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In this paper, we compute the electronic structure of acceptor clusters in silicon by using three different
methods to take into account electron correlations: the full configuration interaction (full CI calculation), the
Heitler-London approximation (HL approximation), and the unrestricted Hartree-Fock method (UHF method).
We show that both the HL approach and the UHF method are good approximations to the ground state of the full
ClI calculation for a pair of acceptors and for finite linear chains along [001], [110], and [111]. The total energies
for finite linear chains show the formation of a fourfold-degenerate ground state (lying highest in energy), below
which there are characteristic low-lying eightfold and fourfold degeneracies, when there is a long (weak) bond at
the end of the chain. We present evidence that this is a manifold of topological edge states. We identify a change
in the angular momentum composition of the ground state at a critical pattern of bond lengths, and show that it is
related to a crossing in the Fock matrix eigenvalues. We also test the symmetry of the self-consistent mean-field
UHF solution and compare it to the full CI; the symmetry is broken under almost all the arrangements by the
formation of a magnetic state in UHF, and we find further broken symmetries for some particular arrangements
related to crossings (or potential crossings) between the Fock-matrix eigenvalues in the [001] direction. We also
compute the charge distributions across the acceptors obtained from the eigenvectors of the Fock matrix; we
find that, with weak bonds at the chain ends, two holes are localized at either end of the chain while the others
have a nearly uniform distribution over the middle; this also implies the existence of the nontrivial edge states.
We also apply the UHF method to treat an infinite linear chain with periodic boundary conditions, where the
full CI calculation and the HL approximation cannot easily be used. We find the band structures in the UHF
approximation, and compute the Zak phases for the occupied Fock-matrix eigenvalues; however, we find they
do not correctly predict the topological edge states formed in this interacting system. On the other hand, we find
that direct study of the quantum numbers characterizing the edge states, introduced by Turner ef al. [Phys. Rev.

B 83, 075102 (2011)], provides a better insight into their topological nature.
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I. INTRODUCTION

In the last few decades, studies of defects in semicon-
ducting systems have broadened to include applications to
quantum computation and quantum simulation as well as
their more traditional role in doping for classical electronics.
Donors are especially well studied [1,2], but in materials such
as Si having degenerate conduction-band minima they suffer
from the disadvantage of intervalley interferences causing
rapid oscillations in the wave functions and hence also in hop-
ping or exchange interactions, leading to extreme sensitivity
to the precise dopant position. For this reason, and because the
spin-orbit coupling present in the valence band provides some
additional opportunities to interact with the spin degrees of
freedom, acceptors have recently attracted increased attention
[3-5].
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The electronic structure of a single acceptor can most
simply be described by the “spherical model” [6-9], which
includes spin-orbit coupling but neglects the cubic anisotropy
of the host semiconductor and offers reasonable results for
the electronic structure of an isolated acceptor. The interac-
tions between a pair of acceptors in the spherical model have
been studied by Durst et al. in the framework of a Heitler-
London model [10]; later, they found that the interacceptor
interactions in the same model are dominated at large dis-
tance by electric quadrupole moments [11]. For linear chains
of acceptors, an independent-hole model was developed, in-
cluding the contribution of cubic terms, and the existence of
nontrivial single-particle topological edge states was demon-
strated for finite chains, and related to band invariants of the
corresponding infinite systems [12]. These investigations of
pairs and linear arrays of acceptors suggest that the emerging
techniques of deterministic doping [13] could lead to inter-
esting results if applied to acceptors [14]. Advances in the
experimental characterization of acceptors in silicon include
measurements of the optical transitions and spectra of accep-
tors [15], measurement of the coherence time of the excited
state of acceptors [16], and a study of transport properties of
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boron-doped material [17], etc. The readout and control of
the spin-orbit state of two coupled acceptors has also been
demonstrated experimentally in silicon, suggesting a possi-
ble alternative route to quantum computing [18-22]. Finally,
there is great potential for applications in the simulation of
fermionic strongly correlated many-body systems using ac-
ceptors [23]. All these investigations imply that a system of
acceptors in well-defined locations could offer some unique
properties in its electronic structure.

In this paper, we construct and solve multihole models
(including hole-hole Coulomb interactions) for lines of ac-
ceptors in silicon with one hole per acceptor, along three
high-symmetry directions ([001], [110], and [111]), based on
three different methods: full configuration interaction calcula-
tion (full CI, in Sec. IT A 1), the Heitler-London approximation
(HL approximation, in Sec. IIA 1) based on the full CI
calculation but with a restricted basis, and the unrestricted
Hartree-Fock method (UHF method, in Sec. I A2) which
represents the multihole state by a Slater determinant of one-
hole states. Some limitations of the full CI calculation and
the HL approximation are discussed in Sec. Il A 1. We study
dimerized chains with staggered bond lengths d; and d, and
concentrate on a “small-separation” case with d| + d» = 3ay
and a “large-separation” case with d; + d» = 6ay where ag
is the effective Bohr radius; we show that both the HL ap-
proach and the UHF method are accurate approximations to
the ground state of the fully exact CI calculation for these
finite-length linear chains. We investigate the energy spectrum
obtained from full CI for a four-acceptor chain and explain
the ground state in terms of the formation of edge states; we
also relate an anticrossing in the [001] direction for the small-
separation case to the behavior of the Fock matrix eigenvalues
obtained from the UHF method. We analyze the symmetries
of the states produced by symmetry breaking in the UHF
solution, and present evidence for the existence of nontrivial
many-body edge states in the finite chain system. We point
out that the UHF method can be applied to a linear chain with
periodic boundary conditions, and calculate the band structure
formed by the Fock matrix eigenvalues. We also analyze the
topological phases of the system based on two methods: first,
a method focusing on the edge states of finite one-dimensional
interacting fermionic systems and, second, the Zak phase [24]
for an infinite noninteracting system.

II. COMPUTATIONAL DETAILS
A. Multihole models

In our previous paper [12], we developed a one-hole model
to describe a pair of acceptors and a linear acceptor chain.
Here, we use the same approach to describe the one-hole part
of the Hamiltonian, including cubic anisotropy, but only con-
sidering the nearest transitions for the chain (see Sec. Il A 4).
We then combine this one-hole Hamiltonian with two-hole
terms representing the interhole Coulomb repulsion, using
methods described in Ref. [25]. Our units of energy and

. 4 .
length are the effective Rydberg Ry = 2;2?20;/ and the effective
oV
2.2
Bohr radius ag = hgf,j:;‘ , respectively [7]. We use parameters

appropriate for silicon throughout; however, our methods are
easily transferable to other cubic semiconductors. With these

silicon parameters, Ry = 24.8 meV and ap = 2.55 nm. In all
cases we report our results for lines oriented along the three
highest-symmetry directions of the cubic host: [001], [110],
and [111].

1. Full configuration interaction calculation (full CI calculation)
and Heitler-London approximation (HL approximation)

The configuration interaction calculation (full CI) retains
a basis of Slater determinants corresponding to all possible
configurations of the holes distributed across basis states on
all acceptors, and the Hamiltonian is

ﬁa:z:ﬁi—Z%, ()

i<j

where H; is the one-hole Hamiltonian from our previous paper
[12], % is the hole-hole interaction in effective Rydberg units,
and i, j label the holes. The interaction appears with a minus
sign because the Hamiltonian is expressed for electron states.
Therefore, throughout this paper, the most favorable states for
occupation by holes are those with the highest energy: we
refer to the highest-energy state as the “ground state.” The
overlap matrix is also needed and can be written as

Sa=8®85%®- -3, )

where S’i is the overlap matrices for the one-hole model, and
N is the number of holes.

The full CI calculation is exact for a given choice of single-
particle basis, but scales very badly (superexponentially) with
the size of the system. Also, the total energy expression is not
extensive so it cannot be implemented under periodic bound-
ary conditions. The first problem is ameliorated by restricting
the set of configurations to those with exactly one hole per
acceptor; we call this the Heitler-London (HL) approximation
because it is in the same spirit as the Heitler-London treatment
of the H, molecule, and has been used for acceptors pairs in
Ref. [10]. The many-particle basis set now grows more slowly
(although still exponentially), but the difficulty in treating the
infinite system still remains.

2. Unrestricted Hartree-Fock method

To handle the infinite system we employ an unrestricted
Hartree-Fock (UHF) method, where the many-hole wave
function is optimized over single Slater determinants con-
structed from a set of one-hole functions, without any
restriction on the spin components of each function. The
optimization of the one-hole functions results in a self-
consistent-field (SCF) approach, where each hole can be
understood to experience the average interaction of the others.
The one-hole functions are eigenfunctions of the Fock matrix
F', which is given by

F — I_?core 4 G’ (3)

where H°"" is the Hamiltonian for the one-hole model (in-
cluding spin-orbit coupling), and G is a matrix reflecting the
self-consistent influence from other holes. If we expand all
quantities in terms of a set of single-hole basis functions |¢,,),
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G is given by
Guw = Y P I(uvllon) — (uhllow)], 4)
Ao

where i, v, o, A are labels running over all basis functions on
all acceptors,

2
(uvllor) = fdxldXZ ¢Z(Xl)¢;(X2)m¢v(xl)¢k(x2)
&)

[where x = (r, ) is a composite coordinate for position r and
intrinsic angular momentum 7, and (uv|joA) is the notation
used in Ref. [26]] are matrix elements of the Coulomb in-
teraction, and P is the one-hole density matrix which can be
constructed as

N
P =% "clcY, (6)

where C; is an eigenvector of the generalized eigenproblem
@)

N is the number of holes (hence the number of occupied
eigenvectors), and i goes through all eigenvector labels. Once
again, because our calculation is describing holes, the single-
particle states are occupied according to the Aufbau principle
from the highest eigenvalue downwards. The total energy can
then be written as

FC,' = E,‘SC,',

1
Etol = 5 ;PW (H;i(\ire + F/w)' (8)

The self-consistent calculation continues until the output den-
sity matrix (6) is similar to the input one used in (4). Further
details can be found in Ref. [26]; however, in contrast to the
conventional case, our system contains spin-orbit coupling
and therefore we cannot separate the single-particle functions
into separate sets corresponding to each spin component. So
it is necessary to include exchange interactions between all
pairs of single-hole states, not just those of the same spin.

3. Periodic boundary conditions

Although less accurate than the CI method, the UHF
method does not have the limitations mentioned in Sec. IT A 1.
It scales polynomially, rather than exponentially, as the system
size increases, and the total-energy expression (8) is extensive.
So it is possible to apply it to a linear chain with periodic
boundary conditions. In this case, the Fock matrix Fk at a
particular Bloch wave vector k will be

ﬁk — ZeikXﬁ-X — ZeikX (I_’i;ore + GX) — I_’ikcore + Gl“ (9)
X X

where X labels lattice displacements of a single unit cell, Fy,
I-?)C("re, and Gy are the elements of F, H, and G connecting
different cells separated by X, and ﬂ,f"re and Gy are the matri-
ces of H*"® and G in momentum space. The Fock matrix £
can be diagonalized to find a set of eigenvectors Cy;, and the
corresponding contribution P; to the the one-particle density

matrix is

N
n w v
P =) CiC (10)

i
The real-space form of P*¥ can then be recovered by inverse
Fourier transformation, and reinserted into the SCF procedure
as previously.

4. Spatial cutoffs

In practice, the sums in Egs. (4) and (9), as well as the
corresponding sums over acceptor cores in A, have to be
truncated. For the results in this paper we have performed this
truncation after nearest neighbors; for exchange and hopping
terms which involve transferring a single hole from site to site,
this is justified by the relatively well-localized acceptor wave
functions (this means that the relevant matrix elements will
decay exponentially with hopping distance). The Coulomb
terms (both the hole-hole interaction and the hole-core in-
teraction) decay much more slowly, like % (where R is the
separation between the charges), but will cancel one another
out provided the system is approximately charge neutral at
all points. We have checked that the key findings of this
paper are reproduced in an extended model which includes
all the next-nearest-neighbor transitions but only the largest
next-nearest-neighbor hole-hole interactions, for both the fi-
nite length chain and periodic boundary case. There, all the
key features that we are going to discuss in this paper are
kept. Considering introducing the next-nearest hole-hole in-
teractions will more than double the time of the calculations,
it is a wise choice to only consider the nearest neighbors.

5. Computing the Zak phase from the unrestricted
Hartree-Fock calculation

The Zak phase [24] is a bulk quantity that indicates whether
a noninteracting insulator is topologically trivial or nontrivial
(supporting edge states): when it is O modulo 27 the system
should be trivial, when it is 7 modulo 27 the system be-
comes nontrivial. We can obtain this quantity from the total
density matrix, which is available during the SCF procedure
of the UHF calculation. We follow a recent paper [27] in
calculating the Zak phase for in a general situation is using

the formula
Z = arg |:tr (1_[ SkPk) j| ,
k

where Sy is the overlap matrix transformed into Fourier space,
Py is the single-particle density matrix as defined above, and
k is the wave vector going through the first Brillouin zone.
However, we have to remember that Coulomb interactions
can change the topological classification [28,29] so we cannot
necessarily expect the Zak phase to predict correctly the pres-
ence or absence of topological edge states; indeed, we show
evidence in Sec. III D that the Zak phases do not correspond
to the topological property of the edge states.

a1

B. Single-particle basis

It remains to specify the basis for the single-particle
states on each acceptor. As in our previous paper [12], we
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TABLE I. The eigenenergy of the fourfold-degenerated ground
state (F; ) obtained from the Gaussian expansion with 21 Gaussian
parameters and 5 Gaussian parameters for Si and the difference
between them; the energy unit is the effective Rydberg Ry, and the
difference is shown in the percentage of the original 21-parameter
result.

21-parameter result 5-parameter result Difference

1.868314R, 1.854034R, 0.7644%

decompose the spatial parts of the acceptor states into lin-
ear combinations of Gaussian orbitals. However, as we are
interested in the behavior of the low-lying states of the linear
chain, we make several changes. First, we consider only the
fourfold-degenerate ground-state manifold (1I'y") of an iso-
lated acceptor. We expand the radial parts as

fory=rYy" A, (12)

where [ is the orbital angular momentum of the enve-
lope function and ¢; is a Gaussian exponent. Second,
because we only need to describe the ground state, we
use only five Gaussian functions, with exponents o; =
{100.0, 25.0, 6.25, 1.5625, 0.390625}, rather than 21 as in our
previous paper [12]; the single-acceptor ground-state energies
in silicon computed with 5 and 21 Gaussians are compared in
Table I and found to differ by less than 1%. The reduction in
the number of Gaussians saves time in the evaluation of matrix
elements for the subsequent calculations.

Finally, we remove the admixture of G-orbital Gaussian
components (! = 4) in the ground-state manifold, to limit the
size of the matrices involved in the calculation and renormal-
ize the remaining parts of the wave function. As an example,
we compare the energy of the doubly degenerate ground state
for a single hole bound to a pair of acceptors in the [001]
direction with and without the G orbitals in Fig. 1. It can be
seen that omitting the G orbitals leads to errors in the energy
of 1%-2%.

For convenience in the discussion of results in Sec. III B,
we assign labels to the states of the fourfold-degenerate
ground I'{" manifold so that we can distinguish them. The
main contribution is from the S 3 state with total angular

momentum F = %; we therefore use the values of the an-

gular momentum projections myp = { %, %, —%, —%} to label
the different rows of the irreducible representation. (The total
angular momentum F =L +T+38, where I is the intrinsic
orbital angular momentum of the p states in the valence band,

is as defined in Ref. [12].)

III. RESULTS AND DISCUSSION

A. A pair of acceptors

For a pair of acceptors, all the methods and approximation
mentioned in Sec. I A can be applied. To show the long-range
behavior clearly, we calculate the interaction energy

2
Ein = Er — 2Esingle = Eo — E - 2Esinglea (13)

5-2 T T T T T T T T T T T T T T T T T T

——4 levels 21 parameters with G
] : . |- = 1level 5 parameters with G
R R e 1 level 5 parameters without G|-

—
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FIG. 1. The behavior of the doubly degenerate ground-state en-
ergies with different approximations in the [001] direction for a pair
of acceptors in Si under the one-hole model: (a) the ground-state
eigenenergies, (b) the differences between the ground-state eigenen-
ergies with different approximations. The solid line is the result of
our earlier paper [12] with 21 Gaussians, the dashed lines are for
the ground state (1T'y) with 5 Gaussian parameters but including G
orbitals, the dotted lines are for the ground state (1I'y") with 5 Gaus-
sian parameters excluding G orbitals. In (b), energy differences with
respect to energy E»; [the solid line in (a)] are shown as percentages
of the energy E»; [the solid line in (a)].

where Ejj,ge 18 the single-acceptor energy, E7 is the total en-
ergy including the core-core interaction, Ey is the total energy
for the holes only [directly obtained from the Hamiltonian
(1], and 1—23 is the core-core interaction term (appearing with
a minus sign to be consistent with our convention for the
hole energy). We did not consider the core-core interaction
term in our previous paper [12]; we refer to Ey, as the “total
energy” for the rest of this paper. The interaction energies
Eiy of the ground state from three different models in three
high-symmetry directions are shown in the left column of
Fig. 2; they appear as the negatives of standard molecular
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FIG. 2. The interaction energy Ej, of the ground state and the difference of the total energy E, towards the full CI calculation in three
typical directions for a pair of acceptors: (a) the interaction energy Ej, in the [001] direction, (b) the difference of the total energy E in the
[001] direction, (c) the interaction energy E;, in the [110] direction, (d) the difference of the total energy E, in the [110] direction, (e) the
interaction energy Ej, in the [111] direction, (f) the difference of the total energy E\ in the [111] direction. For (a), (c), (e), the dashed line is
for the full CI calculation, the solid line is for the HL approximation, the dotted line is for the UHF method. For (b), (d), (f), the solid line is
for the HL approximation, the dotted line is for the UHF method, all the differences are in the percentage of the full CI result.

binding-energy curves. We also show the difference in the
total energy E; between the full CI calculation and the other
approaches (as a percentage of the full CI result) in the right
column. Both the HL approximation and the UHF method
are good approximations to full CI for all directions, but the
differences are greatest at small separations; the HL approach
generally provides a better energy than UHF (since they in-
volve variational approximations to the true wave function,
both methods give a lower bound on the true ground-state
energy in the hole system). For the [001] direction, the dif-
ferences reach a maximum around 1.5a¢ and can be ignored

when the separation d > 4ayp; for the [110] and [111] di-
rections, they peak around 1.5ay and could be ignored for
d 2 5(10.

For the convenience of further discussion in Sec. III B,
Fig. 3 shows the Fock matrix eigenvalues for pairs oriented
along different directions. The ground state appears at the top
of the pictures as this is a calculation for acceptors. Each line
represents a pair of almost doubly degenerate states; since
there are two holes, only the doubly degenerate ground state at
the top of the diagram will be filled. There is a large gap
between the filled and empty states at all separations; this
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Eigenvalue (R,)

Eigenvalue (R))

Eigenvalue (R))

d(a,)
(c) [111]

FIG. 3. The behavior of the Fock matrix eigenvalues in different
directions for a pair of acceptors: (a) the [001] direction, (b) the [110]
direction, (c) the [111] direction.

is generated by the strong hole-hole repulsion within the
self-consistent field. We will see that this feature persists in
the calculations on larger systems.

(a) 4-acceptor linear chain

a b c d e f
o o o O o O
| NS T I U | ik L o Ty | |

d d d d d

1 2 1 2 1

(b) 6-acceptor linear chain

FIG. 4. Schematics of the linear chains studied in this paper.
a, b, c, d, e, f are the labels of acceptors; d; < d, is known as
the “short-long arrangement,” d; > d, is known as the “long-short
arrangement.”

In the absence of cubic anisotropy, Durst et al. [11] argue
that the long-range interaction between two acceptors is dom-
inated by quadrupolar effects, which they find favor a doubly
degenerate state with total angular momentum Mp = £2
about the core axis. This corresponds to partially aligned pairs
of holes, with mp = %( %, %) on the two acceptors. However,
with the inclusion of significant cubic anisotropy appropriate
for Si (6 > 0 and indeed § ~ u) we find that the pair ground
state in the quantized direction (the [001] direction) only
crosses over to this form for very large separations d > Say;
for smaller separations, the ground state is nondegenerate and
dominated by antiferromagnetically coupled configurations
such as mp = £(3, —3) (for d < 3a) and mp = £(3, —3)
for 3a0 g d < 5(1().

B. Finite dimerized linear chains

We next consider chains of four and six acceptors, with one
hole per acceptor and with the separations (d,, d») alternating
to form a dimer chain as shown in Fig. 4. When d; < d,, we
will refer to a “short-long arrangement” throughout the rest
of the paper, while when d; > d, we will call it a “long-
short arrangement.” We investigate two different regimes,
each defined by a fixed value of d; + d,: a “small-separation”
case with d; + d» = 3ap, and a “large-separation” case with
dy + d, = 6ay.

1. Small-separation case (dy + d, = 3a,)

The hole-hole repulsion term now strongly influences the
distribution of the holes: although the parabolic potential due
to the negative acceptor cores found in our earlier work [12] is
still present, the holes are no longer concentrated in the middle
of the chain but are kept apart by their mutual Coulomb repul-
sion and have a nearly uniform distribution along the chain.
This suggests that our small-separation case is already on the
insulating side of the Mott transition, so the HL approximation
can naturally be applied and may be expected to give good
results.

For chains of four acceptors, the ground-state total energy
was obtained from all the methods mentioned in Sec. IT A
along three high-symmetry directions, and is shown in Fig. 5.
Both the HL and UHF methods are reasonable approximations
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FIG. 5. The behavior of the total energy of the ground state
under different arrangements in three typical directions for the small-
separation case (d; + d, = 3ay) of the four-acceptor linear chain:
(a) the [001] direction, (b) the [110] direction, (c) the [111] direction.
The dashed line is for the full CI calculation, the solid line is for the
HL approximation, the dotted line is for the UHF method.

to the full CI result in all directions, with the HL. approach
offering a better agreement with the full CI calculation. The
difference between the full CI and the HL results reduces as
the arrangement changes from short-long to long-short; the
HL approximation should be more accurate for chains with
more acceptors, especially when the average separation be-
tween each pair of acceptors is larger. The average separation
grows as d; increases; the result can then be understood by
noting that the accuracy of the HL method for a pair remains
roughly constant from d = lag tod = 1.5ay (see the right col-
umn of Fig. 2) but then improves from d = 1.5g¢ to d = 2ay.
The UHF approximation also becomes more accurate as more
acceptors are included, but the significant discrepancies in the
energy of a pair with separations around 1.5a (Fig. 2) are re-
flected in significant errors in the middle of Fig. 5, where
dy =~ dr =~ 1.5ay. We also computed results for chains of six
acceptors, using the HL and UHF methods only; the behavior
of the total energies was similar.

We analyze the full CI ground-state eigenvector by look-
ing at the dominant components (those with largest absolute
values) in the basis of single-acceptor states described in
Sec. II. We can separate the four degenerate states of an iso-
lated acceptor into two groups, those derived from mp = :l:%

and those from mp = :l:%. We refer to the ground state as
“unhybridized” if the dominant components contain either
mp = :t% or mp = j:% single-acceptor states (but not both),
while we refer to it as “hybridized” if they contain both types
of single-accpetor states.

In Fig. 6, we show the behavior of the 50 highest-energy
(hence, most favorable) states of the full CI calculation
under different arrangements of the bonds along three high-
symmetry directions. For the [001] direction, the ground
state is nondegenerate on the left-hand (short-long) side
of the picture, while it joins three other states and forms
a fourfold-degenerate state on the right-hand side (long-
short arrangement side) which is followed in energy by an
eightfold-degenerate state and another fourfold-degenerate
state as shown in Fig. 6(b). We observe that among the dom-
inant components, only the states on the acceptors at the end
of the chain change between these states; the dimensionality
16 of these highest manifolds comes from the 4 levels on
one end multiplied by 4 levels on the other end, implying
the existence of a manifold of edge states. The situation is
similar for the other directions; we analyze the structure of
this manifold in more detail in Sec. IIID. It also can be
seen that the ground state crosses with the highest excited
states between d; = 1.4aq and 1.5a¢ in the [001] direction; the
dominant components of the ground state are unhybridized to
the left of the dotted line but become hybridized to the right of
it. We will refer to the separation where the crossing (or anti-
crossing) between the states happens as the “crossing point,”
and the separation where dominant component of the ground
state changes as the “changing point.” We see that within the
resolution of the step size used (0.1ayp), the crossing point and
the changing point are the same in the [001] direction.

For the UHF calculations we can understand the overall
state most clearly in terms of the behavior of the Fock matrix
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(b) details of the long-short arrangement side in the [001] direction, (c) the [110] direction, (d) the [111] direction. In (a), the dotted line is for

the changing point.

eigenvalues, shown for different directions in Figs. 7 (four-
acceptor chain) and 8 (six-acceptor chain). Here the states are
usually doubly degenerate (corresponding to Kramers degen-
eracy under time-reversal symmetry) but show splittings for
certain acceptor arrangements where the symmetry is lower
(see Sec. III B 3). The four highest states in Fig. 7, and the
six highest in Fig. 8, will be occupied by holes. In all cases
there is a large gap between filled and empty states due to
the effect of the strong hole-hole repulsion. Compared with
Fig. 3 for a dimer, the two significant differences are (i) the
splitting of degenerate states, and (ii) the crossing between
filled states in the [001] direction in Fig. 7(b). In general we
find that the self-consistency cycle in the UHF method breaks
the symmetry of the system, with different sets of eigenvectors
of the Fock matrix corresponding to the same total energy; we
analyze this symmetry breaking further in Sec. III B 3. The
crossing occurs close to the changing point identified in the
CI calculation, so the change in the single-acceptor energy
levels in the dominant component of the CI ground state is
related to a change in the ordering of single-electron states in
UHE. For the six-acceptor chain, it can be seen from Fig. 8
that another crossing appears around d; = 1.7ap, implying
another similar crossing between the total-energy ground state
and higher excited states which is not able to be shown due to
the limit number of acceptors.

The HL approach for the four-acceptor chain (not shown)
gives similar results to the CI method, including a fourfold-

degenerate ground state when d; > d, and the presence of
a changing point where the composition of the ground state
changes; however, the changing point now appears between
d; = 1.3ap and 1.4a,, while the crossing point is still around
d; = 1.4ay. This suggests that the HL method is a good ap-
proximation for both the ground state and low-lying excited
states, and preserves some of the main features of the energy
spectrum. For the six-acceptor chain there is only one obvious
crossing between the ground state and the first excited states,
as the degenerate states appear for significantly smaller values
of d; than before. But we now see two changing points for the
eigenvectors: one is between d; = 1.3ay and 1.4ay, the other
is between d; = 1.6aq and 1.7ag.

To understand in more detail the behavior of the en-
ergy gap, we show in Fig. 9(a) the difference between the
total-energy ground state and first excited state in the [001] di-
rection as a function of d;. There are two regions of particular
interest: the first is the neighborhood of the crossing/changing
point where the gap reduces and then increases again (d; =
1.3ag to 1.4ap). The minimum gap for four acceptors is around
1.4a, for both the CI case (solid line) and the HL case (dashed
line), but shifts to shorter separations for six acceptors (dotted
line). To show the details of the crossings among the first few
states, a good choice is to show the energy difference between
the ground state and excited states as the energies shift dra-
matically from the short-long arrangement to the long-short
arrangement according to Fig. 6(a). In this way, the crossings
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between excited states are shown as usual, while the crossing
between the ground state and excited states will be reflected
by the value of the difference. Here for the convenience of the
further discussion, the ground state before the changing point
is called as |¢p), while the ground state after the changing
point is called as |¢;). In Fig. 9(b), we show the energy
difference between the ground state and first 15 excited states
for the full CI calculation, where we find a small gap between
excited states around 1.4ay, which appears to make the “cross-
ings” here anticrossings as |¢,) is found above this gap before
the changing point. It is also reasonable to believe the others
in the full CI calculation and HL approach are anticrossings.
As there is a band of excited states with similar energies in
Fig. 9(b), it is helpful to follow the energy difference between
the ground state and the excited state that crosses with it,
rather than the minimum gap; in Fig. 9(c), we show the energy
difference between the previous and new ground states during
the anticrossing. This suggests that the true anticrossing is
between d; = 1.40ay and 1.41ay, a slightly larger value than
in the HL approach. The second region of interest is the right-
hand side (large d;), where the fourfold-degenerate manifold
of ground states in the six-acceptor system forms for smaller
values of d; than in the four-acceptor system; alternatively, for
a given d; > d,, the degeneracy of the ground state becomes
better as more acceptors are involved (the same is true for
the following eightfold-degenerate and fourfold-degenerate
manifolds). This is what would be expected if the degeneracy

arises from almost independent sets of localized edge states at
either end of the chain (see Sec. III D).

Figure 10 shows that the magnitude of the expectation
value of the angular momentum vector on each acceptor in
the symmetry-broken UHF solution. At the smallest values
of d; (the short-long case) the angular momentum is zero
everywhere, whereas for large d; (the long-short case) it is
dominantly located at the ends of the chain. To see if this is
related to possible nontrivial edge states, we show the hole
distributions from each eigenvector of the Fock matrix for
different arrangements in the three high-symmetry directions
in Fig. 11. Here short-long refers to d; = lay, d» = 2ay, and
long-short to d; = 2ay, d» = 1ag. The one-hole states do not
localize at any particular acceptor under the short-long or
uniform arrangements; however, for the long-short case, two
states localize at the ends of the chain [the dotted lines in
Figs. 11(c), 11(f), and 11(i)], while the others have a nearly
uniform distribution across the middle. The states localized
at the ends [the dotted lines in Figs. 11(c), 11(f), and 11(1)]
are always the lowest (i.e., least favorable) states occupied
by holes, which may imply the existence of the nontrivial
edge states occurring in the long-short case (since the charge
rearrangements we previously identified in the noninteracting
case [12] in response to the parabolic potential no longer force
the states localized at the end of the chain to be the highest
ones and intervene to shift the edge states to the short-long
limit).
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2. Large-separation case (dy + d, = 6a,)

For the large-separation case, we show the behavior of
the ground-state total energy obtained from all the methods
mentioned in Sec. II A for a four-acceptor chain along high-
symmetry directions in Fig. 12. The HL and UHF results
are closer to the full CI results than in the small-separation
case, consistent with the better agreement found between the
methods for larger separations in the case of pairs (Fig. 2). The
best agreement is around the uniform chain (d; = d, = 3ay);
once again, the HL approach offers a better approximation
than UHF.

The highest 50 energy states from the full CI result are
shown in Fig. 13 and and the Fock matrix eigenvalues in
Fig. 14. In all three directions the ground state is nonde-
generate on short-long side (small d;), although this is not
clearly visible from Fig. 13(a) for the [001] direction; as
found for smaller spacings in Sec. IIIB 1, the ground state
joins three other states in each case and forms a fourfold-
degenerate manifold on the right-hand side (large d;). This
time there is no change in the character of the ground state
and no (anti)crossing visible among the states in Fig. 13 or 14;
instead, the Fock eigenvalues show a group of four occupied
states strongly separated from the unoccupied ones by the
self-consistent potential. There are some small splittings visi-
ble among the eigenvalues in Fig. 14 at particular geometries;

these are due to the loss of symmetry in the UHF solution, as
discussed in Sec. III B 1.

To compare the fourfold-degenerate many-hole ground
states obtained in the long-short limit for the small- and
large-separation cases, and to understand how they relate to
our previous results for noninteracting holes [12], we show
in Fig. 15 the energy difference between the ground state
and three closest excited states as a function of Coulomb
interaction strength for a four-acceptor linear chain in the
[001] direction (interpolating between the noninteracting and
fully interacting cases). We choose the four-acceptor sys-
tem because it provides a more straightforward comparison
to the one-hole edge states of the noninteracting system,
as there will be fewer other states complicating the picture
[12]. In both cases, there is a gap in the noninteracting limit
because one-hole edge states move apart in the long-short
limit to join two different bulk bands as shown in our pre-
vious paper [12]; the fourfold-degenerate ground state forms
once the interaction strength exceeds a critical value, which
is smaller in the large-separation case than in the small-
separation case. This can be understood because the energy
scale set by the noninteracting part of the Hamiltonian is
weaker in the large-separation case, so a smaller hole-hole
interaction is sufficient to overcome the parabolic confining
potential.
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FIG. 11. The total charge distribution among acceptors under different arrangements in three typical directions for the six-acceptor linear
chain when d; + d, = 3ay: (a) the short-long arrangement in the [001] direction, (b) the uniform chain case in the [001] direction, (c) the
long-short arrangement in the [001] direction, (d) the short-long arrangement in the [110] direction, (e) the uniform chain case in the [110]
direction, (f) the long-short arrangement in the [110] direction, (g) the short-long arrangement in the [111] direction, (h) the uniform chain
case in the [111] direction, (i) the long-short arrangement in the [111] direction. For (c), (f), and (i), the dotted lines are for the states localized
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3. Symmetry breaking in the UHF calculation

To investigate the symmetry breaking, we determined the
symmetry of the one-hole reduced density matrices, both in
the full CI case and after the convergence of the UHF cal-
culation; the results are shown using the Hermann-Mauguin
notation for magnetic point groups in the upper part of Table 11
for the small-separation case, and in the lower part for the
large-separation case. We observe that for small separations,
the UHF solution always begins (for small d;) with the same
symmetry as the CI calculation (and the core Hamiltonian).
This is a “gray” magnetic group that contains the time-reversal
operation 1’, meaning that no magnetic moment has devel-
oped. The group then loses some symmetry elements as d;
increases, as magnetic moments develop; it would be more

accurate to describe these missing symmetry operations as
“hidden” rather than “lost” because they map different mem-
bers of a manifold of degenerate self-consistent solutions to
the UHF equations, each individually having lower symmetry,
onto one another. At the points in the [001] direction where
the symmetry is lowest (d; = 1.4ag, 1.5a9, and 1.8ay), the
convergence of the SCF procedure is poorer than for other
separations; Figs. 7(a) and 7(b) show that these correspond to
the location of the crossing points between different many-
body ground-state compositions. Bearing in mind that the
crossing points for six acceptors [Figs. 8(a) and 8(b)] are in
slightly different positions than for four acceptors, and the
slight change of the crossing point location shown in Fig. 9, it
is reasonable to believe that d; = 1.8qy is the true location of
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a second crossing point which is not shown in Figs. 7(a) and
7(b) due to the limited number of acceptors. This suggests that
the further reduction in symmetry near these points may also
be related to the crossings (or potential crossings) between
the occupied eigenvalues of the Fock matrix. We also show
the behavior of the total magnetic angular momentum for
each acceptor in the different chain orientations in Fig. 10;
the breaking of symmetry is reflected by splitting into two
or (at the lowest-symmetry arrangements the [001] direction)
four different inequivalent sets. The magnetization pattern
shows that nonzero magnetization becomes increasingly con-
centrated at the ends of the chain as d; increases, which is
also true in the large-separation case. The six-acceptor system
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TABLE II. The magnetic symmetry groups of the UHF ground
states in different arrangements for the three high-symmetry di-
rections in Hermann-Mauguin notation. Here the prime denotes
operations that are only symmetries when accompanied by time

reversal; the symbols m and m’ are abbreviations for i and ml,,
respectively.
d, [001] [110] [111]
Hamiltonian 422 222y 327
mm (n mmm m
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behaves similarly to the four-acceptor system, so we do not
show the results here.

In the large-separation case, the symmetry is broken with
respect to the underlying Hamiltonian at all separations. As
previously, the broken symmetries are not really lost, but now
map different solutions within the manifold of degenerate
states (all having nonzero magnetic moments) into one an-
other. For values of d; greater than some critical value (which
depends on the direction), the symmetry is further reduced;
comparing with Fig. 13, we see this further reduction occurs
when the fourfold-degenerate ground states in the full CI
calculation show very small energy differences between each
other so they are hard to distinguish in the UHF calculation.
By checking each data point, the switching from ferromag-
netically aligned case to antiferromagnetically aligned case is
found across the central (d>) bond as it shortens.

C. Linear chain with periodic boundary conditions

We now turn to periodic boundary conditions. A schematic
of the system is shown in Fig. 16; (a, b, ¢, d) label four ad-
jacent acceptors, with b, ¢ in the same unit cell, and d,, d;
are the separations. (We have swapped the separation labels
relative to the convention used in in our previous paper [12].)
Approaches based on full diagonalization (full CI calculation
and the HL approach) are not extensive and hence not useful
with periodic boundary conditions as discussed in Sec. ITA 1,

e o o [ ) ® O e o o
dz dl dz

FIG. 16. The schematic of the linear chain with periodic bound-
ary conditions. a, b, ¢, d are the labels of acceptors, d; < d; is known
as the “short-long arrangement,” d, > d, is known as the “long-short
arrangement.”

but the UHF method is still suitable. Since the behavior of
finite chains is found to be quite similar in the small- and
large-separation cases, we report results for infinite chains
only for smaller (d; + d» = 3ay).

Figure 17 shows the band structures of the Fock matrix
eigenvalues. We only show the results for the short-long ar-
rangement (d, < d,) in each high-symmetry direction, along
with the uniform chains (d; = d), as the short-long arrange-
ments are equivalent to long-short under periodic boundary
conditions. All the single-hole states are doubly degenerate,
so the two states at the top of each picture will be filled
(two holes per cell). There is a large gap between the filled
and empty bands in the short-long dimerized arrangement; for
uniform chains, the bands move closer but this gap does not
close, showing the existence of a cell-doubling perturbation
from the self-consistent field. This is related to the broken
symmetries found in the corresponding finite chain calcula-
tions: as shown in Table II, we found the inversion symmetry
is broken (becomes hidden) for some uniform-chain cases. It
is reasonable that this also occurs under periodic boundary
conditions, leading to an inequivalence of the two atoms in
the cell even for a uniform chain and implying that the band
structure of the two-atom cell cannot be obtained by simply
folding the bands for the one-atom cell.

D. Structure of the edge states

In order to understand the nature of the edge states, we
examine the many-hole states from the full CI calculation
and compare them to the UHF single-particle states, for
both small-separation and large-separation cases in the four-
acceptor finite chain. Both methods show edge states localized
at the acceptors at the end of the chain in the long-short
arrangement (d, > d,); however, the signatures are different.
The CI method shows a manifold of almost degenerate states
spanned by a basis of the form

W) = W) @ [™5) @ [977),

where A labels the left end of the chain [acceptor a in Fig. 4
(a)], B labels the right end [acceptor d in Fig. 4(a)], and |*%)
is a common state residing in the interior of the chain [accep-
tors b and c in Fig. 4(a)]. The indices m and n label different
states of the ends, and the pair (m, n) together label a member
of the almost degenerate manifold. The transformation from
state |W,, ,) to | W,y ,») can therefore be carried out by a unitary
operator

(14)

U — UA ® ibulk ® UB
with

0" =|ym )i

0% =|wEHvE). (s)

For finite chains, the eigenstates are particular linear combina-
tions of the |, ,) which are almost (but not quite) degenerate;
the splittings decay to zero as d; is increased, or as the chain
becomes longer (see Fig. 9). It is therefore important to look
at the whole space spanned by the |y, ,), especially when
the splittings become very small. The UHF method instead
picks out a single symmetry-broken many-hole ground state

)
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FIG. 17. The band structures of the Fock matrix eigenvalues under different arrangements in three typical directions when d; + d, = 3ay:
(a) the short-long arrangement in the [001] direction, (b) the uniform chain case in the [001] direction, (c) the short-long arrangement in the
[110] direction, (d) the uniform chain case in the [110] direction, (e) the short-long arrangement in the [111] direction, (f) the uniform chain

case in the [111] direction.

in which one pair of occupied single-particle states is local-
ized at the chain ends [acceptors a and d in Fig. 4(a)] while
the other pair is spread over the interior [acceptors b and ¢
in Fig. 4(a)]. The single-hole edge states can be written as
linear combinations of particular one-hole kets |¢*) and |¢?)
localized at either end.

We can also examine the symmetries of the edge states
hﬁ,ﬁ), |¥2) in the light of the classification of the topologi-
cal phases of one-dimensional interacting fermions proposed
by Ref. [29]; in the long-short limit we find the character-
istic phases are (u =0,¢ =0,k = ), hence, the state is
topologically nontrivial with fourfold degeneracy, while in
the short-long arrangement they are (u =0,¢ =0,« = 0)

(topologically trivial, nondegenerate). However, we find some
differences between the small- and large-separation cases.
For the four-acceptor chain, when d; + d, = 3ay, |¥2), [¥5)
involve only mp = :I:% states in the [001] direction, while

[*%y includes only my = j:% states. This is because in the
long-short arrangement case, the system can be considered as
two single acceptors at the chain ends and a closely coupled
pair of acceptors between them. In that case, [*¥) is domi-
nated by the central pair, while Wé), |B) are dominated by
the single-acceptor ends. Since the doubly degenerate occu-
pied bands at the top of Figs. 17(a) and 17(b) in the [001]
direction are always formed predominantly from linear com-
binations of the :i:% states on the two acceptors in the cell, and
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a single acceptor perturbed by another acceptor always has
a ground state of mp = :I:% symmetry, it is reasonable that
[PUKY and |¢2), |¥2) only involve mp = j:% and :t% states,
respectively. When d; + d, = 6ay, although |y*'¥) is similar,
the {|y). |¥5)} involve also the superpositions +{|3), [1)}
in two of the four degenerate states. In the large-separation
case the degeneracy is more nearly exact, so the properties of
individual eigenstates are not clearly defined and we should
consider the space spanned by all four degenerate states to-
gether. For the six-acceptor system (which we treat in the
HL approximation), we always find the edge states composed
purely of mp = :I:% states at the end of the chain (as for four
acceptors).

We can also calculate the Zak phase for the occupied UHF
states in the infinite system by using (11) in Sec. ITA5. We
find that Zak phase is O for all arrangements in all directions,
even though we find the edge states in the finite chains have
nontrivial symmetries; this is consistent with the preserva-
tion of a gap in the single-particle UHF energy spectrum for
all arrangements. The Zak phase is calculated by using the
single-hole UHF eigenvectors, and its correspondence with
the topological properties of an interacting system is still un-
clear; it is not surprising that it fails to describe the topological
properties of the interacting system in the same way, as was
previously noted for the bosonic case [30]. In the absence of a
rigorously defined topological quantum number for an infinite
system with interactions, the direct study of the quantum
numbers characterizing the edge states of the finite system,
introduced by Turner et al. [29], provides a better insight into
their topological nature.

IV. CONCLUSION

In this paper, we constructed multihole models for neutral,
one-dimensional multiacceptor chains based on three different
methods: full configuration interaction, the Heitler-London
approximation, and the unrestricted Hartree-Fock method.
The HL approximation solves some of the problems with the
CI method, but only the UHF method is able to cope with
infinite chains under periodic boundary conditions.

From reference calculations on a pair of acceptors, we
found that both the HL approach and the UHF method give
good approximations to the ground state of the full CI cal-
culation, with the HL approach offering a better result in the
regimes studied (which are on the insulating side of the Mott
transition). The UHF method is less useful for the calculation
of excited states, so we use the HL approximation to simplify
the calculation of low-lying excitations when interactions are

strong. The converged UHF state has a large gap between the
filled and empty states, due to the self-consistent potential
generated by the hole-hole interactions.

For finite chains, the CI ground state is nondegenerate in
the short-long arrangement in all directions, but joins three
other states to form a fourfold-degenerate manifold in the
long-short arrangement, which is followed in energy by an
eightfold-degenerate state and another fourfold-degenerate
state. By checking the dominant components of these 16
states, we found that only the levels on the acceptors at the end
of the chain change between different members of the mani-
fold; the overall 16-fold degeneracy comes from the product
of separate sets of four levels on each end acceptor. The topo-
logical nature of these edge states is confirmed by the presence
of nontrivial phases in the classification of one-dimensional
fermion edge states by Turner et al. In the small-separation
case where d| + d, = 3ay, an anticrossing occurs between the
ground state and the next excited states in the [001] direc-
tion, resulting in a switch from an unhybridized ground state
dominated by mp = :I:% states to a hybridized state where
mrg = :I:% states are also present; this transition is related to
the crossing between the filled UHF single-particle states. The
UHF solution loses part of the symmetry of the underlying
Hamiltonian; for particular arrangements, we found the fur-
ther broken symmetries related to the crossing (or potential
crossing) of Fock matrix eigenstates in the [001] direction.
The loss of symmetry corresponds to the emergence of static
moments on each acceptor in the UHF approach.

We obtained the UHF band structures of the Fock matrix
eigenvalues. We found there is a large gap between the filled
and empty states in a dimerized chain, which does not fully
close in the uniform chain, showing the existence of a period-
doubling perturbation. Since a gap is maintained throughout
the transition from short-long to long-short arrangements, the
Zak phase is constant (and equal to zero), despite the obser-
vation of nontrivial many-body edge states in the long-short
case. Hence, this method does not capture the formation of
edge states, while the previous method introduced by Turner
et al. can well characterize their topological properties. The
nature of the bulk-edge correspondence in such interacting
systems requires further investigation.
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