacts on community 

biodiversity (Vinebrooke et al., 2004). However, more recent work has taken into 

account that species can benefit from environmental change and that the effects of 

pressures can combine (Frishkoff, Echeverri, Chan, & Karp, 2018). This work has 

shown that when pressures act simultaneously the outcome for biodiversity is much 

more complex; for example, positive correlations between sensitivities can lead to 

either greater or fewer numbers of species lost compared to if the stressors acted 

independently (Frishkoff et al., 2018). Nonetheless, if climate and land-use change 

favour the same species, such as those that can tolerate higher temperatures or lower 

precipitation levels, this may lead to biotic homogenisation, which could have 

detrimental effects for ecosystem functioning (García, Bestion, Warfield, & Yvon-

Durocher, 2018; Karp et al., 2017; Mori, Isbell, & Seidl, 2018). Previous work has 

also indicated that human land conversion can lead to phylogenetic homogenisation, 

by favouring clades that are more tolerant to land-use change (Nowakowski, Frishkoff, 
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Thompson, Smith, & Todd, 2018), which could also be exacerbated by global climate 

changes. The uncertainty surrounding how community biodiversity will be affected 

when environmental pressures act simultaneously further highlights the need to 

understand the mechanisms underlying how these pressures affect different species. 

 Finally, a crucial area yet to be investigated is the future impact of land-use 

change, its effect on local climatic conditions and the interaction with global climate 

change. Some papers have made predictions regarding the impact of land-use and 

climate change on biodiversity (Mantyka-Pringle et al., 2015; Newbold, 2018; Segan, 

Murray, & Watson, 2016), but haven’t accounted for local climatic changes resulting 

from habitat disturbances. Unfortunately, current predictions of species vulnerability 

are likely unreliable, due to the limitations in current methods (Sunday et al., 2014), 

the lack of understanding of the mechanisms underlying differences in climatic niches 

across land uses (Barnagaud et al., 2013) and the likely geographic and taxonomic 

variation. Furthermore, disentangling the effects of global climatic changes, local 

climate changes due to land-use change and the other effects of land-use change can 

be challenging (Oliver & Morecroft, 2014), which adds extra complications when 

trying to understand responses. However, with ongoing exploration into these topics, 

being able to predict how these drivers of change will impact biodiversity will form an 

essential part of conservation planning.  

2.7 Conclusions 

Local climatic conditions are affected by land use, with human-dominated land 

uses often found to have hotter and drier local climates compared to areas of primary 

vegetation  (Britter & Hanna, 2003; Frishkoff et al., 2016). Reflecting this, studies 

from around the globe have demonstrated that communities of vertebrates and 

invertebrates within human-dominated land uses are composed of warmer- and drier-

dwelling species in comparison to communities within natural, undisturbed habitats 

(Frishkoff et al., 2015, 2016; Menke et al., 2011). However, further work is needed to 

understand the mechanisms underlying these community differences, such as the 

relative strength of direct versus indirect influences of temperature and precipitation 

changes. As well as the underlying mechanisms being a major gap in our current 

knowledge, I also highlighted other key areas in need of attention, several of which I 

investigate later in this thesis, such as how trends may differ geographically and 
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between populations. Additionally, species within human-altered land uses are facing 

other pressures, such as global climate change, which may lead to complex synergistic 

interactions and is another area requiring further research (Collins et al., 2013; 

Frishkoff et al., 2016; Sala et al., 2000). Overall, this is a rapidly developing field with 

exciting research being carried out that will help us to identify which species or 

populations may be at risk from land-use change, ways to minimise these negative 

impacts, and thus aid future conservation planning.  
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Chapter 3: 

Human-dominated land uses favour species affiliated 

with more extreme climates, especially in the tropics 

3.1 Abstract  

Rapid human population growth has driven conversion of land for uses such as 

agriculture, transportation, and buildings. The removal of natural vegetation changes 

local climate, with human-dominated land uses often warmer and drier than natural 

habitats. Yet, it remains an open question whether land-use changes influence the 

composition of ecological assemblages in a direction consistent with the mechanism 

of local climatic change. Here, I used a global database of terrestrial vertebrates 

(mammals, birds, reptiles, and amphibians) to test whether human-dominated land 

uses systematically favour species with distinctive realised climatic niches. I (1) 

explored the responses of community-average temperature and precipitation niches to 

different types of land use, (2) quantified the abundances of species with distinctive 

climatic niches across land uses, and (3) tested for differences in emergent patterns in 

communities from tropical versus temperate latitudes. I found that, in comparison to 

species from undisturbed natural habitats, the average animal found in human-altered 

habitats lives in areas with higher maximum and lower minimum temperatures and 

higher maximum and lower minimum precipitation levels. Further, I found that 

tropical assemblages diverged more strongly than temperate assemblages between 

natural and human-altered habitats, possibly because tropical species are more 

sensitive to climatic conditions. My findings strongly implicate the role of land-use 

change in favouring species affiliated with more extreme climatic conditions, thus 

systematically reshaping the composition of terrestrial biological assemblages. These 

findings have the potential to inform species’ vulnerability assessments and highlight 

the importance of preserving local climate refugia.    
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3.2 Introduction  

Human modification of the Earth’s land surface has accelerated over the last 

half century, leading to rapid ecosystem change over increasingly large spatial extents 

(Meyer & Turner 1992; Millennium Ecosystem Assessment 2005; Steffen, Broadgate, 

Deutsch, Gaffney, & Ludwig 2015). It is well recognised that land-use change is 

reshaping biodiversity (Millennium Ecosystem Assessment, 2005; Pereira et al., 

2012). Identifying the key mechanisms linking land-use change to shifts in biological 

assemblages will support predictions of species loss and the impacts of future land 

conversions, and ultimately the development of more sustainable benefits to humans 

from ecosystems (Foley et al., 2005; Haines-Young, 2009; Titeux et al., 2017; van 

Vuuren et al., 2012).  

While land-use change directly alters the available habitat for species 

(Millennium Ecosystem Assessment, 2005), removing primary vegetation can also 

lead to local climatic changes (Chapter 2; Frishkoff et al., 2016). The temperature 

regimes of croplands, pastures and (to a lesser extent) plantation forests differ from 

primary forests, with increases in temperature often reported (Senior, Hill, González 

del Pliego, et al., 2017). Forest canopies can also buffer temperature extremes (Ewers 

& Banks-Leite, 2013), with both increases in maximum temperatures (hot extremes) 

and slight decreases in minimum temperatures (cold extremes) recorded in non-

forested human-disturbed habitats, such as agricultural areas (Alkama & Cescatti, 

2016; De Frenne et al., 2019). Along with a local warming effect, the variability in 

temperature extremes differs between land uses; for example, day-to-day maximum 

temperatures are more variable and thus less predictable in pastures compared to 

forested habitats (Frishkoff et al., 2015). Further, disturbed habitats may offer fewer 

microhabitat refugia compared to primary vegetation (González del Pliego et al., 

2016). Water regimes may also differ among land uses, with the removal of vegetation 

reducing precipitation levels and moisture feedback into the atmosphere (Sampaio et 

al., 2007; Savenije, 1995). Overall, human-altered habitats tend to be hotter and drier 

than natural, more vegetated habitats (Britter & Hanna, 2003; Frishkoff et al., 2016; 

Senior, Hill, González del Pliego, et al., 2017). These localised climatic changes are 

expected to shift the types of species that can colonise and survive under altered 

environmental conditions (Chapter 2; Frishkoff et al., 2016; Nowakowski, Watling, et 

al., 2018).  
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 Tracking climate-related change for entire biological assemblages has been 

achieved by quantifying shifts in the climatic niches of species found in particular 

locations (Barnagaud et al., 2013; Devictor, Julliard, Couvet, et al., 2008; Frishkoff et 

al., 2015). Here, climatic niches are referring to the climatic dimensions of a species’ 

classic niche sensu Hutchinson (Hutchinson, 1957). Species’ physiological tolerance 

limits (fundamental climatic niches) have typically been measured using physiological 

tolerance assays in the laboratory (e.g., Frishkoff et al., 2015). Such tolerance assays 

provide estimates of climatic tolerance limits in the absence of other environmental 

factors – although only for species that can survive in artificial laboratory conditions 

– and return thresholds that may be decoupled from population shifts in nature 

(Chapter 2; Mitchell et al., 2018). By contrast, realised climatic limits and niches (the 

range of environmental conditions occupied in nature; HilleRisLambers et al., 2013) 

are estimated from observed species’ distributions (e.g., Barnagaud et al., 2013). 

Realised niches are also influenced by non-abiotic factors and, consequently, may not 

capture species’ true (physiological) climatic limits (Araújo et al., 2013; 

HilleRisLambers et al., 2013). For example, species’ realised climatic niches may also 

partially be a product of the spatial (and thus climatic) distribution of their critical 

habitats (Barnagaud et al., 2013, 2012). However, realised niches are often the only 

feasible measures of climatic tolerances for the majority of species. The combination 

of realised climatic niche estimates with species assemblage data has emerged as a key 

tool to quantify the effects of climatic changes on the composition of whole 

assemblages (Chapter 2; Oliver et al., 2017).  

A few studies have started to explore whether local changes in environmental 

conditions are driving systematic changes in ecological assemblage composition. 

Lower forest cover and deforestation of primary forest to non-forest land uses have 

been shown to favour vertebrate species inhabiting (realised niche) or tolerant of 

(fundamental niche) warmer conditions (when comparing both average and maximum 

temperatures; e.g., French birds, Barnagaud et al., 2013; Costa Rican and Columbian 

ectothermic vertebrates, Frishkoff et al., 2015; Nowakowski, Watling, et al., 2018). 

Vegetation removal can also select species relatively tolerant of drier climates, and 

thus with drier realised precipitation niches (e.g., Costa Rican birds, Frishkoff et al., 

2016; insects, Menke et al., 2011; Piano et al., 2017). Animals in human-altered sites 

may also have to be tolerant of greater climatic variation, due to changes in vegetation 



 

57 

 

structure, subsequent potential loss of climate-buffering microhabitats, and greater 

variation in temperatures in some human-disturbed land uses compared to natural 

habitats (Frishkoff et al., 2015; González del Pliego et al., 2016). Indeed, the average 

breadth of climatic niches within species assemblages has been found to be wider in 

urban compared to non-urban (rural or forest) assemblages (Barnagaud et al., 2012; 

Piano et al., 2017). Very few studies have considered how both maximum and 

minimum extremes of climatic conditions, and variability in exposure to extremes, 

may impact assemblages in disturbed habitats.  

 One key question is whether tropical and temperate assemblages will display 

similar responses to the altered climatic conditions in disturbed habitats (Chapter 2). 

Evidence from a wide range of studies indicate that tropical species are more sensitive 

to climate and land-use change than their temperate counterparts, possibly because 

they have evolved in a climate that has been relatively stable since the Holocene 

(Corlett 2011; Janzen 1967; Newbold, Hudson, Hill et al., 2016; Pacifici et al., 2017). 

Many species in the tropics are also exposed to temperatures that are closer to their 

upper thermal tolerance limits, leading to the expectation that tropical species will be 

relatively sensitive to warming and the removal of thermal refugia (Deutsch et al., 

2008; Khaliq et al., 2014; Sunday et al., 2014). Whether the effects of land use on the 

climatic niche properties of assemblages differ geographically has not previously been 

tested. I predict that there will be larger effects of land use on the climatic properties 

of assemblages at tropical compared to temperate latitudes. 

 In this chapter, I test whether the local climatic changes associated with human-

altered land uses lead to predictable changes in the structure of entire ecological 

assemblages. I take advantage of the global scope of the data to test the prediction that 

effects will be stronger at tropical compared to temperate latitudes. I also predict that 

human-altered habitats will host species able to tolerate a wider range of climatic 

conditions. Further, to attribute assemblage-level changes to the contributions of 

different species, I investigate whether the abundances of species with different 

climatic niches vary systematically with land use. I predict that species affiliated with 

warmer-than-average temperatures, drier-than-average precipitation levels and 

greater-than-average range-wide variation in both temperature and precipitation 

conditions will be the least negatively affected by human-altered habitats. 
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3.3 Methods  

3.3.1 Abundance and land-use data 

Data representing the assemblage composition of terrestrial vertebrates in 

different land uses were acquired from the PREDICTS (Projecting Responses of 

Ecological Diversity In Changing Terrestrial Systems) Project database (Hudson et al., 

2016, 2017). The PREDICTS database combines data from studies worldwide that 

compared ecological assemblages under different levels of land use (Hudson et al., 

2014). I focus on terrestrial vertebrates because there is reasonably comprehensive 

species distribution information available for these taxa, which makes the estimation 

of their realised climatic niches possible. The subset of PREDICTS data that have 

abundance records for vertebrate assemblages are from 146 studies (6,948 

assemblages), representing 4,147 species (527 mammals, 2,941 birds, 317 reptiles and 

362 amphibians). The PREDICTS Project database is hierarchically structured: it 

consists of data from original Source publications, each containing one or more Studies 

(studies within a single source are divided if sampling methods differ), which may 

themselves be split into Spatial blocks of individual sampled Sites (publication > study 

> block > site; Hudson et al., 2014).   

The PREDICTS Project team assigned a predominant land-use category to 

each site within each study, based on the description of the habitat given in the original 

source publication, classified against a detailed set of criteria (Hudson et al., 2014; 

Appendix 1, Section 1, table S3.1). Land-use categories considered in the present study 

were: (1) primary vegetation (natural vegetation, no evidence of past destruction), 

secondary vegetation (natural vegetation recovering from destruction), split into two 

groups - (2) young secondary vegetation (sites that have not had long to recover) and 

(3) advanced secondary vegetation (included intermediate and mature secondary 

vegetation from the PREDICTS Project database, i.e., sites that have been recovering 

for longer), (4) plantations (e.g., timber/fruit/coffee/oil-palm or rubber plantations), 

(5) croplands (areas used to cultivate herbaceous crops, including for animal feed) and 

(6) pastures (land on which livestock are grazed). Even though the land-use 

classification is coarse and somewhat subjective, a repeatability study showed 

classifications to be reasonably consistent (reported in Hudson et al., 2014). 
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3.3.2 Distribution data 

Species’ distributions (extent-of-occurrence maps) were used to estimate 

species’ realised climatic niches (from here referred to as ‘climatic niches’). The 

extent-of-occurrence maps for terrestrial mammals, amphibians, and reptiles were 

acquired from the International Union for Conservation of Nature (IUCN 2016a) and 

for birds from BirdLife International (2012). Since I was interested in the full extent 

of species’ natural ranges, I included all parts of the geographic range where the 

species occurrence status was considered to be extant, probably extant, possibly extinct 

or extinct (post 1500); and I included areas where the species is thought to be resident 

or present in the breeding or non-breeding seasons. Specifically, I excluded areas 

where the species is possibly extant, its presence is uncertain or is vagrant, and areas 

that are used for relatively short periods of the year as passages during migration or if 

the seasonal occurrence is uncertain. The range maps for birds followed the same 

coding scheme as those provided by IUCN. The original polygon maps were rasterised 

to an equal-area grid (500 m × 500 m per pixel; Behrmann projection). I selected this 

resolution as a compromise between the computational limitations of small spatial 

grains and the need to include as many very-narrow-ranged species as possible. For 

species with known elevational limits (number of species with only upper limit known 

= 2,264, lower limit known = 9, both limits known = 694; IUCN 2016a, BirdLife 

International 2018), distribution maps were cut by these limits (which is standard 

practice when estimating species’ extent-of-occurrence; e.g., Jetz, Wilcove, & Dobson 

2007).  

 I required data for a wide range of species over the global terrestrial area, for 

which no better maps exist (Herkt et al., 2017). My analyses (which did not predict 

into unsampled space or time) required a quantitative estimate of the relative (across 

species) means and range-wide variation in climatic conditions with which each 

species was affiliated. Expert drawn species distribution maps tend to underestimate 

species’ extent-of-occurrence, but overestimate species occupancy (Herkt et al., 2017). 

Therefore, I tested the robustness of my realised climatic niche estimates by comparing 

my main results to results using climatic niches derived from occurrence records in the 

Global Biodiversity Information Facility (GBIF, https://www.gbif.org), which 

provides information on area of occupancy (see Appendix 1, Section 2 for details on 

how I acquired realised niche estimates from GBIF data). Since GBIF occurrence 
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records have strong geographic and taxonomic biases (Meyer et al., 2015), I focus on 

the results using the IUCN and BirdLife International maps in the main text. 

3.3.3 Climatic data 

I acquired estimates of climate from WorldClim Version 1.4 (Hijmans et al., 

2005), at a 30 arc-second resolution (0.86 km2 at the equator). These estimates 

represent averages for the period 1960 – 1990. The raw estimates were resampled to a 

500 m equal-area projection (Behrmann projection) using bilinear interpolation to 

match species’ distribution data, following previous studies (Khaliq et al., 2017; 

Newbold, 2018). In my analysis, I focused on four climatic variables: maximum 

temperature of the warmest month (Tmax), minimum temperature of the coldest month 

(Tmin), and precipitation of the wettest (Ppmax) and driest (Ppmin) months. Variables 

describing climatic extremes are suggested to be more appropriate than averages for 

explaining species’ distribution and responses to environmental pressures (Araújo, 

Alagador, Cabeza, Nogués-Bravo, & Thuiller, 2011; Mantyka-Pringle et al., 2012; 

Zimmermann et al., 2009).  

3.3.4 Species-level climatic niche  

I quantified the extremes and variation across species’ distributions of each of 

the four climatic variables. I did this by overlaying distribution maps onto climate data 

and calculating the maximum (for Tmax and Ppmax) or minimum (for Tmin and Ppmin) 

and standard deviation (Frishkoff et al., 2016) of each climatic variable for each 

species (ArcGIS 10.4; ESRI 2015). I use the term ‘range-wide variation’ to reflect the 

breadth of recorded climatic extremes across a species’ distribution. Estimates of 

climatic niche properties were available for 3,606 species (448 mammals, 2,709 birds, 

121 reptiles and 328 amphibians), from 6,123 assemblages (140 studies across 47 

countries, see Appendix 1, Section 3, fig. S3.4, and table S3.3 for the spatial extent 

sampled). Consequently, for each species I calculated eight climatic niche properties: 

their Tmax maximum value and range-wide variation, Tmin minimum value and range-

wide variation, Ppmax maximum value and range-wide variation and Ppmin minimum 

value and range-wide variation.  



 

61 

 

3.3.5 Community-average climatic niche properties 

For each species assemblage, I calculated community weighted means 

(CWMs) of species-level climatic extremes and range-wide variation for each climatic 

niche property. CWMs are calculated by finding the average of each species’ climatic 

niche property across all species in an assemblage, weighted by species’ abundance 

(Jiguet et al., 2011; Oliver et al., 2017). As an example, higher CWM values for 

maximum Tmax (denoted by CWM(maxTmax)) signifies communities with higher 

proportions of individuals of species found in areas with relatively higher maximum 

temperatures. At the other end of the spectrum, lower CWM values for minimum Tmin 

(CWM(minTmin)) reflects communities with higher proportions of individuals of 

species affiliated with lower minimum temperatures. I use CWM(maxPpmax) and 

CWM(minPpmin) to refer to the community weighted means for maximum Ppmax and 

minimum Ppmin, respectively. Similarly, communities with higher CWM Tmax range-

wide variation are composed of higher proportions of individuals of species that 

occupy areas experiencing a larger range of maximum temperatures. Further, I 

produced CWMs unweighted by species abundance (i.e., average for a species within 

a community, Appendix 1, Section 4) to check that weighting by abundance did not 

affect my results. I also calculated the correlations between the community-average 

climatic niche properties to see whether changes in these properties across land uses 

may be linked (Appendix 1, Section 5). In addition, to explore the potential influence 

of outliers on CWMs, I also (a) produced community weighted medians (i.e., the 

median value of each species’ climatic extreme and variation across all species in an 

assemblage, weighted by species’ abundance), and (b) produced CWMs after 

excluding the upper and lower 2.5% of species-level climatic extremes and range-wide 

variation values. 

Changes in community-average climatic niche properties allow us to gain an 

overall impression of changes in the structure of ecological assemblages. However, 

community change is multi-dimensional, and the same numerical responses can be 

underpinned by different responses of species with distinctive climatic niches, 

representing alternative mechanisms of change. For instance, having a greater 

proportion of individuals from species affiliated with warmer maximum temperatures 

and/or fewer individuals from species affiliated with colder maximum temperatures 

could both contribute to higher CWM(maxTmax) values (Jiguet et al., 2011). Whether 
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a species has higher or lower abundances in certain land-use types also likely depends 

on the breadth of climatic conditions they are able to tolerate. Thus, I explored how 

differences in the abundance of species groups with different climatic niche properties 

contribute to changes in community-level properties. To do so, I investigated the 

response to land use of species with different climatic niches (climatic extremes and 

range-wide variation). For this analysis, due to the prediction that responses to land 

use will differ between geographic zones, assemblages at tropical and temperate 

latitudes were analysed separately. Species within each assemblage were split (a) into 

four groups around the within-study medians of the Tmax maximum and range-wide 

variation and then, separately, (b) into four groups based on Ppmin minimum and range-

wide variation (Appendix 1, Section 6, table S3.5-6). I focused on Tmax and Ppmin for 

this analysis because the differences in CWMs across land uses were strongest for 

these climatic variables.  

Migratory species can move to avoid certain climatic conditions (Robinson et 

al., 2009), which may bias my results. Therefore, I also compared community-average 

realised climatic niche properties with and without the inclusion of migratory birds 

(migratory status acquired from BirdLife International 2018). 

3.3.6 Covariates 

I considered three additional covariates that may influence community-average 

climatic niche properties (Frishkoff et al., 2015). In all models, I considered a site’s 

(1) elevation and (2) climate (matching the variable used to calculate the CWM, e.g., 

Tmax for CWM(maxTmax)). Measures of these two covariates from each site were 

acquired from WorldClim Version 1.4 (Hijmans et al., 2005). Species’ range size 

influences sensitivity to land use (Newbold et al., 2018), an effect that may be 

independent of range-wide climatic variation, with which it is often strongly correlated 

(Appendix 1, Section 7, table S3.7). Therefore, I also considered (3) community-

average range size as a potential covariate in models of CWM range-wide climatic 

variation. The community-average range sizes (community weighted means) were 

presented in Newbold et al., (2018) and published alongside the paper (DOI: 

10.5519/0066354). The estimates were based on the same species’ distribution maps 

as described above. The polygon maps were first projected onto an equal-area grid 

using the Project_management function, and the area of each polygon calculated using 
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the CalculateAreas_stats function, in ArcGIS 10.4 (ESRI 2015). The areas of the 

polygons were then summed to estimate the total range area of each species, before a 

community weighted mean was calculated, weighted by abundance (Newbold et al., 

2018). CWM range sizes were unobtainable for 18.7% of assemblages, so these 

assemblages were excluded in range-wide climatic variation analyses, leaving 4,977 

assemblages composed of 3,415 species (394 mammals, 2,649 birds, 74 reptiles and 

298 amphibians). Packages in R 3.4.0 (R Core Team 2019) used for data-handling and 

geospatial operations included ‘plyr’ v.1.8.4 (Wickham 2011), ‘raster’ v.2.5.8 

(Hijmans 2016), ‘rredlist’ v.0.5.0 (Chamberlain 2018) and ‘sp’ v.1.2.5 (Bivand et al., 

2013; Pebesma & Bivand 2005). 

3.3.7 Statistical analyses 

I used linear mixed-effects models to test for differences across land uses in (1) 

community-average climatic extremes, (2) community-average range-wide climatic 

variation (table 3.1) and (3) abundances of species groups with different climatic 

niches. Models were produced in R 3.4.0 (R Core Team 2019), using the package 

‘lme4’ v.1.1.17 (Bates, Maechler, Bolker & Walker, 2015). Below I explain which 

fixed effects, random effects and covariates were included in each model (see table 3.2 

for further details). 
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Table 3.1: Spread of vertebrate assemblages across land uses. The number of 

vertebrate assemblages from the PREDICTS Project database within each land use 

included in the analyses looking at differences in community-average climatic 

extremes (and, in parentheses, range-wide variation). For definitions of land-use types, 

see Appendix 1, Section 1, table S3.1 and Hudson et al., (2014). 

Land use Geographic zone 

 Tropical Temperate 

Primary vegetation 1369 (1123) 774 (587) 

Advanced secondary vegetation (ASV) 504 (363) 84 (75) 

Young secondary vegetation (YSV) 301 (269) 156 (150) 

Plantation 865 (622) 270 (246) 

Cropland 439 (355) 485 (458) 

Pasture 564 (435) 291 (273) 

Total 4042 (3167) 2060 (1789) 

 

Community-average climatic extremes and range-wide variation 

To explore how community-average climatic niches differed across land uses, 

I produced a set of eight models (one model for each climatic niche property: 

CWM(maxTmax), CWM(minTmin), CWM(maxPpmax), CWM(minPpmin), CWM range-

wide variation in Tmax/min, Ppmax/min). I log(x+1) transformed CWM(maxPpmax) and 

CWM(minPpmin). I selected fixed effects using backwards stepwise model 

simplification (with the models fitted using maximum likelihood; Zuur, Ieno, Walker, 

Saveliev, & Smith 2009). Land use, geographic zone (tropical or temperate), and the 

interaction of geographic zone with land use were always included as categorical fixed 

effects. Sites were classified as ‘Tropical’ if located between 23.44°N and 23.44°S, 

and ‘Temperate’ if located between the tropics and Arctic or Antarctic Circle (thus 

including boreal habitats between 50 – 60°N, as there were not enough data to classify 

them separately). The site’s elevation and the value of the climatic variable in question 

at each site were added as continuous covariates into the backwards stepwise model 

simplification. I set a threshold for excluding correlated covariates at |r| > 0.5 

(recommended for mixed-effects models by Harrison et al., (2018)); if the correlation 

between elevation and the value of the climatic variable in question at each site were 
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above this threshold, the climatic variable was kept preferentially, as it likely had a 

more direct influence on communities. For CWM range-wide climatic variation, I also 

included CWM range size (Newbold et al., 2018) as a continuous covariate into the 

backwards stepwise model simplification. Within all models I also included a nested 

random-intercept term for study identity (to account for non-random structure in the 

response data due to study-dependent differences, e.g., sampling methods) and for the 

spatial ‘blocks’ of sampled sites within studies. I did not include random slopes in my 

models (i.e., to let the effect of land use vary across studies) due to convergence issues, 

which were likely caused by the unbalanced sampling of land uses among studies. 

However, despite the convergence issues, the results for models with random slopes 

(not shown) were quantitatively very similar. Further, CWMs may be prone to type I 

errors (Miller, Damschen, & Ives, 2019); so, for each CWM model, I also used a null 

model approach to further test the significance of my observed results. To produce null 

models, I randomly shuffled species-level climatic affiliations between species within 

each study (I randomised within studies because of the hierarchical structure and 

global spread of the PREDICTS dataset; Cornwell & Ackerly 2010; Yang, Powell, 

Zhang & Du, 2012). For each CWM model, 999 randomisations were produced. I then 

compared my observed results to those produced from the null models using the 

randomised datasets, with results classed as significant if they were outside the lower 

2.5th or upper 97.5th percentile of the null model (i.e., a two-tailed test).  

Ambient conditions affect endothermic and ectothermic vertebrates 

differently, due to their distinctive physiologies (Deutsch et al., 2008; Frishkoff et al., 

2016; McNab 2012; Senior, Hill, González del Pliego, et al., 2017); therefore, I also 

produced a separate set of models comparing the response to land use of community-

average climatic niche properties for these two groups. The methods, results and a 

discussion of these analyses can be found in Appendix 1 (Section 8, table S3.8-11, fig. 

S3.6). 

Abundances of species groups with different climatic niches  

In the abundance models, I log(x+1) transformed the abundance measures. I 

chose this transformation because many different types of abundance measure 

(including non-integer measures) were included in the database, and so values did not 

conform to a Poisson distribution. Land use (categorical fixed effect), the site’s 
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elevation and the value of the climatic variable in question at each site (continuous 

fixed effects) were considered in a backwards stepwise model simplification as above 

(using the same method for excluding highly correlated covariates). As in the previous 

models, I included a nested random-intercept term for study identity and spatial block. 

In these models, advanced and young secondary vegetation categories were grouped 

to become ‘secondary vegetation’ to ensure all land-use categories had data for over 

50 assemblages in each model.  

For all models, I tested the statistical significance of fixed effects using 

likelihood ratio tests (Zuur et al., 2009). To test the main effects, I removed all 

interaction terms. For the models’ final structures, see Appendix 1 (Section 9, table 

S3.12). I used Moran’s I tests to check for spatial autocorrelation in the residuals of 

each individual study (Newbold et al., 2015). 

Table 3.2: Model structures. The fixed effects, covariates, and random effects 

considered for each model (denoted by X). The response variables were either 

community-average (community weighted mean, CWM) climatic extremes 

(maximum or minimum) or range-wide variation in one of the climatic variables 

considered (maximum temperature of the warmest month, Tmax; minimum temperature 

of the coldest month, Tmin; precipitation of the wettest month, Ppmax; precipitation of 

the driest month, Ppmin), or the abundance of a species’ group. Fixed effects included 

land-use type (LU; this effect was included in every model), geographic zone (GZ; 

tropical vs. temperate latitudes) and the interaction between the two (LU×GZ). 

Covariates included a site’s elevation (though this was excluded from models focused 

on Tmax), the value of the climatic variable in question at the site (CV) and community-

average range size (Range). The fixed effects and covariates were selected using 

backwards stepwise model simplification. The random effects included study identity 

(to account for differences between studies in sampling methods and response 

variables) and spatial block (to account for the spatial structure of sites sampled within 

each study).   
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Model Response variable Fixed effects (categorical) Covariates (continuous) Random effects 

(nested) 

  LU GZ LU×GZ Elevation CV Range Study 

identity 

Spatial 

block 

Community-average climatic niche models         

 CWM(maxTmax)  X X X  X  X X 

CWM(minTmin) X X X X X  X X 

CWM(maxPpmax) or (minPpmin) 

(log(x+1) transformed) 

X X X X X  X X 

 Variation in Tmax X X X  X X X X 

 Variation in Tmin/ Ppmax/Ppmin X X X X X X X X 

Abundance models         

 Abundance of the species’ group 

(log(x+1) transformed) 

X   X 

(although 

excluded in 

Tmax and 

tropical Ppmin 

models) 

X  X X 
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3.3.8 Habitat specialisation 

  Species’ climatic niches may also partially be a product of the spatial (and thus 

climatic) distribution of their critical habitats (Barnagaud et al., 2013, 2012). As a 

result, any observed differences in niche properties among land uses may simply 

reflect differences in the occurrence of habitat specialists (forest specialists in 

particular due to forest canopies buffering climatic extremes; De Frenne et al., 2019). 

To check whether this was the case, I explored the influence of habitat specialisation 

on climatic niche differences across land uses. I first compared species-level climatic 

niche properties with an index of species-level habitat breadth, and then compared 

species-level climatic niche properties between forest specialists and non forest-

specialists (Appendix 1, Section 10). Finally, I ran two sets of models to compare the 

responses to land use in community-average climatic niche properties when forest 

specialist species were included and excluded from analyses. See Appendix 1 (Section 

10) for further details of these tests.  

3.4 Results  

3.4.1 Summary of results 

 Community-average climatic niche properties varied both across land uses and 

between geographic zones (table 3.3, fig. 3.1). In comparison to primary vegetation, 

assemblages in human-altered habitats were composed, on average, of species 

affiliated with higher maximum and lower minimum temperatures and higher 

maximum and lower minimum precipitation levels, and generally wider range-wide 

variation in Tmax (the effect of land use for all climatic niche properties, p < 0.001; fig. 

3.1). Differences in climatic niche properties of assemblages relative to primary 

vegetation were generally larger within the tropics (fig. 3.1). These results appear to 

be driven by human-disturbed land uses having both higher abundances of some 

species (as predicted, those inhabiting areas with higher maximum temperatures, lower 

minimum precipitation levels, and a broader range of climatic conditions) and lower 

abundances of others (those inhabiting areas with lower maximum temperatures, 

higher minimum precipitation levels, and a narrower range of climatic conditions; fig. 

3.2-3).  
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Table 3.3: Range and means of community weighted means. The range (and mean in parentheses) of community weighted means (CWM) for 

each climatic niche property across land uses and within each geographic zone. The climatic niche properties included the CWM of the climatic 

extreme (maximum or minimum) and range-wide variation in maximum temperature of the warmest month (Tmax), minimum temperature of the 

coldest month (Tmin), precipitation of the wettest month (Ppmax) and precipitation of the driest month (Ppmin). ASV and YSV denote advanced and 

young secondary vegetation, respectively. 

 Community weighted means 

 Max Tmax (°C) Min Tmin (°C)  Max Ppmax 

(mm) 

Min Ppmin 

(mm) 

Tmax variation 

(°C) 

Tmin variation 

(°C) 

Ppmax variation 

(mm) 

Ppmin variation 

(mm) 

Land-use type        

 Primary 

vegetation 

24.7 – 47.3 

(38.3) 

-57.0 – 18.8 

(-5.9) 

112 – 2901 

(942.4) 

0 – 54.8 

(1.8) 

0.7 - 8.0 

(3.1) 

0.7 - 16.4 

(5.0) 

9.6 - 482.4 

(88.3) 

1.5 - 108.6 

(26.5) 

 ASV 29.0 – 47.4 

(36.9) 

-49.3 – 15.6 

(-1.3) 

253 – 2901  

(1100.3) 

0 – 103.3 

(5.2) 

0.7 - 6.5 

(2.8) 

0.9 - 14.0 

(4.3) 

39.9 - 446.7 

(97.5) 

1.7 - 90.8 

(37.7) 

 YSV 30.3 – 48.6 

(38.7) 

-55.0 – 15.1 

(-8.4) 

170 – 2901  

(1030.5) 

0 – 49.0 

(1.6) 

1.1 - 7.2 

(3.3) 

1.1 - 15.6 

(5.4) 

9.6 - 188.3 

(85.4) 

1.0 - 74.0 

(21.5) 

 Planation 24.4 – 48.9 

(37.6) 

-47.0 – 19.9 

(-3.5) 

271 – 2901  

(999.5) 

0 – 53.0 

(3.5) 

0.6 - 6.9 

(3.1) 

0.6 - 16.2 

(4.8) 

13.9 - 212.4 

(89.6) 

5.2 - 118.9 

(31.8) 

 Cropland 27.7 – 49.0 

(40.8) 

-57.0 – 15.4 

(-16.5) 

271 – 2901  

(1112.6) 

0 – 8.9 

(0.3) 

1.4 - 6.9 

(4.0) 

1.5 - 19.0 

(7.3) 

27.1 - 381.3 

(85.7) 

4.4 - 95.4 

(25.0) 

 Pasture 26.5 – 48.9 

(39.7) 

-57.0 – 15.7 

(-9.9) 

231 – 2901  

(981.6) 

0 – 10.5 

(0.4) 

0.8 - 8.3 

(3.5) 

1.0 - 21.6 

(6.0) 

28.3 - 177.8 

(86.3) 

1.0 - 141.9 

(24.5) 

Geographic zone                

 Tropical 24.4 – 46.8 

(37.4) 

-57.0 – 19.9 

(1.5) 

170 – 2901  

(949.7) 

0 – 103.3 

(2.8) 

0.6 - 6.9 

(2.6) 

0.6 - 19.0 

(3.6) 

9.6 - 188.3 

(91.9) 

1.0 - 141.9 

(30.0) 

 Temperate 25.9 – 49.0 

(40.9) 

-57.0 – 11.0 

(-24.5) 

112 – 2901  

(1114.5) 

0 – 33.0 

(0.6) 

1.0 - 8.0 

(4.5) 

1.1 - 16.2 

(8.7) 

18.5 - 210.5 

(82.5) 

2.8 - 69.2 

(23.1) 
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My findings were robust to several possible confounding issues. First, very 

small differences were observed between community-average climatic niche 

properties produced with and without migratory bird species included (Appendix 1, 

Section 11, table S3.20; BirdLife International 2018), so migratory species were 

included in the analyses. Second, using a null model approach provided additional 

support for my results relating to community-average climatic extreme affiliations, 

with the majority of observed results found to be significant using a two-tailed test 

(fig. 3.1). However, fewer observed community-average range-wide climatic variation 

results were significantly different in comparison to null expectations (fig. 3.1), thus I 

urge caution when interpreting these results. Third, when using occurrence data from 

GBIF, the results were generally qualitatively and quantitatively very similar to those 

presented in the main text (Appendix 1, Section 2, fig. S3.1-3). Fourth, correlations 

among community-average climatic niche properties were generally low, though a few 

(e.g., between CWM Tmax range-wide variation, CWM Tmin range-wide variation and 

CWM(minTmin)) were more highly correlated (Appendix 1, Section 5, table S3.4). 

Fifth, correlations between species-level climatic niche properties and habitat breadth 

were all low (|r| < 0.41). Although there were some differences observed between 

species-level climatic niche properties for species classed as forest versus non forest-

specialists (Appendix 1, Section 10, fig. S3.7), the results from models including and 

excluding forest specialists were also qualitatively and quantitatively very similar 

(Appendix 1, Section 10, fig. S3.8-9). Finally, using community weighted medians or 

CWMs that excluded the upper and lower 2.5% of species-level climatic affiliations 

(results not shown) both produced qualitatively and quantitatively very similar results 

to models produced using CWMs that included all species, from this I am confident 

that the results are not being driven by outliers.  

3.4.2 Community-average climatic niche properties 

 Overall (with the exception of temperate plantations), CWM(maxTmax) was 

higher in human-disturbed land uses than primary vegetation, with larger differences 

relative to primary vegetation in tropical croplands and pastures compared to the same 

habitats at temperate latitudes (for all community-average climatic niche properties, 

land use by geographic zone interaction effect, p < 0.015; fig. 3.1). CWM(minTmin) 

was consistently lower in human-disturbed land uses than primary vegetation. 
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Differences in land-use responses between tropical and temperate assemblages were 

smaller than for CWM(maxTmax), but the interaction remained significant (p < 0.001). 

Interestingly, the difference between CWM(minTmin) in young secondary vegetation 

compared to primary vegetation was much larger at temperate compared to tropical 

latitudes. There were inconsistent (although significant) geographic differences in 

community-average thermal range-wide variation across land uses. It is important to 

note that CWM(minTmin) and CWM(Tmax range-wide variation) values were relatively 

highly negatively correlated (Appendix 1, Section 5, table S3.4), which hinders my 

ability to separate their relative importance. 

CWMs were generally higher for maximum Ppmax and lower for minimum 

Ppmin in human-altered land uses compared to primary vegetation across both 

geographic zones. In most cases, differences in CWM(maxPpmax) and 

CWM(minPpmin) values relative to primary vegetation were larger at tropical 

compared to temperate latitudes. Tropical-temperate differences in community-

average precipitation range-wide variation between land uses were not consistent, but 

the pattern was similar for both Ppmax and Ppmin, with no noticeable general difference 

between primary vegetation and human-dominated land uses (fig. 3.1).  
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Figure 3.1: Modelled differences in community-average climatic niche properties 

across land uses. Geographic variation (tropical vs. temperate latitudes) in modelled 

differences across land uses in community weighted mean (CWM) maximum (max, a, 

e) or minimum (min, e, g) and range-wide variation (b, d, f, h) in maximum 

temperature of the warmest month (a, b), minimum temperature of the coldest month 

(c, d), precipitation of the wettest month (e, f) and precipitation of the driest month (g, 

h). All values are relative to assemblages within primary vegetation (dotted line). Error 

bars show 95% confidence intervals. ASV and YSV denote advanced and young 
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secondary vegetation, respectively. Transformed values were back-transformed from 

the log-scale used for analysis before plotting. A star (*) or dot (▪) above values 

indicates that the result was significant when compared against null models in a two-

tailed or one-tailed test, respectively.  

3.4.3 Abundance models  

The abundances of species groups across land uses differed in direction and 

magnitude depending on the groups’ thermal niche properties (fig. 3.2). In the tropics, 

species with warmer Tmax maximum values and broader Tmax range-wide variation had 

higher abundances relative to primary vegetation across human-altered land uses (fig. 

3.2). Generally, other species groups had lower abundances in human-altered land 

uses. Similar patterns were observed at temperate latitudes, although differences 

between primary vegetation and human-altered land uses were generally smaller 

compared to tropical latitudes (fig. 3.2). 
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Figure 3.2: Abundance of species with different thermal niches across land uses. 

The total abundance of species with different thermal (Tmax) niches at tropical (a-d) 

and temperate (e-h) latitudes across human-altered land uses, relative to assemblages 

within primary vegetation (dotted line). Species groups differ in the range-wide 

variation in thermal (Tmax) conditions experienced over their range (‘broad’ vs. 

‘narrow’) and maximum Tmax value (‘warm’ vs. ‘cold’). Error bars show 95% 

confidence intervals; SV denotes secondary vegetation (consisting of the young and 

advanced secondary vegetation land-use categories). Values were back-transformed 
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from the log-scale used for analysis before plotting. N.S. denotes that the effect of land 

use was not significant within that species group. 

The abundances of species groups across land uses also varied between groups 

differing in precipitation niches (fig. 3.3). At tropical latitudes, species groups with 

wetter-than-average minimum Ppmin values had the lowest abundances within human-

dominated land uses compared to primary vegetation. Species with narrower- and 

drier-than-average Ppmin range-wide variation and minimum values, respectively, were 

the only group that had higher abundances in some human-disturbed land uses 

compared to primary vegetation. Differences among species groups were much 

smaller at temperate latitudes (fig. 3.3). 
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Figure 3.3: Abundance of species with different precipitation niches across land 

uses. The total abundance of species with different precipitation niches (Ppmin) at 

tropical (a-d) and temperate (e-h) latitudes across human-altered land uses, relative to 

assemblages within primary vegetation (dotted line). Species groups differ in the 

range-wide variation in precipitation (Ppmin) levels experienced throughout their range 

(‘broad’ vs. ‘narrow’) and minimum Pmin values (‘dry’ vs. ‘wet’). Error bars show 95% 

confidence intervals; SV denotes secondary vegetation (consisting of the young and 

advanced secondary vegetation land-use categories). Values were back-transformed 
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from the log-scale used for analysis before plotting. N.S. denotes that the effect of land 

use was not significant within that species group. 

 For full statistical results, see Appendix 1, Section 9 (table S3.14 and S3.15). 

The residuals of the community-average climatic niche properties models generally 

did not show significant spatial autocorrelation for > 5% of studies (as would be 

expected by chance; Appendix 1, Section 9, table S3.16), but did for the abundance 

models (range across species groups and climatic variables 0-25%; Appendix 1, 

Section 9, table S3.17).  

3.5 Discussion 

 Species from assemblages in human-dominated land uses tend to be affiliated 

with more extreme climates, on average, than species found in primary vegetation, 

especially within the tropics. This is driven by human-altered land uses having both 

higher and lower abundances of species with different climatic niches. Specifically, 

assemblages in human-disturbed land uses were composed of greater proportions of 

individuals of species affiliated with higher maximum temperature and precipitation 

and lower minimum temperature and precipitation. These results enhance our 

understanding of potential interactions between land-use and climate change. Both 

these major drivers are reshaping communities by selecting for species with affinities 

for greater extremes in climate (Barnagaud et al., 2012; Blois, Zarnetske, Fitzpatrick, 

& Finnegan, 2013; Tayleur et al., 2016), suggesting the likelihood of synergistic 

interactions. This finding improves our ability to predict how biodiversity will be 

reshaped by future climatic changes in a world increasingly dominated by human-

disturbed land uses. 

Local climatic changes are strong ecological filters, influencing which 

individuals benefit or lose out from land-use change, and ultimately community 

composition (Chapter 2; Frishkoff et al., 2015). Here, I quantified the effect of species 

gains and losses on the structure of whole assemblages. A key question is what 

mechanisms are driving the observed patterns? In addition to changes in average 

temperatures, land-use change can increase the frequency of heat waves (Mishra, 

Ganguly, Nijssen & Lettenmaier, 2015) and extreme cold events (Medvigy, Walko 

and Avissar 2012). Unlike in forests, where the buffering effect of canopies results in 

warmer minimum and lower maximum temperatures (Ewers & Banks-Leite, 2013), 
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species in human-dominated land uses may not have access to the microhabitats 

required to avoid extreme heat and cold exposure (McNab 2012; Kearney, Shine and 

Porter 2009; Sunday et al., 2014). My results highlight that human-dominated land 

uses may be particularly problematic for cold-affiliated species if they cannot tolerate 

or avoid the warmer temperatures, and for warm-adapted specialists if they cannot 

tolerate or avoid extreme cold events.  

Human-dominated land uses also favoured species affiliated with greater 

extremes of precipitation. This effect on community composition may be a 

consequence of direct and/or indirect effects of local climatic changes resulting from 

land-use change on biodiversity (Frishkoff et al., 2016; Ogilvie et al., 2017). Directly, 

changes may favour species that can tolerate the new, drier climate (Frishkoff et al., 

2016). Indirectly, the drier climatic conditions may favour vegetation that is 

characteristic of more arid climates, subsequently favouring species better able to 

exploit this vegetation (Frishkoff et al., 2016). However, my finding that communities, 

on average, were affiliated with higher maximum precipitation levels in human-altered 

land uses was surprising, and the mechanisms underlying this trend warrant further 

exploration. Such an effect may arise due to differences in moisture levels, which are 

linked to land-use type and precipitation (Fu et al., 2003), and may impact species’ 

abilities to survive in certain land uses. Although, the links between land use, 

precipitation, and moisture levels are complex due to the multitude of other factors 

that can influence moisture availability, such as topography, soil properties (e.g., 

particle size), and the plant species growing (Fu et al., 2003). Another unexpected 

result was that species with drier- and narrower-than-average Ppmin minimum and 

range-wide variation, respectively, had higher abundances in tropical croplands. It may 

be that species’ experiencing narrower variation in minimum local precipitation levels 

are better able to cope with drier climates, and thus able to persist and even increase 

in abundance after land conversion (providing they can tolerate the other changes that 

occur). Although I am cautious in interpreting this result, as it is only observed in 

tropical croplands, it highlights the complexities underlying responses to precipitation 

changes. Nevertheless, my findings implicate a potentially important effect of changes 

in local precipitation regimes on terrestrial vertebrates. 

Biogeographic histories may also have a role in climatic niche differences 

across land uses, with species’ realised niches arising from the spatial and climatic 
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distribution of their habitats (Barnagaud et al., 2013). Consequently, shifts towards 

species that can tolerate greater extremes of climate in human-altered land uses could 

be explained by losses of forest specialists, which may coincidentally have climatic 

niches that do not encompass these extremes (Barnagaud et al., 2013; Ewers & Banks-

Leite, 2013). However, my habitat breadth index was not correlated with species’ 

climatic affinities, and similar results were produced when forest specialists were 

excluded from models (Appendix 1, Section 10). So, although I do not rule out a role 

of species’ biogeographic histories, my results are consistent with local climatic 

differences between primary and human-dominated land uses playing a strong role in 

the observed patterns.  

 Assemblages from tropical locations generally displayed larger differences 

than temperate assemblages in community-average climatic niche properties relative 

to primary habitats, particularly in croplands and pastures. There are at least three 

potential explanations for this result. First, lower seasonality in the tropics and greater 

historical climate stability may render species more sensitive to environmental 

changes and the removal of microhabitats (Janzen, 1967; Sunday et al., 2014). Second, 

the weaker differences across land uses at temperate latitudes may also be because 

these species are not living as close to their warm tolerance thresholds (Deutsch et al., 

2008; Kearney et al., 2009), and so can tolerate (or even benefit from) warmer 

temperatures (Kearney et al., 2009). Third, the magnitude of temperature increases 

following conversion of primary vegetation tend to be less pronounced in northern 

latitudes (partly due to the greater effect of snow albedo in cleared landscapes; Alkama 

and Cescatti 2016, Findell et al., 2017). Critically, the tropics hold more species, and 

a greater relative proportion of these species are presently threatened compared to 

higher latitudes (Brook et al., 2008). Regardless of the mechanism(s), these results add 

to the growing number of studies highlighting the vulnerability of the tropics to global 

drivers of change (Brook et al., 2008). This is an important result, given that both land-

use and climate change have been projected to occur to the greatest extent and soonest 

within the tropics (Pacifici et al., 2017; Sala et al., 2000).  

Aboveground temperatures in secondary forests are similar or slightly warmer 

compared with primary forests (Senior, Hill, González del Pliego, et al., 2017); thus, 

secondary vegetation may provide temporary thermal refugia for migrating species, or 

those living near their thermal tolerance limits and unable to track climatic changes 
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(Dent & Wright 2009; Senior, Hill, González del Pliego, et al., 2017). My results partly 

agree with these expectations, with the smallest differences in community-average 

climatic niche often observed between primary and advanced secondary vegetation, 

but not to the degree that other research suggests (particularly within the tropics). 

Instead, I find that the thermal niches of species within secondary vegetation can be 

distinguished from species found in primary vegetation, with community-average 

climatic niches in young secondary vegetation generally differing more than those in 

plantations when compared to primary vegetation.  

Despite a prevalent use of distribution maps to describe species’ realised niches 

and community weighted means (CWMs) to quantify changes in the structure of 

ecological assemblages (e.g., Allan et al., 2019; Barnagaud et al., 2013; Betts et al., 

2017; Khaliq et al., 2017; Merckx & Van Dyck, 2019; Peters et al., 2019), these 

methods have potential pitfalls. First, if a species is tolerant of human-altered land 

uses, they may be able to expand their ranges into cooler, previously uninhabitable 

climates, by switching habitats and colonising the warmer human-altered habitat (e.g., 

along elevational gradients; Frishkoff, Gabot, et al., 2019). If this has happened 

historically, before species’ ranges were mapped, calculating realised thermal niches 

from current distributions may lead to a too-low estimate of the minimum temperature 

that a species can actually tolerate. However, human-altered land uses that are unable 

to buffer temperatures have colder minima compared to natural vegetation (De Frenne 

et al., 2019; Ewers & Banks-Leite, 2013), so even if species do expand into new areas 

by colonising human land uses, they may still face colder extremes. Further work 

focusing on the propensity of species to switch habitats along climate gradients and 

the climatic differences populations will experience there is a key future research 

direction. Second, CWMs have the potential to have inflated type I error rates (Miller 

et al., 2019). However, I am confident in my observations that human-dominated land 

uses are favouring species affiliated with more extreme climates based on multiple 

lines of evidence. (1) The majority of my results are robust based on comparisons to 

null model expectations and removal of extreme data. (2) I observe consistent patterns 

in my abundance analyses, where I do not use CWMs, that in human-altered land uses 

species affiliated with lower maximum temperatures or wetter minimum precipitation 

levels often have lower abundances in comparison to primary vegetation than warmer- 

or drier-affiliated species. I urge caution however in interpreting the range-wide 
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variation results, as these were not strongly supported with respect to null model 

expectations.  

Building a complete understanding of how land use and climate change interact 

to apply similar or contrasting pressures is vital to predict biodiversity change 

accurately (Oliver & Morecroft, 2014). Key future directions for research include 

integrating predictions based on fundamental climatic niches (though these are 

currently not available for the range of species analysed and are also difficult to 

estimate in a way that reflects real-world conditions; see Mitchell et al., 2018) and the 

comparison of these predictions with results based on realised tolerances (which may 

not accurately reflect physiological climatic tolerances; Chapter 2; Araújo et al., 2013; 

Khaliq et al., 2017; Rolland et al., 2018).   

  Overall, human-altered habitats favour species affiliated with higher 

maximum and lower minimum temperatures and higher maximum and lower 

minimum precipitation levels, leading to shifts in community composition (turnover 

of species as well as shifts in abundance) between land-use types, especially within 

the tropics. These results are likely due, at least in part, to local climatic changes 

mediated by land-use change (either directly or indirectly), which lead to hotter local 

climates, changes in precipitation regimes (Frishkoff et al., 2015) and greater exposure 

to temperature extremes (Medvigy et al., 2012). My results demonstrate that land-use 

and climate change favour similar species, especially in the tropics, which has 

significant implications for the future impacts of these drivers of change. I show that 

minimum temperature, an often-neglected climate change variable, appears to have 

important impacts on community composition. Understanding the effects of land-use 

change, and how land use influences local climate, is key to anticipate the effects of 

future environmental change around the globe. This knowledge can also help us to 

design appropriate and effective management schemes to mitigate shifts in local 

climatic conditions through restoring and incorporating natural climate refugia into 

altered landscapes.  
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3.6 Data availability statement  

Data are available from the Dryad Digital Repository: https:// 

doi.org/10.5061/dryad.c2fqz6149. The original PREDICTS database can be 

downloaded from https://data.nhm.ac.uk/dataset/the-2016-release-of-the-predicts-

database. The WorldClim Version 1.4 climatic variable maps can be downloaded from 

http://www.worldclim.com/version1. Species distribution maps can be downloaded or 

requested from https://www.iucnredlist.org/resources/spatial-data-download and 

http://datazone.birdlife.org/species/requestdis, respectively. 

https://data.nhm.ac.uk/dataset/the-2016-release-of-the-predicts-database
https://data.nhm.ac.uk/dataset/the-2016-release-of-the-predicts-database
http://www.worldclim.com/version1
https://www.iucnredlist.org/resources/spatial-data-download
http://datazone.birdlife.org/species/requestdis
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Chapter 4: 

Vertebrate responses to human land use are 

influenced by their proximity to climatic tolerance 

limits   

4.1 Abstract 

Land-use change leads to local climatic changes, which can induce shifts in 

community composition. Indeed, human-altered land uses favour species able to 

tolerate greater temperature and precipitation extremes (Chapter 3). However, 

environmental changes do not impact species uniformly across their distributions, and 

most research exploring the impacts of climatic changes driven by land use has not 

considered potential within-range variation. Here, I used a global dataset of terrestrial 

vertebrate species to explore whether a population’s climatic position (the difference 

between species’ thermal and precipitation tolerance limits and the environmental 

conditions a population experiences) influences their relative abundance across land-

use types. By estimating species’ realised climatic tolerance limits, I analysed how the 

abundance of species within human-altered habitats relative to that in natural habitats 

varied across different climatic positions (controlling for proximity to geographic 

range edge). I found that a population’s thermal position strongly influenced 

abundance within human-altered land uses (e.g., agriculture). Where temperature 

extremes were closer to species’ thermal limits, population abundances were lower in 

human-altered land uses (relative to natural habitat) compared to areas further from 

these limits. These effects were generally stronger at tropical compared to temperate 

latitudes. In contrast, the influences of precipitation position were more complex, and 

often differed between land uses and geographic zones. Mapping the outcome of 

models revealed strong spatial variation in the potential severity of decline for 

vertebrate populations following conversion from natural habitat to cropland or 

pasture, due to their climatic position. Overall, I highlight within-range variation in 

species’ responses to land use, driven (at least partly), by differences in climatic 

position. Accounting for spatial variation in responses to environmental changes is 

critical when predicting population vulnerability, producing successful conservation 



 

 

  

84 
 

plans, and exploring how biodiversity may be impacted by future land-use and climate 

change interactions.   

4.2 Introduction  

 Human impacts on the environment do not affect species uniformly across their 

distribution (Orme et al., 2019). Accordingly, spatially explicit predictions of risk of 

population decline are crucial for suitable and successful conservation plans (Wilson 

et al., 2005). Physiological tolerances to temperature and precipitation, and the 

proximity of individuals to these tolerance limits (i.e., how close environmental 

climatic conditions are to an individual’s climatic tolerance limits), lead to important 

differences across species’ ranges in responses to environmental change (Deutsch et 

al., 2008; Gerick, Munshaw, Palen, Combes, & Regan, 2014; Kingsolver et al., 2013; 

Soroye et al., 2020). By predicting where populations will be pushed beyond their 

climatic tolerances (thus unlikely able to persist), species bioclimatic envelopes have 

frequently been used to project how species’ ranges may shift under global climate 

change (Calosi, Bilton, Spicer, Votier, & Atfield, 2010; Pearson & Dawson, 2003). 

However, climatic changes are not only occurring at the global level. For example, 

land-use changes also lead to local-scale climatic changes (Chapter 2).  

Human-altered land uses (e.g., agricultural areas) are often drier and 

experience greater extremes of temperature than natural, undisturbed habitats (Chapter 

2; De Frenne et al., 2019; Frishkoff et al., 2016). These local climatic changes occur 

partly due to vegetation changes; for example, evapotranspiration levels are linked to 

the leaf area and rooting depth of species present (Costa & Foley, 2000), and the 

canopy layer in naturally forested areas buffers temperature extremes, with these 

habitats found to have lower maximum and higher minimum (i.e., winter or night-

time) temperatures compared to cleared land, such as pastures (Daily & Ehrlich, 1996; 

De Frenne et al., 2019; Ewers & Banks-Leite, 2013). Studies have recorded average 

maximum temperatures rising by up to 9°C in croplands, 7°C in pastures and 3°C in 

plantations compared to primary forests (Nowakowski, Watling, et al., 2017; Senior, 

Hill, González del Pliego, et al., 2017). 

These local climatic differences are associated, directly and indirectly, with 

shifts in community structure (Chapters 2-3; Frishkoff et al., 2016; Piano et al., 2017). 
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Human-altered land uses have been found to favour species affiliated with, or able to 

tolerate, higher maximum and average temperatures, and lower minimum 

temperatures, compared to natural habitats (Chapters 2-3; Angilletta et al., 2007; 

Menke et al., 2011; Frishkoff et al., 2015). Affiliations with drier climates have also 

been linked with a higher probability of occurrence within agricultural land uses (e.g., 

Neotropical birds; Frishkoff et al., 2016). In addition, in Chapter 3, I found that human 

land uses were composed of proportionally more individuals of species from regions 

with wetter maximum precipitation levels. Together, this suggests human-altered land 

uses favour species able to tolerate greater extremes of precipitation as well as 

temperature.  

Most research however, has not considered potential variation across species’ 

ranges in responses to land use (Chapter 2; but see Srinivasan et al., 2019; Northrup et 

al., 2019 for regional examples). Consequently, populations at greater risk from land-

use change may be overlooked. Here, I extend previous research by asking how 

populations’ proximities to their species-level climatic tolerance limits affect their 

abundances in human-altered land uses compared to in natural habitat, across 

terrestrial habitats globally. Due to the local climatic differences, I hypothesise that, 

relative to abundances in natural habitat, human-altered land uses will filter out 

populations of species in environments where they experience temperature and 

precipitation extremes closer to their climatic tolerance limits. I hypothesise that this 

filtering will be greater at tropical compared to temperate latitudes. The effects of 

human land use, including community-level differences between natural and human-

altered land uses, have previously been shown to be greater in the tropics (Chapter 3; 

Newbold et al., 2020), potentially due to the past relative stability of the tropical 

climate, within which many of the taxa present have evolved (Corlett, 2011; Pacifici 

et al., 2017). This suggests that individuals within this region will be more sensitive to 

rapid climatic (particularly temperature) changes and extreme conditions (Chapter 2; 

Corlett, 2011; Janzen, 1967; Pacifici et al., 2017).  

 The relationship between species’ abundance and position within geographical 

or environmental space forms a lively debate (Santini, Pironon, Maiorano, & Thuiller, 

2019; VanDerWal, Shoo, Johnson, & Williams, 2009; Weber, Stevens, Diniz-Filho, 

& Grelle, 2017). Some studies, for example, report that environmental suitability or 

distance from the centre of a species’ environmental space (environmentally-based 
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centre), can be considered a reasonable proxy for abundance (or at least its upper limit; 

VanDerWal et al., 2009; Weber et al., 2017), while others find little support for a 

consistent relationship between species’ abundance and environmental suitability or 

distance from geographically- or environmentally-based centres (Dallas, Decker, & 

Hastings, 2017; Dallas & Hastings, 2018; Santini et al., 2019). In this chapter, I 

compare species’ abundances within human-altered land uses relative to that within 

primary vegetation in the same part of the species’ climatic space, rather than absolute 

abundances across a species’ environmental space. Thus, I do not expect my results to 

be unduly influenced by the presence or otherwise of abundance variation across 

environmental space. Nonetheless, a population’s distance from its species’ range edge 

can impact behaviour, such as responses to forest loss (Orme et al., 2019) or 

exploratory behaviour (Liebl & Martin, 2012), so I account for this in my analyses 

below. 

Finally, I extend my results to produce spatially explicit maps of the potential 

severity of decline of vertebrate populations in human-altered land uses, depending on 

proximity to climatic tolerance limits. I estimate expected average severity of decline 

by predicting the difference in abundance between natural and human-altered land uses 

depending on each population’s climatic position and distance to range edge, all else 

being held equal (as such, actual abundance changes may differ due to other influential 

factors, which could be included in future work). Meeting the food demands of Earth’s 

growing population is a major challenge and, alongside intensifying current 

agricultural land, this is leading to the conversion of natural habitat to agriculture 

(Foley et al., 2011; Millennium Ecosystem Assessment, 2005). It is important to 

understand how this land-use change will impact biodiversity and whether land-use 

impacts differ spatially (Molotoks et al., 2018); consequently, I focus on how the 

severity of decline following land conversion from natural habitats to agriculture 

(croplands and pastures) may differ across the globe. Being able to estimate how risk 

differs across species’ ranges enhances our ability to produce suitable conservation 

and management strategies and plan for future land-use changes.  
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4.3 Methods  

4.3.1 Occurrence and abundance data  

 I acquired occurrence and abundance data for terrestrial vertebrate species 

from the PREDICTS (Projecting Responses of Ecological Diversity In Changing 

Terrestrial Systems) Project database (Hudson et al., 2016, 2017). There are 

reasonably comprehensive distribution data available for terrestrial vertebrates, thus I 

focused on this group so I could estimate their realised climatic tolerance limits (see 

below). The PREDICTS database is a collection of data from studies around the globe 

that have made spatial comparisons of ecological assemblages across land uses 

(Hudson et al., 2014). I acquired occurrence data for 4,369 species (3,117 birds, 555 

mammals, 377 amphibians and 320 reptiles; of these, 4,150 species also had 

abundance estimates), from 161 studies across 51 countries. The PREDICTS database 

is hierarchically structured, whereby data from a published Source are divided into 

Studies (split by sampling method), which are further divided into Spatial blocks, and 

then into Sites (where the sampling of ecological assemblages takes place; Hudson et 

al., 2014). Within this chapter, I use the term ‘population’ to refer to groups of 

individuals of the same species at the same site. 

4.3.2 Land-use data 

Each site within the PREDICTS database has an assigned land-use type (table 

4.1; see Appendix 2, Section 1, table S4.1), allocated by the PREDICTS Project team 

using a set of criteria and based on the habitat description within the original source or 

provided by the original study authors (Hudson et al., 2014). Land uses are also split 

by the intensity with which humans use the land (minimal, light, or intense use), based 

on factors such as chemical use, crop diversity, and disturbance level (Hudson et al., 

2014). I did not include data from minimally-used urban sites (which include extensive 

green spaces), as assemblages within these areas may not accurately reflect 

assemblages within more urbanised/human-dominated areas, which were of interest in 

this chapter.  
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Table 4.1: Brief definitions of the land-use types considered in this chapter. For 

complete definitions, see Appendix 2, Section 1, table S4.1 and Hudson et al., (2014).  

Land-use type Definition 

Primary vegetation Natural vegetation with no evidence of 

previous destruction 

Mature/Intermediate/Young 

secondary vegetation  

 

Vegetation that is recovering after removal of 

the natural vegetation, split into three stages of 

recovery (mature sites being those that have 

been recovering for the longest, young sites 

being those that have started to recover most 

recently, and intermediate sites in between)  

Plantation forest Agricultural land used for cultivating woody 

crops, such as oil-palm, rubber, fruit, coffee, or 

timber 

Cropland Agricultural land used for cultivating 

herbaceous crops, including fodder for 

livestock  

Pasture Agricultural land used for livestock grazing 

Urban  Areas of human habitation and buildings, from 

small green spaces, through to villages and 

cities 

4.3.3 Distribution data 

 Expert-informed species’ distribution maps (extent-of-occurrence maps; 

BirdLife International 2012; IUCN 2016a) were used to estimate species-level realised 

climatic tolerance limits. I extracted species’ native historical ranges (areas where 

species were resident, or used during breeding or non-breeding seasons, including 

areas where the species had been reintroduced or introduced). These distribution maps 

were transformed into equal-area raster files (Behrmann projection, 10 × 10-km pixels; 

ArcGIS 10.4). Distribution maps were cut by species’ elevational limits, if known 

(2,410 species had known upper limits, 12 had lower limits and 730 had both; BirdLife 

International 2018; IUCN 2016a). I also removed migratory bird species from my 

dataset (migratory statuses acquired from BirdLife International 2018), since these 
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species can move between different parts of their ranges to avoid extreme climatic 

conditions (Robinson et al., 2009), which may lead to biases within my results.   

4.3.4 Climatic tolerance limits 

 I estimated species’ realised climatic tolerance limits, i.e., the highest and 

lowest temperature and precipitation a species’ experiences within their geographic 

distribution. To calculate these, I overlaid the species distribution maps onto four 

climatic variables: precipitation of the wettest month (Ppmax), precipitation of the driest 

month (Ppmin), maximum temperature of the warmest month (Tmax) and minimum 

temperature of the coldest month (Tmin; WorldClim Version 1.4; Hijmans et al., 2005). 

These climatic variable maps contained averaged annual values from 1960 – 1990, at 

a resolution of 30 arc-seconds, and were resampled (using bilinear interpolation) to 10 

km equal-area projection (Behrmann projection) to match the species’ distribution 

data. I extracted the highest Ppmax and Tmax values and lowest Ppmin and Tmin values 

within each species’ distribution (ArcGIS 10.4). These maxima and minima provided 

my estimates of each species’ temperature and precipitation tolerance limits (fig. 4.1).  

 My analyses required data for a broad range of vertebrates from around the 

globe, for which the above extent-of-occurrence maps from the IUCN and BirdLife 

International are currently the best, and most widely used (Allan et al., 2019; Herkt et 

al., 2017; Khaliq et al., 2017; Shackelford, Steward, German, Sait, & Benton, 2015). 

Species’ extent-of-occurrence tends to be underestimated by expert-informed species 

distribution maps, whereas area of occupancy is overestimated (Herkt et al., 2017; 

Hurlbert & Jetz, 2007). Therefore, I tested the robustness of my results by (a) 

comparing population’s climatic positions (see below) produced using the expert-

informed distribution maps to those using occurrence records in the Global 

Biodiversity Information Facility (GBIF, https://www.gbif.org), and (b) running 

models using the same structure as my final models (see below) using the climatic 

positions derived from GBIF data (Appendix 2, Section 2). GBIF provides data on 

species’ area of occupancy, but has taxonomic and geographic biases (Meyer et al., 

2015). 

Biotic interactions and dispersal barriers also influence species’ geographic 

ranges (Chapter 2; HilleRisLambers et al., 2013; Peterson et al., 2011). Therefore, I 

https://www.gbif.org/
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compared my estimates of climatic position (see below) acquired from distribution 

maps to those using estimates of thermal tolerances derived from physiological 

experiments (acquired from GlobTherm; Bennett et al., 2017, 2018). However, 

physiological thermal tolerance estimates also have issues (see Chapter 2). For 

example, the tolerance tests often lack real-world context due to being calculated in 

the absence of other factors and, for many vertebrate species, laboratory tests are not 

possible (see Mitchell et al., 2018; Rezende et al., 2014). Moreover, the metrics 

produced (such as critical thermal maxima and lethal maximums) are not comparable 

across studies (Araújo et al., 2013), limiting the number of species that can be 

analysed.   

4.3.5 Climatic position 

 I calculated each population’s ‘climatic position’ with respect to their species-

level climatic tolerance limits; this index describes the relative position of a site 

between the lower and upper realised tolerance limits of a species with respect to a 

given climatic variable. To estimate climatic position, for each study site I extracted 

climate data for the same four variables as described above (Ppmax, Ppmin, Tmax, Tmin), 

using climate variable maps resampled (using bilinear interpolation) to 500 m equal-

area projection (Behrmann projection) to capture differences between climatic 

positions for very narrow-ranged species. Then, for each population, I standardised the 

site-specific climatic data to range between 0 and 1 relative to species’ climatic 

tolerance limits: for thermal tolerance limits, 0 = minimum realised temperature 

tolerance limit and 1 = maximum realised temperature tolerance limit, and for 

precipitation tolerance limits, 0 and 1 are the minimum (dry) and maximum (wet) 

realised monthly precipitation tolerance limits, respectively (fig. 4.1).  
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Figure 4.1: Climatic position calculation. A visual example of how the four climatic 

positions (Tmax, Tmin, Ppmax and Ppmin position) were calculated for each population; 0 

and 1 represent the species-level realised thermal or precipitation tolerance limits, 

extracted from species’ distribution maps overlaid on climatic data; the climatic 

positions were calculated by standardising the population’s site-level climate data to 

range between 0 and 1 relative to the species-level climatic tolerance limits. For 

example, the closer the maximum temperature of the warmest month at a population’s 

site is to the highest maximum temperature of the warmest month across a species’ 

range, the closer a population’s Tmax position will be to 1. Similarly, the closer the 

precipitation of the driest month at a population’s site is to the lowest precipitation of 

the driest month across a species’ range, the closer a population’s Ppmin position will 

be to 0. 

A tiny subset of populations (< 0.3%) had climatic position values below 0 or 

above 1, due to the climatic variable maps capturing slightly greater variation at the 

500 m compared to the 10 km scale (Appendix 2, Section 4, table S4.6). I assumed 

that the very small scale of this discrepancy would mean there was very little influence 

on my results.  

4.3.6 Distance to range edge 

 To account for variation in population occurrence or abundance due to 

geographic position within their species’ range (Orme et al., 2019), I produced a 
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standardised distance to range edge measure for each population. I first found the 

shortest distance from each sampled population’s location to their species’ range edge 

(populations found outside of their stated distribution were removed from the analysis; 

BirdLife International 2012; IUCN 2016a). I then found the largest shortest distance 

from any point in the species’ distribution to their range edge (i.e., the furthest distance 

a population could be from their range edge), by transforming species’ distributions 

maps into a grid of points. Finally, I used this to find the relative position of the 

sampled population to their range edge (i.e., to account for species’ range size), where 

a measure of 0 refers to populations at their species’ range edge, and 1 refers to those 

nearest the range centre. This was completed in R 3.6.0 (R Core Team 2019) using 

packages ‘raster’ v.2.8.19 (Hijmans, 2019), ‘rgdal’ v.1.4.8 (Bivand, Keitt & 

Rowlingson, 2019) and ‘rgeos’ v.0.4.3 (Bivand & Rundel, 2019). As stated above, 

expert-informed species’ distribution maps contain inaccuracies. To ensure that 

removing populations outside of their distributions did not impact my results, I reran 

my models (see below) without the distance to range edge measure and compared the 

results of models including and excluding populations beyond their species’ stated 

distributions (see Appendix 2, Section 3 for more information). 

Of the vertebrate species with occurrence data in the PREDICTS database, 

following the selection of species and land uses as described above, I was able to 

estimate tolerance limits, climatic positions, and distance from range edge for 88,007 

populations, consisting of 2,103 species (384 mammals, 1,491 birds, 92 reptiles, 136 

amphibians). Out of these, 81,913 populations (1,954 species) had abundance records 

(from studies that had sampled abundance, including those that recorded abundances 

of zero), and within this, 13,321 populations (1,594 species – 334 mammals, 1,087 

birds, 87 reptiles, 86 amphibians) had non-zero abundance data. Ideally, I would have 

comparisons of species’ abundance in different land uses across their geographical 

ranges, but samples do not exist for most species, particularly in the tropics; thus, I 

rely on collations of data such as the PREDICTS database, in which most of the species 

included have been recorded in multiple geographic locations and have several 

climatic position measures (Appendix 2, Section 4, table S4.4). 
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4.3.7 Statistical analyses 

 I adopted a two-stage modelling approach (similar to a hurdle model) due to 

the high number (84%) of abundance records that were zero (Newbold, Hudson, et al., 

2014; Potts & Elith, 2006). First, I used generalised linear mixed-effects models (with 

binomial error distributions) to model the probability of occurrence (assuming 

detection; P(Occ)) of populations. Second, I used linear mixed-effects models to test 

for differences in log-transformed abundance (given presence; LogAbund). These 

models were used to assess whether a terrestrial vertebrate population’s climatic 

position affected their abundance (a combination of a population’s probability of 

occurrence, and relative abundance given presence) across different land uses. 

Analyses were carried out in R 3.6.0 (R Core Team 2019) using ‘lme4’ v.1.1.17 (Bates 

et al., 2015). 

For both stages of modelling, I selected main effects and interactions using 

backwards stepwise variable selection, which uses maximum likelihood estimation to 

select terms and likelihood-ratio tests to compare the fit of different models (Zuur et 

al., 2009). Into this model selection I added as potential explanatory variables: (1) land-

use type (categorical variable); (2) geographic zone (categorical variable: tropical 

[between 23.44°S and 23.44°N] or temperate [between 23.44°N/S and 66.56°N/S, 

respectively]); (3) distance to range edge (continuous variable) and its interaction with 

land-use type; (4) climatic position with regard to each climatic variable (Tmax, Tmin, 

Ppmax and Ppmin position; continuous variables fitted as linear terms, I tested for 

correlations between these; Appendix 2, Section 4, table S4.5); and (5) the 2- and 3-

way interactions between land-use type, geographic zone, and each climatic position 

(e.g., land-use type × geographic zone × Tmax position). I did not include interactions 

between climatic positions. A site’s elevation was also considered as a continuous 

covariate due to its potential influence on population abundance (Williams, Shoo, 

Henriod & Pearson, 2010). For random effects, I included a nested random-intercept 

term for study (to account for study-dependent variation in methods or measures used) 

and for sampled site within studies. I also included a random-intercept term for species 

name, accounting for species-level differences unrelated to land-use type or climatic 

position. I then ran the final occurrence (assuming detection) and abundance (given 

presence) models, which included significant fixed effects and interaction terms, and 
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any lower-order, non-significant interaction terms that were nested within significant 

higher-order interactions. 

4.3.8 Robustness checks 

I also ran five separate sets of models (using the same structure as the final 

models above) that (1) only included species of mammals and birds (to ensure my 

results held for endothermic species, who may be less affected by local climatic 

changes; Chapter 2), (2) excluded forest specialist species (to ensure my results held 

for species also found in naturally drier and/or open environments such as grasslands; 

forest specialist species were defined using species-level habitat preference data 

(IUCN 2017a); I acknowledge that forest specialism may differ across species’ ranges, 

but unfortunately habitat preference data are currently not available at the population 

level; Appendix 2, Section 8), (3) fitted climatic positions as quadratic terms (to test 

for hump-shaped relationships that might occur if populations are sensitive close to 

any climatic tolerance limit, rather than the specific limits I hypothesised), (4) 

combined mature and intermediate secondary vegetation land uses (to become an 

‘advanced secondary’ land-use type) and (5) again combined mature and intermediate 

secondary vegetation land uses but also removed populations within urban sites (to 

ensure the results were robust with and without the inclusion of land uses with a 

smaller number of sampled sites). Further, when working with complex datasets, 

results may potentially differ due to modelling method, so I ran my models using a 

range of optimisers (allFit function, ‘lme4’ package; Bates et al., 2015) to check the 

consistency of my results. I also ran a set of models (again with the same structure as 

the final models above) using a Bayesian modelling approach (package 

‘MCMCglmm’ v.2.29; Hadfield 2010); these models ran for 60,000 iterations, had a 

burn-in period of 3,000 iterations and a thinning interval of 10, and I used 

uninformative priors (the default priors in ‘MCMCglmm’), with convergence checked 

through visual inspection of the MCMC trace plots. Finally, responses to climatic 

position and land-use type may differ among species, so I ran a set of models including 

random slopes to account for interspecific differences (i.e., allowing the response of 

each species to climatic position or land-use type to vary). 
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4.3.9 Severity of decline following land conversion  

To highlight where vertebrate populations may experience more severe 

declines due to their climatic position and the local climatic changes brought about by 

land-use change, I produced maps of estimated community-average abundance in 

cropland and pasture relative to that in primary vegetation, based on the climatic 

positions of populations within each community. I focused on agricultural land uses 

because the need to produce enough food to sustain Earth’s growing population will 

likely result in agricultural expansion and intensification (Foley et al., 2011; 

Millennium Ecosystem Assessment, 2005). To do this, I used the available expert-

informed terrestrial vertebrate species’ distribution maps (BirdLife International 2012; 

IUCN 2016a), processed them as described above and removed migratory bird species 

(BirdLife International 2018). This left me with 22,267 species (5,074 mammals, 

8,179 birds, 5,139 amphibians, 3,875 reptiles). For each species, I then produced maps 

of Tmax, Tmin, Ppmax and Ppmin  (WorldClim Version 1.4; Hijmans et al., 2005) across 

their distribution and standardised them to between 0 and 1 in the same way as above. 

Then, using the main-effect and interaction estimates (Appendix 2, Section 6, table 

S4.7) from the final models (described above), I found the model-estimated probability 

of occurrence and abundance (given presence) of each species across their range, based 

on their climatic position, in primary vegetation (PV), cropland (Cr) and pasture (Pa). 

Following this, for each species, I multiplied the probability of occurrence (P(Occ)) 

and the abundance (given presence; Ab) results together (separately for each land use), 

and then expressed this expected abundance in cropland and pasture relative to that in 

primary vegetation (i.e., relative abundance, RA; equation 4.1 and 4.2, for relative 

abundance within cropland and pasture, respectively):  

(4.1) 𝑅𝐴𝐶𝑟 =  
𝑃(𝑂𝑐𝑐)𝐶𝑟 𝑥 𝐴𝑏𝐶𝑟

𝑃(𝑂𝑐𝑐)𝑃𝑉 𝑥 𝐴𝑏𝑃𝑉
 

(4.2) 𝑅𝐴𝑃𝑎 =  
𝑃(𝑂𝑐𝑐)𝑃𝑎 𝑥 𝐴𝑏𝑃𝑎

𝑃(𝑂𝑐𝑐)𝑃𝑉 𝑥 𝐴𝑏𝑃𝑉
 

I then averaged and plotted the species-level results within each 10 × 10-km 

grid cell to display expected community-average severity of decline following 

conversion of primary vegetation to cropland or pasture, where the ‘community’ 

included all the populations whose species’ range covered that cell. This was 

completed in ArcGIS 10.4 (ESRI 2015).  
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To ensure I did not extrapolate beyond the limits of my data, I found the 

predicted relative abundance within cropland and pasture for each population from the 

PREDICTS database included in my models (again using the main-effect and 

interaction estimates from my models). I then averaged these predicted values for 

populations in cropland or pasture within each PREDICTS site, producing site-level-

average (i.e., community-average) relative abundances, and extracted the minimum 

and maximum site-level-average relative abundances for each land use. Finally, when 

producing the global maps described above showing the community-average severity 

of decline, I only plotted values that fell within these limits (only a very small 

proportion of the Earth’s land surface was excluded in this way).  

4.4 Results  

4.4.1 Summary of results 

 Overall, the relative abundance of a species across land uses differed depending 

on the populations’ thermal position and Ppmin position, with these effects differing 

between geographic zones (p values from the backwards stepwise selection process 

for the interaction between land-use type, geographic zone and (a) Tmax position, pP(Occ) 

= 0.012, pLogAbund = 0.001 (b) Tmin position, pP(Occ) = 0.008, pLogAbund = 0.186 (the 3-way 

interaction was not significant, but the 2-way interaction between Tmin position and 

land use was, pLogAbund = 0.002), (c) Ppmin position, pP(Occ) < 0.001, pLogAbund < 0.001; 

figs. 4.2-3, table 4.2; for comprehensive plots for each climatic position, see Appendix 

2, Section 4, figs. S4.8-11; for coefficients and their 95% confidence intervals, see 

Appendix 2, Section 9, figs. S4.20-21). The results supported my hypotheses with 

regard to thermal position, with populations in human-altered sites where temperature 

extremes were closer to the species’ maximum and minimum thermal limits generally 

having lower abundances relative to primary vegetation compared to populations that 

experienced temperatures further from these tolerance limits (fig. 4.2). However, the 

precipitation position results were more mixed across land-use types (fig. 4.3), not 

always supporting my predictions. Large spatial differences in community-average 

severity of decline following agricultural conversion, when based on populations’ 

climatic positions, were also apparent in my global maps (fig. 4.4). Most of the 

observed results were driven by differences in populations’ probability of occurrence, 

rather than by differences in the abundance of persisting species (Appendix 2, Section 
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5, figs. S4.12-13). Due to the small number of urban sites in the dataset (ntropical = 41, 

ntemperate = 74, from 2 and 3 studies, respectively), I exclude the results for this land-

use type. I also advise caution when interpreting the results within temperate mature 

and intermediate secondary vegetation, as there were fewer than 50 sites sampled 

within these groupings (Appendix 2, Section 4, table S4.3).   

Table 4.2: Model structure and interaction significance. The final probability of 

occurrence (P(Occ)) and abundance (given presence; LogAbund) model structures and 

the significance (p-values) of the climatic position × land-use type interaction terms 

included in the models (i.e., whether the slope of the relationship of probability of 

occurrence or abundance – given presence – with climatic position for a given land 

use was significantly different to the slope for primary vegetation). These final models 

were used to investigate the influence of climatic position with regard to maximum 

temperature of the warmest month (Tmax), minimum temperature of the coldest month 

(Tmin) and precipitation of the wettest (Ppmax) and driest (Ppmin) months, on a 

population’s probability of occurrence, or abundance (given presence) across different 

land-use types (LU; these included primary vegetation, different stages of secondary 

vegetation (mature, intermediate and young; MSV, ISV, and YSV respectively), 

plantations, croplands, pastures, and urban areas) at tropical and temperate latitudes 

(geographic zone; GZ). Distance to range edge (Dist) was also added as a covariate. 

In terms of random effects, a nested random-intercept term for study (SS; to account 

for study-dependent variation in methods or measures used) and for sampled site 

within studies (SSBS) was included in all models, along with a random-intercept term 

for species name (Species). Statisticians advise caution when interpreting p-values 

from mixed-effects models (Bates et al 2015; Luke, 2017).  
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 Probability of occurrence model  Abundance (given presence) model 

Model structure   

 P(Occ) ~ Intercept + LU + GZ + Tmax + Tmin + Ppmin + Ppmax + Dist 

+ LU×GZ + LU×Dist + LU×Tmax + LU×Tmin + LU×Ppmax + 

LU×Ppmin + Tmax×GZ + Tmin×GZ + Ppmax×GZ + Ppmin×GZ + 

LU×Tmax×GZ + LU×Tmin×GZ + LU×Ppmin×GZ + (1|SS) + 

(1|SSBS) + (1|Species) 

 LogAbund ~ Intercept + LU + GZ + Tmax + Tmin + Ppmin + Dist + 

LU×GZ + LU×Tmax + LU×Tmin + LU×Ppmin + GZ×Tmax + 

GZ×Ppmin + LU×Tmax×GZ + LU×Ppmin×GZ + (1|SS) + (1|SSBS) 

+ (1|Species) 

Significance of key terms+     

Tropical latitudes     

  MSV ISV YSV Plantation Cropland Pasture   MSV ISV YSV Plantation Cropland Pasture 

Tmax  *** * *** *** ***  Tmax       

Tmin  ***   *** **  Tmin   * * *  

Ppmax  *   * ***  Ppmax       

Ppmin  *  ** ***   Ppmin    *   

Temperate latitudes     

  MSV ISV YSV Plantation Cropland Pasture   MSV ISV YSV Plantation Cropland Pasture 

Tmax   *     Tmax    *   

Tmin   ***     Tmin        

Ppmax        Ppmax       

Ppmin        Ppmin       
+Shaded = interaction term was not included in this model, * = p < 0.05, ** = p < 0.01, *** = p < 0.001. 
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4.4.2 Thermal position 

 At tropical latitudes, in most human-altered land uses, populations with high 

Tmax positions or low Tmin positions (thus in sites where they experience temperature 

extremes closer to their maximum or minimum thermal limits, respectively), had much 

lower abundances relative to those in primary vegetation (by 25-50%), than 

populations in sites with temperatures further from their thermal limits (fig. 4.2). This 

filtering out of populations close to their thermal limits was not seen in mature 

secondary vegetation, where abundances showed little difference relative to primary 

vegetation. Interestingly, within tropical plantations and croplands, populations further 

from their thermal limits had higher abundances relative to populations with the same 

Tmax or Tmin position in primary vegetation. 

At temperate latitudes, populations with high Tmax positions again had lower 

relative abundances in plantations and croplands, and those with low Tmin positions 

had lower relative abundances in plantations, croplands, and young secondary 

vegetation (fig. 4.2), compared to populations further from their thermal limits.  
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Figure 4.2: The relative abundance of populations across land uses depending on 

their thermal position. The abundance of species within each land-use type, relative 

to abundance in primary vegetation (indicated by the dotted line), for populations with 

Tmax or Tmin positions ‘close’ or ‘far’ from their thermal tolerance limits at tropical and 

temperate latitudes. For (a) a population’s Tmax position, ‘close’ and ‘far’ refer to a 

position of 0.9 and 0.7, respectively, for both tropical and temperate latitudes. For (b) 

a population’s Tmin position, ‘close’ and ‘far’ refer to a position of 0.2 and 0.6 at 

tropical latitudes, and 0.1 and 0.4 at temperate latitudes, respectively. These positions 

reflect the 10th and 90th percentile of Tmax or Tmin positions (calculated separately 

within tropical and temperate latitudes). Error bars denote ±1 standard error. MSV, 

ISV, and YSV stand for mature, intermediate, and young secondary vegetation, 

respectively.  

4.4.3 Precipitation position 

A population’s Ppmax position was not found to influence abundance (given 

presence), but did effect their probability of occurrence at a site, which also differed 

across land uses (land-use type × Ppmax position, pP(Occ) < 0.001, fig. 4.3). Populations 

experiencing maximum monthly precipitation closer to their maximum precipitation 

limit (higher Ppmax positions) had a lower relative probability of occurrence in 

croplands and pastures than populations with lower Ppmax positions.  

Contrary to expectations, in many human-altered land uses, and particularly at 

tropical latitudes, populations with lower Ppmin positions (in sites with minimum 

monthly precipitation closer to their dry limit), had similar abundances to those in 

primary vegetation, whereas populations further from their dry limit had lower relative 

abundances. Different patterns were observed in tropical pastures, where populations 

with lower Ppmin positions were being filtered out (i.e., had lower relative abundances 

compared to populations with higher Ppmin positions). Within temperate plantations 

and croplands, there was little difference in relative abundances across Ppmin positions.  
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Figure 4.3: The relative probability of occurrence or abundance of populations 

across land uses depending on their precipitation position. The (a) probability of 

occurrence or (b) abundance of species within each land-use type, relative to that in 

primary vegetation (indicated by the dotted line), for populations with (a) Ppmax or (b) 

Ppmin positions ‘close’ or ‘far’ from their precipitation tolerance limits at tropical and 

temperate latitudes. For (a) a population’s Ppmax position, ‘close’ and ‘far’ refer to a 

position of 0.6 and 0.2 at tropical latitudes, and 0.4 and 0.1 at temperate latitudes, 

respectively. For (b) a population’s Ppmin position, ‘close’ and ‘far’ refer to a position 

of 0 and 0.2 at tropical latitudes, and 0 and 0.1 at temperate latitudes, respectively. 

These positions reflect the 10th and 90th percentile of Ppmax or Ppmin positions 

(calculated separately within tropical and temperate latitudes). Error bars denote ±1 

standard error. MSV, ISV, and YSV stand for mature, intermediate, and young 

secondary vegetation, respectively. I plot relative probability of occurrence (rather 

than relative abundance) for Ppmax positions because a population’s Ppmax position was 

not found to have a significant effect on abundance, and so was not included in the 

final abundance (given presence) model. I use a broken y-axis (represented by //) on 

the plot for Ppmin position at temperate latitudes so that the smaller effect sizes can be 

more easily interpreted. 

4.4.4 Robustness checks   

I used GBIF data to estimate realised climatic tolerance limits for 1,995 species 

(84,988 populations) included in my models. The climatic positions produced using 

these tolerance limits were moderately to strongly positively correlated to those using 

expert-informed species’ distribution maps (r > 0.67; Appendix 2, Section 2, table 

S4.2). The results of the models run using these climatic positions (rather than those 

found using species’ distribution maps) were qualitatively identical to the results 

presented above, but abundances within some land uses (such as mature secondary 

vegetation, croplands, and pastures) relative to primary vegetation differed slightly 

(Appendix 2, Section 2, figs. S4.1-2). 

Only 76 species included in my models had estimates of physiological thermal 

tolerance limits within GlobTherm (Bennett et al., 2018). Four of these were estimates 

of critical thermal maxima and minima, 71 were estimates of thermal neutral zone 

boundaries, and one was an estimate of the lethal temperatures at which mortality of 
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50% or 100% of individuals occur. The measures of thermal position calculated using 

my estimates of realised thermal tolerance limits and using estimates of physiological 

thermal tolerance limits from GlobTherm were positively correlated (Pearson’s 

correlation coefficient, Tmax position, r = 0.62, Tmin position, r = 0.50).  

A population’s relative abundance differed with their proximity to the species’ 

range edge (Appendix 2, Section 4, fig. S4.7), which further interacted with land use 

to impact a population’s probability of occurrence (p = 0.003). When comparing 

models excluding this distance to range edge measure that included or excluded 

populations recorded outside of their species’ distributions, as stated by the IUCN 

(2016a) and BirdLife International (2012), the main qualitative results were very 

similar (Appendix 2, Section 3, figs. S4.3-6). The only exception to the robustness of 

my results to including and excluding populations outside of their stated range maps 

was the relationship between Ppmin and relative abundance within tropical pastures. In 

this case, when populations outside of their stated ranges were included, the pattern 

now matched that seen within cropland and plantations (where populations with higher 

Ppmin positions had lower relative abundances than those with lower Ppmin positions). 

The majority of populations that were recorded outside of their species’ distributions 

were relatively close to their range edges (with a median distance of 16.3 km, and with 

75% of populations outside their ranges being within 71 km). Populations recorded 

furthest from their stated range edges, upon inspection, were found to be populations 

of species invasive to the recorded location.  

The results of models only including endotherms or excluding forest specialists 

(Appendix 2, Sections 7-8, figs. S4.16-19), were very similar to those presented above. 

Fitting climatic positions as quadratic terms did not change the pattern of results. 

Further, including different combinations of land uses, using different optimisers 

(results not shown), or using Bayesian modelling (Appendix 2, Section 9, figs. S4.20-

21) all produced very similar results to those reported above. Finally, models including 

random-slope terms produced similar results to the models above (Appendix 2, Section 

10, figs. S4.22-24); I report the results from the random-intercept model here because 

of convergence issues with the random-slope models.  
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4.4.5 Severity of decline following land conversion  

Community-average severity of decline following conversion to agricultural 

land uses, based on populations’ climatic positions, differed greatly across space (fig. 

4.4). Communities expected to experience the most severe declines following 

conversion to cropland, due to the climatic positions of the populations present, 

appeared in north eastern North America, south eastern South America, Australia, and 

New Guinea. Conversely, the average severity of decline within communities across 

equatorial Africa and southeast mainland Asia appeared to be lower, which may be a 

result of local climatic changes following land-use change producing more favourable 

conditions (which could lead to population increases). Following conversion to 

pasture, communities in central North and South America, Australia, western Africa, 

and northeast Asia may experience the most severe declines, whereas equatorial Africa 

and parts of Europe were predicted not to experience such severe declines, based on 

the climatic positions of the populations present. As stated above, these maps are not 

displaying which areas will see abundance decreases or increases following land-use 

change, but instead present locations where the potential average severity of declines 

within communities may be higher or lower following conversion of natural habitat to 

agricultural land uses due to how close the local climatic conditions are to the realised 

climatic tolerance limits of the populations present. These maps can also be viewed as 

highlighting areas within which habitat restoration may be particularly effective, on 

the basis of the local populations’ climatic positions. 
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Figure 4.4: The average severity of decline of terrestrial vertebrate communities 

following conversion of natural habitat to (a) cropland and (b) pasture, based on 

the climatic positions of populations within each community. I estimated severity 

of decline by calculating the abundance of populations in (a) croplands and (b) 

pastures, relative to that in primary vegetation (depending on each population’s 

climatic position) and averaged this within each community (10 × 10-km pixel). I 

present global maps (Behrmann projection) to demonstrate how the potential severity 

of decline within communities may differ due to the local climatic changes following 

land-use change, whilst recognising that land conversion from primary vegetation to 

a) Cropland

b) Pasture

HighLow

Average severity of decline
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agriculture is not possible, or has already happened, for large parts of the world 

(although these maps could also be useful in highlighting areas in which habitat 

restoration may be more beneficial, based on the climatic positions of the local 

populations). Dark grey areas represent locations that were not covered by any of the 

species’ ranges in my dataset (some of the Great Lakes in North America, for 

example), or where community-average measures were beyond the limits of my 

dataset (see methods). The scale of severity is separate for each map, based on the 

limits of community-average abundances within each land-use type, relative to 

expected abundances within primary vegetation. For cropland and pasture, 

respectively, the deepest red (greatest average severity of decline) represents 

community-average relative abundances of 0.13 and 0.07 (to 2 decimal places), the 

lightest yellow (lowest average severity of decline) represents community-average 

relative abundances of above 2 and up to 1.61, and the middle colour of orange 

represents a community-average relative abundance of 1. Relative probability of 

occurrence patterns were similar, but for croplands patterns were generally more 

negative (Appendix 2, Section 6, fig. S4.15). I also produced maps displaying the 

percentage of populations in each community with abundances in croplands and 

pastures predicted to be half or less than that in primary vegetation, based on 

populations’ climatic positions (Appendix 2, Section 6, fig. S4.14). 

4.5 Discussion 

 Populations’ thermal positions strongly influenced abundance across land-use 

types, with stronger effects often observed at tropical latitudes. As predicted, human-

altered land uses generally appeared to be filtering out populations experiencing 

temperature extremes close to their maximum or minimum thermal limit. Populations 

experiencing maximum monthly precipitation closer to their wet limit also had a lower 

probability of occurrence in human-altered land uses, in line with my predictions. 

However, the influences of climatic position regarding minimum monthly 

precipitation were more complex and did not consistently support my hypothesis. I 

also demonstrate how my results can be used to highlight communities that may 

experience more severe declines following habitat conversion due to the climatic 

positions of the populations present. Consequently, this chapter emphasises how 

species’ responses to human-altered land uses can differ significantly across their 
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distributions, which is essential to account for when assessing risk, predicting future 

changes, and mitigating negative impacts from global drivers of change.   

 In general, agricultural land (plantations, croplands, and pastures) filtered out 

populations where maximum temperatures were close to species-level maximum 

thermal limits and populations at sites with minimum temperatures close to species-

level minimum thermal limits. Conversion from a natural to human-altered land use 

usually leads to hotter and colder local temperature extremes (De Frenne et al., 2019). 

For populations closer to their thermal limits, these climatic changes may push ambient 

temperatures beyond species’ tolerance limits, directly impacting individuals (Chapter 

2; Frishkoff et al., 2016). Heat or cold stress can cause population decline because they 

can negatively impact processes such as reproduction (Manning & Bronson, 1990) and 

development (Russell et al., 2002), or lead to death (Welbergen et al., 2008). 

Temperature changes can also directly impact individual’s metabolic rates (through 

effects on biochemical reaction rates; Gillooly et al., 2001), influencing energy use 

and, consequently, the demand for food and allocation of energy resources (Barneche, 

Jahn, & Seebacher, 2019; Dillon, Wang, & Huey, 2010). For species relying on 

behavioural rather than physiological adaptations to cope with unfavourable 

temperatures, population declines could result from loss of thermal refugia following 

land-use change (Betts et al., 2018; Sunday et al., 2014). Populations closer to their 

thermal limits would be the most negatively impacted if individuals could no longer 

use refugia to escape thermal extremes. There were also geographical differences in 

the effect of thermal position on relative abundance within human-altered land uses. 

For instance, differences in relative abundance between populations with different 

climatic positions were greater at tropical compared to temperate latitudes; this is 

consistent with previous work suggesting species at lower latitudes are more sensitive 

to temperature changes due to the past stability of the tropical climate (Janzen, 1967). 

Interestingly, in tropical plantations and croplands, populations experiencing thermal 

extremes further from their thermal limits had higher abundances compared to 

populations at the same thermal position in primary vegetation. This could be due to 

the local climatic conditions within these human-altered land uses being more 

favourable for species found within the region than conditions within primary 

vegetation. Similar scenarios have been observed along elevational gradients, whereby 

localised warmer maximum temperatures following deforestation has facilitated the 
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invasion of these areas by species from lower elevations (leading to these populations 

having higher abundances within human-modified land uses compared to nearby 

primary vegetation; Frishkoff, Gabot, et al., 2019).  

 Unexpectedly, populations at sites where minimum monthly precipitation was 

closer to species-level dry limits often had similar or higher relative abundances than 

populations further from this limit, particularly in tropical plantations and croplands. 

For 79% of populations with Ppmin position values of 0 (i.e., in sites where they 

experience the lowest monthly precipitation of anywhere in the species’ distribution), 

the absolute precipitation tolerance limit was zero (i.e., no rainfall in the driest month). 

Thus, I propose my results may be due to these populations already experiencing very 

low rainfall levels in their natural habitats, meaning they may have behavioural 

strategies to cope with droughts. Consequently, these populations that are already 

tolerant of very dry conditions (compared to those further from their dry limits) may 

be better at coping with, or less negatively impacted than expected by local climatic 

changes following conversion from natural to human-altered land uses. Additionally, 

the magnitude of change in minimum precipitation with land-use change may be 

smaller in such dry areas, because although drought duration may increase, you cannot 

get less rainfall in the driest month if the minimum is already zero. However, I 

acknowledge that my minimum precipitation position measure cannot distinguish 

between populations that experience a single month versus multiple months of no rain. 

Therefore, complementary work using temporal data is needed to look at the impacts 

of land-use change on minimum precipitation in drier areas, and the variation in how 

local populations react to these changes.  

 Overall, the influence of a population’s precipitation position was complex. As 

well as the unexpected results regarding Ppmin position, a population’s Ppmax position 

was found to influence a population’s probability of occurrence, but not their 

abundance if they were present. Previous work has highlighted the complexity of 

precipitation regime changes on biodiversity, partly due to its complex interactions 

with other abiotic (e.g., moisture) and biotic (e.g., plant growth) factors in the 

environment, making detecting the underlying mechanisms difficult (Chapter 2; 

Brown et al., 2001; Fu et al., 2003). For example, changes in the distribution of 

precipitation (timing and/or severity) impact soil water content, which can 

substantially affect plants and their processes (see Zeppel, Wilks, & Lewis, 2014), but 
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whether these effects are positive or negative depends (at least partly) on the initial 

climatic conditions, such as aridity and the season the changes occur in (Morecroft et 

al., 2004; Zeppel et al., 2014). These complicated impacts on vegetation likely have 

knock-on effects for local vertebrates, and may act alongside or interact with the direct 

impacts of local water or moisture availability changes (Brown et al., 2001). Another 

complication of investigating the effects of local precipitation changes, is that 

irrigation systems are often used within human-altered land uses, impacting water 

vapour concentration (Boucher, Myhre, & Myhre, 2004). These artificial water 

systems may alter how populations are affected by local climatic changes. 

Consequently, although my results provide a start to exploring the impact of 

precipitation position on responses to human-altered land uses, due to the complexity 

of rainfall regimes, moisture availability and human impact (through land-use change 

and irrigation), alternative methods using different precipitation measures are needed 

to explore the influence of precipitation changes, and the mechanisms underlying its 

impact on vertebrate populations further. Ideally, biologically meaningful measures of 

moisture availability (at species-specific spatial scales) would be used with site-

specific irrigation considered, but data on both are rare.   

 Secondary vegetation is suggested to be important in biodiversity conservation, 

potentially providing refugia from certain threats, such as global climatic changes 

(Dent & Wright, 2009; Senior, Hill, González del Pliego, et al., 2017). Generally, I 

find only mature secondary vegetation has the potential to provide thermal refugia, 

particularly at tropical latitudes. The inability of tropical earlier-stage secondary 

vegetation to provide refugia for populations close to their thermal tolerance limits is 

concerning, especially as thermal refugia are becoming increasingly important as land-

use changes continue alongside global climate change, pushing temperatures even 

higher (Collins et al., 2013; Frishkoff et al., 2016; Jarzyna et al., 2016).   

 My results suggest the impacts of land use on vertebrate populations vary 

spatially, with the effect of temperature and precipitation changes differing with land 

use and latitude. For example, focusing on plantations, croplands, and pastures, it 

appears that while Tmax positions may have large impacts globally on how populations 

are impacted by these land uses, Tmin position has a greater impact on variation between 

populations at tropical compared to temperate latitudes. While I recognise land 

conversion from natural habitat to agriculture has already occurred or is not possible 
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across large expanses of the Earth’s terrestrial surface, I show that the potential 

severity of decline following land-use change likely differs greatly across space, 

depending on populations’ climatic positions. I also observed that this spatial variation 

differed between conversion to cropland versus pasture, which may be due to the 

differences observed in the impact of a population’s Ppmin position within these two 

land uses (see fig. 4.3). This variation is critical to account for as we predict how 

vertebrate populations might react to future land-use changes. Further research is 

needed into the mechanisms underlying how local climatic changes impact 

populations with different climatic positions, which will help to refine these maps. 

Within my model, I had a larger number of sites at tropical compared to temperate 

latitudes (Appendix 2, Section 4, table S4.3), and gathering more data for sites within 

temperate latitudes may also help to refine results across this area. My maps display 

estimates of mean potential severity of decline across the populations present in each 

cell, due to their climatic position, and do not make predictions of absolute abundance, 

which would require inclusion of other factors influencing species’ responses to land-

use change, such as biotic interactions and habitat preferences.  

 Overlaying climatic data on species’ distribution maps to estimate species’ 

realised climatic tolerance limits allowed me to include over 2,000 species within my 

models and study the impacts of temperature and precipitation positions across 

geographic zones. Using species’ distribution or occurrence data with climatic data to 

calculate climatic affiliations has been widely used, especially when studying species’ 

responses to land-use or global climate change (e.g., Barnagaud et al., 2013; 

Barnagaud et al., 2012; Frishkoff et al., 2016; Oliver et al., 2017). Nevertheless, I 

acknowledge that by using global climate data, I do not account for the microclimates 

species experience or potential intraspecific variation in climatic tolerances. 

Furthermore, species’ observed distributions are also influenced by biotic interactions 

and barriers to dispersal (HilleRisLambers et al., 2013; Peterson et al., 2011). 

Consequently, my approach, which estimates realised climatic tolerance limits, may 

not precisely reflect species’ physiological tolerances. Unfortunately, estimates of 

physiological thermal limits are only available (or obtainable) for a very small number 

of vertebrate species (Araújo et al., 2013), and estimates of physiological precipitation 

or moisture tolerance limits are rare (Sunday et al., 2012). Even if they were available, 

physiological climatic tolerance limits estimated under laboratory settings also have 
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limitations (see Chapter 2). Therefore, I consider my approach to be the best with the 

data currently available. Lastly, I acknowledge that my approach is correlative, so 

there may be other factors underlying the differences in relative abundance across 

climatic positions between land uses and, as previously mentioned, further work is 

needed to ascertain the underlying mechanisms. 

 In conclusion, my results suggest that the proximity of temperature extremes 

to species-level thermal limits affects the relative abundance of vertebrate populations 

across human-altered land uses, with populations in sites where temperature extremes 

are closer to their maximum or minimum thermal limit being filtered out of most 

human-altered land uses. Proximity to minimum and maximum monthly precipitation 

extremes was also found to influence species’ relative abundance and probability of 

occurrence, respectively, in human-altered land uses. These results are likely due, at 

least in part, to the local climatic changes following land-use change directly and/or 

indirectly impacting vertebrate populations. Overall, I highlight variation in responses 

to human-altered land uses across a species’ range, depending on population’s climatic 

positions. This variation has important implications when assessing risk from land-use 

pressures, exploring interactions between environmental pressures, and producing 

conservation or management plans. 

4.6 Data availability statement 

Data are available from the Dryad Digital Repository 

(https://doi.org/10.5061/dryad.sj3tx964n) and code on a public GitHub repository 

(https://github.com/JJWilliams24/Vertebrate-responses-to-human-land-use-are-

influenced-by-their-proximity-to-climatic-tolerance-limit). The original PREDICTS 

database can be downloaded from https://data.nhm.ac.uk/dataset/the-2016-release-of-

the-predicts-database. The WorldClim Version 1.4 climatic variable maps can be 

downloaded from http://www.worldclim.com/version1. Species distribution maps can 

be downloaded or requested from https://www.iucnredlist.org/resources/spatial-data-

download and http://datazone.birdlife.org/species/requestdis, respectively.  

https://doi.org/10.5061/dryad.sj3tx964n
https://github.com/JJWilliams24/Vertebrate-responses-to-human-land-use-are-influenced-by-their-proximity-to-climatic-tolerance-limit
https://github.com/JJWilliams24/Vertebrate-responses-to-human-land-use-are-influenced-by-their-proximity-to-climatic-tolerance-limit
https://data.nhm.ac.uk/dataset/the-2016-release-of-the-predicts-database
https://data.nhm.ac.uk/dataset/the-2016-release-of-the-predicts-database
http://www.worldclim.com/version1
https://www.iucnredlist.org/resources/spatial-data-download
https://www.iucnredlist.org/resources/spatial-data-download
http://datazone.birdlife.org/species/requestdis
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Chapter 5: 

Vertebrate population trends are influenced by 

interactions between land use, climatic position, 

habitat loss and climate change 

5.1 Abstract 

 Rapid human-driven environmental changes are impacting animal populations 

around the world. Currently, land-use and climate change are two of the biggest 

pressures facing biodiversity. However, studies investigating the impacts of these 

pressures on population trends often do not consider potential interactions between 

climate and land-use change. Further, a population’s climatic position (how close the 

ambient temperature and precipitation conditions are to the species’ climatic tolerance 

limits) is known to influence responses to climate change but has yet to be investigated 

with regard to its influence on land-use change responses over time. Consequently, 

important variation across species’ ranges in responses to environmental changes may 

be being overlooked. Here, I combine data from the Living Planet and BioTIME 

databases to carry out a global analysis exploring the impacts of land use, habitat loss, 

climatic position, climate change, and the interactions between these variables, on 

vertebrate population trends. By bringing these datasets together, I analyse over 7,000 

populations across 42 countries. I find that, as well as significantly impacting 

population trends on its own, land-use change is interacting with climate change and 

a population’s climatic position to influence rates of population change. Moreover, 

features of a population’s local landscape (such as surrounding land cover) play 

important roles in these interactions. For example, populations in agricultural land uses 

where maximum temperatures were closer to their hot thermal limit were found to 

decline at faster rates when there had also been rapid losses in surrounding semi-

natural habitats. The complex interactions between these variables on population 

trends highlights the importance of taking intraspecific variation and interactions 

between local and global pressures into account. Understanding how drivers of change 

are interacting and impacting populations, and how this varies spatially, is critical if 
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we are to identify populations at risk, predict species’ responses to future 

environmental changes and produce suitable conservation strategies. 

5.2 Introduction 

 Global animal populations are facing rapid human-driven environmental 

changes (IPBES, 2019). According to the Living Planet Index, average vertebrate 

population abundance has fallen by two-thirds in the last 50 years (WWF, 2020), with 

declines being clustered in certain locations around the world (Leung et al., 2020). 

However, studies of different time-series data, such as the BioTIME database, report 

little change in abundance over time for the majority of populations (Dornelas et al., 

2019). Many reasons have been put forward as to why the conclusions drawn regarding 

global populations trends differ between the datasets, including selection biases, 

publication biases, monitoring methods (population- or assemblage-level), extreme 

clusters within the datasets and geographic biases (Dornelas et al., 2019; Gonzalez et 

al., 2016; Leung et al., 2020). Whatever the overall trend, we need to understand the 

drivers underlying population fluctuations. Furthering our understanding as to why, 

and which, populations are changing or staying constant may help us to identify why 

we see such differences in trends between time-series datasets.  

 Recent studies investigating the influence of drivers of change on biodiversity 

have primarily focused on the impacts of climate and land-use change (Antão et al., 

2020; Daskalova et al., 2020; Northrup, Rivers, Yang, & Betts, 2019; Spooner et al., 

2018). Using BioTIME assemblage time-series data, Antão et al. (2020) found that the 

abundance trends of temperate terrestrial biodiversity were not coupled to temperature 

changes. However, this study did not account for land-use changes, and changes in 

forest cover have been found to impact population changes, with both declines and 

increases observed to intensify after forest loss (Daskalova et al., 2020). Neither of 

these studies accounted for interactions between land-use change and climate change. 

Drivers of change are not occurring in isolation, and as such interactions between land-

use and climate change are critical to take into account when studying how populations 

are changing (Chapter 2; Mantyka-Pringle et al., 2012; Oliver & Morecroft, 2014; 

Sirami et al., 2017). Indeed, when interactions are accounted for, a different picture is 

drawn as to the influence of global drivers on populations. For example, a global-level 

analysis using the Living Planet database (LPD), not only found that declines in 
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endothermic vertebrate populations were greater at sites where there had been rapid 

increases in temperature, but also, for mammals, that this effect interacted with land-

use change, with declines due to rapid warming amplified in areas with high rates of 

conversion from natural to agricultural land uses (Spooner et al., 2018). Interestingly 

though, unlike forest loss (Daskalova et al., 2020), land-use change on its own did not 

influence population changes (Spooner et al., 2018). At a more local scale, climatic 

changes (warming and drying) have also been found to interact synergistically with 

forest loss to influence bird declines in the northwest forests of the United States 

(Northrup et al., 2019).  

One route by which land-use change and climate change could interact to 

impact how vertebrate populations respond to global drivers of change is through the 

local-scale climatic changes that occur due to land-use change (Chapters 2-4; De 

Frenne et al., 2019; Frishkoff et al., 2016). Human-altered land uses (such as 

agricultural and urban areas) are, on average, hotter and drier than natural habitats (De 

Frenne et al., 2019; Frishkoff et al., 2016). In addition, the removal of canopy layers, 

such as through conversion from forest to croplands, leads to greater temperature 

extremes (De Frenne et al., 2019; Senior, Hill, Benedick, & Edwards, 2017). For 

example, average maximum daily temperatures in pastures and pineapple farms have 

been recorded to be around 6°C and 9°C higher than that in forest (Nowakowski, 

Watling, et al., 2017). These local climatic differences between land uses have been 

associated with community shifts: at both local- and global-levels, human-altered land 

uses have been observed to favour species that can tolerate greater hot and cold 

extremes of temperature, and greater wet and dry extremes of precipitation (Chapter 

3; Frishkoff et al., 2015; Nowakowski, Watling, et al., 2017; Waldock et al., 2020). As 

these local-scale climatic changes are occurring alongside global climatic changes, this 

has the potential to lead to complex interactions (Chapter 2).  

Populations, however, do not respond to environmental changes uniformly 

across their species’ ranges (Orme et al., 2019; Soroye et al., 2020; Spooner et al., 

2018). Recent work, such as Srinivasan et al. (2019) and the research presented in 

Chapter 4, is highlighting that ambient climate and, more specifically, how close the 

local temperature and precipitation conditions are to a species’ climatic tolerance 

limits (climatic position), may impact how populations respond to land-use change, 

leading to variation in responses across species’ ranges. At a regional level, across the 
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Himalayas, bird species common to locations across the region were more forest-

dependent (using agricultural sites less) in relatively aseasonal compared to highly 

seasonal locations (Srinivasan et al., 2019). At a global level, in Chapter 4, I found that 

populations in environments where extreme temperatures were closer to their hot or 

cold thermal limits were filtered out of human-altered land uses. Further, despite 

human-altered land uses being drier on average (Frishkoff et al., 2016), I found that 

populations in locations where minimum precipitation was closer to the species’ dry 

tolerance limit had similar abundances to that in natural habitats. In comparison, 

populations with a larger buffer between their dry limit and the location’s minimum 

precipitation levels did worse (had lower abundances relative to that in natural habitat; 

Chapter 4). This variation across species’ ranges may be due, at least in part, to the 

local climatic changes following land-use change. However, climatic position and its 

interaction with land use has yet to be considered when analysing global population 

trends.  

Here, I combine time-series data from the LPD and BioTIME database, with 

the aim to investigate whether changes in vertebrate population abundances are 

influenced by their climatic position, the habitat they are found within, the rates of 

climate change and changes in surrounding land use and, importantly, interactions 

between these variables. I make three specific hypotheses: 

(1 & 2) Populations experiencing (1) maximum or (2) minimum temperatures 

closer to their upper or lower thermal tolerance limits, respectively, will decrease more 

rapidly in human-altered land uses (and in areas that have experienced greater 

increases in surrounding human-altered land uses), compared to populations in more 

natural habitats, especially in places where hot maxima and cold minima have got more 

extreme over time; 

(3) Relative to populations in more natural habitats, populations in human-

altered land uses (and in areas that have experienced greater increases in surrounding 

human-altered land uses) that experience minimum precipitation closer to their dry 

tolerance limit will have a lower rate of decline over time compared to populations 

experiencing minimum precipitation levels further from their dry limit (following from 

my results in Chapter 4). 
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I also look at a population’s climatic position with regard to maximum 

precipitation level. At the community-level, I found that human-altered land uses 

favoured species affiliated with wetter precipitation extremes (Chapter 3), but at a 

population-level, a population’s maximum precipitation position relative to their 

species-level precipitation tolerance limits was found to influence probability of 

occurrence, but not abundance (given presence) within human-altered land uses 

relative to natural habitats (Chapter 4). Therefore, I do not have a clear hypothesis 

regarding how populations over time will be influenced by their maximum 

precipitation position. 

By bringing together these two global databases and incorporating previously 

overlooked variables and interactions, I complete the most comprehensive analysis to 

date to further our understanding on how vertebrates are being influenced by 

environmental changes around the world, how drivers of change are interacting, and 

which populations may be at higher risk from human-induced changes.  

5.3 Methods 

5.3.1 Population time-series data 

 I acquired population time-series data for terrestrial vertebrates from the Living 

Planet database (LPD; Living Planet Index database, January 2020) and the BioTIME 

database (Dornelas et al., 2018; see Appendix 3, Section 13, for the original data 

citations), for the period covering 1992 to 2015 (to match the land-cover data, see 

below). These two databases together contain time-series of population estimates for 

over 100,000 terrestrial vertebrate populations from around the globe within my 

timeframe. Here, I use the term ‘population’ to refer to a group of individuals of the 

same species at the same location. As in previous chapters, I focused on vertebrates 

due to the reasonably comprehensive data available on their distributions, which was 

necessary in order to estimate species’ realised climatic tolerance limits (see below).  

From both the LPD and BioTIME database, I extracted annual population 

estimates for non-migratory terrestrial vertebrate populations whose specific locations 

were known (so that I could assign land-use and environmental data to the site). In the 

BioTIME database, if there were multiple population estimates per year, I took the 

mean of these. I further removed any birds or mammals classed as migratory according 
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to data obtained from BirdLife International (2018) and Gnanadesikan, Pearse, & 

Shaw (2017). From the BioTIME database, I also excluded studies looking at biomass, 

and populations that were part of treatment studies such as burning, harvesting, or 

predator exclusion experiments. Finally, I excluded studies that were within the Arctic 

Circle, spanned less than 6 years, or had 5 or fewer population estimates over the time-

series (following Spooner et al., 2018). This left me with a dataset comprised of 9,601 

populations, consisting of 423 species (147 mammal, 224 bird, 30 reptile and 22 

amphibian species) in 1,669 locations across 48 countries. 

 For each population I calculated the average logged annual rate of population 

change (𝜆𝒀
̅̅ ̅), following the method used by Spooner et al. (2018). In brief, I first took 

the log (base 10) of each population estimate (if an estimate was zero, I instead took 

the log of 1% of the mean estimate from the entire time-series, including the zeros). 

Second, each time-series was fit with a generalised additive model (GAM), with a 

smoothing parameter set to the half the number of population estimates in  the time-

series (Collen et al., 2009). Then, 𝜆𝒀
̅̅ ̅ was calculated for each time-series following 

equation 5.1:  

(5.1)  𝜆𝒀
̅̅ ̅ =  

1

𝒀
 ∑ (log10 (

𝑛𝑦

𝑛𝑦−1
))𝑛

0  

in which n is the population estimate for year y, and Y is the number of years from the 

first to the last estimate for a population. Values for missing annual population 

estimates were imputed from the GAMs.  

5.3.2 Land-cover data  

 I obtained global land-cover maps from the European Space Agency Climate 

Change Initiative (ESA CCI; ESA Land Cover CCI project team, Defourny, 2019). 

These maps are available for the years 1992 to 2015, at a spatial resolution of 300 m 

and categorise land into 37 land-cover classes (Defourny et al., 2017). I grouped these 

land-cover classes into the broader categories of agriculture, forest, grassland, wetland, 

urban and other (I did not include the water or permanent snow and ice categories, so 

removed populations located in these categories; Appendix 3, Section 1, table S5.1), 

closely following the groupings used by the Intergovernmental Panel on Climate 

Change (Defourny et al., 2017). The land-cover category that each population was 
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located in when the population was first recorded within the 1992 to 2015 timescale 

was recorded as it’s starting land-use type (there were not enough populations starting 

in urban or wetland land-use types to include in the analysis, so the populations in 

these categories were removed, leaving forest, grassland, agriculture and other as 

starting land-use types).  

 To calculate the rate of change in land cover each population experienced over 

time, I first extracted the percentage of semi-natural habitat (SNH) within a 1 km 

radius of the population’s location for each year between its first and last estimate. A 

radius of 1 km has previously been used when assessing the impact of land-use change 

on local biodiversity (Le Provost et al., 2020), and due to my focus on the local climatic 

changes brought about by land-use change, concentrating on the changes in SNH 

within a 1 km radius surrounding a population was appropriate (however, to check the 

sensitivity of my results, I also calculated percentage change in SNH within a 5-, 10- 

and 50-km radius). Land-cover categories included as SNH were forest, grassland, 

wetland and shrubland (Appendix 3, Section 1, table S5.1). I also incorporated a 

weighting system, in which I used the maximum percentage cover of a specific land 

use (detailed in the ESA’s land-use categories) to weight each category. For example, 

the category ‘Tree cover, broadleaved, deciduous, closed to open (>15%)’ was given 

a weighting of 1, as it could cover 100% of the 300 × 300-m area, whereas the category 

‘Tree cover, broadleaved, deciduous, open (15-40%)’ was given a weighting of 0.4, as 

this could cover a maximum of 40% of the 300 × 300-m area (see Appendix 3, Section 

1, table S5.1 for a full listing of the weightings; non-SNH categories were given a 

weighting of 0). Then, for each location with a population time-series, a linear 

regression was fit to the percentage of SNH within the surrounding 1 km radius over 

the length of the population time-series, with the resulting slope extracted to give the 

average annual rate of change in SNH.  

5.3.3 Climatic tolerance limits  

 I estimated species’ realised climatic tolerance limits, i.e., the maximum and 

minimum of temperature and monthly precipitation that a species’ experiences across 

its geographic distribution. I obtained expert-informed species distribution maps 

(extent-of-occurrence maps) from BirdLife International (2012) and the International 

Union for Conservation of Nature (IUCN 2016a-b, 2017a-c, 2018a-b, 2019a-c). For 
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each species, I extracted their native historical ranges (where they were resident, or 

present during breeding or non-breeding seasons) and areas the species had been 

introduced or reintroduced (i.e., excluding areas where presence or seasonal 

occurrence is uncertain, species are possibly extant or vagrant, or areas classed as 

passages, such as areas used for short periods of time during migration). These 

extracted areas were then rasterised into 500 × 500-m equal-area grids (Behrmann 

projection). I chose this resolution so that I could include as many species as possible 

with very narrow ranges. Areas outside of species’ elevation limits, if known (BirdLife 

International 2018; IUCN 2016a-b, 2017a-c, 2018a-b, 2019a-c), were removed from 

their distribution maps.  

I obtained climate maps for average monthly maximum temperature of the 

warmest month, average monthly minimum temperature of the coldest month, and 

precipitation of the wettest and driest months from WorldClim Version 1.4 (Hijmans 

et al., 2005). These maps had a resolution of 30 arc-seconds and encompassed 

averaged yearly values from 1960 – 1990. I resampled these climate maps using 

bilinear interpolation to 500 × 500-m equal-area grids (Behrmann projection) to match 

the projection of the species’ distribution maps. I overlaid the species’ distribution 

maps on these four climatic variables and extracted the highest maximum temperature 

of the warmest month and precipitation of the wettest month, and the lowest minimum 

temperature of the coldest month and precipitation of the driest month across each 

species’ distribution (ArcGIS 10.4). These values provided my estimates of each 

species’ realised upper and lower temperature and precipitation tolerance limits (fig. 

5.1). 

5.3.4 Climate change and starting climatic position 

 Monthly average daily maximum and minimum temperature, and monthly 

precipitation data were acquired from the gridded (0.5° × 0.5°) Climatic Research Unit 

(CRU) Time-series data v. 4.03 (Harris & Jones, 2020). From these, I found the highest 

monthly average daily maximum temperature, lowest monthly average daily minimum 

temperature, and maximum (wettest) and minimum (driest) monthly precipitation per 

year at the location of each observed population within my dataset. For each 

population, values for the four climatic variables were extracted for each year between 

the first and last population estimate. Linear regressions were fit to each set of climatic 
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variables for each population, with the slopes of these extracted to give the average 

annual rate of change in maximum temperature of the warmest month, minimum 

temperature of the coldest month and precipitation of the wettest and driest months 

over the length of the population time-series.   

 For each population, I calculated their starting climatic position with regard to 

maximum temperature of the warmest month (Tmax position), minimum temperature 

of the coldest month (Tmin position), precipitation of the wettest month (Ppmax position) 

and precipitation of the driest month (Ppmin position). These positions describe the 

thermal and precipitation conditions (CRU Time-series data v. 4.03; Harris & Jones, 

2020) a population experienced in the first year they were measured at a site, 

standardised to range between 0 and 1 relative to the lower and upper realised 

temperature or precipitation tolerance limits of the species (where, for thermal 

tolerance limits, 0 = minimum realised temperature tolerance limit and 1 = maximum 

realised temperature tolerance limit, and for precipitation tolerance limits, 0 = 

minimum (dry) realised precipitation tolerance limit and 1 = maximum (wet) realised 

precipitation tolerance limit; fig. 5.1). I chose to use the temperature and precipitation 

conditions a population experienced in the first year of their time-series because I 

wanted a measure of where each population started in relation to their species-level 

climatic limits. However, to check the sensitivity of my results, I also calculated 

starting climatic position using the average maximum and minimum temperature and 

precipitation conditions (CRU Time-series data v. 4.03; Harris & Jones, 2020) in the 

three years up to and including the first year of a population’s time-series, and ran a 

model (see below) using this measure (Appendix 3, Section 4). 
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Figure 5.1: Climatic position calculation. A visual example of how the starting 

climatic positions (Tmax, Tmin, Ppmax and Ppmin position) were calculated for each 

population. 0 and 1 represent the species-level realised minimum and maximum  

thermal or precipitation tolerance limits, extracted from species’ distribution maps 

overlaid on climatic data from WorldClim Version 1.4 (denoted by the *; Hijmans et 

al., 2005). The starting climatic positions were calculated by standardising the 

population’s site-level temperature and precipitation data (obtained from the Climatic 

Research Unit, denoted by +; Harris & Jones, 2020) in the year that the population was 

first recorded to range between 0 and 1 relative to the species-level climatic tolerance 

limits. For example, a Tmax position closer to 1 means that the maximum temperature 

of the warmest month experienced by a population was closer to the highest maximum 

temperature of the warmest month across the species’ range. Similarly, a Ppmin position 

closer to 0 describes a population that experienced precipitation levels in their driest 

month that were closer to the lowest precipitation of the driest month across the 

species’ range.  

5.3.5 Distance to range edge  

 Within my analyses, I also accounted for a population’s location relative to 

their species’ range edge. For each population in my dataset, I found the shortest 

distance from their location to their species’ range edge and, to account for range size, 

divided it by the greatest distance a population of that species could be from their range 

edge (calculated by transforming species distribution maps into spatial points 
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dataframes). Therefore, each population had a standardised (between 0 and 1) distance 

to range edge measure, where a value of 0 meant the population was located at the 

species’ range edge, and values closer to 1 meant the population was closer to the range 

centre. Populations that were recorded outside of their distributions as stated by the 

distribution maps (BirdLife International 2012; IUCN 2016a-b, 2017a-c, 2018a-b, 

2019a-c), were removed.  

The final dataset comprised of 7,123 populations, consisting of 341 species 

(126 mammal, 186 bird, 12 reptile and 17 amphibian species) in 1,151 locations across 

42 countries (Appendix 3, Section 2, fig. S5.1).  

5.3.6 Statistical analyses 

I used linear mixed-effects models to investigate how the rate of population 

change was affected by land-use type and change, the population’s climatic position, 

and the rate of climate change experienced. I selected which main effects and 

interactions to include in the final model by using backwards stepwise variable 

selection. The population’s starting land-use type, the rate of change in SNH they 

experienced, their starting Tmax, Tmin, Ppmax and Ppmin positions and the rate of change 

in climate experienced (for the four climatic variables detailed above) were all 

included as fixed effects (table 5.1; correlations between continuous variables were 

checked, Appendix 3, Section 3, table S5.2). The distance of a population from its 

species’ range edge, and its interaction with starting land-use type, were also added as 

covariates to account for potential differences in responses due to proximity to range 

edge (Liebl & Martin, 2012; Orme et al., 2019). I included three 3-way interactions: 

(1) starting land-use type × rate of change in SNH × starting climatic position, to look 

at whether populations in human-altered land uses experiencing temperatures and 

precipitation closer to their climatic limits as well as greater rates of decreases in SNH 

have larger negative rates of population change, (2) starting land-use type × starting 

climatic position × rate of change in climate (with the same focal climatic variable as 

the climatic position, e.g. starting land-use type × starting Tmax position × rate of 

change in maximum temperature of the warmest month), to explore whether 

populations in human-altered land uses experiencing temperatures and precipitation 

closer to their climatic limits on top of greater increases in climatic extremes have 

larger negative rates of population change, and (3) starting land-use type × rate of 
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change in SNH × rate of change in climate, to look at whether populations in human-

altered land uses experiencing greater decreases in SNH as well as increases in extreme 

climatic conditions have larger negative rates of population change. The lower-order 

2-way interactions between the variables in each 3-way interaction were also included 

(table 5.1). I included three random intercept terms: species name (to account for 

interspecific differences in responses), study site (to account for site-specific effects), 

and database (LPD or BioTIME, to account for differences between datasets; table 

5.1). I then ran the final model, with the average logged annual rate of population 

change (𝜆𝒀
̅̅ ̅) as the response variable, and included the selected main effects, 

interactions (also including any non-significant lower-order interaction terms nested 

within these) and the random effects stated above. All of the above was completed in 

ArcGIS 10.4 (ESRI 2015), and R 3.6.0 (R Core Team 2019) using packages ‘dplyr’ 

v.0.8.3 (Wickham, François, Henry & Müller, 2019), ‘lme4’ v.1.1.26 (Bates et al., 

2015), ‘ncdf4’ v.1.17 (Pierce, 2019), ‘plyr’ v.1.8.6 (Wickham, 2011), ‘raster’ v.2.8-19 

(Hijmans, 2019) and ‘tidyr’ v.1.0.0 (Wickham & Henry, 2019). 

Table 5.1: Parameters included in the backwards stepwise variable selection. 

Symbols represent variables within the same 2- or 3-way interaction (for example, 

starting land-use type and rate of change in semi-natural habitat both have a  symbol, 

indicating that I included a 2-way interaction between these variables – starting land-

use type × rate of change in semi-natural habitat – in the backwards stepwise variable 

selection). Interactions combining both starting climatic position and rate of change in 

climate included the same climatic variable (e.g., starting Tmax position × rate of 

change in maximum temperature of the warmest month, or starting Ppmin position x 

rate of change in minimum monthly precipitation). Interactions between starting 

positions with respect to different climate variables, or between rates of change in 

different climatic variables were not included.  
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Parameter Description Type of effect Included in an 

interaction? 

   2-way  3-way  

Starting land-

use type  

The land-use type (forest, grassland, agriculture, or other) the population was within 

in the first year of its time-series.  

Fixed, categorial   

  

Rate of change 

in semi-natural 

habitat  

The average annual rate of change in the percentage of semi-natural habitat (which 

included forest, grassland, wetland, and shrubland) within a 1 km radius of the 

population, over the length of the population time-series.  

Fixed, continuous, 

quadratic  

 

Starting climatic 

position 

The  

a) maximum temperature of the warmest month (Tmax),  

b) minimum temperature of the coldest month (Tmin), 

c) precipitation of the wettest month (Ppmax), and  

d) precipitation of the driest month (Ppmin),  

a population experienced in the first year they were measured, relative to the 

species-level upper and lower realised thermal (for a and b) or precipitation (for c 

and d) tolerance limits.  

Fixed, continuous, 

quadratic  

 

Rate of change 

in climate  

The average annual rate of change in 

a) maximum temperature of the warmest month, 

b) minimum temperature of the coldest month, 

Fixed, continuous, 

quadratic   
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c) precipitation of the wettest month, and 

d) precipitation of the driest month,  

over the length of the population time-series. 

Distance to 

range edge  

The distance of a population from their species’ geographic range edge, standardised 

to account for overall range size. 

Fixed, continuous, 

linear 

  

Species name Species binomial, to account for interspecific differences in responses.  Random intercept   

Study site ID based on the population’s location (latitude and longitude), included to account 

for site-specific effects. 

Random intercept   

Database The database the population’s time-series data was acquired from (Living Planet 

database or BioTIME database), to account for differences between the databases 

(differences in inclusion criteria or sampling method, for example). 

Random intercept   
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5.3.7 Robustness checks 

 I compared the ESA land cover maps to recently produced global maps of 

terrestrial habitat types (Jung et al., 2020), to check the consistency of land use-types 

across data sources. These latter maps are only available for 2015 – 2019, so for each 

site in my final dataset (n = 1,151), I compared the land-use types between the 2015 

ESA land cover map and Jung et al.’s (2020) global map of terrestrial habitat types for 

2015. In particular, I wanted to ensure that there were not a large number of plantations 

or pastures at sites that I classed as forest or grasslands, respectively, as land-cover 

maps may miss these land uses. 

The IUCN and BirdLife International species’ distribution maps (BirdLife 

International 2012; IUCN 2016a-b, 2017a-c, 2018a-b, 2019a-c) provide data for a wide 

range of vertebrates from around the world, and as such have been used extensively 

(Allan et al., 2019; Herkt et al., 2017; Khaliq et al., 2017; Shackelford et al., 2015). 

However, they do contain inaccuracies as they tend to overestimate area of occupancy 

and underestimate species’ extent-of-occurrence (Herkt et al., 2017; Hurlbert & Jetz, 

2007). Therefore, to check the robustness of my climatic position measure, I also 

calculated species’ climatic limits using occurrence records from the Global 

Biodiversity Information Facility (GBIF, https://www.gbif.org), rather than species’ 

distribution maps (Appendix 3, Section 4). Further, to ensure that my climatic position 

measures were robust to the climatic data used to estimate climatic limits, I calculated 

another estimate of a population’s climatic position, this time using the CRU Time-

series data v. 4.03 (Harris & Jones, 2020), extracting temperature and precipitation 

data from 1992, to calculate species’ climatic limits (rather than using WorldClim 

data). I compared both the climatic positions themselves, and the results of models run 

(with the same structure as the final model) using the climatic positions calculated 

through these different methods of estimating climatic limits (Appendix 3, Section 4). 

Further, using the same structure as the final model, I also ran models that (1) 

included the average annual rate of change in the percentage of forest (instead of SNH) 

within a 1 km radius of the population’s location (calculated in the same way as for 

SNH, but only including the forest category; Appendix 3, Section 1, table S5.1), to 

investigate whether it was change in forest specifically, rather than semi-natural 

habitat, driving differences in population trends (Daskalova et al., 2020); (2) included 

https://www.gbif.org/
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percentage of SNH within a 1 km radius of the population in the first year they were 

recorded, rather than starting land-use type, to see if this explained more variance in 

the data (Appendix 3, Section 5); (3) only included time-series with R2 ≥ 0.5 when fit 

to the GAM, to remove populations with more variable estimates over the years, for 

which interpolated values may not be as accurate (Appendix 3, Section 8); (4) excluded 

time-series with 𝜆𝒀
̅̅ ̅ above and below the upper and lower 97.5th and 2.5th percentile, 

respectively, to ensure results were not being influenced by extreme positive or 

negative rates of population change (following Daskalova et al., (2020) and Spooner 

et al., (2018), I do not remove extreme values in my main model; Appendix 3, Section 

9); (5) excluded birds from the genus Gyps, as a previous study using the Living Planet 

database found that they had a big influence on model estimates (Green et al., 2020; 

Appendix 3, Section 10); (6) excluded ectotherms, to check these taxa were not driving 

any observed declines; and (7) included populations that were beyond their species’ 

ranges as stated by BirdLife International (2012) and IUCN (2016a-b, 2017a-c, 2018a-

b, 2019a-c), to ensure that removing these did not affect my results (Appendix 3, 

Section 11). I also carried out cross validation tests to ensure there were no overly 

influential locations or species in my dataset (Appendix 3, Section 12). I checked to 

see if I could run models separately for each vertebrate class (Mammalia, Aves, 

Reptilia and Amphibia), but there were insufficient data.   

5.4 Results 

5.4.1 Results summary 

The 7,123 populations analysed had an average time-series length of 15 years, 

covered a variety of starting land-use types and climatic positions and, across these 

populations, there were both increases and decreases experienced in surrounding SNH 

and all climatic variables (table 5.2).   
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Table 5.2: Summary statistics for the population time-series analysed, split by the 

originating database (the Living Planet database or BioTIME database). The average 

annual rate of change in semi-natural habitat refers to change within a 1 km radius 

surrounding each population. Fitted values were based on fixed effects only.  

 Living Planet 

database 

BioTIME 

database 

Number of populations analysed 367 6756 

Average annual rates of population change (% / 

year)  

  

 Mean of observed (and fitted) values -2.83 (-0.99) -0.03 (-1.54) 

 Median of observed (and fitted) values -0.53 (-1.33) 0 (-1.51) 

 Number of populations with a positive (↑) or 

negative (↓) values 

↑ 152 

↓ 215 

↑ 3299 

↓ 3319 

Mean length of population time-series (years) 13 15 

Number of countries from which populations 

originated  

42 4 

Average annual rates of change in semi-natural 

habitat 

  

 Range (% / year) -7.75 – 3.97 -7.27 – 9.24 

 Mean (% / year) -0.17 0.02 

 Median (% / year) 0 0.03 

 Number of populations with a positive (↑) or 

negative (↓) values 

↑ 137 

↓ 168 

↑ 3882 

↓ 2592 

Percentage of populations starting in each starting 

land-use type (%, to 1 decimal place) 

  

 Forest 58.9 54.2 

 Grassland 3.5 11.6 

 Agriculture 17.7 28.3 

 Other 19.9 5.8 

 

In summary, my results highlight the complexity of the impact that climatic 

position, land-use type and change, and climate change have on populations over time, 

with all these variables interacting with each another in complex ways (table 5.3). 
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Notably, the rate of change in SNH significantly affected the rate of population change 

(from the backwards stepwise selection process, p = 0.002) and, although not 

significant by itself, starting land-use type appeared to play an important role within 

interactions, particularly in its influence on how populations were affected by rates of 

change in climate and their starting climatic position (table 5.4). Neither the distance 

of populations from their species’ range edge, or its interaction with starting land-use 

type, significantly affected rate of population change. The fixed effects that were 

included in the final model (table 5.3) explained 7.4% of variation in the rate of 

population change (marginal pseudo-R2, sensu Nakagawa & Schielzeth, 2013) and 

together with the random effects, explained 46.1% of the variation (conditional 

pseudo-R2).  

Table 5.3: The fixed-effects included in the final model. The model included the 

land-use type the population was within in the first year of recording (LU), the average 

annual rate of change in semi-natural habitat in a 1 km radius surrounding the 

population (SNH_rate), a population’s starting climatic position with regard to 

maximum temperature of the warmest month, minimum temperature of the coldest 

month, and precipitation of the wettest and driest months (referred to as Tmax_pos, 

Tmin_pos, Ppmax_pos and Ppmin_pos, respectively), and the average annual rate of 

change in climate with regard to maximum temperature of the warmest month 

(MaxT_rate), minimum temperature of the coldest month (MinT_rate), and the 

precipitation of the wettest (MaxP_rate) and driest (MinP_rate) month. Continuous 

variables in the model were run as second-degree (i.e., quadratic) orthogonal 

polynomials (denoted by poly(x,2), where x is the continuous variable).  
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Fixed-effects Term 

Main effects  LU poly(Tmax_pos,2) poly(MaxT_rate,2) 

 poly(SNH_rate,2) poly(Tmin_pos,2) poly(MinT_rate,2) 

  poly(Ppmax_pos,2) poly(MaxP_rate,2) 

  poly(Ppmin_pos,2) poly(MinP_rate,2) 

 

Two-way 

interactions 

LU × poly(SNH_rate,2) poly(SNH_rate,2) × poly(Tmax_pos,2) poly(MaxT_rate,2) × poly(Tmax_pos,2) 

LU × poly(Tmax_pos,2) poly(SNH_rate,2) × poly(Tmin_pos,2) poly(MinT_rate,2) × poly(Tmin_pos,2) 

 LU × poly(Tmin_pos,2) poly(SNH_rate,2) × poly(Ppmax_pos,2) poly(MaxP_rate,2) × poly(Ppmax_pos,2) 

 LU × poly(Ppmax_pos,2) poly(SNH_rate,2) × poly(MaxT_rate,2) poly(MinP_rate,2) × poly(Ppmin_pos,2) 

 LU × poly(Ppmin_pos,2) poly(SNH_rate,2) × poly(MinT_rate,2)  

 LU × poly(MaxT_rate,2) poly(SNH_rate,2) × poly(MaxP_rate,2)  

 LU × poly(MinT_rate,2)   

 LU × poly(MaxP_rate,2)   

 LU × poly(MinP_rate,2) 

 

  

Three-way 

interactions 

LU × poly(SNH_rate,2) × 

poly(Tmax_pos,2) 

LU × poly(MaxT_rate,2) × 

poly(Tmax_pos,2) 

LU × poly(SNH_rate,2) × 

poly(MaxT_rate,2) 

 LU × poly(SNH_rate,2) × 

poly(Tmin_pos,2) 

LU × poly(MinT_rate,2) × 

poly(Tmin_pos,2) 

LU × poly(SNH_rate,2) × 

poly(MinT_rate,2) 

 LU × poly(SNH_rate,2) × 

poly(Ppmax_pos,2) 

LU × poly(MaxP_rate,2) × 

poly(Ppmax_pos,2) 

LU × poly(SNH_rate,2) × 

poly(MaxP_rate,2) 

  LU × poly(MinP_rate,2) × 

poly(Ppmin_pos,2) 
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Table 5.4: The 10th, 50th, and 90th percentiles of the continuous explanatory 

variables included in the final dataset. Tmax, Tmin, Ppmax and Ppmin position refer 

to a population’s starting climatic positions with regard to maximum temperature of 

the warmest month, minimum temperature of the coldest month, and precipitation of 

the wettest and driest months, respectively.  

Continuous explanatory variables  Percentiles  

  10th 50th 90th 

Average annual rate of change in semi-natural habitat (% 

/ year) 

-1.20 0.02 1.07 

Starting climatic position     

 Tmax position 0.73 0.82 0.91 

 Tmin position 0.19 0.32 0.44 

 Ppmax position 0.09 0.20 0.56 

 Ppmin position  0.004 0.03 0.08 

Average annual rate of change in climate     

 Maximum temperature of the warmest month (°C / 

year) 

-0.04 0.04 0.20 

 Minimum temperature of the coldest month (°C / year) -0.07 -0.003 0.13 

 Precipitation of the wettest month (monthly mm / year) -4.33 -0.59 3.19 

 Precipitation of the driest month (monthly mm / year) -1.70 -0.26 0.64 

Distance from range edge 0.02 0.17 0.62 
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Table 5.5: The statistical results from the backwards stepwise selection for the 

two- and three-way interactions including starting land-use type (categorical 

variable) that were included in the final model. Variables within these interactions 

included continuous variables for the average annual rate of change in semi-natural 

habitat (SNH_rate), a population’s starting climatic positions with regard to maximum 

temperature of the warmest month, minimum temperature of the coldest month, and 

precipitation of the wettest and driest months (referred to as Tmax_pos, Tmin_pos, 

Ppmax_pos and Ppmin_pos, respectively), average annual rate of change in climate 

with regard to maximum temperature of the warmest month (MaxT_rate), minimum 

temperature of the coldest month (MinT_rate), precipitation of the wettest 

(MaxP_rate) and driest (MinP_rate) months. Continuous variables in the model were 

run as second-degree (i.e., quadratic) orthogonal polynomials (denoted by poly(x,2), 

where x is the continuous variable). 

Term χ2 Degrees of 

 freedom 

p-value 

LU × poly(SNH_rate,2) 6.70 6,245 0.349  

LU × poly(Tmax_pos,2) 23.29 6,217 <0.001 *** 

LU × poly(Tmin_pos,2) 37.31 6,217 <0.001 *** 

LU × poly(Ppmax_pos,2) 3.64 6,270 0.726  

LU × poly(Ppmin_pos,2) 18.77 6,217 0.005 ** 

LU × poly(MaxT_rate,2) 28.85 6,217 <0.001 *** 

LU × poly(MinT_rate,2) 19.54 6,217 0.003 ** 

LU × poly(MaxP_rate,2) 6.08 6,239 0.414  

LU × poly(MinP_rate,2) 1.47 6,276 0.962  

LU × poly(SNH_rate,2) × poly(Tmax_pos,2) 35.20 16,217 0.004 ** 

LU × poly(SNH_rate,2) × poly(Tmin_pos,2) 32.82 16,217 0.008 ** 

LU × poly(SNH_rate,2) × poly(Ppmax_pos,2) 33.86 16,217 0.006 ** 

LU × poly(MaxT_rate,2) × poly(Tmax_pos,2) 53.88 16,217 <0.001 *** 

LU × poly(MinT_rate,2) × poly(Tmin_pos,2) 71.45 16,217 <0.001 *** 

LU × poly(MaxP_rate,2) × poly(Ppmax_pos,2) 33.73 16,217 0.006 ** 

LU × poly(MinP_rate,2) × poly(Ppmin_pos,2) 31.73 16,217 0.011 * 

LU × poly(SNH_rate,2) × poly(MaxT_rate,2) 40.12 16,217 <0.001 *** 

LU × poly(SNH_rate,2) × poly(MinT_rate,2) 35.47 16,217 0.003 ** 

LU × poly(SNH_rate,2) × poly(MaxP_rate,2) 39.10 16,217 0.001 ** 

* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001 
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5.4.2 Detailed results 

I found that the rate of change in SNH surrounding a population had a 

significant effect on their rate of population change (χ2 = 9.66, df = 1,19, p = 0.002). 

The direction of the effect differed (although not significantly) depending on the land-

use type that the population started in (χ2 = 6.70, df = 6,245, p = 0.349; fig. 5.2). While 

testing the sensitivity of my results, I included the percentage of SNH within a 1 km 

radius of the population in the first year they were measured (rather than starting land-

use type); the results indicated that populations surrounded by a higher percentage of 

human-altered habitats at the start of recording often had greater negative rates of 

population change (Appendix 3, Section 5, figs. S5.8-11). This is another very 

interesting result and I present it in the appendices (due to it being a post-hoc test, as 

well as having a lower marginal R2 compared to my main model, and not capturing 

the difference between populations starting in forest versus grassland). Below I do not 

plot the results for populations that started in habitats classed as ‘other’ because, 

following my hypotheses, I want to focus on how the impact of climatic position, land-

use, and climate change on the rate of population change differs between those starting 

in human-altered habitats (agriculture) compared to those in more natural habitats 

(forest and grasslands). 
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Figure 5.2: The average annual rate of population change depending on the 

average annual rate of change in semi-natural habitat, split by the land-use type 

a population was in when the first population measure was recorded. Error 

margins denote ±1 standard error. 

 The influence of starting thermal position on a population’s rate of change over 

time differed significantly between starting land-use types, with this effect also 

depending on the rate of change in SNH (table 5.5). For populations with high starting 

Tmax positions (indicating they initially experienced maximum temperatures closer to 

their hot thermal limit), as predicted, those that started in agricultural areas and 

experienced more rapid loss in SNH, had more negative rates of population change 

(fig. 5.3). Interestingly, populations starting in agricultural land uses with lower 

starting Tmax positions (indicating they initially experienced maximum temperatures 

further from their hot thermal limit) also had more negative rates of population change 

in areas that had experienced more rapid increases in SNH in the surrounding 

landscape. Further, in line with predictions, for populations with low Tmin positions 

(initially in environments where they experienced minimum temperatures closer to 
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their cold thermal limit) in agricultural land uses, those that experienced more rapid 

increases in SNH had more positive rates of population change (fig. 5.3).  

 A populations’ starting Ppmax position also interacted with the rate of change 

in SNH, with this effect differing between starting land-use types (table 5.5, fig. 5.3). 

Effects of Ppmax positions and rate of change in SNH were stronger for populations 

starting in grassland sites compared to forest or agriculture. A population’s starting 

Ppmin position also impacted rate of population change differently across the starting 

land uses (table 5.5, fig. 5.3), but this effect did not differ significantly depending on 

rate of change in SNH that a population experienced. Unexpectedly, for populations 

starting in agricultural land uses, those experiencing minimum precipitation levels 

closer to their dry tolerance level (low starting Ppmin position), had more negative rates 

of population change (compared to forested and grassland habitats, and compared to 

populations with higher Ppmin positions). 
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Figure 5.3: The interaction between starting land-use type, rate of land-use 

change, and climatic position. The average annual rate of population change 

(percentage change per year) across different starting land-use types, depending on: (i) 

the average annual rate of change in the percentage of semi-natural habitat within a 1 

km radius; and (ii) a population’s starting climatic position with regard to maximum 

temperature of the warmest month (Tmax), minimum temperature of the coldest month 

(Tmin), precipitation of the wettest month (Ppmax) or precipitation of the driest month 

(Ppmin). The x- and y-axes are truncated at the 10th and 90th percentile of sampled 
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values of each variable. Contour lines (and labels) indicate changes in average annual 

rate of population change. 

 The rate of change in climate experienced by a population also influenced their 

rate of population change, with these effects differing across starting land-use types 

and further depending on starting climatic position (table 5.5, fig. 5.4). Surprisingly, 

for populations that experienced greater rates of increase in maximum temperatures, 

those starting within agriculture and with higher starting Tmax positions (experiencing 

maximum temperatures closer to their hot thermal limit), had the most positive rate of 

population increases. Further, and again against predictions, despite decreases in 

minimum temperatures, populations in agriculture with lower starting Tmin positions 

(experiencing minimum temperatures closer to their cold thermal limit), had less 

negative rates of population change, compared to populations with higher Tmin 

positions. The declines in agriculture of populations with lower Ppmin positions 

(experiencing minimum precipitation levels closer to their dry tolerance level) were 

stronger in areas that had experienced decreases in precipitation in their driest month. 
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Figure 5.4: The interaction between starting land-use type, rate of climate 

change, and climatic position. The average annual rate of population change 

(percentage change per year) across different starting land-use types, depending on: (i) 

the average annual rate of change in climate; and (ii) a population’s starting climatic 

position. Climatic variables considered in both cases were maximum temperature of 

the warmest month (Tmax), minimum temperature of the coldest month (Tmin), 

precipitation of the wettest month (Ppmax), and precipitation of the driest month (Ppmin). 

The x- and y-axes are truncated at the 10th and 90th percentile of sampled values of 
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each variable. Contour lines (and labels) indicate changes in average annual rate of 

population change. 

 Finally, three-way interactions were observed between rate of change in SNH, 

starting land-use type and the rate of change in three climatic variables: maximum 

temperature of the warmest month, minimum temperature of the coldest month and 

precipitation of the wettest month (table 5.5, fig. 5.5). Interestingly, as with the other 

interactions, this highlights how the average annual rate of population change for those 

starting in forested sites is relatively similar (declining at a rate of around -1%) across 

populations experiencing different rates of change in SNH and climate. The most 

variation is seen in populations that started in grasslands, with positive rates of change 

seen for those populations experiencing more rapid decreases in maximum 

temperature and SNH, and negative rates of change seen for those populations 

experiencing faster increases in SNH and decreases in minimum temperature.  
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Figure 5.5: The interaction between starting land-use type and the rate of change 

in climate and land use. The average annual rate of population change (percentage 

change per year) across different starting land-use types, depending on: (i) the average 

annual rate of change in the percentage of semi-natural habitat within a 1 km radius; 

and (ii) average annual rate of change in climate with regard to maximum temperature 

of the warmest month (°C/year), minimum temperature of the coldest month (°C/year), 

and precipitation of the wettest month (monthly mm/year). The x- and y-axes are 

truncated at the 10th and 90th percentile of sampled values of each variable. Contour 

lines (and labels) indicate changes in average annual rate of population change. 
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5.4.3 Robustness checks 

Land-use types extracted from the 2015 ESA land cover map (ESA Land Cover 

CCI project team, Defourny, 2019) and the 2015 global map of terrestrial habitat types 

(Jung et al., 2020) were the same for over 70% of sites in my dataset (Appendix 3, 

Section 6, table S5.4-5). Out of the sites that differed, there were a low number of 

discrepancies between forest and plantation (n = 24, 2.1% of all sites in the dataset) 

and between grassland and pasturelands (n = 6, 0.5% of all sites in the dataset). The 

larger discrepancies between the data sources included (1) sites that were classed as 

forest by the ESA land cover map but as shrubland by the global map of terrestrial 

habitat types (n = 58, 5.0% of all sites in the dataset) and (2) sites that were classed as 

agriculture by the ESA land cover map but as forest by the global map of habitat types 

(n = 40, 3.5% of all sites in the dataset). 

Using the average temperature and precipitation conditions in the three years 

up to and including the first year of a population’s time-series to calculate climatic 

position (rather than the temperature and precipitation in the first year) explained 

almost the same amount of variance in rate of population change and produced very 

similar results to those presented above (Appendix 3, Section 4, figs. S5.2-3). The 

climatic positions calculated using CRU Time-series data (instead of WorldClim 

climate maps) to estimate species’ climatic limits were strongly correlated to the 

climatic positions used in the main model (r > 0.9), and the results of the models run 

using these climatic position estimates were very similar to those above (Appendix 3, 

Section 4, table S5.3, figs. S5.4-5). I was able to calculate climatic positions using 

GBIF occurrence data (instead of species’ distribution maps) for 324 of the species 

found in my final dataset (6,681 populations), and these were also strongly correlated 

to the climatic positions reported here (r > 0.78; Appendix 3, Section 4, table S5.3). 

The overall pattern of results using climatic positions derived from GBIF data was 

similar to the results reported above (Appendix 3, Section 4, figs. S5.6-7).  

Including the average annual rate of change in the percentage of SNH within a 

1 km radius of each population, as in the model reported above, explained more 

variance (higher marginal R2 values) than using rates of change within a 5- or 10-km 

radius. The model including rate of change in SNH within a 50 km radius explained 

around the same amount of variance as within a 1 km radius, but as my hypotheses 
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were focused on local climatic changes following land-use change, the 1 km radius 

was more appropriate. The model that included average annual rate of change in the 

percentage of forest within a 1 km radius, rather than SNH, explained less variance in 

rate of population change, but overall patterns in forest and agriculture were similar 

between the models (Appendix 3, Section 7, figs. S5.12-13).  

Excluding populations whose time-series did not have a GAM R2 ≥ 0.5 

removed around three-quarters of populations. The resulting model had a higher 

marginal R2 and predicted more extreme rates of population change (in both the 

positive and negative direction) than those reported above, but patterns with respect to 

the environmental variables discussed in the main findings above were very similar 

(Appendix 3, Section 8, figs. S5.14-16). Excluding time-series with 𝜆𝒀
̅̅ ̅ above and 

below the upper and lower 97.5th and 2.5th percentile, respectively, resulted in a model 

that did not explain as much variance as the main model, but overall patterns were 

similar (although the rates of population change were shifted slightly towards less 

negative values; Appendix 3, Section 9, table S5.6, figs. S5.17-19). Excluding species 

from the genus Gyps produced a model with a slightly higher marginal R2 value (by 

0.007), but very similar results to the model above (although very slight shifts in the 

rates of population change towards less negative values were observed; Appendix 3, 

Section 10, figs. S5.20-22). Running models without ectothermic species did not 

change the results (results not shown). The results of models including populations 

that were outside of their species’ ranges as stated by the BirdLife International (2012) 

and IUCN (2016a-b, 2017a-c, 2018a-b, 2019a-c) distribution maps were very similar 

to those presented above (Appendix 3, Section 11, figs. S5.23-25). The majority of 

populations recorded outside of their species’ ranges were relatively close to the range 

edge (70% were within 82 km), with those further away generally being species 

invasive to the recorded location. Finally, cross validation tests showed that there were 

no overly influential locations or species within the dataset (Appendix 3, Section 12, 

figs. S5.26-29).  

5.5 Discussion 

Vertebrate populations are not responding uniformly to land-use change across 

their distributions. Rather, I show that as well as significantly impacting population 

trends on its own, land-use change is interacting with climate change and a 
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population’s climatic position to influence rates of population change. Further, 

features of a population’s local landscape (their starting land-use type and the land 

cover in the surrounding 1 km) play an important role in these interactions. This is the 

first time that a population’s climatic position has been included in a study 

investigating the impact of habitat change and observed to have an important influence 

on the rate of change in populations over time. These results highlight the need to, 

first, account for populations’ climatic positions when investigating the impacts of 

land-use change (not just climate change) and second, include interactions occurring 

between drivers of change. These should be incorporated in both big-data global 

models, such as the one I present here, as well as local scale conservation and 

management plans – these interactions and differences across species’ ranges in 

responses to environmental changes cannot be overlooked if we are to mitigate the 

impact of anthropogenic changes on vertebrate populations around the world.    

The land-use type a population was within when their population was first 

measured (starting land-use type: forest, grassland, agriculture, or other), and the 

percentage of surrounding SNH at the start of recording, played vital roles within 

interactions. This emphasises that habitat type needs to be accounted for within large-

scale models analysing the impacts of drivers of change – otherwise, the weight of any 

driver’s influence may be dampened or obscured due to the buffering effects of natural 

habitats. For example, I observe that, although populations starting in forests were 

generally declining by around 1% per year, this rate was similar for populations with 

different starting climatic positions and experiencing different rates of land-use and 

climate change. This suggests that forests act as buffers, providing climatic conditions 

and/or habitat quality (e.g., due to the thermal buffering properties of a canopy layer 

and the complexity of microhabitats; De Frenne et al., 2019; González del Pliego et 

al., 2016) that protect populations from surrounding landscape-level (change in SNH) 

and global-level (climate change) environmental changes. Similarly, those populations 

surrounded by higher percentages of SNH at the start of recording generally had 

weaker and less negative population trends, suggesting that surrounding SNH can also 

help buffer populations from land-use and climatic changes, across different climatic 

positions.   

 For the first time, I show that a population’s climatic position has an important 

influence on its rate of change over time, interacting with land-use type and change, 
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as well as climate change. I observed several results consistent with my hypotheses. 

First, for populations initially in environments where maximum temperatures were 

closer to the species’ hot thermal limit, those that were in agriculture and experienced 

more rapid losses in surrounding SNH (i.e., high Tmax position + agriculture + SNH 

loss, fig. 5.3), had more negative rates of population change compared to populations 

in forest or grassland. Second, within agriculture, for populations initially in 

environments with minimum temperatures close to their species’ cold thermal limit, 

those that experienced increases in surrounding SNH (i.e., low Tmin position + 

agriculture + SNH gain, fig. 5.3) had positive rates of population change (whereas 

populations experiencing declines in SNH had negative population trends). However, 

there were also unexpected results. For example, populations in agriculture, and 

initially in environments where maximum temperatures were further from the species’ 

hot thermal limit, had more negative rates of population change in areas that had more 

rapid increases in surrounding SNH (i.e., low Tmax position + agriculture + SNH gain). 

This observation may be due to individuals recolonising the surrounding restored areas 

(Nichols & Grant, 2007), and so moving out of the agricultural sites. Whilst my 

analyses reveal several very important results, one limitation is that I was not able to 

determine how the focal variables are influencing population trends, whether it is 

through effects on birth, death, immigration, or emigration rates. The mechanisms 

underlying how populations are influenced by climatic changes, and how their climatic 

positions may interact with the local climatic changes following land-use change are 

complex (Chapter 2). Further work is needed to explore the mechanisms underlying 

the influence of climatic position and interactions with land-use and climate change 

on population trends.  

 These results using population time-series data contrasted in some respects 

when compared to my space-for-time analysis using data from the PREDICTS Project 

database in Chapter 4, particularly with regard to minimum precipitation position. The 

space-for-time analysis in Chapter 4 suggested that agricultural land uses had little 

impact on population abundance (relative to that in primary vegetation) in 

environments where precipitation in the driest month was close to the species’ dry 

limit. However, in this chapter, I observe that agricultural populations initially in 

environments where precipitation in the driest month was closer to the species’ dry 

limit (i.e., low Ppmin position + agriculture) had more negative rates of population 
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change relative to populations in more natural habitats. The two types of analysis are 

capturing different attributes of population abundance (a snapshot in time versus 

temporal trends), and resulting differences may be due to the influence of temporal 

lags, an interaction with global climate change, or the locations of populations in the 

analyses. First, commonly observed lags in responses to environmental changes (Lira, 

de Souza Leite, & Metzger, 2019) may mean that populations with lower Ppmin 

positions are initially able to tolerate local changes towards drier conditions following 

land-use change, due to drought adaptations for example, but they may not be able to 

sustain numbers if the conditions continue. Lagged responses are not captured in most 

space-for-time analyses (De Palma et al., 2018). Second, ongoing drying trends in the 

tropics (Lau & Kim, 2015) may interact with precipitation position to lead to more 

rapid declines for populations with lower Ppmin positions (indeed, I observe this trend 

in my results above, fig. 5.4), a trend which may be hidden if the rate of climate change 

is not considered. Finally, and perhaps most importantly, most populations in my 

temporal analysis were found at temperate latitudes, and in Chapter 4’s space-for-time 

analysis, the pattern regarding Ppmin position was much stronger for agricultural 

populations at tropical latitudes. This emphasises the need to collect more time-series 

data for tropical populations (discussed further below), in order to explore geographic 

differences. Ultimately, exploring similar questions using both space-for-time and 

temporal analyses is key, as overall we get a clearer answer to our questions, with the 

analyses highlighting different results as well as aspects that may be missed by one or 

other method.  

 By analysing time-series data from both the LPD and BioTIME database 

together, not only was I able to analyse over 7,000 vertebrate populations, but I could 

also highlight some of the differences between the databases, which may contribute to 

the conflicting results between previous studies analysing these databases separately 

(e.g., Dornelas et al., 2019; WWF 2020). After filtering, there were roughly the same 

number of populations from tropical (n = 174) and temperate (n = 193) latitudes from 

the LPD, whereas all BioTIME populations (n = 6,756) came from temperate latitudes. 

Even though abiotic factors are suggested to have greater impact on species 

distributions at higher latitudes (Khaliq et al., 2017; MacArthur, 1972), the tropics 

have continuously been identified as particularly vulnerable to drivers of change such 

as land-use and climate change (Brook et al., 2008; Newbold et al., 2020). Further, in 
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Chapter 3 where I examined the impact of the local climatic changes following land-

use change at the community-level, I found greater differences between natural and 

human-altered land uses in tropical than temperate latitudes. Reasons for this include 

the relative stability (past and present) of the tropical climate (Janzen, 1967; Pacifici 

et al., 2017), the smaller average range sizes of species within the tropics (Stevens, 

1989; Thuiller et al., 2005), the fact that tropical species are often living closer to their 

maximum thermal tolerance limits (Deutsch et al., 2008; Sunday et al., 2014), and the 

larger proportion of specialist species (habitat and dietary specialists) inhabiting the 

tropics (Forister et al., 2015). Consequently, the skew of BioTIME data towards 

temperate assemblages may not give an accurate representation of global population 

trends. Indeed, analyses of vertebrate populations of forest specialists from the LPD 

found that the average abundance trends were positive in temperate biomes and 

negative in tropical biomes (Green et al., 2020). Ideally, I would test whether 

population trends were influenced differently by my focal variables depending on 

whether the population was at a tropical or temperate latitude. However, there were 

insufficient tropical data to do so. In my final dataset, the LPD contributed populations 

from 42 countries, whereas the BioTIME database contributed populations from just 

4 countries (United States of America, Canada, South Africa, and Brazil; Appendix 3, 

Section 2, fig. S5.1). Historical pressures on biodiversity can impact vulnerability to 

present-day environmental changes (Balmford, 1996). Therefore, analyses based on 

data from a small number of countries need to take this into account and, in the case 

of the BioTIME database, the countries contributing data all have long histories of 

environmental changes (although, in the case of Brazil, this varies spatially within the 

country; Goldewijk, 2001; Goldewijk, Beusen, Van Drecht, & De Vos, 2011; Nehren, 

Kirchner, Sattler, Turetta, & Heinrich, 2013). Consequently, this may be another 

reason for disparities between previous studies using data from the LPD versus 

BioTIME database.  

 Using species’ distribution maps and climate data from WorldClim to estimate 

species’ realised climatic tolerance limits meant that I was not able to take into account 

climatic adaptations over time, intraspecific differences in climatic tolerances, or 

microclimatic conditions. However, at present, the data are not available to include 

these variables, especially for the large number of species (almost 350) that were 

included in this analysis. Hopefully it will be possible to account for these variables in 
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the future. Further, I use estimates of realised climatic tolerance limits, which can be 

influenced by factors other than climate, such as dispersal barriers and biotic 

interactions (HilleRisLambers et al., 2013; Peterson et al., 2011). Nevertheless, I use 

these rather than physiological climatic tolerance limits because physiological data are 

available for very few species, the metrics produced in laboratory tests are often 

incomparable to one another (due to different measurement procedures), and 

laboratory tests have been criticised for not being reflective of real-world conditions 

(Chapter 2; Araújo et al., 2013; Rezende et al., 2014; Sunday et al., 2012). 

In conclusion, local land-use changes and global climate changes are 

interacting to impact vertebrate population trends around the world. Further, these 

interactions do not impact populations uniformly across species’ ranges. Rather, a 

population’s climatic position is key within these interactions. Consequently, I 

highlight the importance of taking a population’s climatic position into account, not 

just when studying the impacts of climate change (Soroye et al., 2020), but also land-

use change. Even though the effects of these interactions are complex, and further 

work is needed on the mechanisms underlying how these variables influence 

populations, my results allow us to identify populations that may be at greater risk of 

decline. In order to prevent further population declines and mitigate the impact of 

anthropogenic changes, we cannot ignore interactions between drivers of change, and 

we must account for variation across species’ ranges in responses to local and global 

environmental changes in both local conservation strategies and global models.   

5.6 Data availability statement  

The Living Planet Index database (apart from the confidential data) can be found at 

https://livingplanetindex.org/data_portal, and the BioTIME database can be 

downloaded from http://biotime.st-andrews.ac.uk/downloadArea.php.  The European 

Space Agency Climate Change Initiative land cover maps can be downloaded from 

https://catalogue.ceda.ac.uk/uuid/b382ebe6679d44b8b0e68ea4ef4b701c. The 

WorldClim Version 1.4 climatic variable maps can be downloaded from 

http://www.worldclim.com/version1 and species distribution maps can be downloaded 

or requested from https://www.iucnredlist.org/resources/spatial-data-download and 

http://datazone.birdlife.org/species/requestdis, respectively. 

https://livingplanetindex.org/data_portal
http://biotime.st-andrews.ac.uk/downloadArea.php
https://catalogue.ceda.ac.uk/uuid/b382ebe6679d44b8b0e68ea4ef4b701c
http://www.worldclim.com/version1
https://www.iucnredlist.org/resources/spatial-data-download
http://datazone.birdlife.org/species/requestdis
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Chapter 6: 

Discussion and synthesis 

Anthropogenic drivers of change are reshaping terrestrial vertebrate 

communities around the world (Bellard et al., 2012; Newbold et al., 2015; Olivier, 

Thébault, Elias, Fontaine, & Fontaine, 2020). To minimise future biodiversity losses, 

and protect the ecosystem services that nature provides, calls have been made to 

increase the extent of protected areas, restore degraded land and generalise land-use 

planning at the landscape-level (Leclère et al., 2020; WWF 2018). For these efforts to 

be successful, it is vital that they account for the variation in responses to land-use 

change, across both species and space. Moreover, with ongoing global climate change 

(Collins et al., 2013), the potential for the effects of land-use and climate change to 

interact cannot be ignored (Mantyka-Pringle et al., 2012; Oliver & Morecroft, 2014; 

Sala et al., 2000). Furthering our understanding of variation in responses to and 

interactions between drivers of change will allow conservation and management 

practitioners to target and prioritise their efforts towards the species, populations, and 

areas most at risk, giving us a better chance of altering the current trajectory of 

biodiversity decline (Murray et al., 2021; Powers & Jetz, 2019).  

In this thesis, I analysed three of the most comprehensive compilations of 

vertebrate assemblage records to date, with the aim of enhancing our understanding of 

how local climatic changes modify the response of biodiversity to land-use changes. 

To begin, I reviewed the current understanding of how local climatic changes are 

affecting biodiversity responses to land use and highlighted key knowledge gaps 

(Chapter 2). Then, I went on to address some of these gaps by investigating, globally 

and across both space and time, whether human-altered land uses systematically favour 

certain species depending on their climatic niche properties (Chapter 3), whether this 

varies across species’ ranges due to populations’ climatic positions (Chapters 4 and 5), 

and whether the local climatic changes may be leading to interactions between land-

use and climate change (Chapter 5). I found that, at the community-level and 

particularly at tropical latitudes, human-altered land uses are reshaping vertebrate 

communities by favouring species affiliated with more extreme climatic conditions 

(Chapter 3). This provided support for the first overarching hypothesis of this thesis. 
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However, species’ do not respond uniformly across their ranges and, in line with my 

second overarching hypothesis, a population’s climatic position was found to influence 

abundance within human-altered land uses (Chapter 4). One of the key findings of 

Chapter 4 was that populations experiencing temperatures closer to their hot or cold 

thermal tolerance limits were being filtered out of human-altered land uses to a greater 

extent than populations experiencing temperatures further from their thermal limits. 

Finally, support was provided for my third overarching hypothesis, with populations’ 

climatic positions found to interact with land-use type, habitat loss, and climate change 

to influence population trends over time (although these results were complex, and did 

not always conform to my predictions; Chapter 5). As discussed within each chapter, 

these findings are likely, at least in part, due to the local climatic changes that occur 

following land-use change. 

 In this final chapter, I will discuss how the research presented in this thesis 

contributes to broader knowledge, reflect on some of the challenges of global models, 

and highlight outstanding questions. First, I will discuss the contributions of this work 

to our understanding of how human-altered land uses and land-use change are 

impacting vertebrate populations globally. In particular, I will focus on the importance 

of considering local climatic differences and populations’ climatic positions when 

studying the past, present, and future impacts and risks of land-use change. Second, I 

will discuss the contributions of these studies to our understanding of interactions 

between drivers of change, specifically land-use and climate change, and I will offer 

examples of how this work can be used to further other areas of research into global 

pressures and their interactions. Last, I will compile some of the limitations and 

challenges of global models in relation to the research presented here, and finish by 

outlining outstanding questions and directions of future work.  

6.1 Contributions to the understanding of how human-altered land uses and land-use 

changes are impacting global biodiversity 

 The local climatic changes mediated by land-use change are one likely 

mechanism by which human-altered land uses filter out certain species (Frishkoff, 

Gabot, et al., 2019; Frishkoff et al., 2016; Karp et al., 2017). Previous work has 

highlighted that, at the local scale, vertebrate species within human-altered land uses 

can often tolerate hotter and drier climates than those in natural habitats (Frishkoff et 
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al., 2015; Frishkoff et al., 2016; Nowakowski, Watling, et al., 2018, 2017). The 

research presented in this thesis builds on this, demonstrating that these patterns are 

occurring across the globe, for a much larger number and range of species than 

previously considered, and are not restricted to affiliations with hot and dry extremes 

(but also cold and wet extremes; Chapter 3). This adds to the list of ways in which 

human-altered land uses around the world are driving shifts in community composition 

(Frishkoff, Gabot, et al., 2019; Newbold et al., 2018). Other ecological and functional 

traits that can affect how land-use changes impact species include reproductive 

strategy, dietary guild, longevity, body mass, migratory status, and habitat 

specialisation (Murray et al., 2021; Newbold et al., 2013; Nowakowski, Thompson, 

Donnelly, & Todd, 2017). The loss of less tolerant species, due to climatic limits or 

the aforementioned traits for example, can result in the functional homogenisation of 

biodiversity and, subsequently, declines in ecosystem functioning (Clavel et al., 2011). 

With land-use changes set to continue (Powers & Jetz, 2019), it is vital that we are 

aware of which species are being filtered out of anthropogenically-modified habitats 

and, importantly, why this is occurring in order to introduce strategies to protect these 

species, maintain diversity across landscapes, and preserve ecosystem functioning 

(Frishkoff, Gabot, et al., 2019; Pecl et al., 2017). 

 Understanding how responses to environmental changes vary spatially is 

another critical piece of information needed for effective conservation and 

management plans, and thus a key goal within ecology and conservation (Orme et al., 

2019). Recent studies exploring spatial variation in responses to land use have looked 

at both local-scale variation across species’ ranges (the relationship between distance 

to range edge and sensitivity to deforestation, for example) and global-scale 

geographic variation (for instance, the impact of human-altered land uses on species’ 

richness across biomes; Newbold et al., 2020; Orme et al., 2019; Srinivasan et al., 

2019). The studies presented within this thesis add to this research by providing novel 

insights into how the local climatic changes following land-use change may be a 

source of variation in responses to habitat change, both across species’ ranges 

(depending on populations’ climatic positions; Chapters 4 and 5) and between tropical 

and temperate latitudes (Chapters 3 and 4). Geographically, I found that there were 

often larger differences between communities in community-average climatic 

affiliation (Chapter 3) or between populations with different climatic positions 
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(Chapter 4) at tropical compared to temperate latitudes. This extends the growing list 

of studies drawing attention to the vulnerability of tropical biodiversity to global 

drivers of change (Brook et al., 2008; Deutsch et al., 2008; Green et al., 2020; Newbold 

et al., 2020; Sunday et al., 2014). This is a cause for concern among conservationists 

as 60% of terrestrial biodiversity hotspots are located within the tropics, and they 

contain a substantially higher number of threatened endemic species compared to non-

tropical hotspots (Brook et al., 2008; Myers, Mittermeier, Mittermeier, da Fonseca, & 

Kent, 2000). Moreover, habitat modification, through conversion to agricultural land 

uses specifically, is predicted to occur predominantly at tropical latitudes in the coming 

decades (Hurtt et al., 2011). By further highlighting the sensitivity of tropical 

biodiversity to land-use changes, and demonstrating the role that local climatic 

changes following land-use change likely play, this work not only adds to the current 

understanding of how habitat loss and restoration impact species (which can be used 

to inform conservation actions), but also adds to calls to act now to preserve tropical 

biodiversity (Barlow et al., 2018; Brook et al., 2008). 

 Species’ climatic tolerances are regularly considered when analysing the 

current and future impact of climate change on biodiversity (e.g., Jiguet et al., 2011; 

Soroye et al., 2020; Trisos, Merow, & Pigot, 2020), but have only recently been 

considered in research on habitat preferences and land-use change (Frishkoff et al., 

2015, 2016; Nowakowski, Frishkoff, Agha, et al., 2018; Waldock et al., 2020). In 

particular, in Chapter 4, I introduce the variable ‘climatic position’, which is rarely 

considered in research on the impact of human land uses. Including a population’s 

climatic position into these analyses helps to capture the influence of the local climatic 

changes that occur following habitat change. Taking into account these local climatic 

changes is critical if we are to gain a full picture of the impacts of land-use change 

(Frishkoff et al., 2015; Nowakowski, Frishkoff, Agha, et al., 2018). Further, as 

mentioned above, climatic position is linked to variation across a species’ range in 

responses to human-altered land uses and, all else held equal, could lead to big 

differences in the impact of habitat conversion on communities (Chapter 4, fig. 4.4). 

This spatial variation is an important element to consider when managing both land-

use changes at the landscape-level and species conservation efforts (Allan et al., 2019; 

Nowakowski, Frishkoff, Agha, et al., 2018). Moreover, with the ongoing calls to 

restore degraded land (Leclère et al., 2020), taking into account the climatic positions’ 
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of the populations present could also be used to identify areas where habitat restoration 

may be particularly effective. As global climate change continues, the impacts of land-

use change will also likely shift due to changes in populations’ climatic position (for 

further discussion on interactions, see below). Consequently, climatic position can no 

longer be a variable restricted to research on climate change, but should also be 

incorporated into land-use change research. 

 Areas of habitat containing vegetation regrowing following removal or 

damage, known as secondary vegetation, have been suggested to potentially provide 

refugia from global threats (such as climate change) and be important for biodiversity 

conservation (Dent & Wright, 2009; Hughes, Edwards, Sayer, Martin, & Thomas, 

2020; Jucker et al., 2018; Senior, Hill, González del Pliego, et al., 2017). However, 

there is a clear distinction between secondary vegetation at an early compared to 

advanced stage of recovery (González del Pliego et al., 2016; Newbold, Hudson, Hill, 

et al., 2016; Phillips, Newbold, & Purvis, 2017). Regeneration of secondary vegetation 

and, crucially, the microhabitat composition of the habitat takes time (González del 

Pliego et al., 2016). In connection with this, the range of temperatures experienced 

within secondary vegetation also differs with stage of recovery, becoming more 

similar to that within primary vegetation over time (González-del-Pliego et al., 2020). 

As a likely consequence, the composition of species in earlier-stage secondary 

vegetation is markedly different compared to primary habitats, with the composition 

becoming more similar in more advanced secondary vegetation (Newbold, Hudson, 

Hill, et al., 2016; Phillips et al., 2017). Similarly, in Chapters 3 and 4, I found a clear 

distinction between young- and advanced-stage secondary vegetation, with the 

younger stages differing more in community-average climatic affiliations relative to 

that in primary vegetation, which, taking into account previous research, likely means 

that these habitats are also less able to provide thermal refugia (although, it is possible 

that this is a coincidental effect of colonisation lags; Watts et al., 2020). Further, it has 

been found that the recovery of biodiversity within secondary forests is influenced by 

their proximity to primary forests (Hughes et al., 2020). In Chapter 5, although I did 

not look at secondary vegetation specifically, I found that the rate of change in 

surrounding semi-natural habitat influenced rate of population change. This again 

highlights the need for landscape-level land-use planning (Leclère et al., 2020). 

Overall, these results suggest that the planning of habitat restoration efforts, and 
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particularly their location, needs careful consideration, and that it will take time for the 

benefits of restorations to be observed.  

6.2 Contributions to the understanding of interactions   

 There is a pressing need to understand whether, and if so how, global drivers 

of change are interacting with one another (Mantyka-Pringle et al., 2012; Northrup et 

al., 2019; Sala et al., 2000; Titeux et al., 2017). How land-use and climate change may 

interact has received increasing attention, in part due to the large and growing threats 

that they pose (Leadley et al., 2010; Mantyka-Pringle et al., 2012; Northrup et al., 

2019; Oliver & Morecroft, 2014; Pereira et al., 2012). The work presented in this thesis 

adds to the research on this interaction, by investigating whether the local-scale 

climatic changes that occur due to land-use change lead to interactions between land-

use and climate change (Chapters 3-5). Building on previous research, I highlight that 

land-use and climate change are indeed interacting with one another, but that the 

interaction is complex, with interactions differing across land-use types and between 

populations with different climatic positions. This variation is likely a result, at least 

in part, of the local climatic changes ensuing land-use change. As a result, this further 

emphasises that we can no longer focus on single stressors in isolation (Mantyka-

Pringle et al., 2012; Northrup et al., 2019; Oliver & Morecroft, 2014). Previous work 

has also stressed the need for interactions to be taken into account when assessing how 

biodiversity will fare in the future, particularly when policy decisions are based on 

such predictions (Mantyka-Pringle et al., 2012; Sala et al., 2000; Titeux et al., 2017). 

The work presented here highlight the need for local climatic differences across land 

uses to be incorporated as well to help capture these interactions. For example, 

predictions have been made on the timings of disruption to ecological assemblages as 

a result of climate change, but these were based on changes due to global climate 

change and did not consider local changes due to habitat modification (Trisos et al., 

2020). Consequently, for some communities, abrupt ecological disruption may occur 

earlier than predicted, due to the local climatic changes following land conversion 

(such as greater temperature extremes; Frishkoff et al., 2015; Senior, Hill, González 

del Pliego, et al., 2017) acting on top of global climatic changes (Collins et al., 2013). 

Overall, not considering interactions could impose critical constraints to policy 



 

155 

 

decisions and conservation actions, and potentially lead to them being ineffective 

(Mantyka-Pringle et al., 2012; Titeux, Henle, Mihoub, & Brotons, 2016a).   

 Range expansions are one way in which species are responding to global 

climate change (Bellard et al., 2012; Parmesan, 2006). In order for species to colonise 

areas with a suitable climate, there also needs to be suitable habitat and a route to this 

habitat available (Rayfield, Pelletier, Dumitru, Cardille, & Gonzalez, 2016; Schloss, 

Nunez, & Lawler, 2012; Veech, Small, & Baccus, 2011). Research on species’ range 

expansions have incorporated interactions into their analyses, looking at the interplay 

between exposure to climate, habitat associations, and the surrounding landscape 

(Oliver et al., 2017; Opdam & Wascher, 2004; Platts et al., 2019). In particular, 

attention has been drawn to the importance of managing landscapes to aid the 

movement of species in response to climatic changes (Oliver et al., 2017; Opdam & 

Wascher, 2004). However, as well as ensuring the availability of suitable habitat and 

physical connectivity across landscapes, it is also important to maintain suitable local 

climatic conditions, both within the new habitat and across landscapes, to enable range 

expansions (Nowakowski, Frishkoff, Agha, et al., 2018). Due to local differences in 

climatic conditions between land uses, some landscapes may be impermeable for 

certain species (Nowakowski, Frishkoff, Agha, et al., 2018; Senior, Hill, González del 

Pliego, et al., 2017). In addition, I have shown that populations’ climatic positions are 

important in determining land-use responses (Chapters 4 and 5), and as such, may 

impact the ability of populations to move across landscapes with different local 

climates. For instance, in a fragmented landscape undergoing global warming, forest-

specialist species affiliated with cooler climates may not be able disperse across more 

open and hotter habitats to other forest patches, leaving certain populations cut off 

from the rest of their species and unable to track global climatic changes 

(Nowakowski, Frishkoff, Agha, et al., 2018). It is likely that populations already 

experiencing temperatures close to their upper thermal tolerance limit will be most at 

risk of this occurring. In sum, furthering our understanding of the impact on 

biodiversity of interactions between climate, habitat, and changes in these, can help us 

maintain connectivity across landscapes for species on the move.  

 Variation in responses to anthropogenic changes may also stem from species’ 

traits and their interaction with the environment (Murray et al., 2021). However, 

investigating such trait-environment interactions with regard to their impact on 
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species’ responses to anthropogenic changes remains rare. Although, recently it has 

been found that reproductive strategy can interact with climatic variables to influence 

responses to land-use change (Murray et al., 2021). Throughout this thesis I estimated 

species’ thermal and precipitation tolerances to then either determine species’ climatic 

affiliations or calculate population-level climatic positions, and looked at how these 

variables may impact responses to human-altered land uses (Chapters 3-5). It may be 

however, that there are traits linked with certain climatic affiliations, such as 

reproductive mode (Nowakowski, Watling, et al., 2018; von May et al., 2019), which 

may also impact responses to habitat modification (Murray et al., 2021). Consequently, 

to advance the work presented in this thesis, and that on interactions between traits and 

environmental variables, it would be interesting to combine climatic affiliation or 

position (for species- or population-level studies, respectively), into trait-environment 

interactions. There are likely multiple mechanisms by which species’ are filtered out 

of human-altered land uses (Chapter 2; Murray et al., 2021; Newbold et al., 2013), and 

by analysing interactions between the environment and species- or population-specific 

variables (such as climatic affiliations, arboreality, or reproductive strategy), we may 

gain a clearer picture of how these elements interact, which variables/interactions are 

driving responses to anthropogenic change, and how this differs between species or 

populations.  

6.3 Challenges, outstanding questions, and future directions 

  In this thesis, I used mixed-effects models to explore the differences in 

community-average climatic niche across human-altered land uses (Chapter 3), the 

influence of populations' climatic positions on relative abundances across land uses 

(Chapter 4), and the effect of interactions between climate and land use variables on 

the rate of change in populations (Chapter 5). As a result of using statistical models, I 

cannot infer causation, and the mechanisms underlying the associations found require 

further investigation. I explored potential ways in which local climatic changes could 

affect community composition in Chapter 2, and then, in Chapters 3 to 5, proposed 

potential mechanisms underlying the specific associations found within each of these 

chapters. A consequence of using statistical models is that there may be variables that 

I have not considered in these analyses correlated with both the response and 

explanatory variables, which are underlying the observed results. Again, work into the 
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mechanisms underlying how the local climatic changes following land-use change 

influence species, and how this varies between populations, will help to identify causal 

pathways.  

 By overlaying climatic data on maps of species’ distributions to estimate 

species’ realised climatic affiliations or tolerances (a commonly used method; e.g., 

Barnagaud et al., 2013; Frishkoff et al., 2016; Kampichler, van Turnhout, Devictor & 

van der Jeugd, 2012; Menke et al., 2011; Waldock et al., 2020), I was able to include 

thousands of species’ within my analyses and look at patterns at a global scale. 

Nevertheless, a limitation of this method is that I was not able to take into account 

potential intraspecific differences or temporal changes in climatic tolerances. At 

present, there are not the data or methods available to include these sources of potential 

variation within estimates of climatic tolerances, especially for the number of species 

considered in my analyses. Further, the climate maps obtained from WorldClim had a 

30 arc-second resolution, which corresponds to roughly 0.86 km2 at the equator, and 

is the finest spatial resolution of global climate data currently available (Nadeau, 

Urban, & Bridle, 2017). However, individuals can make use of microrefugia within 

their habitat to avoid adverse climatic conditions (Lenoir, Hattab, & Pierre, 2017; 

Nowakowski, Frishkoff, Agha, et al., 2018). Consequently, the species’ physiological 

climatic tolerances may not span the range of ambient temperatures and precipitations 

recorded across their ranges. In addition, the microclimates that individuals are 

exposed to, and particularly the level of microclimatic heterogeneity (across 100 m2 

grid cells or within the canopy of a forest, for example), can influence responses to 

global climatic changes (Lenoir et al., 2017; Suggitt et al., 2018). As such, the effect 

of local climatic changes following land-use change on biodiversity may also be 

influenced by microclimate heterogeneity. Currently, global models are unable to 

capture this fine-scale microclimatic variability (due to lack of microclimatic data and 

the computational power required to run microclimatic models). Similarly, in Chapter 

5, the global land-cover maps I obtained from the European Space Agency Climate 

Change Initiative (ESA Land Cover CCI project team, Defourny, 2019) had a spatial 

resolution of 300 m and, as such, variation in land uses at a finer resolution may be 

missed. Currently, these land-cover maps are the best available for the purpose of this 

work, which needed global scale maps that classified land into multiple different land-

use classes (rather than only giving a percentage coverage of certain land uses, for 
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example), and that were available on an annual basis over a long enough timeframe 

for analyses to be viable. By using a land-use weighting system when categorising 

land-cover classes as semi-natural habitat (Chapter 5), I attempted to capture some of 

the finer-scale variation; however, ultimately, land-cover data at a finer resolution are 

needed. Hopefully in time, as more data become available, these sources of potential 

variation in land uses, climate, and climatic tolerances will be able to be included in 

analyses such as the ones presented in this thesis.  

 To estimate precipitation affiliations, tolerances, and positions, I obtained data 

for precipitation of the wettest and driest month. These are (to my knowledge) 

currently the best data on precipitation available at the global scale and are widely used 

(e.g., Frishkoff et al., 2015; Jezkova & Wiens, 2016; Menke et al., 2011; Waldock et 

al., 2020). Nevertheless, the impacts of changes in precipitation on biodiversity are 

complex, especially as precipitation interacts with multiple other factors within a 

habitat, leading to many potential direct and indirect effects (Brown, Whitham, 

Morgan Ernest, & Gehring, 2001; Fu et al., 2003; Morecroft et al., 2004; Zeppel et al., 

2014). For example, precipitation changes influence moisture levels (which itself is 

linked with topography, soil properties, and local vegetation) and plant growth, both 

of which may separately impact local vertebrate populations (Brown et al., 2001; Fu 

et al., 2003). As a result, the precipitation measures used here may not be capturing all 

the changes that individuals are exposed to when precipitation regimes are altered. In 

addition, the presence of artificial water sources (such as irrigation systems, ponds, or 

fountains) may also impact the influence of land-use changes on biodiversity, 

complicating analyses looking at the impact of the local precipitation changes ensuing 

land-use changes. Consequently, the results presented in this thesis add to the current 

literature exploring the effects of local precipitation differences across land-use types 

and introduce a novel way of looking at this through investigating the impacts of 

populations’ climatic positions. However, further work is needed to explore alternative 

precipitation measures that take into account moisture availability (ideally at species-

specific scales), as well as incorporating data on artificial water sources within 

habitats. At present, data on these variables are rare, so work on this may have to start 

with smaller, more localised studies, which could also provide an opportunity to dig 

into the mechanisms underlying how precipitation changes impact local ecological 

communities.  
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 Despite using three of the most comprehensive compilations of vertebrate 

assemblage records to date (the PREDICTS, Living Planet, and BioTIME databases), 

there were still apparent spatial and taxonomic biases. Across all databases there were 

more records for mammals and birds than amphibians and reptiles. Due to different 

thermoregulatory strategies, it may be that the impact of changes in local climate 

following land-use change varies in strength between endotherms and ectotherms. 

Indeed, within agricultural land uses, I observed that endothermic and ectothermic 

assemblages differed in their degree of shift towards species affiliated with greater 

thermal extremes (relative to assemblages in natural habitats; Appendix 1, Section 8, 

fig. S3.6). Unfortunately, there were not enough populations of ectothermic species to 

analyse whether the impact of climatic position differed between the two groups (in 

Chapters 4 and 5). The rate of temperature increase has also been found to influence 

birds more strongly than mammals (Spooner et al., 2018). So, there is also likely 

variation between each terrestrial vertebrate class. In future, as the datasets comparing 

ecological assemblages across time and space grow, there will hopefully be enough 

data to explore these potential sources of variation. Spatially, it was apparent in 

Chapter 5 that there is a bias in time-series data for vertebrate populations towards 

temperate compared to tropical latitudes. This meant that there were not enough data 

to explore geographic variation in the time-series model. In my earlier chapters, where 

there were enough data to explore geographic variation, I found that there were often 

greater differences in community-average climatic affiliation across land uses 

(Chapter 3) or between populations with different climatic positions (Chapter 4) at 

tropical latitudes. Further, as mentioned above, ecological communities at lower 

latitudes are thought to be particularly vulnerable to changes in their environment 

(Brook et al., 2008; Newbold, 2018; Newbold et al., 2020; Pacifici et al., 2017; Sunday 

et al., 2014). Consequently, it may be that the effect of the interactions between 

climatic position, climate change, land-use type, and habitat loss is stronger at tropical 

latitudes than observed in Chapter 5. Again, with continuing efforts to add data to the 

Living Planet and BioTIME databases, hopefully it will be possible to make 

geographic comparisons in models such as the one presented in Chapter 5 in the future.  
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6.4 Conclusion  

 As the Earth’s human population continues to grow, the demands for food, raw 

materials, and land to reside upon will also increase (Godfray et al., 2010; WWF, 

2018). This will likely lead to further habitat loss and land-use intensification around 

the globe (Hurtt et al., 2011; Tilman, Balzer, Hill, & Befort, 2011). Moreover, unless 

there are drastic shifts in the pattern of energy use and subsequent reductions in 

greenhouse gas emissions, global mean temperatures will continue to rise, hot 

extremes will increase in frequency, and the contrast in precipitation between wet and 

dry regions and seasons will grow (Collins et al., 2013). The work presented in this 

thesis builds on the understanding of how these pressures are affecting biodiversity, 

specifically by furthering our knowledge on how local climatic changes are modifying 

responses of vertebrates to land-use changes, and on the interactions between land-use 

and climate change. This enhances our insight into the interspecific and spatial 

variation underlying responses to habitat loss and restoration, information which is 

vital to account for in protected area designation, the prioritisation of restoration 

activities, and landscape-level conservation planning, for example. Overall, with the 

pressures on terrestrial biodiversity mounting, this understanding is critical if we are 

to establish effective conservation plans, make informed policy decisions, mitigate the 

impacts of these drivers of change, and ultimately preserve the variety of life on Earth.   
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Section 1: Land-use class definitions   

Table S3.1: Classifications of the land-use classes and land-use intensity (reproduced from Hudson et al., 2014). For the analyses in Chapter 3, to 

ensure all groupings in the analyses reached my target minimum threshold of 50 communities, I combined mature secondary vegetation and 

intermediate secondary vegetation (to become advanced secondary vegetation).  

Level 1 Land 

Use 

Predominant Land Use Minimal use Light use Intense use 

No evidence of 

prior destruction 

of the vegetation 

Primary Vegetation 

 

Any disturbances identified are 

very minor (e.g., a trail or path) or 

very limited in the scope of their 

effect (e.g., hunting of a particular 

species of limited ecological 

importance). 

One or more disturbances of 

moderate intensity (e.g., selective 

logging) or breadth of impact 

(e.g., bushmeat extraction), which 

are not severe enough to markedly 

change the nature of the 

ecosystem. Primary sites in 

suburban settings are at least Light 

use. 

One or more disturbances that is 

severe enough to markedly change 

the nature of the ecosystem; this 

includes clear-felling of part of the 

site too recently for much 

recovery to have occurred. 

Primary sites in fully urban 

settings should be classed as 

Intense use. 

  

    

Recovering after 

destruction of the 

vegetation 

Mature Secondary 

Vegetation 

As for Primary Vegetation-

Minimal use 

As for Primary Vegetation-Light 

use 

As for Primary Vegetation-Intense 

use 

Recovering after 

destruction of the 

vegetation 

Intermediate Secondary 

Vegetation  

As for Primary Vegetation-

Minimal use 

As for Primary Vegetation-Light 

use 

As for Primary Vegetation-Intense 

use 

Recovering after 

destruction of the 

vegetation 

Young Secondary 

Vegetation 

As for Primary Vegetation-

Minimal use 

As for Primary Vegetation-Light 

use 

As for Primary Vegetation-Intense 

use 
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Human use 

(agricultural) 

Plantation forest Extensively managed or mixed 

timber, fruit/coffee, oil-palm or 

rubber plantations in which 

native understorey and/or other 

native tree species are tolerated, 

which are not treated with 

pesticide or fertiliser, and which 

have not been recently (< 20 

years) clear-felled. 

Monoculture fruit/coffee/rubber 

plantations with limited pesticide 

input, or mixed species 

plantations with significant 

inputs. Monoculture timber 

plantations of mixed age with no 

recent (< 20 years) clear-felling. 

Monoculture oil-palm 

plantations with no recent (< 20 

years) clear-felling. 

Monoculture fruit/coffee/rubber 

plantations with significant 

pesticide input. 

Monoculture timber plantations 

with similarly aged trees or 

timber/oil-palm plantations with 

extensive recent (< 20 years) 

clear-felling. 

Human use 

(agricultural) 

Cropland Low-intensity farms, typically 

with small fields, mixed crops, 

crop rotation, little or no 

inorganic fertiliser use, little or 

no pesticide use, little or no 

ploughing, little or no irrigation, 

little or no mechanisation. 

Medium intensity farming, 

typically showing some but not 

many of the following: large 

fields, annual ploughing, 

inorganic fertiliser application, 

pesticide application, irrigation, 

no crop rotation, mechanisation, 

monoculture crop. Organic farms 

in developed countries often fall 

within this category, as may 

high-intensity farming in 

developing countries. 

High-intensity monoculture 

farming, typically showing many 

of the following features: large 

fields, annual ploughing, 

inorganic fertiliser application, 

pesticide application, irrigation, 

mechanisation, no crop rotation. 

Human use 

(agricultural) 

Pasture Pasture with minimal input of 

fertiliser and pesticide, and with 

low stock density (not high 

enough to cause significant 

disturbance or to stop 

regeneration of vegetation). 

Pasture either with significant 

input of fertiliser or pesticide, or 

with high stock density (high 

enough to cause significant 

disturbance or to stop 

regeneration of vegetation). 

Pasture with significant input of 

fertiliser or pesticide, and with 

high stock density (high enough 

to cause significant disturbance 

or to stop regeneration of 

vegetation). 
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Section 2: Using species’ realised climatic niches based on GBIF data  

 Occurrence data from the Global Biodiversity Information Facility (GBIF 

2015) were extracted for terrestrial vertebrate species in the PREDICTS Project 

database. For each of these species, data on maximum temperature of the warmest 

month (Tmax), minimum temperature of the coldest month (Tmin), and precipitation of 

the wettest (Ppmax) and driest (Ppmin) months (WorldClim version 1.4; Hijmans, 

Cameron, Parra, Jones, & Jarvis 2005) were extracted for every recorded location 

within GBIF. Then, for each species, the extremes (maximum or minimum) and 

standard deviation of these values were found, to estimate the species realised 

temperature or precipitation extremes and climatic variation across a species’ range, 

respectively (I was able to do this for 3,432 species). These species-level realised 

climatic niche properties were then used to calculate community weighted means 

(CWMs; to test for patterns in the responses to land use of (1) the community-average 

extreme climatic conditions and (2) mean range-wide climatic variation species are 

affiliated with), and to split the species into groups depending on their climatic 

affiliation (extreme value and range-wide variation; to test for patterns in the response 

to land use of abundances (log(x+1) transformed) of species groups with different 

climatic niches); this was completed, and the linear mixed-effects models were run 

following the same methods as used in Chapter 3. I also found the correlation between 

the species-level climatic niche properties calculated using the distribution maps and 

GBIF data (table S3.2).  

The results were generally qualitatively and quantitatively very similar when 

running models with species’ realised niches estimated from GBIF data (table S3.2, 

fig. S3.1–3) to those reported in Chapter 3. The main difference was that, for 

CWMmax(Ppmax), even though the direction of the effect of land use on this 

community-average climatic niche property was the same as reported in Chapter 3, the 

interaction between land use and geographic zone was not significant when using 

GBIF data (fig. S3.2).  
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Table S3.2: Correlation (Pearson’s correlation coefficient, r) between the species-

level climatic niche properties produced when using IUCN (for mammals, amphibians, 

and reptiles) or BirdLife International (for birds) range maps (IUCN 2016, BirdLife 

International 2012) versus occurrence data from GBIF (GBIF 2015). The climatic 

niche properties include the extreme (maximum [Max] or minimum [Min]) or range-

wide variation (standard deviation) in one of four climatic variables (maximum 

temperature of the warmest month [Tmax], minimum temperature of the coldest month 

[Tmin], precipitation of the wettest month [Ppmax] and precipitation of the driest month 

[Ppmin]).  

 

Climatic niche property r 

MaxTmax 0.799 

Tmax variation 0.562 

MinTmin 0.867 

Tmin variation 0.713 

MaxPmax 0.784 

Ppmax variation 0.631 

MinPmin 0.650 

Ppmin variation 0.752 
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Figure S3.1: Geographic variation (tropical vs. temperate latitudes) in modelled 

differences across land uses in community weighted mean (CWM) maximum (max, a, 

e) or minimum (min, e, g) and range-wide variation (b, d, f, h) in maximum 

temperature of the warmest month (a, b), minimum temperature of the coldest month 

(c, d), precipitation of the wettest month (e, f) and precipitation of the driest month (g, 

h). All values are relative to assemblages within primary vegetation (which is 

represented by the dotted line). Error bars show 95% confidence intervals. ASV and 

YSV denote advanced and young secondary vegetation, respectively. Community 
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weighted means were produced using data from GBIF. Transformed values were back-

transformed from the log-scale used for analysis before plotting. N.S. denotes that the 

interaction between land use and geographic zone was not significant in that model.  

 

Figure S3.2: The total abundance of species with different thermal (Tmax) niches at 

tropical (a-d) and temperate (e-h) latitudes across human-altered land uses, relative to 

assemblages within primary vegetation (dotted line). Species groups differ in the 

range-wide variation of thermal (Tmax) conditions experienced over their range 

(‘broad’ vs. ‘narrow’) and maximum Tmax value (‘warm’ vs. ‘cold’). Error bars show 



 

203 

 

95% confidence intervals; SV denotes secondary vegetation (consisting of the young 

and advanced secondary vegetation land-use categories). Values were back-

transformed from the log-scale used for analysis before plotting. Species thermal 

niches were produced using data from GBIF.  
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Figure S3.3: The total abundance of species with different precipitation niches (Ppmin) 

at tropical (a-d) and temperate (e-h) latitudes across human-altered land uses, relative 

to assemblages within primary vegetation (dotted line). Species groups differ in range-

wide variation in precipitation (Ppmin) levels experienced throughout their range 

(‘broad’ vs. ‘narrow’) and minimum Ppmin values (‘dry’ vs. ‘wet’). Error bars show 

95% confidence intervals; SV denotes secondary vegetation (consisting of the young 

and advanced secondary vegetation land-use categories). Values were back-

transformed from the log-scale used for analysis before plotting. Species precipitation 
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niches were produced using data from GBIF. N.S. denotes that the effect of land use 

was not significant within that species group.  
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Section 3: Further details on the PREDICTS Project database 

 

Figure S3.4: Locations of each study site (nassemblages = 6,123) from the PREDICTS 

Project database included in my analyses, split into those studies that looked at (a) 

solely endothermic vertebrates (mammals and birds), (b) solely ectothermic 

vertebrates (reptiles and amphibians) and (c) both endothermic and ectothermic 

vertebrates; base map from R package ‘maps’ v.3.3.0 (Becker & Wilks 2018). 

 

  

a) Endothermic assemblages 

b) Ectothermic assemblages 

c) Both 
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Spatial extent of studies  

Table S3.3: The number of assemblages in which species from each vertebrate class 

were recorded and the maximum linear extent sampled for 95% of PREDICTS sites 

that were included in my analyses, to the nearest metre.  

Taxonomic group Number of assemblages  Bounds of maximum linear 

extent for 95% of sites (m) 

  Lower  Upper  

Mammalia 1542 15 5000 

Aves 4199 40 2000 

Reptilia  785 31 1923 

Amphibia  885 31 1049 
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Section 4: Community unweighted means 

I also calculated CWMs that were not weighted by species abundance (termed 

here community unweighted means) for the mean climatic extreme values and range-

wide climatic variation of each assemblage. Using these, I produced models using the 

same methods as with the community-average climatic niche models (in Chapter 3) to 

explore whether the average climatic maximum or minimum or range-wide variation 

of a species assemblage differed between land uses when these values were not 

weighted by species abundance.  

Using CWMs weighted (i.e., average for an individual within a community) 

versus unweighted (i.e., average for a species within a community) by species 

abundance made very little difference to the results when testing the effect of land use 

and the interaction between land use and geographic zone (fig. S3.5). 
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Figure S3.5: Geographic variation (tropical vs. temperate latitudes) in differences 

across land uses in community unweighted mean (ComUM) maximum (max, a, c) or 

minimum (min, e, g) and range-wide variation (b, d, f, h) of maximum temperature of 

the warmest month (a, b), minimum temperature of the coldest month (c, d), 

precipitation of the wettest month (e, f) and precipitation of the driest month (g, h). All 

values are relative to assemblages within primary vegetation (dotted line). Error bars 

show 95% confidence intervals. ASV and YSV denote advanced and young secondary 
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vegetation, respectively. Transformed values were back-transformed from the log-

scale used for analysis before plotting. 
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Section 5: Correlation between climatic niche properties  

Table S3.4: The correlation (Spearman rank correlation) between the community-

average climatic niche properties: the climatic extreme (maximum [Max] or minimum 

[Min]) and range-wide variation in maximum temperature of the warmest month 

(Tmax), minimum temperature of the coldest month (Tmin), precipitation of the wettest 

month (Ppmax) and precipitation of the driest month (Ppmin).  

 Max 

Tmax 

Tmax 

variation 

Min 

Tmin 

Tmin 

variation 

Max 

Ppmax 

Ppmax 

variation 

Min 

Ppmin 

Ppmin 

variation 

Max Tmax         

Tmax variation 0.625        

Min Tmin -0.621 -0.913       

Tmin variation 0.696 0.889 -0.928      

Max Ppmax 0.491 0.356 -0.358 0.490     

Ppmax variation -0.053 -0.046 0.172 0.008 0.524    

Min Ppmin -0.563 -0.455 0.473 -0.468 -0.158 0.094   

Ppmin variation 0.002 -0.100 0.047 0.037 0.378 0.327 0.148  
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Section 6: Species groups with different climatic niches  

Table S3.5: The number of species within each climatic niche group included in the 

abundance analysis. These groups were formed by splitting around the within-study 

medians of climatic extreme values and range-wide variation with regards to (a) 

maximum temperature of the warmest month (Tmax) or (b) precipitation of the driest 

month (Ppmin).  

 

  Climatic extreme 

a)   Tmax maximum 

  Warm Cold 

  Tropics Temperate Tropics Temperate 

Tmax 

variation 

Wide 581 290 345 123 

Narrow 248 175 1598 593 

b)   Ppmin minimum 

  Wet Dry 

  Tropics Temperate Topics Temperate 

Ppmin 

variation 

Wide 583 106 1240 431 

Narrow 323 98 626 546 

 

  



 

   

 

2
1
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Table S3.6: Number of assemblages within each land use for each of the four species group with distinct climatic niches (see table S3.5) with 

regards to (a) maximum temperature of the warmest month (Tmax) and (b) precipitation of the driest month (Ppmin). Advanced and young secondary 

vegetation land-use classes were combined to become ‘secondary vegetation’. 

Climatic niche  Land Use Total 

   Primary vegetation Secondary vegetation Plantation Cropland Pasture  

a) Tmax         

 Warm and broad Tropics 1156 744 691 439 543 3573 

 Temperate 709 219 258 484 274 1944 

 Warm and 

narrow 

Tropics 1250 762 844 435 517 3808 

 Temperate 544 127 166 278 252 1367 

 Cold and broad Tropics 884 498 684 399 518 2983 

 Temperate 568 117 214 272 257 1428 

 Cold and narrow Tropics 1362 802 865 439 552 4020 

 Temperate 635 207 85 226 267 1420 

b) Ppmin         

 Wet and broad Tropics 524 431 457 101 140 1653 

 Temperate 310 60 84 218 257 929 

 Wet and narrow Tropics 925 510 578 390 487 2890 

 Temperate 539 198 81 225 263 1306 

 Dry and broad Tropics 1343 763 854 435 550 3945 

 Temperate 666 224 225 484 282 1881 

 Dry and narrow Tropics 1179 561 655 415 537 3347 

 Temperate 747 198 258 485 283 1971 
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Section 7: Range-wide climatic variation and range size 

Table S3.7: The correlation between community-average range-wide climatic 

variation and community-average range size. The latter were acquired from Newbold 

et al. (2018); the methods used to estimate these range sizes are described briefly in 

Chapter 3. Range-wide climatic variation was calculated for the following climatic 

variables: maximum temperature of the warmest month (Tmax), minimum temperature 

of the coldest month (Tmin), precipitation of the wettest month (Ppmax) and precipitation 

of the driest month (Ppmin).  

 Community-average range-wide climatic 

variation 

 Tmax Tmin Ppmax Ppmin 

Community-average range size 0.661 0.773 -0.050 0.038 
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Section 8: Comparing endotherms and ectotherms  

I also tested for differences between endothermic and ectothermic 

assemblages, as ambient climatic conditions affect them differently due to their 

distinct physiologies (Deutsch et al., 2008; Frishkoff et al., 2016; McNab 2012; Senior 

et al., 2017). 

Methods  

 These models were run in the same way as the models looking at geographic 

differences in Chapter 3, but with thermoregulatory strategy (endothermic vs. 

ectothermic) and its interaction with land use included as fixed effects instead of 

geographic zone. The 391 communities (5.73% of all communities) that sampled for 

endotherms and ectotherms were removed from these analyses. The secondary 

vegetation land-use classes were grouped together (to become ‘secondary vegetation’), 

and pasture and cropland were grouped to become an ‘agriculture’ land-use class (the 

only grouping in this analysis that failed to reach my target minimum threshold of 50 

communities was in the range-wide climatic variation analyses for ectothermic 

assemblages in secondary vegetation where n = 34; table S3.8). For the final statistical 

models used, see table S3.9. I also tested for spatial autocorrelation in the residuals of 

all my models using Moran’s I tests. 

Table S3.8: The number of endothermic and ectothermic assemblages within each 

land-use type included in the models comparing these two groups. The numbers in 

parentheses denote the number of assemblages included in the models testing effects 

of land use on the community-average range-wide variation in climatic conditions. 

Assemblage Land use Total 

 Primary 

vegetation 

Secondary 

vegetation 

Plantation Agriculture  

Endothermic 1697 

(1456) 

859 (719) 873 (661) 1638 (1433) 5067 

(4289) 

Ectothermic 226 (133) 56 (34) 262 (207) 121 (73) 665 (447) 
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Table S3.9: The final statistical models for the analyses of community-average 

climatic niches after backwards stepwise selection of fixed effects, following the 

methods proposed by Zuur et al. (2009). Response variables were the community 

weighted means (CWM) for the extremes of the four focal climatic variables 

(CWM(maxTmax), CWM(minTmin), CWM(maxPpmax), CWM(minPpmin)) or STD (the 

community weighted mean of the standard deviation of the climatic variables across 

the species range, which I used to calculate community-average range-wide variation) 

for each climatic variable (maximum temperature of the warmest month, STD_Tmax; 

minimum temperature of the coldest month, STD_Tmin; precipitation of the wettest 

month, STD_Ppmax; precipitation of the driest month, STD_Ppmin). Community 

weighted means for extremes of precipitation variables were log(x+1) transformed. 

Random intercepts included study identity (SS, added to account for differences 

between studies in sampling methods and response variables) and spatial block within 

study (SSB, to account for the spatial structure of sites sampled within each study). 

The explanatory variables considered as fixed effects included land use (LU), 

thermoregulatory strategy (EE; endothermic vs. ectothermic assemblages) and the 

interaction between the two (‘×’ between variables indicate that the interaction 

between those two variables was significant). In addition, the climatic variable in 

question at the study site and the site’s elevation were also added into models as 

continuous covariates (for all models apart from those focusing on maximum 

temperature of the warmest month, where elevation was not added because it 

correlated strongly with maximum temperature itself; see Chapter 3); for range-wide 

climatic variation analyses community weighted mean range sizes (Range) were also 

added as a continuous covariate; I fit linear terms for these three covariates. 
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Model 

Endotherms 

vs. 

ectotherms 

Climatic extreme 

 CWM(maxTmax) ~ LU + EE + LU×EE + Tmax + (1|SS) + 

(1|SSB) 

 CWM(minTmin) ~ LU + EE + LU×EE + Tmin + Elevation + 

(1|SS) + (1|SSB) 

 CWM(maxPpmax) ~ LU + EE + Elevation + (1|SS) + (1|SSB) 

 CWM(minPpmin) ~ LU + EE + LU×EE + Elevation + (1|SS) 

+ (1|SSB) 

Climatic variation 

 STD_Tmax ~ LU + EE + LU×EE + Range + (1|SS) + (1|SSB) 

 STD_Tmin ~ LU + EE + LU×EE + Tmin + Elevation + Range 

+ (1|SS) + (1|SSB) 

 STD_Ppmax ~ LU + EE + LU×EE + Range + (1|SS) + (1|SSB) 

 STD_Ppmin ~ LU + EE + LU×EE + Ppmin + Elevation + 

Range + (1|SS) + (1|SSB) 

 

Results  

Endothermic and ectothermic assemblages differed in their climatic niches across land 

uses for all climatic variables apart from community-average maximum Ppmax (land 

use by thermoregulatory strategy interaction, p < 0.05, apart for CWM(maxPpmax) 

where p = 0.34; fig. S3.6, table S3.10). Ectothermic and endothermic assemblages 

differed most in agricultural land uses (pasture and cropland), in which ectothermic 

assemblages tended to show stronger relative shifts toward species affiliated with 

warmer Tmax, whereas endothermic assemblages showed stronger shifts towards colder 

Tmin affiliations (fig. S3.6).  
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Figure S3.6: Variation between endothermic and ectothermic assemblages across 

land-use types in community weighted mean (CWM) maximum (max, a, c) or 

minimum (min, e, g) and range-wide variation (b, d, f, h) of maximum temperature of 

the warmest month (a, b), minimum temperature of the coldest month (c, d), 

precipitation of the wettest month (e, f) and precipitation of the driest month (g, h). 

Values are relative to assemblages within primary vegetation (dotted line). Error bars 

show 95% confidence intervals; community-average extreme or range-wide variation 

significantly differ from those within primary vegetation when the error bars for that 
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land use do not cross the dotted line. Transformed values were back-transformed from 

the log-scale used for analysis before plotting. N.S. denotes models in which the 

interaction between land use and thermoregulatory strategy was not significant.  

 

Table S3.10: The statistical results from the likelihood ratio tests investigating the 

effect of the interaction between land use and thermoregulatory strategy (endothermic 

vs. endothermic). Response variables were community weighted mean for the climatic 

extreme (maximum [max] or minimum [min]) or range-wide variation in one of four 

climatic variables (maximum temperature of the warmest month [Tmax], minimum 

temperature of the coldest month [Tmin], precipitation of the wettest month [Ppmax] and 

precipitation of the driest month [Ppmin]). 

 

Model (in parentheses is the 

fixed effect for which the 

statistical results are 

provided) 

Climatic niche 

property 

Results from likelihood ratio 

tests 

  χ2 Degrees of 

freedom 

p-value 

Endotherm vs. ectotherm 

(interaction between land 

use and thermoregulatory 

strategy) 

CWM(maxTmax) 8.03 3,12 0.045 

Tmax variation  143.95 3,13 <0.001 

CWM(minTmin) 15.87 3,13 0.001 

Tmin variation 20.57 3,14 <0.001 

CWM(maxPpmax) 3.38 3,13 0.337 

Ppmax variation 19.74 3,14 <0.001 

CWM(minPpmin) 27.52 3,13 <0.001 

Ppmin variation  30.17 3,14 <0.001 

 

  



 

220 

 

Table S3.11: Spatial autocorrelation in the community-level model residuals; a 

Moran’s I test was applied to the residuals of the final models for each individual 

underlying study separately (Newbold et al., 2015), with the percentage of studies that 

had p < 0.05 shown below. The climatic niche properties modelled were the 

community weighted mean for the extreme value (maximum [max] or minimum 

[min]) or range-wide variation in one of four climatic variables (maximum temperature 

of the warmest month [Tmax], minimum temperature of the coldest month [Tmin], 

precipitation of the wettest month [Ppmax] and precipitation of the driest month 

[Ppmin]). 

Model Climatic niche property Percentage of studies for 

which p < 0.05 

Endotherm vs. ectotherm CWM(maxTmax) 5.48 

 Tmax variation  3.28 

 CWM(minTmin) 8.00 

 Tmin variation  3.39 

 CWM(maxPpmax) 0 

 Ppmax variation  8.20 

 CWM(minPpmin) 1.39 

 Ppmin variation 6.90 
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Discussion 

Endothermic and ectothermic assemblages differed in the magnitude, and sometimes 

direction, of community-average climatic niches across human-altered land uses 

relative to primary vegetation. Differences were often largest in agricultural land uses 

(cropland and pastures) and was particularly strong for thermal niche properties. For 

ectotherms, agriculture appears to be favouring hot-specialists (species affiliated with 

higher maximum temperatures and less range-wide variation in Tmax), potentially due 

to the strong influence of temperature on ectotherm’s basic physiological functions 

(Deutsch et al., 2008). Additionally, to survive hotter temperatures, ectotherms rely on 

access to cool microhabitats (shade or burrows) to thermoregulate (Kearney, Shine, & 

Porter, 2009; Sunday et al., 2014), which may be lacking in agriculture. Endotherms 

affiliated with cold extremes appeared to be favoured in human-altered habitats, 

especially in agricultural land uses; this may be due to the strong limiting effect of cold 

extremes on the distributions of birds and mammals (Khaliq, Böhning-Gaese, 

Prinzinger, Pfenninger, & Hof, 2017). With more data, it would be interesting to also 

look at the similarities/differences between wet-skinned (i.e., amphibians) and dry-

skinned (i.e., endotherms and reptiles) species. 

  



 

222 

 

Section 9: Model structure and further statistical results  

Table S3.12: The final statistical models for the analyses of community-average 

climatic niches after backwards stepwise selection of fixed effects, following the 

methods proposed by Zuur et al. (2009). Response variables were the community 

weighted means for the extremes (maximum or minimum) of the four focal climatic 

variables (CWM(maxTmax), CWM(minTmin), CWM(maxPpmax), CWM(minPpmin)) or 

STD (the community weighted mean of the standard deviation of the climatic variables 

across the species range, which I used to calculate community-average range-wide 

variation) for each climatic variable (maximum temperature of the warmest month, 

STD_Tmax; minimum temperature of the coldest month, STD_Tmin; precipitation of 

the wettest month, STD_Ppmax; precipitation of the driest month, STD_Ppmin). 

Community weighted means for extremes of precipitation variables were log(x+1) 

transformed. Random intercepts included study identity (SS, added to account for 

differences between studies in sampling methods and response variables) and spatial 

block within study (SSB, to account for the spatial structure of sites sampled within 

each study). The explanatory variables considered as fixed effects included land use 

(LU) and geographic zone (GZ; temperate versus tropical latitudes) and its interaction 

with land use; ‘×’ between variables indicate that the interaction between those two 

variables was significant. In addition, the climatic variable in question at the study site 

and the site’s elevation were also added into models as continuous covariates (for all 

models apart from those focusing on maximum temperature of the warmest month, 

where elevation was not added; see Chapter 3); for range-wide climatic variation 

analyses community weighted mean range sizes (Range) were also added as a 

continuous covariate; I fit linear terms for these three covariates.  
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Model 

Community-

average 

climatic 

niche 

models 

Climatic extreme 

 CWM(maxTmax) ~ LU + GZ + LU×GZ + Tmax + (1|SS) + 

(1|SSB) 

 CWM(minTmin) ~ LU + GZ + LU×GZ + Tmin + Elevation + 

(1|SS) + (1|SSB) 

 Log(CWM(maxPpmax)+1) ~ LU + GZ + LU×GZ + Elevation 

+ (1|SS) + (1|SSB) 

 Log(CWM(minPpmin)+1) ~ LU + GZ + LU×GZ + Elevation 

+ (1|SS) + (1|SSB) 

Climatic variation 

 STD_Tmax ~ LU + GZ + LU×GZ + Range + (1|SS) + (1|SSB) 

 STD_Tmin ~ LU + GZ + LU×GZ + Tmin + Elevation + 

Range + (1|SS) + (1|SSB) 

 STD_Ppmax ~ LU + GZ + LU×GZ + Range + (1|SS) + 

(1|SSB) 

 STD_Ppmin ~ LU + GZ + LU×GZ + Ppmin + Elevation + 

Range + (1|SS) + (1|SSB) 

 

Table S3.13: The final statistical models for the abundance analyses after the 

backwards stepwise selection of fixed effects. Response variables were the abundance 

(transformed using log(x+1); LogAbund) of species groups with different climatic 

niches (separately for maximum temperature [Tmax] and minimum precipitation 

[Ppmin]). Species within each assemblage analysed were split into 4 groups around the 

within-study medians of climatic extreme (maximum of Tmax or minimum of Ppmin) 

and range-wide variation (Tmax or Ppmin). For the temperature variable, groups included 

species with (1) warm and broad, (2) warm and narrow, (3) cold and broad or (4) cold 

and narrow Tmax niches. For the precipitation variable, groups included species with 

(1) dry and broad, (2) dry and narrow, (3) wet and broad or (4) wet and narrow Ppmin 

niches. Random intercepts included study identity (SS, added to account for 

differences between studies in sampling methods and response variables) and spatial 

block within study (SSB, to account for the spatial structure of sites sampled within 

each study). Land use (LU) was always considered as an explanatory variable, so 
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added as a fixed effect. The climatic variable in question at the study site was 

considered as a fixed, continuous covariate; site elevation was also considered as a 

continuous fixed effect for the temperate models focusing on precipitation of the driest 

month (see Chapter 3); I fit linear terms for both of these covariates.  

Abundance model 

Maximum 

temperature 

of the 

warmest 

month 

Tropical latitudes 

1) LogAbund ~ LU + Tmax + (1|SS) + (1|SSB) 

2) LogAbund ~ LU + Tmax + (1|SS) + (1|SSB) 

3) LogAbund ~ LU + (1|SS) + (1|SSB) 

4) LogAbund ~ LU + (1|SS) + (1|SSB) 

Temperate latitudes 

1) LogAbund ~ LU + (1|SS) + (1|SSB) 

2) LogAbund ~ LU + (1|SS) + (1|SSB) 

3) LogAbund ~ LU + (1|SS) + (1|SSB) 

4) LogAbund ~ LU + (1|SS) + (1|SSB) 

Precipitation 

of the driest 

month 

Tropical latitudes 

1) LogAbund ~ LU + (1|SS) + (1|SSB) 

2) LogAbund ~ LU + Ppmin + (1|SS) + (1|SSB) 

3) LogAbund ~ LU + Ppmin + (1|SS) + (1|SSB) 

4) LogAbund ~ LU + Ppmin + (1|SS) + (1|SSB) 

Temperate latitudes 

1) LogAbund ~ LU + (1|SS) + (1|SSB) 

2) LogAbund ~ LU + (1|SS) + (1|SSB) 

3) LogAbund ~ LU + (1|SS) + (1|SSB) 

4) LogAbund ~ LU + Elevation + (1|SS) + (1|SSB) 
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Full statistical results  

Table S3.14: The statistical results from the likelihood ratio tests investigating the 

effect of land use and the interaction between land use and geographic zone. Response 

variables were community weighted means for the climatic extreme (maximum [Max] 

or minimum [Min]) or range-wide variation of one of four climatic variables 

(maximum temperature of the warmest month [Tmax], minimum temperature of the 

coldest month [Tmin], precipitation of the wettest month [Ppmax] and precipitation of 

the driest month [Ppmin]). 

The effect for which the 

statistical results are 

provided 

Climatic niche 

property 

Results from likelihood ratio 

tests 

  χ2 Degrees of 

freedom 

p-value 

Land use Max Tmax 238.79 5,11 <0.001 

Tmax variation 67.12 5,11 <0.001 

Min Tmin 170.26 5,12 <0.001 

Tmin variation 22.56 5,12 <0.001 

Max Ppmax 71.74 5,10 <0.001 

Ppmax variation 30.07 5,11 <0.001 

Min Ppmin 105.07 5,11 <0.001 

Ppmin variation 24.38 5,13 <0.001 

Interaction between 

geographic zone and land 

use 

Max Tmax 38.23 5,16 <0.001 

Tmax variation 99.41 5,17 <0.001 

Min Tmin 99.14 5,17 <0.001 

Tmin variation 62.38 5,18 <0.001 

Max Ppmax 84.73 5,17 <0.001 

Ppmax variation 14.24 5,18 0.014 

Min Ppmin 14.39 5,17 0.013 

Ppmin variation 19.05 5,18 0.002 
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Table S3.15: The statistical results from the likelihood ratio tests looking at the effect of land use on the abundance of species groups with different 

climatic niche properties. Species groups were formed by splitting assemblages within the PREDICTS Project database around the within-study 

medians of climatic extreme (maximum or minimum) and range-wide variation in (a) maximum temperature of the warmest month (Tmax) or (b) 

precipitation of the driest month (Ppmin).  

Model Species group  Geographic zone Statistical results for the land use term 

   χ2 Degrees of freedom p-value 

a) Tmax Broad and warm Tropics 155.29 4,9 <0.001 

  Temperate 9.32 4,8 0.053 

 Narrow and warm Tropics 35.57 4,9 <0.001 

  Temperate 4.51 4,9 0.341 

 Broad and cold Tropics 236.55 4,8 <0.001 

  Temperate 36.60 4,8 <0.001 

 Narrow and cold Tropics 132.30 4,8 <0.001 

  Temperate 17.84 4,8 0.001 

b) Ppmin Broad and dry Tropics 37.25 4,8 <0.001 

  Temperate 6.71 4,9 0.152 

 Narrow and dry Tropics 191.06 4,9 <0.001 

  Temperate 10.25 4,8 0.036 

 Broad and wet Tropics 184.26 4,9 <0.001 

  Temperate 7.49 4,8 0.112 

 Narrow and wet Tropics 78.74 4,9 <0.001 

  Temperate 17.35 4,9 0.002 

  



 

227 

 

Spatial autocorrelation results 

 I tested for spatial autocorrelation in the residuals of all my models using 

Moran’s I tests (Newbold et al. 2018; table S3.16-17). 

Table S3.16: Spatial autocorrelation in the residuals of the community-average 

climatic niche models; a Moran’s I test was applied to the residuals of the final models 

for each individual underlying study separately, with the percentage of studies that had 

p < 0.05 shown below. The climatic niche properties modelled were the community 

weighted means for the climatic extreme (maximum [Max] or minimum [Min]) or 

range-wide variation in one of four climatic variables (maximum temperature of the 

warmest month [Tmax], minimum temperature of the coldest month [Tmin], precipitation 

of the wettest month [Ppmax] and precipitation of the driest month [Ppmin]).

Model Climatic niche property Percentage of 

studies for which 

p < 0.05 

Community-

average climatic 

niche models 

Max Tmax 5.33 

Tmax variation 1.54 

Min Tmin 5.26 

Tmin variation 4.62 

 Max Ppmax 0 

 Ppmax variation 9.23 

 Min Ppmin 1.37 

 Ppmin variation 6.25 
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Table S3.17: Spatial autocorrelation in the abundance model residuals; a Moran’s I 

test was applied to the residuals of the abundance models for each individual 

underlying study separately, with the percentage of studies that had p < 0.05 shown 

below. Species groups were formed by splitting assemblages within the PREDICTS 

Project database around the within-study medians of climatic extreme (maximum Tmax 

or minimum Ppmin) and range-wide variation (Tmax or Ppmin). 

Model Species group Geographic zone Percentage of 

studies for which  

p < 0.05 

a) Tmax Broad and warm Tropics 9.76 

  Temperate 8.00 

 Narrow and warm Tropics 2.78 

  Temperate 11.76 

 Broad and cold Tropics 7.69 

  Temperate 5.56 

 Narrow and cold Tropics 6.98 

  Temperate 15.00 

b) Ppmin Broad and dry Tropics 4.55 

  Temperate 4.17 

 Narrow and dry Tropics 3.23 

  Temperate 8.33 

 Broad and wet Tropics 11.54 

  Temperate 25.00 

 Narrow and wet Tropics 9.09 

  Temperate 6.25 
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Section 10: Habitat specialisation  

Using species’ habitat preferences extracted from IUCN (2017), a species-level 

habitat breadth index was produced by weighting each habitat used by its importance 

and suitability to the species (as recorded within IUCN 2017) and then summing these 

together (table S3.18). Habitats that were classed as of major importance to the species 

were given a weight of 1, while habitats that were less important or suitable (e.g., 

marginal habitats) were given lower weights (table S3.18); the index was robust to 

different weighting systems (A. Etard, unpublished data). Thus, higher indices 

represent species inhabiting a greater range of habitats. I calculated the correlation 

between the species-level climatic niche properties and this habitat breadth index; 

these correlations were all low (|r| < 0.41, table S3.19).  

Table S3.18: The weighting system used to produce a species-level habitat breadth 

index based on their habitat preferences (IUCN 2017). Each habitat was assigned a 

weight depending on its importance and suitability to the species (reproduced with 

permission from A. Etard). Dashes denote categories that do not exist (a habitat cannot 

have a classification of major importance and marginal or unknown suitability). 

Suitability Major importance 

 Yes No Unknown 

Suitable  1.0 0.5 1.0 

Marginal  --- 0.3 0.3 

Unknown --- 0.3 1.0 
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Table S3.19: The correlation (Pearson’s correlation coefficient, r) between species-

level climatic niche properties and their habitat breadth (using the habitat breadth index 

produced by A. Etard; nspecies = 3,119). The species-level climatic niche properties 

include the climatic extreme (maximum [Max] or minimum [Min]) or the range-wide 

variation in maximum temperature of the warmest month (Tmax), minimum 

temperature of the coldest month (Tmin), precipitation of the wettest month (Ppmax) and 

precipitation of the driest month (Ppmin). 

Climatic niche property r  

Max Tmax 0.409 

Tmax variation 0.360 

Min Tmin -0.384 

Tmin variation 0.367 

Max Ppmax 0.283 

Ppmax variation 0.121 

Min Ppmin -0.119 

Ppmin variation -0.039 

 

Forest specialisation 

 To further explore the relationship between species’ climatic niches and their 

habitat affiliations, using the above habitat preferences (IUCN 2017), I extracted data 

on forest use. Forest canopies buffer climatic extremes (Barnagaud, Barbaro, Hampe, 

Jiguet, & Archaux, 2013; Ewers & Banks-Leite, 2013). Consequently, if species’ 

climatic niches are a product of the spatial (and climatic) distribution of their critical 

habitats, then the loss of forest specialists from human-disturbed habitats may be a 

driver in the shift towards community-average realised climatic niches that encompass 

greater extremes in climatic variables in these human-altered sites. Therefore, to check 

that my results were not being driven by a loss of forest specialists, I explored the 

climatic niche properties of forest specialists and the influence of excluding forest 

specialists from the models on the results. A species was classified as a forest specialist 

if natural forest habitats were considered as being of ‘major’ importance according to 

the IUCN habitat classification (rather than suitable, marginal, or unsuitable), 

otherwise the species was classified as a non forest-specialist (although because 
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estimates are lacking for some species, I cannot say for certain a species is not a forest 

specialist). The habitats in the IUCN classification that were considered to be natural 

forest were: Forest – Subtropical/Tropical Moist Lowland; Forest –

Subtropical/Tropical Moist Montane; Forest – Subtropical/Tropical Dry; Forest – 

Temperate; Forest – Subtropical/Tropical Swamp; Forest – Boreal; Forest – Subartic; 

Forest – Subtropical/Tropical Mangrove Vegetation Above High Tide Level; Forest – 

Subantarctic.  

First, I compared the difference in species-level climatic niche properties 

between forest specialists and non forest-specialists (fig. S3.7). 
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Figure S3.7: Comparisons between species classed as forest specialists and non forest-

specialists for the following climatic niche properties: species-level climatic maximum 

(max, a, c) or minimum (min, e, g) and range-wide variation in (b, d, f, h) of maximum 

temperature of the warmest month (a, b), minimum temperature of the coldest month 

(c, d), precipitation of the wettest month (e, f) and precipitation of the driest month (g, 

h).  

b) 

d) 

f) 

h) g) 

e) 

c) 

a) 



 

233 

 

Second, to investigate the influence of habitat specialisation on my results, I 

ran two sets of simple models, run following the same method to my community-

average climatic niche models in Chapter 3, but excluding geographic zone and its 

interaction with land use. All species were included in the first set of models (fig. 

S3.8), but in the second set, species classed as forest specialists were excluded (fig. 

S3.9). Although there were some differences between species-level climatic niche 

properties for forest versus non forest-specialists (fig. S3.7), the results from the 

models excluding forest specialists were qualitatively and quantitatively very similar 

to the models including all species (fig. S3.8-9).  
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Figure S3.8: Difference across land uses in community weighted mean (CWM) 

maximum (max, a, c) or minimum (min, e, g) and range-wide variation (b, d, f, h) in 

maximum temperature of the warmest month (a, b), minimum temperature of the 

coldest month (c, d), precipitation of the wettest month (e, f) and precipitation of the 

driest month (g, h). All values are relative to assemblages within primary vegetation 

(dotted line). Error bars show 95% confidence intervals; community-average extreme 

value (maximum or minimum) or range-wide variation significantly differ from those 

within primary vegetation when the error bars for that land use do not cross the dotted 
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line. ASV and YSV denote advanced and young secondary vegetation, respectively. 

Transformed values were back-transformed from the log-scale used for analysis before 

plotting.  
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Figure S3.9: Difference across land uses, when forest specialists are excluded, in 

community weighted mean (CWM) maximum (max, a, c) or minimum (min, e, g) and 

range-wide variation (b, d, f, h) in maximum temperature of the warmest month (a, b), 

minimum temperature of the coldest month (c, d), precipitation of the wettest month 

(e, f) and precipitation of the driest month (g, h). All values are relative to assemblages 

within primary vegetation (dotted line). Error bars show 95% confidence intervals; 

community-average extreme value or range-wide variation significantly differ from 

those within primary vegetation when the error bars for that land use do not cross the 
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dotted line. ASV and YSV denote advanced and young secondary vegetation, 

respectively. Transformed values were back-transformed from the log-scale used for 

analysis before plotting. 
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Section 11: Migratory birds 

 For migrating species, using entire distributions may lead to 

unreliable/inaccurate estimates of realised climatic niches owing to the species’ 

potential ability to use movement to avoid certain climatic conditions (Robinson et al., 

2009). Thus, when producing community-average climatic niche properties (Chapter 

3), I compared the results with and without migratory birds included (migratory status 

was derived from BirdLife International’s World Bird Database; BirdLife 

International (2018); table S3.20). There were 2,158 non-migratory and 551 migratory 

species of bird within those species included in my analyses (BirdLife International 

2018). When I excluded the migratory bird species and recalculated the community 

weighted means (CWMs) for each climatic niche property, the values were highly 

correlated with the CWMs that included migratory bird species (table S3.20). 

Table S3.20: Correlation (Pearson correlation coefficient, r) between the community 

weighted means produced with and without migratory bird species included for each 

community-average climatic niche property. The climatic niche properties included 

the community weighted means for the climatic extreme (maximum [Max] or 

minimum [Min]) or range-wide variation experienced across a species’ range in one 

of four climatic variables (maximum temperature of the warmest month [Tmax], 

minimum temperature of the coldest month [Tmin], precipitation of the wettest month 

[Ppmax] and precipitation of the driest month [Ppmin]). Migratory data were extracted 

from BirdLife International’s World Bird Database (BirdLife International 2018).  

Climatic niche property r  

Max Tmax 0.930 

Tmax variation 0.943 

Min Tmin 0.954 

Tmin variation 0.917 

Max Ppmax 0.850 

Ppmax variation 0.943 

Min Ppmin 0.998 

Ppmin variation 0.983 
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Section 1: Land-use type definitions 

Table S4.1: Classifications of the land-use types and land-use intensity (reproduced from Hudson et al., 2014). For the analyses in Chapter 4, I 

removed minimally-used urban sites.  

Level 1 Land 

Use 

Predominant Land Use Minimal use Light use Intense use 

No evidence of 

prior destruction 

of the vegetation 

Primary Vegetation 

 

Any disturbances identified are 

very minor (e.g., a trail or path) or 

very limited in the scope of their 

effect (e.g., hunting of a particular 

species of limited ecological 

importance). 

One or more disturbances of 

moderate intensity (e.g., selective 

logging) or breadth of impact 

(e.g., bushmeat extraction), which 

are not severe enough to markedly 

change the nature of the 

ecosystem. Primary sites in 

suburban settings are at least Light 

use. 

One or more disturbances that is 

severe enough to markedly change 

the nature of the ecosystem; this 

includes clear-felling of part of the 

site too recently for much 

recovery to have occurred. 

Primary sites in fully urban 

settings should be classed as 

Intense use. 

  

    

Recovering after 

destruction of the 

vegetation 

Mature Secondary 

Vegetation 

As for Primary Vegetation-

Minimal use 

As for Primary Vegetation-Light 

use 

As for Primary Vegetation-Intense 

use 

Recovering after 

destruction of the 

vegetation 

Intermediate Secondary 

Vegetation  

As for Primary Vegetation-

Minimal use 

As for Primary Vegetation-Light 

use 

As for Primary Vegetation-Intense 

use 

Recovering after 

destruction of the 

vegetation 

Young Secondary 

Vegetation 

As for Primary Vegetation-

Minimal use 

As for Primary Vegetation-Light 

use 

As for Primary Vegetation-Intense 

use 
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Human use 

(agricultural) 

Plantation forest Extensively managed or mixed 

timber, fruit/coffee, oil-palm or 

rubber plantations in which 

native understorey and/or other 

native tree species are tolerated, 

which are not treated with 

pesticide or fertiliser, and which 

have not been recently (< 20 

years) clear-felled. 

Monoculture fruit/coffee/rubber 

plantations with limited pesticide 

input, or mixed species 

plantations with significant 

inputs. Monoculture timber 

plantations of mixed age with no 

recent (< 20 years) clear-felling. 

Monoculture oil-palm 

plantations with no recent (< 20 

years) clear-felling. 

Monoculture fruit/coffee/rubber 

plantations with significant 

pesticide input. 

Monoculture timber plantations 

with similarly aged trees or 

timber/oil-palm plantations with 

extensive recent (< 20 years) 

clear-felling. 

Human use 

(agricultural) 

Cropland Low-intensity farms, typically 

with small fields, mixed crops, 

crop rotation, little or no 

inorganic fertiliser use, little or 

no pesticide use, little or no 

ploughing, little or no irrigation, 

little or no mechanisation. 

Medium intensity farming, 

typically showing some but not 

many of the following: large 

fields, annual ploughing, 

inorganic fertiliser application, 

pesticide application, irrigation, 

no crop rotation, mechanisation, 

monoculture crop. Organic farms 

in developed countries often fall 

within this category, as may 

high-intensity farming in 

developing countries. 

High-intensity monoculture 

farming, typically showing many 

of the following features: large 

fields, annual ploughing, 

inorganic fertiliser application, 

pesticide application, irrigation, 

mechanisation, no crop rotation. 

Human use 

(agricultural) 

Pasture Pasture with minimal input of 

fertiliser and pesticide, and with 

low stock density (not high 

enough to cause significant 

disturbance or to stop 

regeneration of vegetation). 

Pasture either with significant 

input of fertiliser or pesticide, or 

with high stock density (high 

enough to cause significant 

disturbance or to stop 

regeneration of vegetation). 

Pasture with significant input of 

fertiliser or pesticide, and with 

high stock density (high enough 

to cause significant disturbance 

or to stop regeneration of 

vegetation). 

Human use 

(urban) 

Urban Extensive managed green 

spaces; villages. 

Suburban (e.g., gardens), or 

small managed or unmanaged 

green spaces in cities. 

Fully urban with no significant 

green spaces. 



 

245 

 

Section 2: Comparison with GBIF  

I extracted occurrence data from the Global Biodiversity Information Facility 

(GBIF 2015) for terrestrial vertebrate species in the PREDICTS Project database 

included in my final dataset. For these species, the maximum temperature of the 

warmest month, minimum temperature of the coldest month and precipitation of the 

wettest and driest months (WorldClim version 1.4; Hijmans, Cameron, Parra, Jones, 

& Jarvis 2005) were extracted for each recorded location within GBIF. Then, for each 

species the extremes (maximum and minimum) of these values were found and used 

as the species’ thermal and precipitation tolerance limits. For each population, climatic 

positions were found in the same way as described in Chapter 4, but by using the 

species’ realised climatic tolerance limits from GBIF rather than those extracted using 

species’ distribution maps (the correlations between the two methods of estimating 

climatic position can be found in table S4.2). Following this, I ran the same set of 

models as in Chapter 4, but used the climatic positions found using GBIF data, rather 

than species’ range maps. The results were very similar to those reported in Chapter 4 

(figs. S4.1-2). 

Table S4.2: Correlations (Pearson’s correlation coefficient, r), between populations’ 

climatic positions estimated by using species’ distribution maps (BirdLife 

International 2012; IUCN 2016) versus using occurrence data from the Global 

Biodiversity Information Facility (GBIF 2015). 

 

Climatic position r 

Maximum temperature of warmest month 0.834 

Minimum temperature of coldest month 0.675 

Precipitation of wettest month  0.806 

Precipitation of driest month 0.834 
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Figure S4.1: The abundance of species within each land-use type, relative to 

abundance in primary vegetation (indicated by the dotted line), for populations with 

Tmax or Tmin positions ‘close’ or ‘far’ from their thermal tolerance limits (calculated 

using occurrence data from the Global Biodiversity Information Facility) at tropical 

and temperate latitudes. For (a) a population’s Tmax position, ‘close’ and ‘far’ refer to 

a position of 0.9 and 0.7, respectively, for both tropical and temperate latitudes. For 

(b) a population’s Tmin position, ‘close’ and ‘far’ refer to a position of 0.2 and 0.6 at 

tropical latitudes, and 0.1 and 0.4 at temperate latitudes, respectively. These positions 

reflect the 10th and 90th percentile of Tmax or Tmin positions (calculated separately 

within tropical and temperate latitudes). Error bars denote ±1 standard error. MSV, 

ISV, and YSV stand for mature, intermediate, and young secondary vegetation, 

respectively. 
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Figure S4.2: The (a) probability of occurrence or (b) abundance of species within each 

land-use type, relative to that in primary vegetation (indicated by the dotted line), for 

populations with (a) Ppmax or (b) Ppmin positions ‘close’ or ‘far’ from their precipitation 

tolerance limits (calculated using occurrence data from the Global Biodiversity 

Information Facility) at tropical and temperate latitudes. For (a) a population’s Ppmax 

position, ‘close’ and ‘far’ refer to a position of 0.6 and 0.2 at tropical latitudes, and 0.4 

and 0.1 at temperate latitudes, respectively. For (b) a population’s Ppmin position, 

‘close’ and ‘far’ refer to a position of 0 and 0.2 at tropical latitudes, and 0 and 0.1 at 

temperate latitudes, respectively. These positions reflect the 10th and 90th percentile of 

Ppmax or Ppmin positions (calculated separately within tropical and temperate latitudes). 

Error bars denote ±1 standard error. MSV, ISV, and YSV stand for mature, 

intermediate, and young secondary vegetation, respectively. I plot relative probability 

of occurrence (rather than relative abundance) for Ppmax positions because a 

population’s Ppmax position was not found to have a significant effect on abundance, 

and so was not included in the final abundance (given presence) model. I use a broken 

y-axis (represented by //) on the plot for Ppmin position at temperate latitudes so that 

the smaller effect sizes can be more easily interpreted.  
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Section 3: Including populations recorded outside of their species’ stated 

distribution  

 To check the influence of excluding populations outside of their species’ 

ranges as stated by the IUCN (2016) and BirdLife International (2012), I ran two sets 

of models that had the same structure as the final models in Chapter 4 but did not 

include the distance to range edge main effect or its interaction with land use. One set 

of models was run for the same populations included in the models in Chapter 4 (i.e., 

excluding populations that fell outside the species’ range maps, but the models 

excluded the distance to range edge covariate). The other model set included 

populations both inside and outside of their species’ ranges. The main qualitative 

results of these models were on the whole very similar (figs. S4.3-6). The exception to 

this was the relationship between a population’s Ppmin position and their relative 

abundance within tropical pastures – when populations inside and outside of their 

species’ ranges were included, the relationship matched that observed within cropland 

and plantations, with populations experiencing minimum monthly precipitation closer 

to the species’ dry limit having higher relative abundances than populations further 

from this limit, whereas this was not the case for the models only containing 

populations within their stated species’ ranges (figs. S4.4, S4.6).  
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Figure S4.3: The abundance of species within each land-use type, relative to 

abundance in primary vegetation (indicated by the dotted line), for populations with 

Tmax or Tmin positions ‘close’ or ‘far’ from their thermal tolerance limits at tropical and 

temperate latitudes (including the same populations as included in the models 

presented in Chapter 4, but excluding the distance to range edge covariate from the 

models). For (a) a population’s Tmax position, ‘close’ and ‘far’ refer to a position of 0.9 

and 0.7, respectively, for both tropical and temperate latitudes. For (b) a population’s 

Tmin position, ‘close’ and ‘far’ refer to a position of 0.2 and 0.6 at tropical latitudes, 

and 0.1 and 0.4 at temperate latitudes, respectively. These positions reflect the 10th and 

90th percentile of Tmax or Tmin positions (calculated separately within tropical and 

temperate latitudes). Error bars denote ±1 standard error. MSV, ISV, and YSV stand 

for mature, intermediate, and young secondary vegetation, respectively. 
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Figure S4.4: The (a) probability of occurrence or (b) abundance of species within each 

land-use type, relative to that in primary vegetation (indicated by the dotted line), for 

populations with (a) Ppmax or (b) Ppmin positions ‘close’ or ‘far’ from their precipitation 

tolerance limits at tropical and temperate latitudes (including the same populations as 

included in the models presented in Chapter 4, but excluding the distance to range edge 

covariate from the models). For (a) a population’s Ppmax position, ‘close’ and ‘far’ 

refer to a position of 0.6 and 0.2 at tropical latitudes, and 0.4 and 0.1 at temperate 

latitudes, respectively. For (b) a population’s Ppmin position, ‘close’ and ‘far’ refer to 

a position of 0 and 0.2 at tropical latitudes, and 0 and 0.1 at temperate latitudes, 

respectively. These positions reflect the 10th and 90th percentile of Ppmax or Ppmin 

positions (calculated separately within tropical and temperate latitudes). Error bars 

denote ±1 standard error. MSV, ISV, and YSV stand for mature, intermediate, and 

young secondary vegetation, respectively. I plot relative probability of occurrence 

(rather than relative abundance) for Ppmax positions because a population’s Ppmax 

position was not found to have a significant effect on abundance, and so was not 

included in the final abundance (given presence) model. I use a broken y-axis 

(represented by //) on the plot for Ppmin position at temperate latitudes so that the 

smaller effect sizes can be more easily interpreted.  
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Figure S4.5: The abundance of species within each land-use type, relative to 

abundance in primary vegetation (indicated by the dotted line), for populations with 

Tmax or Tmin positions ‘close’ or ‘far’ from their thermal tolerance limits at tropical and 

temperate latitudes (including populations recorded inside and outside of their species’ 

distributions as stated by the IUCN and BirdLife International, and excluding the 

distance to range edge covariate from the models). For (a) a population’s Tmax position, 

‘close’ and ‘far’ refer to a position of 0.9 and 0.7, respectively, for both tropical and 

temperate latitudes. For (b) a population’s Tmin position, ‘close’ and ‘far’ refer to a 

position of 0.2 and 0.6 at tropical latitudes, and 0.1 and 0.5 at temperate latitudes, 

respectively. These positions reflect the 10th and 90th percentile of Tmax or Tmin 

positions (calculated separately within tropical and temperate latitudes). Error bars 

denote ±1 standard error. MSV, ISV, and YSV stand for mature, intermediate, and 

young secondary vegetation, respectively. 
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Figure S4.6: The (a) probability of occurrence or (b) abundance of species within each 

land-use type, relative to that in primary vegetation (indicated by the dotted line), for 

populations with (a) Ppmax or (b) Ppmin positions ‘close’ or ‘far’ from their precipitation 

tolerance limits at tropical and temperate latitudes (including populations recorded 

inside and outside of their species’ distributions as stated by the IUCN and BirdLife 

International, and excluding the distance to range edge covariate from the models). For 

(a) a population’s Ppmax position, ‘close’ and ‘far’ refer to a position of 0.7 and 0.2 at 

tropical latitudes, and 0.4 and 0.1 at temperate latitudes, respectively. For (b) a 

population’s Ppmin position, ‘close’ and ‘far’ refer to a position of 0 and 0.2 at tropical 

latitudes, and 0 and 0.1 at temperate latitudes, respectively. These positions reflect the 

10th and 90th percentile of Ppmax or Ppmin positions (calculated separately within 

tropical and temperate latitudes). Error bars denote ±1 standard error. MSV, ISV, and 

YSV stand for mature, intermediate, and young secondary vegetation, respectively. I 

plot relative probability of occurrence (rather than relative abundance) for Ppmax 

positions because a population’s Ppmax position was not found to have a significant 

effect on abundance, and so was not included in the final abundance (given presence) 

model.  
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Section 4: Further information on the results   

Table S4.3: The number of populations from the PREDICTS Project dataset included in the final abundance given presence models (and, in 

parentheses, probability of occurrence models) across each land-use type, along with the number of sites that were sampled and the studies that 

these originated from. 

 

Land use Number of 

 Populations Sites Studies 

 Tropics Temperate Tropics Temperate Tropics Temperate 

Primary vegetation 4,382 (26,138) 1,265 (6,339) 957 (1,426) 425 (809) 70 (81) 30 (32) 

Mature secondary vegetation 381 (2,896) 30 (155) 119 (173) 10 (42) 14 (15) 5 (5) 

Intermediate secondary vegetation 1,227 (5,820) 51 (113) 205 (252) 38 (42) 29 (31) 6 (7) 

Young secondary vegetation 1,259 (7,880) 243 (1,070) 192 (304) 97 (188) 24 (25) 8 (11) 

Plantation  1,379 (8,885) 143 (734) 459 (819) 78 (232) 33 (41) 13 (13) 

Cropland 888 (9,948) 410 (2,783) 246 (429) 160 (453) 14 (16) 7 (9) 

Pasture 788 (11,269) 482 (2,522) 245 (537) 168 (235) 20 (21) 10 (10) 

Urban 222 (569) 171 (886) 41 (41) 74 (91) 2 (2) 3 (3) 
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Table S4.4: For each land-use type, the number of species (out of the 2,103 species 

with occurrence data) with more than one distinct measure for each climatic position 

and distance to range edge (these do not equate to the number of species recorded in 

more than one location, because some populations may have the same climatic position 

or distance to range edge measure at different locations within their range), and the 

average difference between the minimum and maximum value of each climatic 

position or distance to range edge for these species. Tmax position relates to the 

maximum temperature of the warmest month a population experiences compared to 

their thermal tolerance limits; Tmin position relates to the minimum temperature of the 

coldest month a population experiences compared to their thermal tolerance limits; 

Ppmax position relates to the precipitation of the wettest month a population experiences 

compared to their precipitation tolerance limits; Ppmin position relates to the 

precipitation of the driest month a population experiences compared to their 

precipitation tolerance limits (see Chapter 4 for more information on how these were 

calculated). 

 

Land-use type Number of species with more than one measure (and the 

average difference between each species’ minimum and 

maximum value) 

 Tmax 

position 

Tmin 

position 

Ppmax 

position 

Ppmin 

position 

Distance to 

range edge 

Primary vegetation 1341 

(0.06) 

1220 

(0.08) 

1356 

(0.10) 

1210 

(0.03) 

1444 (0.14) 

Mature secondary 

vegetation 

110 (0.03) 98 (0.05) 116 (0.05) 109 (0.03) 116 (0.08) 

Intermediate secondary 

vegetation 

550 (0.04) 486 (0.06) 532 (0.08) 521 (0.03) 620 (0.12) 

Young secondary 

vegetation 

717 (0.04) 627 (0.04) 719 (0.05) 680 (0.02) 756 (0.09) 

Plantation 628 (0.05) 597 (0.06) 627 (0.06) 572 (0.03) 629 (0.09) 

Cropland 417 (0.05) 417 (0.06) 412 (0.10) 413 (0.03) 425 (0.11) 

Pasture 507 (0.05) 507 (0.05) 505 (0.07) 498 (0.02) 510 (0.13) 

Urban 57 (0.03) 46 (0.09) 46 (0.08) 46 (0.03) 57 (0.20) 
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Table S4.5: The correlations (Spearman correlation, p) between the four climatic 

positions and distance to range edge for those populations with occurrence data. Tmax 

position relates to the maximum temperature of the warmest month a population 

experiences compared to their thermal tolerance limits; Tmin position relates to the 

minimum temperature of the coldest month a population experiences compared to their 

thermal tolerance limits; Ppmax position relates to the precipitation of the wettest month 

a population experiences compared to their precipitation tolerance limits; Ppmin 

position relates to the precipitation of the driest month a population experiences 

compared to their precipitation tolerance limits. 

 

 Tmax position Tmin position Ppmax 

position 

Ppmin 

position 

Distance to 

range edge 

Tmax position      

Tmin position 0.31     

Ppmax position 0.32 0.18    

Ppmin position -0.12 0.14 0.18   

Distance to 

range edge 

0.36 -0.11 0.05 -0.17  
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Table S4.6: The climatic positions of populations with occurrence data relative to their 

species-level realised climatic tolerance limits (0 = at lower thermal or precipitation 

tolerance limit, 1 = at upper thermal or precipitation tolerance limit) for each climatic 

variable focused on, and the percentage of values that fell beyond 0 or 1.  

 

Climatic variable  Range of 

climatic 

positions 

Percentage of 

datapoints beyond 

the 0 and 1 bounds 

(%) 

Maximum temperature of warmest month 0.38 – 1.18 0.07 

Minimum temperature of coldest month -0.36 – 0.81 0.02 

Precipitation of wettest month  0.02 – 1.08 0.24 

Precipitation of driest month -0.02 – 0.40 0.13 
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Distance to range edge 

 

Figure S4.7: The abundance of species within each land-use type, relative to 

abundance in primary vegetation (indicated by the dotted line), for populations ‘close’ 

or ‘far’ from their range edge, split by geographic zone (tropical or temperate latitude). 

For a population’s proximity to range edge, ‘close’ refers to a position of 0 (i.e., at 

their range edge) and ‘far’ refers to a position of 0.5 at tropical latitudes and 0.4 at 

temperate latitudes (i.e., around half-way between a species’ range centre and edge). 

These positions reflect the 10th and 90th percentile of distance to range edge measures 

(calculated separately within tropical and temperate latitudes). Error bars denote ±1 

standard error. MSV, ISV, and YSV stand for mature, intermediate, and young 

secondary vegetation, respectively. The p-values from the backwards stepwise 

selection process for distance from range edge were, pP(Occ) < 0.001, pLogAbund = 0.012, 

and for the interaction between land-use type and distance from range edge, pP(Occ) = 

0.003, pLogAbund = 0.208.   
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Comprehensive plots for each climatic position 

 

Figure S4.8: The relative abundance of species within each land-use type, in 

comparison to abundance in primary vegetation (indicated by the dotted line), 

depending on the population’s Tmax position, standardised to between 0 (species’ 

realised minimum temperature tolerance limit) and 1 (species’ realised maximum 

temperature tolerance limit). Error margins denote ±1 standard error; rug plots above 

each plot show the distribution of populations across the standardised climatic 
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positions within each land use. The x-axes are truncated at the 5th and 95th percentile 

of Tmax positions for each geographic zone in the data analysed.  

 

Figure S4.9: The relative abundance of species within each land-use type, in 

comparison to abundance in primary vegetation (indicated by the dotted line), 

depending on the population’s Tmin position, standardised to between 0 (species’ 

realised minimum temperature tolerance limit) and 1 (species’ realised maximum 

temperature tolerance limit). Error margins denote ±1 standard error; rug plots above 

each plot show the distribution of populations across the standardised climatic 
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positions within each land use. The x-axes are truncated at the 5th and 95th percentile 

of Tmin positions for each geographic zone in the data analysed. 

 

Figure S4.10: The relative probability of occurrence of species within each land-use 

type, in comparison to that in primary vegetation (indicated by the dotted line), 

depending on the population’s Ppmax position, standardised to between 0 (species’ 

realised dry limit) and 1 (species’ realised wet limit). I plot relative probability of 

occurrence (rather than relative abundance) for Ppmax positions because a population’s 

Ppmax position was not found to have a significant effect on abundance, and so was not 
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included in the final abundance (given presence) model (see Chapter 4). Error margins 

denote ±1 standard error; rug plots above each plot show the distribution of 

populations across the standardised climatic positions within each land use. The x-axes 

are truncated at the 5th and 95th percentile of Ppmax positions for each geographic zone 

in the data analysed.  

 

Figure S4.11: The relative abundance of species within each land-use type, in 

comparison to abundance in primary vegetation (indicated by the dotted line), 

depending on the population’s Ppmin position, standardised to between 0 (species’ 
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realised dry limit) and 1 (species’ realised wet limit). Error margins denote ±1 standard 

error; rug plots above each plot show the distribution of populations across the 

standardised climatic positions within each land use. The x-axes are truncated at the 

5th and 95th percentile of Ppmin positions for each geographic zone in the data analysed. 

  



 

263 

 

Section 5: Probability of occurrence and abundance (given presence) plots  

 In my analysis I employed a two-stage modelling approach (similar to a hurdle 

model), which combined a probability of occurrence model with an abundance (given 

presence) model. Below I plot out the results from these two models separately. I do 

not show the results for Ppmax position because this variable was not included in the 

final abundance model, and the results for this variable’s effect on probability of 

occurrence have already been plotted in Chapter 4.  
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Probability of occurrence plots  

 

Figure S4.12: The probability of occurrence of species within each land-use type, 

relative to that in primary vegetation (indicated by the dotted line), for populations 

with Tmax, Tmin or Ppmin positions ‘close’ or ‘far’ from their climatic tolerance limits at 

tropical and temperate latitudes. For (a) a population’s Tmax position, ‘close’ and ‘far’ 

refer to a position of 0.9 and 0.7, respectively, for both tropical and temperate latitudes. 

For (b) a population’s Tmin position, ‘close’ and ‘far’ refer to a position of 0.2 and 0.6 

at tropical latitudes, and 0.1 and 0.4 at temperate latitudes, respectively. For (c) a 

population’s Ppmin position, ‘close’ and ‘far’ refer to a position of 0 and 0.2 at tropical 
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latitudes, and 0 and 0.1 at temperate latitudes, respectively. These positions reflect the 

10th and 90th percentile of Tmax, Tmin or Ppmin positions (calculated separately within 

tropical and temperate latitudes). Error bars denote ±1 standard error. MSV, ISV, and 

YSV stand for mature, intermediate, and young secondary vegetation, respectively.  
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Abundance (given presence) plots 

 

Figure S4.13: The abundance (given presence) of species within each land-use type, 

relative to that in primary vegetation (indicated by the dotted line), for populations 

with Tmax, Tmin or Ppmin positions ‘close’ or ‘far’ from their climatic tolerance limits at 

tropical and temperate latitudes. For (a) a population’s Tmax position, ‘close’ and ‘far’ 

refer to a position of 0.9 and 0.7, respectively, for both tropical and temperate latitudes. 

For (b) a population’s Tmin position, ‘close’ and ‘far’ refer to a position of 0.2 and 0.6 

at tropical latitudes, and 0.1 and 0.4 at temperate latitudes, respectively. For (c) a 

population’s Ppmin position, ‘close’ and ‘far’ refer to a position of 0 and 0.2 at tropical 
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latitudes, and 0 and 0.1 at temperate latitudes, respectively. These positions reflect the 

10th and 90th percentile of Tmax, Tmin or Ppmin positions (calculated separately within 

tropical and temperate latitudes). Error bars denote ±1 standard error. MSV, ISV, and 

YSV stand for mature, intermediate, and young secondary vegetation, respectively.  
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Section 6: Severity of decline following land conversion   

Table S4.7: A reminder of the final probability of occurrence (P(Occ)) and abundance 

(LogAbund) models followed by the relevant coefficients (to 3 decimal places) used 

to produce estimates of relative abundance in croplands and pastures, which were used 

to explore terrestrial vertebrate community-average severity of decline following 

conversion of primary vegetation to agriculture. Models were selected following the 

methods in Chapter 4, with main effects and interactions used to estimate severity of 

decline (following Orme et al., 2019). Variables included land use (LU), geographic 

zone (GZ; i.e., whether the location was at tropical (Trop) or temperate (Temp) 

latitudes), the population’s distance from their species’ range edge (standardised to 

between 0 (at range edge) and 1 (centre of range); Dist) and the population’s climatic 

position (standardised to between 0 and 1) with regard to one of four climatic variables 

(Tmax – maximum temperature of the warmest month; Tmin – minimum temperature of 

the coldest month; Ppmax – precipitation of the wettest month; Ppmin – precipitation of 

the driest month; Hijmans et al. 2005). In the final models, a nested random-intercept 

term for study (SS; to account for study-dependent variation in methods or measures 

used) and for sampled site within studies (SSBS) was included in all models, along 

with a random-intercept term for species name (Species). 
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 Occurrence model Abundance model 

 P(Occ) ~ Intercept + LU + GZ + Tmax + Tmin + Ppmin + Ppmax + 

Dist + LU×GZ + LU×Dist + LU×Tmax + LU×Tmin +  

LU×Ppmax + LU×Ppmin + Tmax×GZ + Tmin×GZ + Ppmax×GZ + 

Ppmin×GZ + LU×Tmax×GZ + LU×Tmin×GZ + LU×Ppmin×GZ + 

(1|SS) + (1|SSBS) + (1|Species) 

LogAbund ~ Intercept + LU + GZ + Tmax + Tmin + Ppmin + Dist 

+ LU×GZ + LU×Tmax + LU×Tmin + LU×Ppmin + GZ×Tmax + 

GZ×Ppmin + LU×Tmax×GZ + LU×Ppmin×GZ + (1|SS) + (1|SSBS) 

+ (1|Species) 

 Primary 

vegetation 

Cropland Pasture Primary 

vegetation 

Cropland Pasture 

 Trop Temp Trop Temp Trop Temp Trop Temp Trop Temp Trop Temp 

Intercept 0.752 0.752 0. 752 3.836 3.836 3.836 

LU ----- -0.184 -0.483 ----- 0.222 -0.076 

Dist 0.487 0.487 0.487 0.186 0.186 0.186 

Tmax 2.423 2.423 2.423 0.153 0.153 0.153 

Tmin -0.474 -0.474 -0.474 -0.463 -0.463 -0.463 

Ppmax -0.242 -0.242 -0.242    

Ppmin 2.547 2.547 2.547 0.817 0.817 0.817 

GZ ----- -0.157 ----- -0.157 ----- -0.157 ----- 0.008 ----- 0.008 ----- 0.008 

LU × GZ ----- ----- ----- -0.326 ----- -0.218 ----- ----- ----- -0.086 ----- -0.005 

LU × Dist ----- 1.000 0.335       

LU × Tmax ----- -5.886 -3.587 ----- 0.985 -0.564 
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LU × Tmin ----- 3.826 1.751 ----- 0.765 0.462 

LU × Ppmax ----- -0.802 -1.934    

LU × Ppmin ----- -7.493 5.633 ----- -2.303 -0.153 

Tmax × GZ ----- 3.034 ----- 3.034 ----- 3.034 ----- 1.632 ----- 1.632 ----- 1.632 

Tmin × GZ ----- -0.179 ----- -0.179 ----- -0.179       

Ppmax × GZ ----- -1.832 ----- -1.832 ----- -1.832       

Ppmin × GZ ----- 3.629 ----- 3.629 ----- 3.629 ----- -0.242 ----- -0.242 ----- -0.242 

Tmax × LU × GZ ----- ----- ----- 1.411 ----- 4.675 ----- ----- ----- -3.214 ----- 0.919 

Tmin × LU × GZ ----- ----- ----- -3.140 ----- -1.346       

Ppmin × LU × GZ ----- ----- ----- 10.822 ----- -9.468 ----- ----- ----- 1.247 ----- -3.868 

Grey cells represent those variables that were not considered in the model because they were not significant and were not nested within higher-

order interactions. ‘-----’ denotes terms that were reference levels and so contained within the intercept. 
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Figure S4.14: The percentage of terrestrial vertebrate populations within each 

community (10 × 10-km pixel) with expected abundances less than half of that in 

primary vegetation following conversion to (a) cropland and (b) pasture, based on the 

population’s climatic position (all else held equal). I present global maps (Behrmann 

projection) to demonstrate how the average severity of decline within communities 

may differ due to the local climatic changes following agricultural conversion, whilst 

recognising that land conversion from primary vegetation to cropland or pasture is not 

possible, or has already happened, for large parts of the world (although these maps 

could also be useful in highlighting areas in which habitat restoration may be more 

beneficial, based on the climatic positions of the local populations). Dark grey areas 

a) Cropland

Percentage of populations in each community with 
abundances equal to or under half of that in primary habitat (%)

100 50 0

b) Pasture
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represent locations that were not covered by any of the species’ ranges in our dataset 

(some of the Great Lakes in North America, for example). 

I also produced maps of estimated community-average probability of 

occurrence in cropland and pasture relative to that in primary vegetation, based on the 

climatic positions of populations within each community. I carried this out for the same 

set of 22,267 species as described in Chapter 4 for the maps of community-average 

relative abundance. Similarly, for each species, I produced maps of Tmax, Tmin, Ppmax 

and Ppmin  (WorldClim Version 1.4; Hijmans et al., 2005) across their distribution and 

standardised them to between 0 and 1 in the same way as described in Chapter 4. Then, 

using the main-effect and interaction estimates (table S4.7) from the final probability 

of occurrence model, I found the model-estimated probability of occurrence of each 

species across their range, based on their climatic position, in primary vegetation (PV), 

cropland (Cr) and pasture (Pa). Following this, I expressed each species’ probability 

of occurrence (P(Occ)) in cropland and pasture relative to that in primary vegetation 

(i.e., relative probability of occurrence, RP(Occ); equation S4.1 and S4.2, for relative 

probability of occurrence within cropland and pasture, respectively):  

(S4.1) 𝑅𝑃(𝑂𝑐𝑐)𝐶𝑟 =  
𝑃(𝑂𝑐𝑐)𝐶𝑟 

𝑃(𝑂𝑐𝑐)𝑃𝑉 
 

(S4.2) 𝑅𝑃(𝑂𝑐𝑐)𝑃𝑎 =  
𝑃(𝑂𝑐𝑐)𝑃𝑎 

𝑃(𝑂𝑐𝑐)𝑃𝑉 
 

I then averaged and plotted the species-level results within each 10 × 10-km 

grid cell to display community-average probability of occurrence following 

conversion of primary vegetation to cropland or pasture, where the ‘community’ 

included all the populations whose species’ range covered that cell (fig. S4.15).  

Again, to ensure I did not extrapolate beyond the limits of my data, I found the 

predicted relative probability of occurrence within cropland and pasture for each 

population from the PREDICTS database included in my models (again using the 

main-effect and interaction estimates from my models). I then averaged these predicted 

values for populations in cropland or pasture within each PREDICTS site, producing 

site-level-average (i.e., community-average) relative probability of occurrences, and 

extracted the minimum and maximum site-level average relative probability of 

occurrence for each land use. Finally, when producing the global maps described 

above showing the community-average probability of occurrence, I only plotted values 
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that fell within these limits (which included values for the vast majority of the Earth’s 

surface). 

 

 

Figure S4.15: The community-average (10 × 10-km pixel) probability of occurrence 

for terrestrial vertebrates within (a) cropland and (b) pasture relative to that in primary 

vegetation, based on the climatic position of populations within each community. I 

present global maps (Behrmann projection) to demonstrate how the average 

probability of occurrence within communities may differ due to the local climatic 

changes following agricultural conversion, whilst recognising that land conversion 

from primary vegetation to cropland or pasture is not possible, or has already 

Lower probability 
of occurrence

Higher probability
of occurrence

a) Cropland

b) Pasture

Lower probability 
of occurrence

Higher probability
of occurrence
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happened, for large parts of the world (although these maps could also be useful in 

highlighting areas in which habitat restoration may be more beneficial, based on the 

climatic positions of the local populations). Dark grey areas represent locations that 

were not covered by any of the species’ ranges in my dataset (some of the Great Lakes 

in North America, for example), or where community-average measures were beyond 

the limits of my dataset (see methods above). The scale of community-average 

probability of occurrence is separate for each map: the deepest red (lowest relative 

probability of occurrence) represents a value of 0.12 (to 2 decimal places) in both 

cropland and pasture, the lightest yellow (highest relative probability of occurrence) 

represents values of above 2 and up to 1.66 (to 2 decimal places) in cropland and 

pasture, respectively, and the middle colour of orange represents values of 1 

(probability of occurrence equal to that in primary habitat) for both land uses. 
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Section 7: Endotherm models  

 I ran a separate set of models that only included species of mammals and birds. 

This was to ensure that my results were consistent for endothermic species, who may 

be less affected by local climatic changes. The results of these models (fig. S4.16-17) 

were very similar to those including both ectotherms and endotherms (see Chapter 4). 

 

Figure S4.16: The abundance of endothermic species within each land-use type, 

relative to abundance in primary vegetation (indicated by the dotted line), for 

populations with Tmax or Tmin positions ‘close’ or ‘far’ from their thermal tolerance 

limits at tropical and temperate latitudes. For (a) a population’s Tmax position, ‘close’ 

and ‘far’ refer to a position of 0.9 and 0.7, respectively, for both tropical and temperate 

latitudes. For (b) a population’s Tmin position, ‘close’ and ‘far’ refer to a position of 

0.2 and 0.6 at tropical latitudes, and 0.1 and 0.4 at temperate latitudes, respectively. 

These positions reflect the 10th and 90th percentile of Tmax or Tmin positions (calculated 

separately within tropical and temperate latitudes). Error bars denote ±1 standard error. 

MSV, ISV, and YSV stand for mature, intermediate, and young secondary vegetation, 

respectively.  
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Figure S4.17: The (a) probability of occurrence or (b) abundance of endothermic 

species within each land-use type, relative to that in primary vegetation (indicated by 

the dotted line), for populations with (a) Ppmax or (b) Ppmin positions ‘close’ or ‘far’ 

from their precipitation tolerance limits at tropical and temperate latitudes. For (a) a 

population’s Ppmax position, ‘close’ and ‘far’ refer to a position of 0.6 and 0.1 at 

tropical latitudes, and 0.4 and 0.1 at temperate latitudes, respectively. For (b) a 

population’s Ppmin position, ‘close’ and ‘far’ refer to a position of 0 and 0.2 at tropical 

latitudes, and 0 and 0.1 at temperate latitudes, respectively. These positions reflect the 

10th and 90th percentile of Ppmax or Ppmin positions (calculated separately within 

tropical and temperate latitudes). Error bars denote ±1 standard error. MSV, ISV, and 

YSV stand for mature, intermediate, and young secondary vegetation, respectively. I 

plot relative probability of occurrence (rather than relative abundance) for Ppmax 

positions because a population’s Ppmax position was not found to have a significant 

effect on abundance, and so was not included in the final abundance (given presence) 

model. I use a broken y-axis (represented by //) on the plot for Ppmin position at 

temperate latitudes so that the smaller effect sizes can be more easily interpreted. 
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Section 8: Excluding forest specialists 

 I extracted data on habitat preferences for the vertebrate species included in my 

models (IUCN 2017). I classified a species as a ‘forest specialist’ if natural forest 

habitats (Forest – Subtropical/Tropical Moist Lowland; Forest –Subtropical/Tropical 

Moist Montane; Forest – Subtropical/Tropical Dry; Forest – Temperate; Forest – 

Subtropical/Tropical Swamp; Forest – Boreal; Forest – Subartic; Forest – 

Subtropical/Tropical Mangrove Vegetation Above High Tide Level; Forest – 

Subantarctic) were considered as being of ‘major’ importance to the species (rather 

than suitable, marginal, or unsuitable), according to the IUCN habitat classification. 

Then, this time excluding forest specialist species, I ran the final models stated in 

Chapter 4. The probability of occurrence model included 48,125 populations, 

consisting of 907 species, and the abundance (given presence) included 6,728 

populations, from 700 species. The results of these (figs. S4.18-19) were very similar 

to those including forest specialist species. 

 

Figure S4.18: The abundance of species (excluding those classified as forest 

specialists) within each land-use type, relative to abundance in primary vegetation 

(indicated by the dotted line), for populations with Tmax or Tmin positions ‘close’ or 

‘far’ from their thermal tolerance limits at tropical and temperate latitudes. For (a) a 

population’s Tmax position, ‘close’ and ‘far’ refer to a position of 0.9 and 0.7, 
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respectively, for both tropical and temperate latitudes. For (b) a population’s Tmin 

position, ‘close’ and ‘far’ refer to a position of 0.2 and 0.6 at tropical latitudes, and 0.1 

and 0.4 at temperate latitudes, respectively. These positions reflect the 10th and 90th 

percentile of Tmax or Tmin positions (calculated separately within tropical and temperate 

latitudes). Error bars denote ±1 standard error. MSV, ISV, and YSV stand for mature, 

intermediate, and young secondary vegetation, respectively. Results for MSV at 

temperate latitudes are not shown as there were only nine populations in this grouping 

after excluding forest specialists, which resulted in large error bars for this grouping. 

I use broken y-axes (represented by //) on the plots for temperate latitudes so that the 

smaller effect sizes can be more easily interpreted. 

 

Figure S4.19: The (a) probability of occurrence or (b) abundance of species 

(excluding those classified as forest specialists) within each land-use type, relative to 

that in primary vegetation (indicated by the dotted line), for populations with (a) Ppmax 

or (b) Ppmin positions ‘close’ or ‘far’ from their precipitation tolerance limits at tropical 

and temperate latitudes. For (a) a population’s Ppmax position, ‘close’ and ‘far’ refer to 

a position of 0.6 and 0.2 at tropical latitudes, and 0.4 and 0.1 at temperate latitudes, 

respectively. For (b) a population’s Ppmin position, ‘close’ and ‘far’ refer to a position 

of 0 and 0.2 at tropical latitudes, and 0 and 0.1 at temperate latitudes, respectively. 

These positions reflect the 10th and 90th percentile of Ppmax or Ppmin positions 
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(calculated separately within tropical and temperate latitudes). Error bars denote ±1 

standard error. MSV, ISV, and YSV stand for mature, intermediate, and young 

secondary vegetation, respectively. Results for MSV at temperate latitudes are not 

shown as there were only nine populations in this grouping after excluding forest 

specialists, which resulted in large error bars for this grouping. I plot relative 

probability of occurrence (rather than relative abundance) for Ppmax positions because 

a population’s Ppmax position was not found to have a significant effect on abundance, 

and so was not included in the final abundance (given presence) model. I use a broken 

y-axis (represented by //) on the plot for Ppmin position at temperate latitudes so that 

the smaller effect sizes can be more easily interpreted. 
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Section 9: Coefficient comparison with MCMCglmm models 
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Figure S4.20: The coefficients of the interaction terms from the reported probability of occurrence models using the package ‘lme4’ (filled circles; 

Bates et al., 2015) compared to those produced using a Bayesian modelling approach with the package ‘MCMCglmm’ (open circles; Hadfield, 

2010). The interactions included the geographic zone (tropical [reference level] or temperate), land-use class (primary vegetation [reference level], 

mature secondary vegetation [MSV], intermediate secondary vegetation [ISV], young secondary vegetation [YSV], plantation, cropland, pasture 

or urban), climatic position (with regard to maximum temperature of the warmest month [Tmax], minimum temperature of the coldest month 

[Tmin], precipitation of the wettest [Ppmax] or driest [Ppmin] month) and distance to range edge (Dist). Error bars denote 95% confidence intervals 

(for the models produced using ‘lme4’) or credible intervals (for models produced using ‘MCMCglmm’).  
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Figure S4.21: The coefficients of the interaction terms from the reported abundance (given presence) models using the package ‘lme4’ (filled 

circles; Bates et al., 2015) compared to those produced using a Bayesian modelling approach with the package ‘MCMCglmm’ (open circles; 

Hadfield, 2010). The interactions included the geographic zone (tropical [reference level] or temperate), land-use class (primary vegetation 

[reference level], mature secondary vegetation [MSV], intermediate secondary vegetation [ISV], young secondary vegetation [YSV], plantation, 

cropland, pasture or urban) and climatic position (with regard to maximum temperature of the warmest month [Tmax], minimum temperature of 

the coldest month [Tmin] or driest [Ppmin] month). Error bars denote 95% confidence intervals (for the models produced using ‘lme4’) or credible 

intervals (for models produced using ‘MCMCglmm’). 
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Section 10: Comparing models with random-intercept vs. random-slope terms 
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Figure S4.22: The coefficients of the interaction terms from the reported probability of occurrence models using random-intercept terms (filled 

circles) compared to those including random-slope terms to account for species differences in responses to climatic position and land-use type 

(open circles). The interactions included the geographic zone (tropical [reference level] or temperate), land-use class (primary vegetation [reference 

level], mature secondary vegetation [MSV], intermediate secondary vegetation [ISV], young secondary vegetation [YSV], plantation, cropland, 

pasture or urban), climatic position (with regard to maximum temperature of the warmest month [Tmax], minimum temperature of the coldest 

month [Tmin], precipitation of the wettest [Ppmax] or driest [Ppmin] month) and distance to range edge (Dist). Error bars denote ±1 standard error.  
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Figure S4.23: The coefficients of the interaction terms from the reported abundance (given presence) models using random-intercept terms (filled 

circles) compared to those including random-slope terms to account for species differences in responses to climatic position and land-use type 

(open circles). The interactions included the geographic zone (tropical [reference level] or temperate), land-use class (primary vegetation [reference 

level], mature secondary vegetation [MSV], intermediate secondary vegetation [ISV], young secondary vegetation [YSV], plantation, cropland, 

pasture or urban), climatic position (with regard to maximum temperature of the warmest month [Tmax], minimum temperature of the coldest 

month [Tmin], precipitation of the wettest [Ppmax] or driest [Ppmin] month). Error bars denote ±1 standard error.  
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Figure S4.24: Comparing fitted values from the models using random-intercept terms 

to those including random-slope terms (to account for species differences in responses 

to climatic position and land-use type). Points are coloured by the land-use type the 

population was recorded within. For the probability of occurrence models, fitted values 
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for 20,000 (from 88,0007) random datapoints are plotted; for the abundance models, 

all fitted values (13,321 values) are shown.  
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Section 1: Land-use categories 

Table S5.1: The 37 land-cover classes classified by the European Space Agency Climate Change Initiative (ESA CCI; ESA Land Cover CCI 

project team, Defourny, 2019), and the land-use categories I grouped them into for my analysis (closely following the groupings used by the 

Intergovernmental Panel on Climate Change for change detection; Defourny et al., 2017). The classes were also grouped (with a weighting system) 

to form a semi-natural habitat (SNH) category, in order to calculate change in land use surrounding populations. In this weighting system, I used 

the maximum percentage cover of a specific land use (detailed in the ESA’s land-use categories) to weight each category (for example, the category 

‘Tree cover, broadleaved, deciduous, closed to open (>15%)’ was given a weighting of 1, as it could cover 100% of the 300 × 300-m area, whereas 

the category ‘Tree cover, broadleaved, deciduous, open (15-40%)’ was given a weighting of 0.4, as this could cover a maximum of 40% of the 300 

× 300-m area). Non-SNH categories were given a weighting of 0. 
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The  

land-use 

category 

used in my 

analysis 

Land cover classification system used in the ESA CCI land-cover maps▲  Included as semi-

natural habitat? (Y/N) 

Weighting 

system 

Agriculture  10  Rainfed cropland  N 0 

 11 Herbaceous cover N 0 

 12 Tree or shrub cover N 0 

20  Irrigated cropland N 0 

30  Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous 

cover) (<50%) 

N 0 

40  Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / 

cropland (<50%)  

N 0 

100+  Mosaic tree and shrub (>50%) / herbaceous cover (<50%) N 0 

Forest 50  Tree cover, broadleaved, evergreen, closed to open (>15%) Y 1 

60  Tree cover, broadleaved, deciduous, closed to open (>15%) Y 1 

 61 Tree cover, broadleaved, deciduous, closed (>40%) Y 1 

 62 Tree cover, broadleaved, deciduous, open (15-40%) Y 0.4 

70  Tree cover, needleleaved, evergreen, closed to open (>15%) Y 1 
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 71 Tree cover, needleleaved, evergreen, closed (>40%) Y 1 

 72 Tree cover, needleleaved, evergreen, open (15-40%) Y 0.4 

80  Tree cover needleleaved, deciduous, closed to open (>15%) Y 1 

 81 Tree cover, needleleaved, deciduous, closed (>40%) Y 1 

 82 Tree cover, needleleaved, deciduous, open (15-40%) Y 0.4 

90  Tree cover, mixed leaf type (broad leaved and needleleaved)  Y 1 

160  Tree cover, flooded, fresh or brackish water Y 1 

170  Tree cover, flooded, saline water Y 1 

Grassland

  

110  Mosaic herbaceous cover (>50%) / tree and shrub (<50%) Y 0.5 

130  Grassland Y 1 

Wetland 180  Shrub or herbaceous cover, flooded, fresh-saline or brackish water Y 1 

Urban 190  Urban N 0 

Other 120  Shrubland Y 1 

 121 Evergreen shrubland Y 1 

 122 Deciduous shrubland Y 1 

140  Lichens and mosses N 0 

150  Sparse vegetation (tree, shrub, herbaceous cover) N 0 

 152 Sparse shrub (<15%) N 0 

 153 Sparse herbaceous cover (<15%) N 0 
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200  Bare areas N 0 

 201 Consolidated bare areas N 0 

 202 Unconsolidated bare areas N 0 

Water* 210  Water N 0 

Snow and 

ice* 

220  Permanent snow and ice N 0 

* I did not consider these categories in my analysis, so removed populations starting in these areas.  

+ This was classed as agriculture due to personal communications with members of the Sentinel (Social and Environmental Trade-Offs in African 

Agriculture) Project (www.sentinel-gcrf.org), who have found that this land-use category was commonly cropland with sparse trees. 

▲ The 37th class is a No Data class.  
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Section 2: Map of populations 

 

Figure S5.1: The location of terrestrial vertebrate populations included in the final dataset. The size reflects the number of populations at that 

location, with colours differentiating the Living Planet dataset (LPD) and BioTIME dataset.
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Section 3: Further information on the results 

Table S5.2: The correlations (Spearman correlation, p) between the continuous variables considered in the backwards stepwise selection. These 

variables were: average annual rate of change in semi-natural habitat (SNH_rate), starting climatic positions with regard to Tmax (Tmax_pos), Tmin 

(Tmin_pos), Ppmax (Ppmax_pos) and Ppmin (Ppmin_pos), average annual rate of change in climate with regard to maximum temperature of the 

warmest month (MaxT_rate), minimum temperature of the coldest month (MinT_rate), precipitation of the wettest (MaxP_rate) and driest 

(MinP_rate) months, and distance to range edge (Stand_dist). 

 SNH_rate Tmax_pos Tmin_pos Ppmax_pos Ppmin_pos MaxT_rate MinT_rate MaxP_rate MinP_rate Stand_dist 

SNH_rate           

Tmax_pos -0.027          

Tmin_pos 0.002 0.331         

Ppmax_pos -0.025 0.325 -0.032        

Ppmin_pos 0.015 0.193 -0.013 0.461       

MaxT_rate -0.025 -0.257 -0.146 -0.249 -0.433      

MinT_rate 0.034 -0.337 -0.355 -0.156 -0.070 0.094     

MaxP_rate 0.065 -0.073 -0.057 -0.126 0.238 -0.218 0.188    

MinP_rate 0.062 -0.424 -0.243 -0.101 -0.279 0.125 0.337 0.176   

Stand_dist -0.071 0.209 0.013 0.127 0.091 0.104 -0.129 -0.230 -0.216  
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Section 4: Comparing climatic position measures  

 To check the robustness of my climatic position measure, I also calculated 

starting climatic position using the average maximum and minimum temperature and 

precipitation conditions (CRU Time-series data v. 4.03; Harris & Jones, 2020) in the 

three years up to and including the first year of a population’s time-series (instead of 

just using data from the first year, as described in Chapter 5). I then ran a model (using 

the same structure as described in Chapter 5) using this climatic position measure. The 

results (figs. S5.2-3) were very similar to those reported in Chapter 5.  
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Figure S5.2: The average annual rate of population change (percentage change per 

year) across different starting land-use types, depending on: (i) the average annual rate 

of change in the percentage of semi-natural habitat within a 1 km radius; and (ii) a 

population’s starting climatic position (calculated using the average maximum and 

minimum temperature and precipitation conditions in the three years up to and 

including the first year of a population’s time-series) with regard to maximum 

temperature of the warmest month (Tmax), minimum temperature of the coldest month 

(Tmin), precipitation of the wettest month (Ppmax) or precipitation of the driest month 

(Ppmin). The x- and y-axes are truncated at the 10th and 90th percentile of sampled 
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values of each variable. Contour lines (and labels) indicate changes in average annual 

rate of population change.  

 

Figure S5.3: The average annual rate of population change (percentage change per 

year) across different starting land-use types, depending on: (i) the average annual rate 

of change in climate; and (ii) a population’s starting climatic position (calculated using 

the average maximum and minimum temperature and precipitation conditions in the 

three years up to and including the first year of a population’s time-series). Climatic 

variables considered were maximum temperature of the warmest month (Tmax), 

minimum temperature of the coldest month (Tmin), precipitation of the wettest month 



 

301 

 

(Ppmax), and precipitation of the driest month (Ppmin). The x- and y-axes are truncated 

at the 10th and 90th percentile of sampled values of each variable. Contour lines (and 

labels) indicate changes in average annual rate of population change. 

Further, to check the robustness of my estimates of climatic limits, as well as 

calculating species’ climatic limits as described in Chapter 5, I also (1) used the CRU 

Time-series data v. 4.03 (Harris & Jones, 2020), extracting climatic data from 1992, 

to calculate species’ climatic limits (rather than using WorldClim data), and (2) used 

occurrence records from the Global Biodiversity Information Facility (GBIF; GBIF 

2015, https://www.gbif.org) to estimate climatic limits. From GBIF, I extracted 

occurrence records for each species in my final dataset (324 species were also found 

in GBIF) and, for each species, used the highest maximum temperature of the warmest 

month, lowest minimum temperature of the coldest month, highest precipitation of the 

wettest month and lowest precipitation of the driest month (WorldClim version 1.4; 

Hijmans, Cameron, Parra, Jones, & Jarvis 2005) across these locations to define the 

species’ thermal and precipitation tolerance limits. Following this, for the populations 

in my final dataset, climatic positions were calculated in the same way as described in 

Chapter 5, but using the species’ estimated realised climatic tolerance limits found 

using the two methods above. The correlations between the starting climatic positions 

estimated using the different methods are presented below (table S5.3). 
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Table S5.3: Correlations (Pearson’s correlation coefficient, r), between populations’ 

starting climatic positions estimated by using species’ distribution maps (described in 

Chapter 5; BirdLife International 2012; IUCN  2016a-b, 2017a-c, 2018a-b, 2019a-c) 

and WorldClim climate maps (Hijmans et al., 2005) and (1) using species’ distribution 

maps and climate data from the CRU Time-series data (Harris & Jones, 2020), or (2) 

using occurrence data from the Global Biodiversity Information Facility (GBIF 2015) 

and WorldClim climate maps. Climatic positions were produced for four climatic 

variables: maximum temperature of the warmest month (Tmax), minimum temperature 

of the coldest month (Tmin), and precipitation of the wettest (Ppmax) and driest (Ppmin) 

months (see Chapter 5). 

 

Climatic position  Estimated using IUCN or 

BirdLife International 

distribution maps and 

CRU climate data  

Estimated using GBIF 

occurrence data and 

WorldClim climate maps  

Tmax 0.93 0.87 

Tmin 0.93 0.78 

Ppmax  0.90 0.88 

Ppmin 0.93 0.90 

 

 

 I also reran my final model twice, replacing the climatic position measures with 

those calculated by (1) using CRU Time-series data and (2) using GBIF data to 

estimate climatic limits. Results of the model run using the climatic positions 

calculated using climatic limits derived from CRU Time-series data were very similar 

to the results presented in Chapter 5 (figs. S5.4-5). The pattern of results using climatic 

positions derived from GBIF data was on the whole very similar to the results reported 

in the Chapter 5, with the exception that there was a slight difference in trend for the 

interaction between starting Ppmax position and rate of change in maximum 

precipitation for populations starting in grasslands (figs. S5.6-7).  
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Figure S5.4: The average annual rate of population change (percentage change per 

year) across different starting land-use types, depending on: (i) the average annual rate 

of change in the percentage of semi-natural habitat within a 1 km radius; and (ii) a 

population’s starting climatic position (calculated using CRU Time-series data, 

extracting climatic data from 1992, to estimate species’ climatic limits) with regard to 

maximum temperature of the warmest month (Tmax), minimum temperature of the 

coldest month (Tmin), precipitation of the wettest month (Ppmax) or precipitation of the 

driest month (Ppmin). The x- and y-axes are truncated at the 10th and 90th percentile of 
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sampled values of each variable. Contour lines (and labels) indicate changes in average 

annual rate of population change.   

 

Figure S5.5: The average annual rate of population change (percentage change per 

year) across different starting land-use types, depending on: (i) the average annual rate 

of change in climate; and (ii) a population’s starting climatic position (calculated using 

CRU Time-series data, extracting climatic data from 1992, to estimate species’ 

climatic limits). Climatic variables considered were maximum temperature of the 

warmest month (Tmax), minimum temperature of the coldest month (Tmin), precipitation 

of the wettest month (Ppmax), and precipitation of the driest month (Ppmin). The x- and 
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y-axes are truncated at the 10th and 90th percentile of sampled values of each variable. 

Contour lines (and labels) indicate changes in average annual rate of population 

change. 

 

 Figure S5.6: The average annual rate of population change (percentage change per 

year) across different starting land-use types, depending on: (i) the average annual rate 

of change in the percentage of semi-natural habitat within a 1 km radius; and (ii) a 

population’s starting climatic position (calculated using GBIF occurrence data to 

estimate species’ climatic limits) with regard to maximum temperature of the warmest 

month (Tmax), minimum temperature of the coldest month (Tmin), precipitation of the 
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wettest month (Ppmax) or precipitation of the driest month (Ppmin). The x- and y-axes 

are truncated at the 10th and 90th percentile of sampled values of each variable. Contour 

lines (and labels) indicate changes in average annual rate of population change.  

 

Figure S5.7: The average annual rate of population change (percentage change per 

year) across different starting land-use types, depending on: (i) the average annual rate 

of change in climate; and (ii) a population’s starting climatic position (calculated using 

GBIF occurrence data to estimate species’ climatic limits). Climatic variables 

considered were maximum temperature of the warmest month (Tmax), minimum 

temperature of the coldest month (Tmin), precipitation of the wettest month (Ppmax), and 
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precipitation of the driest month (Ppmin). The x- and y-axes are truncated at the 10th 

and 90th percentile of sampled values of each variable. Contour lines (and labels) 

indicate changes in average annual rate of population change. 
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Section 5: Models including starting percentage of semi-natural habitat 

As a sensitivity test, I ran the final model reported within Chapter 5, but 

included the percentage of semi-natural habitat (SNH) within a 1 km radius in the first 

year a population was measured, instead of starting land-use type, in the model. The 

percentage of surrounding SNH was added into the model as a continuous linear fixed-

effect, and included in all the same interactions as was starting land-use type. The 

results are presented below (figs. S5.8-11).  

 

Figure S5.8: The average annual rate of population change depending on the 

percentage of semi-natural habitat (SNH) within a 1 km radius of the population in the 

first year they were measured. Error margins denote ±1 standard error. The density and 

rug plots at the top of the figure show the distribution of populations from the Living 

Planet database (blue) and BioTIME database (red).  



 

309 

 

 

Figure S5.9: The average annual rate of population change (percentage change per 

year) for populations starting in areas with different percentages of semi-natural 

habitat (SNH) in the surrounding 1 km radius (rather than starting land-use type), 

depending on: (i) the average annual rate of change in semi-natural habitat; and (ii) a 

population’s starting climatic position with regard to maximum temperature of the 

warmest month (Tmax), minimum temperature of the coldest month (Tmin), precipitation 

of the wettest month (Ppmax) or precipitation of the driest month (Ppmin). The x- and y-

axes are truncated at the 10th and 90th percentile of sampled values of each variable. 
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Contour lines (and labels) indicate changes in average annual rate of population 

change.  

 

Figure S5.10: The average annual rate of population change (percentage change per 

year) for populations starting in areas with different percentages of semi-natural 

habitat (SNH) in the surrounding 1 km radius (rather than starting land-use type), 

depending on: (i) the average annual rate of change in climate; and (ii) a population’s 

starting climatic position. Climatic variables considered were maximum temperature 

of the warmest month (Tmax), minimum temperature of the coldest month (Tmin), 

precipitation of the wettest month (Ppmax), and precipitation of the driest month (Ppmin).  
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The x- and y-axes are truncated at the 10th and 90th percentile of sampled values of 

each variable. Contour lines (and labels) indicate changes in average annual rate of 

population change.  

 

Figure S5.11: The average annual rate of population change (percentage change per 

year) for populations starting in areas with different percentages of semi-natural 

habitat (SNH) in the surrounding 1 km radius (rather than starting land-use type), 

depending on: (i) the average annual rate of change in semi-natural habitat; and (ii) 

rate of change in climate with regard to maximum temperature of the warmest month 

(°C/year), minimum temperature of the coldest month (°C/year), and precipitation of 
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the wettest month (monthly mm/year). The x- and y-axes are truncated at the 10th and 

90th percentile of sampled values of each variable. Contour lines (and labels) indicate 

changes in average annual rate of population change.   
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Section 6: Comparison between land cover datasets  

 To check the consistency of land-use types across data sources, I downloaded 

a global map of terrestrial habitat types for the year 2015 (Jung et al., 2020a, 2020b) 

and compared it to the 2015 land cover map from the European Space Agency Climate 

Change Initiative (ESA CCI; ESA Land Cover CCI project team, Defourny, 2019) 

used in my analysis. For each unique site (n = 1,151) within my dataset, whether there 

was a population estimate for a population there in the year 2015 or not, I extracted 

the site’s land-use type from both the 2015 ESA land cover map (using the same 

broader categories of agriculture, forest, grassland, wetland, urban, and other, as for 

the starting land-use types in Chapter 5) and Jung et al.’s (2020a) terrestrial habitat 

map. I grouped Jung et al.’s (2020a) habitat types into broader categories (grouping 

A) based on their IUCN habitat classification scheme, and further into a smaller 

number of categories (grouping B) to match those groups used for starting land-use 

types in my analysis (although wetland and urban populations were removed from the 

main model due to small sample sizes; table S5.4). Then, for each location, I compared 

the extracted land uses. In particular, I wanted to ensure that there were not a large 

number of plantations or pastures at sites that I classed as forest or grasslands, 

respectively, as land-cover maps may miss these land uses. 

 For 71% of locations, the land-use type extracted from the ESA land cover map 

matched that from Jung et al.’s (2020a) terrestrial habitat map. For the other sites, the 

land uses differed, and I detail these differences in table S5.5.  
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Table S5.4: The land-use type groupings used for the global map of terrestrial habitat types (Jung et al., 2020a). Grouping A groups the habitats 

into broader categories and grouping B further groups the habitats to match those used for starting land-use types in my analysis.  

IUCN habitat classification scheme used by Jung et al. (2020a) Grouping A Grouping B 

1. Forest Forest Forest 

1.1. Forest – Boreal 

1.2. Forest - Subarctic 

1.3. Forest – Subantarctic 

1.4. Forest – Temperate 

1.5. Forest – Subtropical/tropical dry 

1.6. Forest – Subtropical/tropical moist lowland 

1.7. Forest – Subtropical/tropical mangrove vegetation above high tide level 

1.8. Forest – Subtropical/tropical swamp 

1.9. Forest – Subtropical/tropical moist montane 

2. Savanna Savanna Grassland 

2.1. Savanna - Dry 

2.2. Savanna - Moist 

3. Shrubland Shrubland Other 

3.1. Shrubland – Subarctic 

3.2. Shrubland – Subantarctic 
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3.3. Shrubland – Boreal 

3.4. Shrubland –Temperate 

3.5. Shrubland – Subtropical/tropical dry 

3.6. Shrubland – Subtropical/tropical moist 

3.7. Shrubland – Subtropical/tropical high altitude 

3.8. Shrubland – Mediterranean-type shrubby vegetation 

4. Grassland Grassland Grassland 

4.1. Grassland – Tundra 

4.2. Grassland – Subarctic 

4.3. Grassland – Subantarctic 

4.4. Grassland – Temperate 

4.5. Grassland – Subtropical/tropical dry 

4.6. Grassland – Subtropical/tropical seasonally wet/flooded 

4.7. Grassland – Subtropical/tropical high altitude 

5. Wetlands (inland) Wetland Wetland  

5.1. Wetlands (inland) – Permanent rivers/streams/creeks (includes waterfalls) 

5.2. Wetlands (inland) – Seasonal/intermittent/irregular rivers/streams/creeks 

5.3. Wetlands (inland) – Shrub dominated wetlands 

5.4. Wetlands (inland) – Bogs, marshes, swamps, fens, peatlands 
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5.5. Wetlands (inland) – Permanent freshwater lakes (over 8 ha) 

5.6. Wetlands (inland) – Seasonal/intermittent freshwater lakes (over 8 ha) 

5.7. Wetlands (inland) – Permanent freshwater marshes/pools (under 8 ha) 

5.8. Wetlands (inland) – Seasonal/intermittent freshwater marshes/pools (under 8 ha) 

5.9. Wetlands (inland) – Freshwater springs and oases 

5.10. Wetlands (inland) – Tundra wetlands (inc. pools and temporary waters from snowmelt) 

5.11. Wetlands (inland) – Alpine wetlands (inc. temporary waters from snowmelt) 

5.12. Wetlands (inland) – Geothermal wetlands 

5.13. Wetlands (inland) – Permanent inland deltas 

5.14. Wetlands (inland) – Permanent saline, brackish or alkaline lakes 

5.15. Wetlands (inland) – Seasonal/intermittent saline, brackish or alkaline lakes and flats 

5.16. Wetlands (inland) – Permanent saline, brackish or alkaline marshes/pools 

5.17. Wetlands (inland) – Seasonal/intermittent saline, brackish or alkaline marshes/pools 

5.18. Wetlands (inland) – Karst and other subterranean hydrological systems (inland) 

6. Rocky Areas (e.g., inland cliffs, mountain peaks) Rocky areas --- 

7. Caves & Subterranean Habitats (non-aquatic) Caves and 

subterranean habitats 

--- 

7.1. Caves and Subterranean Habitats (non-aquatic) – Caves 

7.2. Caves and Subterranean Habitats (non-aquatic) – Other subterranean habitats 

8. Desert Desert Other 
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8.1. Desert – Hot 

8.2. Desert – Temperate 

8.3. Desert – Cold 

9. Marine Neritic Marine Neritic Marine Neritic+ 

9.1. Marine Neritic – Pelagic 

9.2. Marine Neritic – Subtidal rock and rocky reefs 

9.3. Marine Neritic – Subtidal loose rock/pebble/gravel 

9.4. Marine Neritic – Subtidal sandy 

9.5. Marine Neritic – Subtidal sandy-mud 

9.6. Marine Neritic – Subtidal muddy 

9.7. Marine Neritic – Macroalgal/kelp 

9.8. Marine Neritic – Coral Reef 

9.8.1. Outer reef channel 

9.8.2. Back slope 

9.8.3. Foreslope (outer reef slope) 

9.8.4. Lagoon 

9.8.5. Inter-reef soft substrate 

9.8.6. Inter-reef rubble substrate 

9.9 Seagrass (Submerged) 
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9.10 Estuaries 

10 Marine Oceanic Marine Oceanic --- 

10.1 Epipelagic (0–200 m) 

10.2 Mesopelagic (200–1,000 m) 

10.3 Bathypelagic (1,000–4,000 m) 

10.4 Abyssopelagic (4,000–6,000 m) 

11 Marine Deep Ocean Floor (Benthic and Demersal) 

11.1 Continental Slope/Bathyl Zone (200–4,000 m) 

11.1.1 Hard Substrate 

11.1.2 Soft Substrate 

11.2 Abyssal Plain (4,000–6,000 m) 

11.3 Abyssal Mountain/Hills (4,000–6,000 m) 

11.4 Hadal/Deep Sea Trench (>6,000 m) 

11.5 Seamount 

11.6 Deep Sea Vents (Rifts/Seeps) 

12 Marine Intertidal Marine Intertidal  --- 

12.1 Rocky Shoreline 

12.2 Sandy Shoreline and/or Beaches, Sand Bars, Spits, etc. 

12.3 Shingle and/or Pebble Shoreline and/or Beaches 
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12.4 Mud Shoreline and Intertidal Mud Flats 

12.5 Salt Marshes (Emergent Grasses) 

12.6 Tidepools 

12.7 Mangrove Submerged Roots 

13 Marine Coastal/Supratidal Marine Coastal --- 

13.1 Sea Cliffs and Rocky Offshore Islands 

13.2 Coastal Caves/Karst 

13.3 Coastal Sand Dunes 

13.4 Coastal Brackish/Saline Lagoons/Marine Lakes 

13.5 Coastal Freshwater Lakes 

14 Artificial - Terrestrial Artificial – terrestrial  --- 

14.1 Arable Land Arable land Agriculture 

14.2 Pastureland Pastureland 

14.3 Plantations Plantations 

14.4 Rural Gardens Rural gardens Urban 

14.5 Urban Areas Urban areas 

14.6 Subtropical/Tropical Heavily Degraded Former Forest Heavily degraded 

former forest 

--- 

15 Artificial - Aquatic Artificial – aquatic  --- 
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15.1 Water Storage Areas [over 8 ha] 

15.2 Ponds [below 8 ha] 

15.3 Aquaculture Ponds 

15.4 Salt Exploitation Sites 

15.5 Excavations (open) 

15.6 Wastewater Treatment Areas 

15.7 Irrigated Land [includes irrigation channels] Artificial – irrigated 

land and flooded 

agricultural land 

--- 

15.8 Seasonally Flooded Agricultural Land 

15.9 Canals and Drainage Channels, Ditches Artificial – aquatic  --- 

15.10 Karst and Other Subterranean Hydrological Systems [human-made] 

15.11 Marine Anthropogenic Structures 

15.12 Mariculture Cages 

15.13 Mari/Brackish-culture Ponds 

16 Introduced Vegetation Introduced vegetation  --- 

17 Other Other --- 

18 Unknown Unknown --- 

--- denotes that no locations were within this land-use type, so it was not put into a grouping. 

+ Sites in Marine Neritic land-use types were kept in their own grouping, not placed into one of those used in my main analysis.  
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Table S5.5: The number of sites from the final dataset in each land use under the 2015 ESA CCI land cover map and Jung et al.’s (2020a) terrestrial 

habitat map for 2015 (using Grouping A). The shaded grey boxes indicate agreement between the two maps (which included 71% of sites in the 

final dataset).   

  ESA CCI land cover map  

  Forest Grassland Agriculture Other Urban Wetland 
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Forest 633 20 40 27 1 0 

Grassland 14 22 22 26 0 1 

Savanna 7 1 9 7 0 0 

Arable land 4 6 100 1 0 0 

Pasturelands 7 6 10 2 1 0 

Plantation 24 4 3 1 0 0 

Shrubland 58 14 20 38 2 0 

Urban 0 3 4 0 6 0 

Rural gardens 0 0 2 0 0 0 

Wetland 1 0 1 0 0 0 

Marine neritic 2 0 1 0 0 0 
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Section 7: Rate of change in forest 

 As a sensitivity test, using the same structure of the final model reported in 

Chapter 5, I ran another model that included average annual rate of change in the 

percentage of forest (instead of SNH) within a 1 km radius of the population. This 

model explained less variance in rate of population change compared to the model 

presented in Chapter 5, but overall patterns in forest and agriculture were similar (figs. 

S5.12-13). Predictably, there were small differences in rates of population change for 

those populations starting in grassland when rate of change in forest was included in 

the model rather than SNH. The results for the three-way interactions that included 

this variable (starting land-use type × rate of change in forest × starting climatic 

position, and starting land-use type × rate of change in forest × rate of change in 

climate) are plotted below (figs. S5.12-13).  
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Figure S5.12: The average annual rate of population change (percentage change per 

year) across different starting land-use types, depending on: (i) the average annual rate 

of change in the percentage of forest (rather than semi-natural habitat) within a 1 km 

radius; and (ii) a population’s starting climatic position with regard to maximum 

temperature of the warmest month (Tmax), minimum temperature of the coldest month 

(Tmin), precipitation of the wettest month (Ppmax) or precipitation of the driest month 

(Ppmin). The x- and y-axes are truncated at the 10th and 90th percentile of sampled 

values of each variable. Contour lines (and labels) indicate changes in average annual 

rate of population change.  
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Figure S5.13: The average annual rate of population change (percentage change per 

year) across different starting land-use types, depending on: (i) the average annual rate 

of change in the percentage of forest (rather than semi-natural habitat) within a 1 km 

radius; and (ii) average annual rate of change in climate with regard to maximum 

temperature of the warmest month (°C/year), minimum temperature of the coldest 

month (°C/year), and precipitation of the wettest month (monthly mm/year). The x- 

and y-axes are truncated at the 10th and 90th percentile of sampled values of each 

variable. Contour lines (and labels) indicate changes in average annual rate of 
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population change. If comparing this plot to figure 5.5 in Chapter 5, note the 

differences in scale for the average annual rate of population change.  
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Section 8: Only including populations whose time-series had R2 ≥ 0.5 when fit to 

the GAM 

 I ran a model, using the same structure as the model in Chapter 5, but only 

including populations that had R2 ≥ 0.5 when fit to the generalised additive model 

(GAM), which left 1,639 populations (93 mammal, 1520 bird, 11 amphibian, and 15 

reptile populations). In general, even though this model predicted more extreme annual 

rates of population change (in both the positive and negative direction), the overall 

patterns were very similar to that highlighted in the main model (figs. S5.14-16). The 

only slight differences in patterns were found for populations starting within grassland 

for a couple of the interactions (figs. S5.15-16), which may be due to the smaller 

number of populations starting in grassland included in this model (n = 201). This 

model had a higher marginal R2 than the model reported in Chapter 5, which may have 

been for a couple of reasons, including: (1) the time-series with greater variation in 

population measures over time have been removed, and (2) for some populations 

excluded from this model, larger variation in their population measures may be due to 

particular events (e.g., policy implementation, poisoning, or wild fires), that cannot be 

explained well by the variables in my model.  
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Figure S5.14: The average annual rate of population change (percentage change per 

year) across different starting land-use types, depending on: (i) the average annual rate 

of change in the percentage of semi-natural habitat within a 1 km radius; and (ii) a 

population’s starting climatic position with regard to maximum temperature of the 

warmest month (Tmax), minimum temperature of the coldest month (Tmin), precipitation 

of the wettest month (Ppmax) or precipitation of the driest month (Ppmin). Only 

population time-series with R2 ≥ 0.5 when fitted to the GAM were included in this 

model. The x- and y-axes are truncated at the 10th and 90th percentile of sampled values 
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of each variable. Contour lines (and labels) indicate changes in average annual rate of 

population change.  

 

Figure S5.15: The average annual rate of population change (percentage change per 

year) across different starting land-use types, depending on: (i) the average annual rate 

of change in climate; and (ii) a population’s starting climatic position. Climatic 

variables considered were maximum temperature of the warmest month (Tmax), 

minimum temperature of the coldest month (Tmin), precipitation of the wettest month 

(Ppmax), and precipitation of the driest month (Ppmin). Only population time-series with 

R2 ≥ 0.5 when fitted to the GAM were included in this model. The x- and y-axes are 
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truncated at the 10th and 90th percentile of sampled values of each variable. Contour 

lines (and labels) indicate changes in average annual rate of population change.  

 

Figure S5.16: The average annual rate of population change (percentage change per 

year) across different starting land-use types, depending on: (i) the average annual rate 

of change in the percentage of semi-natural habitat within a 1 km radius; and (ii) 

average annual rate of change in climate with regard to maximum temperature of the 

warmest month (°C/year), minimum temperature of the coldest month (°C/year), and 

precipitation of the wettest month (monthly mm/year). Only population time-series 

with R2 ≥ 0.5 when fitted to the GAM were included in this model. The x- and y-axes 
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are truncated at the 10th and 90th percentile of sampled values of each variable. Contour 

lines (and labels) indicate changes in average annual rate of population change.  
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Section 9: Excluding extreme values  

 To ensure my results reported were not being influenced by extreme positive 

or negative rates of population change, I excluded time-series with 𝜆𝒀̅̅ ̅ above and below 

the upper and lower 97.5th and 2.5th percentile, respectively (which removed 358 

populations; table S5.6), and ran the model as described in Chapter 5. The results for 

the three focal three-way interactions are plotted below (figs. S5.17-19). 
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Table S5.6: Summary statistics for the population time-series analysed when 

populations with extreme rates of change (above and below the upper and lower 97.5th 

and 2.5th percentile, respectively) were removed from the final dataset. The table is 

split by the database the populations originated from (Living Planet database, [Living 

Planet Index database, January 2020], and the BioTIME database [Dornelas et al., 

2018]). The average annual rate of change in semi-natural habitat refers to change 

within a 1 km radius surrounding each population. Fitted values were based on fixed 

effects only.  

 Living Planet 

database 

BioTIME 

database 

Number of populations analysed 312 6453 

Average annual rates of population change (% / 

year)  

  

 Mean of observed (and fitted) values -0.71 (-0.11) -0.06 (-0.42) 

 Median of observed (and fitted) values -0.17 (-0.31) 0 (-0.44) 

 Number of populations with a positive (↑) or 

negative (↓) values 

↑ 137 

↓ 175 

↑ 3135 

↓ 3180 

Mean length of population time-series (years) 13 15 

Number of countries populations originated from 39 4 

Average annual rates of change in semi-natural 

habitat 

  

 Range (% / year) -4.06 – 3.97 -7.27 – 9.24 

 Mean (% / year) -0.05 0.02 

 Median (% / year) 0 0.03 

 Number of populations with a positive (↑) or 

negative (↓) values 

↑ 126 

↓ 139 

↑ 3731 

↓ 2460 

Percentage of populations starting in each starting 

land-use type (%, to 1 decimal place)  

  

 Forest 62.8 54.5 

 Grassland 3.8 11.5 

 Agriculture 16.0 28.2 

 Other 17.3 5.8 
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Figure S5.17: After excluding populations with extreme rates of population change 

(above and below the upper and lower 97.5th and 2.5th percentile, respectively), the 

average annual rate of population change (percentage change per year) across different 

starting land-use types, depending on: (i) the average annual rate of change in the 

percentage of semi-natural habitat within a 1 km radius; and (ii) a population’s starting 

climatic position with regard to maximum temperature of the warmest month (Tmax), 

minimum temperature of the coldest month (Tmin), precipitation of the wettest month 

(Ppmax) or precipitation of the driest month (Ppmin). The x- and y-axes are truncated at 
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the 10th and 90th percentile of sampled values of each variable. Contour lines (and 

labels) indicate changes in average annual rate of population change. 

 

 

Figure S5.18: After excluding populations with extreme rates of population change 

(above and below the upper and lower 97.5th and 2.5th percentile, respectively), the 

average annual rate of population change (percentage change per year) across different 

starting land-use types, depending on: (i) the average annual rate of change in climate; 

and (ii) a population’s starting climatic position. Climatic variables considered were 
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maximum temperature of the warmest month (Tmax), minimum temperature of the 

coldest month (Tmin), precipitation of the wettest month (Ppmax), and precipitation of 

the driest month (Ppmin). The x- and y-axes are truncated at the 10th and 90th percentile 

of sampled values of each variable. Contour lines (and labels) indicate changes in 

average annual rate of population change.  

 

Figure S5.19: After excluding populations with extreme rates of population change 

(above and below the upper and lower 97.5th and 2.5th percentile, respectively), the 

average annual rate of population change (percentage change per year) across different 

starting land-use types, depending on: (i) the average annual rate of change in the 
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percentage of semi-natural habitat within a 1 km radius; and (ii) average annual rate 

of change in climate with regard to maximum temperature of the warmest month 

(°C/year), minimum temperature of the coldest month (°C/year), and precipitation of 

the wettest month (monthly mm/year). The x- and y-axes are truncated at the 10th and 

90th percentile of sampled values of each variable. Contour lines (and labels) indicate 

changes in average annual rate of population change. 
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Section 10: Excluding Gyps  

 There were three species within the dataset from the genus Gyps (a genus of 

Old World vultures) – Gyps bengalensis (11 populations), G. indicus (1 population) 

and G. tenuirostris (5 populations). A previous study (Green et al., 2020) found that 

this genus had a big influence on model estimates, so I removed these species from the 

dataset, and ran the model described in Chapter 5 again. The results for the three focal 

three-way interactions are plotted below (figs. S5.20-22). 
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Figure S5.20: Excluding species within the genus Gyps, the average annual rate of 

population change (percentage change per year) across different starting land-use 

types, depending on: (i) the average annual rate of change in the percentage of semi-

natural habitat within a 1 km radius; and (ii) a population’s starting climatic position 

with regard to maximum temperature of the warmest month (Tmax), minimum 

temperature of the coldest month (Tmin), precipitation of the wettest month (Ppmax) or 

precipitation of the driest month (Ppmin). The x- and y-axes are truncated at the 10th 

and 90th percentile of sampled values of each variable. Contour lines (and labels) 

indicate changes in average annual rate of population change.  
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Figure S5.21: Excluding species within the genus Gyps, the average annual rate of 

population change (percentage change per year) across different starting land-use 

types, depending on: (i) the average annual rate of change in climate; and (ii) a 

population’s starting climatic position. Climatic variables considered were maximum 

temperature of the warmest month (Tmax), minimum temperature of the coldest month 

(Tmin), precipitation of the wettest month (Ppmax), and precipitation of the driest month 

(Ppmin). The x- and y-axes are truncated at the 10th and 90th percentile of sampled 

values of each variable. Contour lines (and labels) indicate changes in average annual 

rate of population change.  
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Figure S5.22: Excluding species within the genus Gyps, the average annual rate of 

population change (percentage change per year) across different starting land-use 

types, depending on: (i) the average annual rate of change in the percentage of semi-

natural habitat within a 1 km radius; and (ii) average annual rate of change in climate 

with regard to maximum temperature of the warmest month (°C/year), minimum 

temperature of the coldest month (°C/year), and precipitation of the wettest month 

(monthly mm/year). The x- and y-axes are truncated at the 10th and 90th percentile of 

sampled values of each variable. Contour lines (and labels) indicate changes in average 

annual rate of population change.  
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Section 11: Including populations recorded outside of their species’ ranges  

 I ran a model with the same structure as the final model in Chapter 5, this time 

including the populations that were recorded outside of their species’ ranges as stated 

by the BirdLife International (2012) and IUCN (2016a-b, 2017a-c, 2018a-b, 2019a-c) 

distribution maps. This was completed to ensure that removing these populations 

(originally done so that I could include the distance to range edge measure in the model 

selection process), did not affect my results. The results of the models including 

populations outside of their reported species’ ranges (figs. S5.23-25) were very similar 

to those presented in Chapter 5. 
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Figure S5.23: The average annual rate of population change (including populations 

both inside and outside of their reported species’ ranges) across different starting land-

use types, depending on: (i) the average annual rate of change in the percentage of 

semi-natural habitat within a 1 km radius; and (ii) a population’s starting climatic 

position with regard to maximum temperature of the warmest month (Tmax), minimum 

temperature of the coldest month (Tmin), precipitation of the wettest month (Ppmax) or 

precipitation of the driest month (Ppmin). The x- and y-axes are truncated at the 10th 

and 90th percentile of sampled values of each variable. Contour lines (and labels) 
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indicate changes in average annual rate of population change (percentage change per 

year).  

 

Figure S5.24: The average annual rate of population change (including populations 

both inside and outside of their reported species’ ranges) across different starting land-

use types, depending on: (i) the average annual rate of change in climate; and (ii) a 

population’s starting climatic position. Climatic variables considered were maximum 

temperature of the warmest month (Tmax), minimum temperature of the coldest month 

(Tmin), precipitation of the wettest month (Ppmax), and precipitation of the driest month 

(Ppmin). The x- and y-axes are truncated at the 10th and 90th percentile of sampled 
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values of each variable. Contour lines (and labels) indicate changes in average annual 

rate of population change (percentage change per year).  

 

Figure S5.25: The average annual rate of population change (including populations 

both inside and outside of their reported species’ ranges) across different starting land-

use types, depending on: (i) the average annual rate of change in the percentage of 

semi-natural habitat within a 1 km radius; and (ii) average annual rate of change in 

climate with regard to maximum temperature of the warmest month (°C/year), 

minimum temperature of the coldest month (°C/year), and precipitation of the wettest 

month (monthly mm/year). The x- and y-axes are truncated at the 10th and 90th 
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percentile of sampled values of each variable. Contour lines (and labels) indicate 

changes in average annual rate of population change (percentage change per year).  
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Section 12: Cross validation tests 

 I ran leave-one-out cross validation tests of my final model to check there were no overly influential species (figs. S5.26-27) or locations 

(figs. S5.28-29) within my dataset. 
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Figure S5.26: The orthogonal polynomial coefficients of the two-way interactions included in the final model and plotted in Chapter 5, along 

with the 95% confidence intervals around the estimated coefficients when each species in my dataset was removed one at a time and the model 
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rerun. The final model included starting land-use type (forest [reference level], agriculture, grassland or other), the average annual rate of change 

in semi-natural habitat (SNH_rate), starting climatic positions with regard to Tmax (Tmax_pos), Tmin (Tmin_pos), Ppmax (Ppmax_pos) and Ppmin 

(Ppmin_pos), average annual rate of change in climate with regard to maximum temperature of the warmest month (MaxT_rate), minimum 

temperature of the coldest month (MinT_rate), precipitation of the wettest (MaxP_rate) and driest (MinP_rate) months. The continuous variables 

in the model were run as second-degree (i.e., quadratic) orthogonal polynomials. Numbers in parentheses refer to the linear (1) or quadratic (2) 

components of the polynomial terms.  
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Figure S5.27: The orthogonal polynomial coefficients of the three-way interactions included in the final model and plotted in Chapter 5, along 

with the 95% confidence intervals around the estimated coefficients when each species in my dataset was removed one at a time and the model 
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rerun. The final model included starting land-use type (forest [reference level], agriculture, grassland or other), the average annual rate of change 

in semi-natural habitat (SNH_rate), starting climatic positions with regard to Tmax (Tmax_pos), Tmin (Tmin_pos), Ppmax (Ppmax_pos) and Ppmin 

(Ppmin_pos), average annual rate of change in climate with regard to maximum temperature of the warmest month (MaxT_rate), minimum 

temperature of the coldest month (MinT_rate), precipitation of the wettest (MaxP_rate) and driest (MinP_rate) months. The continuous variables 

in the model were run as second-degree (i.e., quadratic) orthogonal polynomials. Numbers in parentheses refer to the linear (1) or quadratic (2) 

components of the polynomial terms.  
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Figure S5.28: The orthogonal polynomial coefficients of the two-way interactions included in the final model and plotted in Chapter 5, along with 

the 95% confidence intervals around the estimated coefficients when each location in my dataset was removed one at a time and the model rerun. 
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The final model included starting land-use type (forest [reference level], agriculture, grassland or other), the average annual rate of change in semi-

natural habitat (SNH_rate), starting climatic positions with regard to Tmax (Tmax_pos), Tmin (Tmin_pos), Ppmax (Ppmax_pos) and Ppmin 

(Ppmin_pos), average annual rate of change in climate with regard to maximum temperature of the warmest month (MaxT_rate), minimum 

temperature of the coldest month (MinT_rate), precipitation of the wettest (MaxP_rate) and driest (MinP_rate) months. The continuous variables 

in the model were run as second-degree (i.e., quadratic) orthogonal polynomials. Numbers in parentheses refer to the linear (1) or quadratic (2) 

components of the polynomial terms.  
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Figure S5.29: The orthogonal polynomial coefficients of the three-way interactions included in the final model and plotted in Chapter 5, along 

with the 95% confidence intervals around the estimated coefficients when each location in my dataset was removed one at a time and the model 
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rerun. The final model included starting land-use type (forest [reference level], agriculture, grassland or other), the average annual rate of change 

in semi-natural habitat (SNH_rate), starting climatic positions with regard to Tmax (Tmax_pos), Tmin (Tmin_pos), Ppmax (Ppmax_pos) and Ppmin 

(Ppmin_pos), average annual rate of change in climate with regard to maximum temperature of the warmest month (MaxT_rate), minimum 

temperature of the coldest month (MinT_rate), precipitation of the wettest (MaxP_rate) and driest (MinP_rate) months. The continuous variables 

in the model were run as second-degree (i.e., quadratic) orthogonal polynomials. Numbers in parentheses refer to the linear (1) or quadratic (2) 

components of the polynomial terms. 
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Section 13: BioTIME references 

Listed below are the data sources for the data extracted from BioTIME that were 

included in this study: 

• “Animal Demography Unit – Coordinated Waterbird Counts (CWAC) – 

AfrOBIS”. Available at http://www.iobis.org/, accessed 2012. 

• Carvalho, F., Zocche, J. J. & Mendonça, R. A. (2009) Morcegos, (Mamma- 

lia, Chiroptera) em restinga no municıpio de Jaguaruna, sul de Santa 

Catarina, Brasil). Biotemas, 22, 193–201. 

• USFS “Landbird Monitoring Program (UMT-LBMP).” US Forest Service. 

Available at: http://www.avianknowledge.net/, accessed 2012. 

• USGS Patuxent Wildlife Research Center “North American Breeding Bird 

Survey” ftp data set, version 2014.0. Available at: ftp://ftpext.usgs. 

gov/pub/er/md/laurel/BBS/DataFiles/, accessed 2013. 
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