
ar
X

iv
:2

00
8.

09
23

1v
2

 [
cs

.L
O

]
 1

 M
ay

 2
02

1

A Bunched Logic for Conditional Independence

Jialu Bao
University of Wisconsin–Madison

Justin Hsu
University of Wisconsin–Madison

Simon Docherty
University College London

Alexandra Silva
University College London

Abstract—Independence and conditional independence are fun-
damental concepts for reasoning about groups of random vari-
ables in probabilistic programs. Verification methods for inde-
pendence are still nascent, and existing methods cannot handle
conditional independence. We extend the logic of bunched impli-
cations (BI) with a non-commutative conjunction and provide a
model based on Markov kernels; conditional independence can be
directly captured as a logical formula in this model. Noting that
Markov kernels are Kleisli arrows for the distribution monad,
we then introduce a second model based on the powerset monad
and show how it can capture join dependency, a non-probabilistic
analogue of conditional independence from database theory.
Finally, we develop a program logic for verifying conditional
independence in probabilistic programs.

I. Introduction

The study of probabilistic programming languages and their

semantics dates back to the 1980s, starting from the seminal

work of Kozen [1]. The last decade has seen a surge of richer

probabilistic languages [2, 3, 4], motivated by applications

in machine learning, and accompanying research into their

semantics [5, 6, 7]. This burst of activity has also created

new opportunities and challenges for formal verification.

Independence and conditional independence are two funda-

mental properties that are poorly handled by existing verifi-

cation methods. Intuitively, two random variables are prob-

abilistically independent if information about one gives no

information about the other (for example, the results of two

coin flips). Conditional independence is more subtle: two

random variables X and Y are independent conditioned on

a third variable Z if for every fixed value of Z, information

about one of X and Y gives no information about the other.

Both forms of independence are useful for modelling and

verification. Probabilistic independence enables compositional

reasoning about groups of random variables: if a group of

random variables are independent, then their joint distribution

is precisely described by the distribution of each variable

in isolation. It also captures the semantics of random sam-

pling constructs in probabilistic languages, which generate

a fresh random quantity that is independent of the program

state. Conditional independence often arises in programs with

probabilistic control flow, as conditioning models probabilistic

branching. Bayesian networks encode conditional indepen-

dence statements in complex distributions, and conditional

independence captures useful properties in many applications.

For instance, criteria ensuring that algorithms do not discrim-

inate based on sensitive characteristics (e.g., gender or race)

can be formulated using conditional independence [8].

Aiming to prove independence in probabilistic programs,

Barthe et al. [9] recently introduced Probabilistic Separation

Logic (PSL) and applied it to formalize security for several

well-known constructions from cryptography. The key ingre-

dient of PSL is a new model of the logic of bunched implica-

tions (BI), in which separation is interpreted as probabilistic

independence. While PSL enables formal reasoning about

independence, it does not support conditional independence.

The core issue is that the model of BI underlying PSL provides

no means to describe the distribution of one set of variables

obtained by fixing (conditioning) another set of variables

to take specific values. Accordingly, one cannot capture the

basic statement of conditional independence—X and Y are

independent random variables conditioned on any value of Z.

In this paper, we develop a logical framework for formal

reasoning about notions of dependence and independence.

Our approach is inspired by PSL but the framework is more

sophisticated: to express conditional independence, we develop

a novel assertion logic extending BI with new connectives—#
and its adjoints. The key intuition is that conditional indepen-

dence can be expressed as independence plus composition of

Markov kernels; as our leading example, we give a kernels

model of our logic.

Then, we show how to adapt the probabilistic model to

other settings. As is well-known in category theory, Markov

kernels are the arrows in the Kleisli category of the distribution

monad. By varying the monad, our logic smoothly extends to

analogues of conditional independence in other domains. To

demonstrate, we show how replacing the distribution monad

by the powerset monad gives a model where we can cap-

ture join/multivalued dependencies in relational algebra and

database theory. We also show that the semi-graphoid laws,

introduced by Pearl and Paz [10] in their work axiomatizing

conditional independence, can be translated into formulas that

are valid in both of our models.

The rest of the paper is organized as follows. We give

a bird’s-eye view in Section II, providing intuitions on our

design choices and highlighting differences with existing work.

Section III presents the main contribution: the design of

DIBI, a new bunched logic to reason about dependence and

independence. We show that the proof system of DIBI is

1

http://arxiv.org/abs/2008.09231v2

sound and complete with respect to its Kripke semantics.

Then, we present two concrete models in Section IV, based

on probability distributions and relations. In Section V, we

consider how to express dependencies in DIBI: we show that

the same logical formula captures conditional independence

and join dependency in our two models, and our models

validate the semi-graphoid laws. Finally, in Section VI, we

design a program logic with DIBI assertions, and use it to

verify conditional independence in two probabilistic programs.

II. Overview of the contributions

The logic DIBI: The starting point of our work is the

logic of bunched implications (BI) [11]. BI extends intuition-

istic propositional logic with substructural connectives to fa-

cilitate reasoning about sharing and separation of resources, an

idea most prominently realized in Separation Logic’s handling

of heap-manipulating programs [12]. The novel connectives

are a separating conjunction P ∗ Q, intuitively stating that P

and Q hold in separate resources, and its adjoint −∗, called

magic wand. We will extend BI with a non-commutative

conjunction, written P # Q. Intuitively, # expresses a possible

dependency of Q on P. The end result is a logic with

two conjunctive connectives—∗ and #—capturing notions of

independence and dependence. We call the logic Dependence

and Independence Bunched Implications (DIBI).

To give a semantics to our logic, we start from the semantics

of BI. The simplest BI models are partial resource monoids:

Kripke structures (M,⊑, ◦, e) in which ◦ is an order-preserving,

partial, commutative monoid operation with unit e. The opera-

tion ◦ allows interpreting the separating conjunction P ∗ Q and

magic wand P −∗ Q. For example, the probabilistic model of

BI underlying PSL [9] is a partial resource monoid: by taking

M to be the set of distributions over program memories and ◦

to be the independent product of distributions over memories

with disjoint variables, the interpretation of P ∗ Q gives the

desired notion of probabilistic independence.

This is the first point where we fundamentally differ from

PSL. To capture both dependence and independence, we

change the structure in which formulas are interpreted. In

Section III, we will introduce a structure X = (X,⊑,⊕,⊙, E),

a DIBI frame, with two operations ⊕ : X2 → P(X) and

⊙ : X2 → P(X), and a set of units E ⊆ X. Three remarks

are in order. First, the preorder ⊑ makes DIBI an intuitionistic

logic. There are many design trade-offs between intuitionistic

and classical, but the most important consideration is that

intuitionistic formulas can describe proper subsets of states

(e.g., random variables), leaving the rest of the state implicit.

Second, DIBI frames contain an additional monoidal operation

⊙ for interpreting # (⊕ will be used in interpreting ∗). Third, as

the completeness of BI for its simple PCM models is an open

problem [13], our models are examples of a broader notion

of BI model with non-deterministic operations (following [14,

15]). These models subsume partial resource monoids, and

enable our completeness proof of DIBI. While the conditions

that DIBI frames must satisfy are somewhat cryptic at first

sight, they can be naturally understood as axioms defining

monoidal operations in a partial, non-deterministic setting.

E.g., we will require:

(⊕ Comm.) z ∈ x ⊕ y→ z ∈ y ⊕ x;
(⊕ Assoc.) w ∈ t ⊕ z ∧ t ∈ x ⊕ y→ ∃s(s ∈ y ⊕ z ∧ w ∈ x ⊕ s);
(⊙ Unit Exist.L) ∃e ∈ E. (x ∈ e ⊙ x)

where unbound variables are universally quantified. Crucially,
the operation ⊙ need not be commutative: this operation
interprets the dependence conjunction #, where commutativity
is undesirable. In a DIBI frame, ∗ and # are interpreted as:

x |= P ∗ Q iff exists x′, y, z s.t. x ⊒ x′ ∈ y ⊕ z, y |= P, and z |= Q

x |= P # Q iff exists y, z s.t. x ∈ y ⊙ z, y |= P, and z |= Q

In DIBI, ∗ has a similar reading as in PSL: it states that

two parts of a distribution can be combined because they are

independent. In contrast, the new conjunction P # Q asserts

that the Q part of a distribution may depend on the P

part. Combined with the separating conjunction ∗, the new

conjunction # can express more complex dependencies: e.g.

P # (Q ∗ R) asserts that Q and R both may depend on P, and

are independent conditioned on P.
A sound and complete proof system for DIBI: To reason

about DIBI validity, in Section III we also provide a Hilbert-

style proof system for DIBI, and prove soundness and com-

pleteness. The proof system extends BI with rules for the new

connective #, e.g. # Conj, and for the interaction between # and

∗, e.g., RevEx:

P ⊢ R Q ⊢ S

P # Q ⊢ R # S
Conj

(P # Q) ∗ (R # S) ⊢ (P ∗ R) # (Q ∗ S)
RevEx

RevEx—reverse-exchange—captures the fundamental interac-

tion between the two conjunctions. Computations T = P # Q

and U = R # S are built from dependent components, yet T

and U are independent and hence can be combined with ∗.

We can then infer that the building blocks of T and U must

also be pair-wise independent and can be combined, yielding

formulas P ∗ R and Q ∗ S . These can then be combined with #
as they retain the dependency of the original building blocks.

Models and applications of DIBI: Separation logics are

based on a concrete BI model over program states, together

with a choice of atomic assertions. Before explaining the

models of DIBI, we recall two prior models of BI.

In the heap model, states are heaps: partial maps from

memory addresses to values. Atomic assertions of the form

x 7→ v indicate that the location to which x points has value

v. Then, x 7→ v ∗ y 7→ u states that x points to v and y points

to u, and x and y do not alias—they must point to different

locations. In general, P ∗ Q holds when a heap can be split

into two subheaps with disjoint domains, satisfying P and Q

respectively.

w

x

y

z

heap:

|= P ∗ Q ⇐⇒

|= P

|= Q

In PSL, states are distributions over program memories,

basic assertions D[x] indicate that x is a random variable,

2

and P ∗ Q states that a distribution µ can be factored into

two independent distributions µ1 and µ2 satisfying P and Q,

respectively. Consider the following simple program:

x $← B1/2; y $← B1/2; z← x ∨ y (1)

Here, x and y are Boolean variables storing the result of two

fair coin flips and z stores the result of x ∨ y. The output

distribution µ is a distribution over a memory with variables

x, y and z (depicted below on the right). In µ, the variables

x and y are independent and D[x] ∗ D[y] holds, since the

marginal distribution of µ is a product of µ1 and µ2, which

satisfy D[x] and D[y] respectively:

µ1
4

1
4

1
4

|= D[x] ∗ D[y]

0

0

0

0

1

1

1

0

1

1
4

1

1

1

1
2

0
x

y

z

x
1
2

1x

1
2

0y

1y

µ1 |= D[x] µ2 |= D[y]

1
2

In Section IV, we develop two concrete models for DIBI:

one based on probability distributions, and one based on

relations. Here we outline the probabilistic model, as it

generalizes the model of PSL. Let Val be a finite set

of values and S a finite set of memory locations. We

use Mem[S] to denote functions S → Val, representing

program memories. The states in the DIBI probabilistic

model, over which the formulas will be interpreted, are

Markov kernels on program memories. More precisely, given

sets of memory locations S ⊆ U, these are functions

f : Mem[S]→ D(Mem[U]) that preserve their input. Regular

distributions can be lifted to Markov kernels: the distribution

µ : D(Mem[U]) corresponds to the kernel fµ : Mem[∅] →

D(Mem[U]) that assigns µ to the only element in Mem[∅].

dom(f) range(f)

We depict input-preserving Markov kernels as

trapezoids, where the smaller side represents

the domain and the larger side the range;

our basic assertions will track dom(f) and

range(f), justifying this simplistic depiction.

Separating and dependent conjunction will be interpreted

via ⊕ and ⊙ on Markov kernels. Intuitively, ⊕ is a parallel

composition that takes union on both domains and ranges,

whereas ⊙ composes the kernels using Kleisli composition.

⊕ 7→

f1 f2 f1 ⊕ f2

⊙ 7→

g1 g2 g1 ⊙ g2

To demonstrate, recall the simple program (1). In the output

distribution µ, z depends on x and y since z stores x∨y, and x

and y are independent. In our setting, this dependency structure

can be seen when decomposing fµ = (fµ1
⊕ fµ2

) ⊙ fz, where

kernel fz : Mem[{x, y}]→ D(Mem[{x, y, z}]) captures how the

value of z depends on the values of {x, y}:

a

b

x

y
fz

7−−−−−−→ δ

()

z a ∨ b

y

x

b

a
δ : X → D(X) is the Dirac distribution

δ(v)(w) = 1 if v = w, 0 otherwise.

We can then prove:

fµ1
⊕ fµ2

|= Px∗y and fz |= Qz implies fµ |= Px∗y # Qz (2)

When analyzing composition of Markov kernels, the domains

and ranges provide key information: the domain determines

which variables a kernel may depend on, and the range

determines which variables a kernel describes. Accordingly,

we use basic assertions of the form (A ⊲ [B]), where A and B

are sets of memory locations. A Markov kernel f : Mem[S]→

D(Mem[T]) satisfies (A ⊲ [B]) if there exists a f ′ ⊑ f with

dom(f ′) = A and range(f ′) ⊇ B (we will define f ′ ⊑ f for-

mally later and for now read it as f extends f ′). For instance,

the kernel fz above satisfies ({x, y} ⊲ [x, y]), ({x, y} ⊲ [x, y, z]),

and ({x, y} ⊲ [∅]). One choice for Px∗y and Qz in (2) can be:

Px∗y = (∅ ⊲ [x]) ∗ (∅ ⊲ [y]) and Qz = ({x, y} ⊲ [x, y, z]))

Formalizing conditional independence: The reader might

wonder how to use such simple atomic propositions, which

only talk about the domain/range of a kernel and do not

describe numeric probabilities, to assert conditional inde-

pendence. The key insight is that conditional independence

can be formulated using sequential (⊙) and parallel (⊕)

composition of kernels. In Section V, we show that given

µ ∈ D(Mem[Var]), for any X, Y, Z ⊆ Var, the satisfaction of

fµ |= (∅ ⊲ [Z]) # (Z ⊲ [X]) ∗ (Z ⊲ [Y]) (3)

captures conditional independence of X, Y given Z in µ.

Moreover, the formula in (3) smoothly generalizes to other

models. In the relational model of DIBI—obtained by switch-

ing the distribution monad to the powerset monad—the exact

same formula encodes join dependency, a notion of conditional

independence from the databases and relational algebra liter-

ature. More generally, we also show that the semi-graphoid

axioms of Pearl and Paz [10] are valid in these two models,

and two of the axioms can be derived in the DIBI proof system.

III. The Logic DIBI

A. Syntax and semantics

The syntax of DIBI extends the logic of bunched impli-

cations (BI) [11] with a non-commutative conjunctive con-

nective # and its associated implications. Let AP be a set of

propositional atoms. The set of DIBI formulas, FormDIBI, is

generated by the following grammar:

P,Q ::= p ∈ AP | ⊤ | I | ⊥ | P ∧ Q | P ∨ Q | P→ Q

| P ∗ Q | P −∗ Q | P # Q | P⊸ Q | P� Q.

DIBI is interpreted on DIBI frames, which extend BI frames.

Definition III.1 (DIBI Frame). A DIBI frame is a structure

X = (X,⊑,⊕,⊙, E) such that ⊑ is a preorder, E ⊆ X, and

⊕ : X2 → P(X) and ⊙ : X2 → P(X) are binary operations,

satisfying the rules in Figure 1.

Intuitively, X is a set of states, the preorder ⊑ describes

when a smaller state can be extended to a larger state, the

binary operators ⊙, ⊕ offer two ways of combining states, and

E is the set of states that act like units with respect to these

3

(⊕ Down-Closed) z ∈ x ⊕ y ∧ x ⊒ x′ ∧ y ⊒ y′ → ∃z′(z ⊒ z′ ∧ z′ ∈ x′ ⊕ y′);
(⊙ Up-Closed) z ∈ x ⊙ y ∧ z′ ⊒ z → ∃x′, y′(x′ ⊒ x ∧ y′ ⊒ y ∧ z′ ∈ x′ ⊙ y′)
(⊕ Commutativity) z ∈ x ⊕ y → z ∈ y ⊕ x;
(⊕ Associativity) w ∈ t ⊕ z ∧ t ∈ x ⊕ y → ∃s(s ∈ y ⊕ z ∧ w ∈ x ⊕ s);
(⊕ Unit Existence) ∃e ∈ E(x ∈ e ⊕ x);
(⊕ Unit Coherence) e ∈ E ∧ x ∈ y ⊕ e → x ⊒ y;
(⊙ Associativity) ∃t(w ∈ t ⊙ z ∧ t ∈ x ⊙ y) ↔ ∃s(s ∈ y ⊙ z ∧ w ∈ x ⊙ s);
(⊙ Unit ExistenceL) ∃e ∈ E(x ∈ e ⊙ x);
(⊙ Unit ExistenceR) ∃e ∈ E(x ∈ x ⊙ e);
(⊙ CoherenceR) e ∈ E ∧ x ∈ y ⊙ e → x ⊒ y;
(Unit Closure) e ∈ E ∧ e′ ⊒ e → e′ ∈ E;
(Reverse Exchange) x ∈ y ⊕ z ∧ y ∈ y1 ⊙ y2 ∧ z ∈ z1 ⊙ z2 → ∃u, v(u ∈ y1 ⊕ z1 ∧ v ∈ y2 ⊕ z2 ∧ x ∈ u ⊙ v).

Fig. 1: DIBI frame requirements (with outermost universal quantification omitted for readability).

operations. The binary operators return a set of states instead

of a single state, and thus can be either deterministic (at most

one state returned) or non-deterministic, either partial (empty

set returned) or total. The operators in the concrete models

below will be deterministic, but the proof of completeness

relies on the frame’s admission of non-deterministic models,

as is standard for bunched logics [14].

The frame conditions define properties that must hold for

all models of DIBI. Most of these properties can be viewed

as generalizations of familiar algebraic properties to non-

deterministic operations, suitably interacting with the preorder.

The “Closed” properties give coherence conditions between

the order and the composition operators. It is known that

having the Associativity frame condition together with either

the Up- or Down-Closed property for an operator is sufficient

to obtain the soundness of associativity for the conjunction

associated with the operator [16, 14]. The choices of Closed

conditions match the desired interpretations of ⊕ as indepen-

dence and ⊙ as dependence: independence should drop down

to substates (which must necessarily be independent if the

superstates were), while dependence should be inherited by

superstates (the source of dependence will still be present in

any extensions). Having ⊙ non-commutative also splits the ⊙

analogues of ⊕ axioms into pairs of axioms, although we note

that we exclude the left version of (⊙ Coherence) for reasons

we explain in Section III-B. Finally, the (Reverse Exchange)

condition defines the interaction between ⊕ and ⊙.

We will give a Kripke-style semantics for DIBI, much like

the semantics for BI [17]. Given a DIBI frame, the semantics

defines which states in the frame satisfy each formula. Since

the definition is inductive on formulas, we must specify which

states satisfy the atomic propositions.

Definition III.2 (Valuation and model). A persistent valuation

is an assignment V : AP → P(X) of atomic propositions to

subsets of states of a DIBI frame satisfying: if x ∈ V(p) and

y ⊒ x then y ∈ V(p). A DIBI model (X,V) is a DIBI frame

X together with a persistent valuation V.

Since DIBI is an intuitionistic logic, persistence is necessary

for soundness. We can now give a semantics to DIBI formulas

in a DIBI model.

Definition III.3 (DIBI Satisfaction and Validity). Satisfaction

at a state x in a model is inductively defined by the clauses in

Figure 2. P is valid in a model, X |=V P, iff x |=V P for all

x ∈ X. P is valid, |= P, iff P is valid in all models. P |= Q iff,

for all models, X |=V P implies X |=V Q.

Where the context is clear, we omit the subscript V on

the satisfaction relation. With the semantics in Figure 2,

persistence on propositional atoms extends to all formulas:

Lemma III.1 (Persistence Lemma). For all P ∈ FormDIBI, if

x |= P and y ⊒ x then y |= P.

The reader may note the difference between the semantic

clauses for # and ∗, and −∗ and ⊸: the satisfaction of the Up-

Closed (Down-Closed) frame axiom for ⊙ (⊕) leads to the

persistence and thus the soundness of the simpler clause for

(−∗) [16]. Without the other Closed property, we must use a

satisfaction clause which accounts for the order, as in BI.

B. Proof system

A Hilbert-style proof system for DIBI is given in Figure 3.

This calculus extends a system for BI with additional rules

governing the new connectives #, ⊸ and �: in Section III-C

we will prove this calculus is sound and complete. We briefly

comment on two important details in this proof system.

Reverse exchange: The proof system of DIBI shares

many similarities with Concurrent Kleene Bunched

Logic (CKBI) [14], which also extends BI with a non-

commutative conjunction. Inspired by concurrent Kleene

algebra (CKA) [18], CKBI supports the following exchange

axiom, derived from CKA’s exchange law:

(P ∗ R) # (Q ∗ S) ⊢CKBI (P # Q) ∗ (R # S)

In models of CKBI, ∗ describes interleaving concurrent

composition, while # describes sequential composition. The

exchange rule states that the process on the left has fewer

behaviors than the process on the right—e.g., P # Q allows

fewer behaviors than P ∗ Q, so P # Q ⊢CKBI P ∗ Q is derivable.

In our models, ∗ has a different reading: it states that two

computations can be combined because they are independent

(i.e., non-interfering). Accordingly, DIBI replaces Exch by the

reversed version RevEx—the fact that the process on the left

4

x |=V ⊤ always x |=V ⊥ never
x |=V I iff x ∈ E x |=V p iff x ∈ V(p)
x |=V P ∧ Q iff x |=V P and x |=V Q
x |=V P ∨ Q iff x |=V P or x |=V Q
x |=V P→ Q iff for all y ⊒ x, y |=V P implies y |=V Q
x |=V P ∗ Q iff there exist x′, y, z s.t. x ⊒ x′ ∈ y ⊕ z, y |=V P and z |=V Q
x |=V P # Q iff there exist y, z s.t. x ∈ y ⊙ z, y |=V P and z |=V Q
x |=V P −∗ Q iff for all y, z s.t. z ∈ x ⊕ y: y |=V P implies z |=V Q
x |=V P⊸ Q iff for all x′, y, z s.t. x′ ⊒ x and z ∈ x′ ⊙ y: y |=V P implies z |=V Q
x |=V P� Q iff for all x′, y, z s.t. x′ ⊒ x and z ∈ y ⊙ x′: y |=V P implies z |=V Q

Fig. 2: Satisfaction for DIBI

P ⊢ P
Ax

P ⊢ ⊤
⊤

⊥ ⊢ P
⊥

P ⊢ R Q ⊢ R

P ∨ Q ⊢ R
∨1

P ⊢ Qi

P ⊢ Q1 ∨ Q2

∨2

P ⊢ Q P ⊢ R

P ⊢ Q ∧ R
∧1

Q ⊢ R

P ∧ Q ⊢ R
∧2

P ⊢ Q1 ∧ Q2

P ⊢ Qi

∧3/ ∧ 4
P ∧ Q ⊢ R

P ⊢ Q→ R
→

P ⊢ Q → R P ⊢ Q

P ⊢ R
MP

P ∗ Q ⊢ R

P ⊢ Q −∗ R
−∗

P ⊢ Q −∗ R S ⊢ Q

P ∗ S ⊢ R
−∗MP

P # Q ⊢ R

P ⊢ Q⊸ R
⊸

P ⊢ Q⊸ R S ⊢ Q

P # S ⊢ R
⊸MP

P # Q ⊢ R

Q ⊢ P� R
�

P ⊢ Q� R S ⊢ Q

S # P ⊢ R
�MP

P ⊣⊢ P ∗ I
∗-Unit

P ⊢ R Q ⊢ S

P ∗ Q ⊢ R ∗ S
∗-Conj

P ∗ Q ⊢ Q ∗ P
∗-Comm

(P ∗ Q) ∗ R ⊣⊢ P ∗ (Q ∗ R)
∗-Assoc

P ⊢ I # P
#-Left Unit

P ⊢ R Q ⊢ S

P # Q ⊢ R # S
#-Conj

P ⊣⊢ P # I
#-Right Unit

(P # Q) # R ⊣⊢ P # (Q # R)
#-Assoc

(P # Q) ∗ (R # S) ⊢ (P ∗ R) # (Q ∗ S)
RevEx

Fig. 3: Hilbert system for DIBI

is safe to combine implies that the process on the right is also

safe. P ∗ Q is now stronger than P # Q, and P ∗ Q ⊢ P # Q is

derivable (Theorem A.1).

Left unit: While # has a right unit in our logic, it does not

have a proper left unit. Semantically, this corresponds to the

lack of a frame condition for ⊙-CoherenceL in our definition

of DIBI frames. This difference can also be seen in our proof

rules: while #-Right Unit gives entailment in both directions,

#-Left Unit only shows entailment in one direction—there is

no axiom stating I # P ⊢ P.

We make this relaxation to support our intended models,

which we will see in Section IV. In a nutshell, states in our

models are Kleisli arrows that preserve their input through

to their output—intuitively, in conditional distributions, the

variables that have we conditioned on will remain fixed.

Our models take ⊙ to be Kleisli composition, which exhibits

an important asymmetry for such arrows: f can always be

recovered from f ⊙ g, but not from g ⊙ f . As a result, the set

of all arrows naturally serves as the set of right units, but these

arrows cannot all serve as left units.

C. Soundness and Completeness of DIBI

A methodology for proving the soundness and completeness

of bunched logics is given by Docherty [14], inspired by the

duality-theoretic approach to modal logic [19]. First, DIBI

is proved sound and complete with respect to an algebraic

semantics obtained by interpreting the rules of the proof

system as algebraic axioms. We then establish a representation

theorem: every DIBI algebra A embeds into a DIBI algebra

generated by a DIBI frame, that is in turn generated by A.

Soundness and completeness of the algebraic semantics can

then be transferred to the Kripke semantics. Omitted details

can be found in Appendix B.

Definition III.4 (DIBI Algebra). A DIBI algebra is an al-

gebra A = (A,∧,∨,→,⊤,⊥, ∗,−∗, #,⊸,�, I) such that, for all

a, b, c, d ∈ A:

• (A,∧,∨,→,⊤,⊥) is a Heyting algebra;

• (A, ∗, I) is a commutative monoid;

• (A, #, I) is a weak monoid: # is an associative operation

with right unit I and a ≤ I # a;

• a ∗ b ≤ c iff a ≤ b −∗ c;

• a # b ≤ c iff a ≤ b⊸ c iff b ≤ a� c;

• (a # b) ∗ (c # d) ≤ (a ∗ c) # (b ∗ d).

An algebraic interpretation of DIBI is specified by an

assignment J−K : AP → A. The interpretation is obtained

as the unique homomorphic extension of this assignment,

and so we use the notation J−K interchangeably for both

assignment and interpretation. Soundness and completeness

can be established by constructing a term DIBI algebra by

quotienting formulas by equiderivability.

Theorem III.2. P ⊢ Q is derivable iff JPK ≤ JQK for all

algebraic interpretations J−K.

We now connect these algebras to DIBI frames. A filter on

a bounded distributive lattice A is a non-empty set F ⊆ A

such that, for all x, y ∈ A, (1) x ∈ F and x ≤ y implies y ∈ F;

and (2) x, y ∈ F implies x ∧ y ∈ F. It is a proper filter if it

additionally satisfies (3) ⊥ < F, and a prime filter if it also

5

satisfies (4) x ∨ y ∈ F implies x ∈ F or y ∈ F. We denote the

set of prime filters of A by PFA.

Definition III.5 (Prime Filter Frame). Given a DIBI algebra

A, the prime filter frame of A is defined as Pr(A) = (PFA,⊆

,⊕A,⊙A, EA), where F ⊕A G := {H ∈ PFA | ∀a ∈ F, b ∈ G(a ∗

b ∈ H)}, F ⊙A G := {H ∈ PFA | ∀a ∈ F, b ∈ G(a # b ∈ H)} and

EA := {F ∈ PFA | I ∈ F}.

Proposition III.3. For any DIBI algebra A, the prime filter

frame Pr(A) is a DIBI frame.

In the other direction, DIBI frames generate DIBI algebras.

Definition III.6 (Complex Algebra). Given a DIBI frame

X = (X,⊑,⊕,⊙, E), the complex algebra of X is defined to

be Com(X) = (P⊑(X),∩,∪,⇒X, X, ∅, •X,�X, ⊲X,−⊲X, ⊲−X, E):
P⊑(X) = {A ⊆ X | if a ∈ A and a ⊑ b then b ∈ A}

A⇒X B = {a | for all b, if b ⊒ a and b ∈ A then b ∈ B}

A •X B = {x | there exist x′ , a, b s.t x ⊒ x′ ∈ a ⊕ b, a ∈ A and b ∈ B}

A�X B = {x | for all a, b, if b ∈ x ⊕ a and a ∈ A then b ∈ B}
A ⊲X B = {x | there exist a, b s.t x ∈ a ⊙ b, a ∈ A and b ∈ B}

A −⊲X B = {x | for all x′, a, b, if x ⊑ x′ , b ∈ x′ ⊙ a and a ∈ A then b ∈ B}

A ⊲−X B = {x | for all x′, a, b, if x ⊑ x′ , b ∈ a ⊙ x′ and a ∈ A then b ∈ B}.

Proposition III.4. For any DIBI frame X, the complex algebra

Com(X) is a DIBI algebra.

The following main result facilitates transference of sound-

ness and completeness.

Theorem III.5 (Representation of DIBI algebras). Every DIBI

algebra is isomorphic to a subalgebra of a complex algebra:

given a DIBI algebra A, the map θA : A → Com(Pr(A))

defined by θA(a) = {F ∈ PFA | a ∈ F} is an embedding.

Given the previous correspondence between DIBI algebras

and frames, we only need to show that θ is a monomorphism:

the necessary argument is identical to that for similar bunched

logics [14, Theorems 6.11, 6.25]. Given J−K on A, the rep-

resentation theorem establishes that VJ−K(p) := θA(JpK) is a

persistent valuation on Pr(A) such that F |=VJ−K
P iff JPK ∈ F,

from which our main theorem can be proved.

Theorem III.6 (Soundness and Completeness). P ⊢ Q is

derivable iff P |= Q.

IV. Models of DIBI

In this section, we introduce two concrete models of DIBI to

facilitate logical reasoning about (in)dependence in probability

distributions and relational databases. In both models the

operations ⊙ and ⊕ will be deterministic partial functions; we

write h = f • g instead of {h} = f • g, for • ∈ {⊙,⊕}. We start

with some preliminaries on memories and distributions.

A. Memories, distributions, and Markov kernels

Operations on Memories: Let Val be a fixed set of values

(e.g., the Booleans), S be a set of variable names, and let

Mem[S] denote the set of functions of type m : S → Val. We

call such functions memories because we can think of m as

assigning a value to each variable in S ; we will refer to S as

the domain of m. The only element in Mem[∅] is the empty

memory, which we write as 〈〉.

We need two operations on memories. First, a memory m

with domain S can be projected to a memory mT with domain

T if T ⊆ S , defined as mT (x) = m(x) for all x ∈ T . Second, two

memories can be combined if they agree on the intersection of

their domains: given memories m1 ∈Mem[S], m2 ∈Mem[T]

such that mS∩T
1
= mS∩T

2
, we define m1 ⊗ m2 : S ∪ T → Val by

m1 ⊗ m2(x) :=

{
m1(x) if x ∈ S

m2(x) if x ∈ T
(4)

Probability distributions and Markov kernels: We use the

distribution monad to model distributions over memories.

Given a set X, let D(X) denote the set of finite distributions

over X, i.e., the set containing all finite support functions

µ : X → [0, 1] satisfying
∑

x∈X µ(x) = 1. This operation

on sets can be lifted to functions f : X → Y, resulting

in a map of distributions D(f) : D(X) → D(Y) given by

D(f)(µ)(y) :=
∑

f (x)=y µ(x) (intuitively, D(f) takes the sum of

the probabilities of all elements in the pre-image of y). These

operations turn D into a functor on sets and, further,D is also

a monad [20, 21].

Definition IV.1 (Distribution Monad). Define unit : X → D(X)

as unitX(x) := δx where δx denotes the Dirac distribution on

x: for any y ∈ X, we have δx(y) = 1 if y = x, otherwise

δx(y) = 0. Further, define bind : D(X)→ (X → D(Y))→ D(Y)

by bind(µ)(f)(y) :=
∑

p∈D(Y)D(f)(µ)(p) · p(y).

Intuitively, unit embeds a set into distributions over the

set, and bind enables the sequential combination of proba-

bilistic computations. Both maps are natural transformations

and satisfy the following interaction laws, establishing that

〈D, unit, bind〉 is a monad:

bind(unit(x))(f) = f (x), bind(µ)(unit) = µ,

bind(bind(µ)(f))(g) = bind(µ)(λx.bind(f (x))(g)).
(5)

The distribution monad has an equivalent presentation in

which bind is replaced with a multiplication operation

DD(X)→ D(X), which flattens distributions by averaging.

The monad D gives rise to the Kleisli category of D,

denoted Kℓ(D), with sets as objects and arrows of the form

f : X → D(Y), also known as Markov kernels [22]. Arrow

composition in Kℓ(D) is defined using bind: given f : X →

D(Y), g : Y → D(Z), the composition f ⊙ g : X → D(Z) is:

(f ⊙ g)(x) := bind(f (x))(g) (6)

Markov kernels generalize distributions: we can lift a distri-

bution µ : D(X) to the kernel fµ : 1→ D(X) assigning µ to the

single element of 1. Kernels can also encode conditional dis-

tributions, which play a key role in conditional independence.

Example IV.1. Consider the program p in Figure 4a, where

x, y, and z are Boolean variables. First, flip a fair coin and

store the result in z. If z = 0, flip a fair coin twice, and store

the results in x and y, respectively. If z = 1, flip a coin with

6

z $← B1/2;

if z then

x $← B1/4;

y $← B1/4;

else

x $← B1/2;

y $← B1/2

(a) Probabilistic program p

x y z µ

0 0 0 1/8
0 0 1 1/32
1 0 0 1/8
1 0 1 3/32
0 1 0 1/8
0 1 1 3/32
1 1 0 1/8
1 1 1 9/32

(b) Distribution µ generated by p

x y µ0

0 0 1/4
1 0 1/4
0 1 1/4
1 1 1/4

(c) µ conditioned on z = 0

x y µ1

0 0 1/16
1 0 3/16
0 1 3/16
1 1 9/16

(d) µ conditioned on z = 1

Fig. 4: From probabilistic programs to kernels

bias 1/4 twice, and store the results in x and y. This program

produces a distribution µ, shown in Figure 4b.
If we condition µ on z = 0, then the resulting distribution

µ0 models two independent fair coin flips: 1/4 probability for

each possible pair of outcomes (Figure 4c). If we condition on

z = 1, however, then the distribution µ1 will be skewed—there

will be a much higher probability that we observe (1, 1) than

(0, 0), but x and y are still independent (Figure 4d).
To connect µ0 and µ1 to the original distribution µ, we

package µ0 and µ1 into a Markov kernel k : Mem[z] →

D(Mem[{x, y, z}]) given by k(i)(d) = µi(d
{x,y}). Then, the

relation between the conditional and original distributions is

fµ = fµz
⊙ k, where µz is the projection of µ on {z}.

Finite distributions of memories over U, denoted

D(Mem[U]), will play a central role in our models.

We will refer to maps f : Mem[S] → D(Mem[U]) as

(Markov) kernels, and define dom(f) = S and range(f) = U.
We can marginalize/project kernels to a smaller range.

Definition IV.2 (Marginalizing kernels). For a Markov kernel

f : Mem[S] → D(Mem[U]) and V ⊆ U, the marginaliza-

tion of f by V is the map πV f : Mem[S] → D(Mem[V]):

(πV f)(d)(r) :=
∑

m∈Mem[U\V] f (d)(r ⊗ m) for d ∈ Mem[S], r ∈

Mem[V]; undefined terms do not contribute to the sum.

We say a kernel f : Mem[S] → D(Mem[U]) preserves

its input to its output if S ⊆ U and πS f = unitMem[S].

Intuitively, such kernels are suitable for encoding conditional

distributions: once a variable has been conditioned on, its value

should not change. We can compose these kernels in two ways.

Definition IV.3 (Composing Markov kernels on memories).

Given f : Mem[S] → D(Mem[T]) and g : Mem[U] →

D(Mem[V]) that preserve their inputs, we define their par-

allel composition, whenever S ∩ U = T ∩ V , as the map

f ⊕ g : Mem[S ∪ U]→ D(Mem[T ∪ V]) given by

(f ⊕ g)(d)(m) := f (dS)(mT) · g(dU)(mV).

If T = U, the sequential composition f ⊙ g : Mem[S] →

D(Mem[V]) is just Kleisli composition (Eq. (6)).

B. A concrete probabilistic model of DIBI

We now have all the ingredients to define a first concrete

model: states are Markov kernels that preserve their input; ⊕

(resp. ⊙) will be parallel (resp. sequential) composition. The

use of ⊕ to model independence generalizes the approach in

Barthe et al. [9]. Combining both compositions—sequential

and parallel—enables capturing conditional independence.

Definition IV.4 (Probabilistic frame). We define the frame

(MD,⊑,⊕,⊙,MD) as follows:

• Let MD consist of Markov kernels that preserve their

input to their output;

• ⊕, ⊙ are parallel and sequential composition of kernels;
• Given f , g ∈ MD, f ⊑ g if there exist R ⊆ Val, h ∈ MD

such that g = (f ⊕ unitMem[R]) ⊙ h.

We make two remarks. First, f ⊑ g holds when g can

be obtained from extending f : compose f in parallel with

unitMem[R], then extend the range via composition with h. We

can recover f from g by marginalizing g to range(f) ∪ R,

then ignoring the R portion. Second, the definition of f ⊙g on

MD can be simplified. Given f : Mem[S]→ D(Mem[T]) and

g : Mem[T]→ D(Mem[V]), Eq. (6) yields the formula:

(f ⊙ g)(d)(m) :=
∑

m′∈Mem[T]

f (d)(m′) · g(m′)(m).

Since f , g ∈ MD preserve input to output, this reduces to

(f ⊙ g)(d)(m) = f (d)(mT) · g(mT)(mV). (7)

We show that our probabilistic frame is indeed a DIBI frame.

Theorem IV.1. (MD,⊑,⊕,⊙,MD) is a DIBI frame.

Proof sketch. First, we show that MD is closed under ⊕ and ⊙,

and ⊑ is transitive and reflexive. The frame axioms are mostly

straightforward, but some conditions rely on a property of our

model we call Exchange Equality: if both (f1 ⊕ f2) ⊙ (f3 ⊕ f4)

and (f1 ⊙ f3) ⊕ (f2 ⊙ f4) are defined, then they are equal, and

if the second is defined, then so is the first. For example:

(⊕ Unit Coherence): The unit set in this frame is the entire

state space MD: we must show that for any f1, f2 ∈ MD,

if f1 ⊕ f2 is defined, then f1 ⊑ f1 ⊕ f2:

f1 ⊕ f2 = (f1 ⊙ unitrange(f1)) ⊕ (unitdom(f2) ⊙ f2)

= (f1 ⊕ unitdom(f2)) ⊙ (unitrange(f1) ⊕ f2) (Exch. Eq.)

= (f1 ⊕ unitdom(f2)) ⊙ (f2 ⊕ unitrange(f1)) (⊕ Comm.)

7

We present the complete proof in Appendix C. �

Example IV.2 (Kernel decomposition). Recall the distribution

µ on Mem[{x, y, z}] from Example IV.1. Let kx : Mem[z] →

D(Mem[{x, z}]) encode the conditional distribution of x given

z, and let ky : Mem[z] → D(Mem[{y, z}]) encode the condi-

tional distribution of y given z. Explicitly, for v = x or y,

kv(z = 0)(v = 1, z = 0) = 1/2 kv(z = 0)(v = 0, z = 0) = 1/2

kv(z = 1)(v = 1, z = 1) = 1/4 kv(z = 1)(v = 0, z = 1) = 3/4.

Since kx, ky include z in their range, kx ⊕ ky is defined. A

small calculation shows that kx ⊕ ky = k, where k : Mem[z]→

D(Mem[{x, y, z}]) is the conditional distribution of (x, y, z)

given z. This decomposition shows that x and y are inde-

pendent conditioned on z (we shall formally prove this later

in Section V-A).

C. Relations, join dependency, and powerset kernels

We developed the probabilistic model in the previous section

using operations from the distribution monad D. Instantiating

our definitions with operations from other monads gives rise to

other interesting models of DIBI. In this section, we develop

a relational model based on the powerset monad P, and show

how our logic can be used to reason about join dependency

properties of tables from database theory. Before we present

our relational model, we introduce some notations and basic

definitions on relations.

Tables are often viewed as relations—sets of tuples where

each component of the tuple corresponds to an attribute.

Formally, a relation R over a set of attributes S is a set of

tuples indexed by S . Each tuple maps an attribute in S to a

value in Val, and hence can be seen as a memory in Mem[S],

as defined in Section IV-A. The projection and ⊗ operations

on Mem[S] from Equation (4) can be lifted to relations.

Definition IV.5 (Projection and Join). The projection of a rela-

tion R over attributes X to Y ⊆ X is given by RY := {rY | r ∈ R}.

The natural join of relations R1 and R2 over attributes X1 and

X2, respectively, is the relation R1 ⊲⊳ R2 := {m1 ⊗ m2 | m1 ∈

R1 and m2 ∈ R2} over attributes X1 ∪ X2.

Since tables can often be very large, finding compact

representations for them is useful. These representations can

leverage additional structure common in real-world databases;

for instance, the value of one attribute might determine the

value of another, a so-called functional dependency. Other

dependency structures can enable a large relation to be fac-

tored as a combination of smaller ones. A classical example

is on join dependency, a relational analogue of conditional

independence.

Definition IV.6 (Join dependency [23, 24]). A relation R over

attribute set X1 ∪ X2 satisfies the join dependency X1 ⊲⊳ X2 if

R = (RX1) ⊲⊳ (RX2).

Example IV.3 (Decomposition). Consider the relation R in

Figure 5, with three attributes: Researcher, Field, and Con-

ference. R contains triple (a, b, c) if and only if researcher a

works in field b and attends conference c. If we know that re-

searchers in the same field all have a shared set of conferences

they attend, then we can recover R by joining two relations:

one associating researchers to their fields, and another asso-

ciating fields to conferences. As shown below, R satisfies the

join dependency {Researcher,Field} ⊲⊳ {Conference,Field}.

While the factored form is only a bit smaller (12 entries instead

of 15), savings can be significant for larger relations.

Powerset monad and kernels: Much like how we decom-

posed distributions as Markov kernels—Kleisli arrows for the

distribution monad—we will decompose relations using Kleisli

arrows for the powerset monad, Kℓ(P).

Definition IV.7 (Powerset monad). Let P be the endofunctor

Set→ Set mapping every set to the set of its subsets P(X) =

{U | U ⊆ X}. We define unitX : X → P(X) mapping each x ∈ X

to the singleton {x}, and bind : P(X) → (X → P(Y)) → P(Y)

by bind(U)(f) := ∪{y | ∃x ∈ U. f (x) = y}.

The triple 〈P, unit, bind〉 forms a monad, and obeys the laws

in Equation (5). We overload the use of unit and bind as

it will be clear from the context which monad, powerset or

distribution, we are considering. The Kleisli category Kℓ(P)

is defined analogously as forD, with sets as objects and arrows

X → P(Y), and composition given as in Equation (6).
Like before, we consider maps Mem[S] → P(Mem[T]),

which we call powerset kernels in analogy to Markov kernels,

or simply kernels when the monad is clear from the context.

Powerset kernels can also be projected to a smaller range.

Definition IV.8 (Marginalization). Suppose that T ⊆ U. A

map f of type Mem[S]→ P(Mem[U]) can be marginalized to

πT f : Mem[S]→ P(Mem[T]) by defining: (πT f)(s) := f (s)T

We need two composition operations on powerset kernels.

We say that powerset kernel f : Mem[S] → P(Mem[S ∪ T])

preserves input to output if πS f = unitMem[S].

Definition IV.9 (Composition of powerset kernels). Given

kernels f : Mem[S] → P(Mem[T]) and g : Mem[U] →

P(Mem[V]) that preserve input to output, we define their

parallel composition whenever T ∩ V = S ∩ U as the map

f ⊕g : Mem[S ∪U]→ P(Mem[T ∪V]) given by (f ⊕g)(d) :=

f (dS) ⊲⊳ g(dU). Whenever T = U we define the sequential

composition f⊙g : Mem[S]→ P(Mem[V]) using Kleisli com-

position. Explicitly: (f ⊙ g)(s) = {v | u ∈ f (s) and v ∈ g(u)}.

D. A concrete relational model of DIBI

We can now define the second concrete model of DIBI:

states will be powerset kernels, and we will use the parallel

and sequential composition in a construction similar to MD.

Definition IV.10 (Relational frame). We define the frame

(MP,⊑,⊕,⊙,MP) as follows:

• MP consists of powerset kernels preserving input to output;
• ⊕, ⊙ are parallel and sequential composition of powerset

kernels;
• Given f , g ∈ MP, f ⊑ g if there exist R ⊆ Val, h ∈ MP such

that g = (f ⊕ unitMem[R]) ⊙ h.

8

Researcher Field Conference
Alice Theory LICS
Alice Theory ICALP
Bob Theory LICS
Bob Theory ICALP
Alice DB PODS

︸ ︷︷ ︸

R

=

Field Conference
Theory LICS
Theory ICALP
DB PODS

︸ ︷︷ ︸

R1

⊲⊳

Field Researcher
Theory Alice
Theory Bob
DB Alice

︸ ︷︷ ︸

R2

Fig. 5: Factoring a relation

Like in MD, f ⊑ g iff g can be obtained from f by adding

attributes that are preserved from domain to range, and then

mapping tuples in the range to relations over a larger set

of attributes. We can recover f from g by marginalizing to

range(f) ∪ R, and then ignoring the attributes in R.
MP is also a DIBI frame.

Theorem IV.2. (MP,⊑,⊕,⊙,MP) is a DIBI frame.

Proof sketch.. The proof follows Theorem IV.1 quite closely,

since MP also satisfies Exchange equality. We present the full

proof in Appendix D. �

V. Application: Modeling Conditional and Join Dependencies

In our concrete models, distributions and relations can be

factored into simpler parts. Here, we show how DIBI formulas

capture conditional independence and join dependency.

A. Conditional independence

Conditional independence (CI) is a well-studied notion in

probability theory and statistics [25]. While there are many

interpretations of CI, a natural reading is in terms of irrele-

vance: X and Y are independent conditioned on Z if knowing

the value of Z renders X irrelevant to Y—observing one gives

no further information about the other.
Before defining CI, we introduce some notations. Let µ ∈

D(Mem[Var]) be a distribution. For any subset S ⊆ Var and

assignment s ∈Mem[S], we write:

µ(S = s) :=
∑

m∈Mem[Var]

µ(s ⊗ m).

Terms with undefined s ⊗ m contribute zero to the sum. We

can now define conditional probabilities:

µ(S = s | S ′ = s′) :=
µ(S = s, S ′ = s′)

µ(S ′ = s′)
,

where µ(S = s, S ′ = s′) := µ(S ∪ S ′ = s ⊗ s′). Intuitively,

this ratio is the probability of S = s given S ′ = s′, and it is

only defined when the denominator is non-zero and s, s′ are

consistent (i.e., s⊗ s′ is defined). CI can be defined as follows.

Definition V.1 (Conditional independence). Let X, Y, Z ⊆ Var.

X and Y are independent conditioned on Z, written X ⊥⊥ Y | Z,

if for all x ∈Mem[X], y ∈Mem[Y], and z ∈Mem[Z]:

µ(X = x | Z = z) · µ(Y = y | Z = z) = µ(X = x, Y = y | Z = z).

When Z = ∅, we say X and Y are independent, written X ⊥⊥ Y.

Example V.1. We give two simple examples of CI.

Chocolate and Nobel laureates: Researchers found a

strong positive correlation between a nation’s per capita Nobel

laureates number and chocolate consumption. But the corre-

lation may be due to other factors, e.g., a nation’s economic

status. A simple check is to see if the two are conditionally

independent fixing the third factor.

Algorithmic fairness: To prevent algorithms from dis-

criminating based on sensitive features (e.g., race and gender),

researchers formalized notions of fairness using conditional

independence [8]. For instance, let A be the sensitive features,

Y be the target label, and Ŷ be the algorithm’s prediction for

Y. Considering the joint distribution of (A, Y, Ŷ), an algorithm

satisfies equalized odds if Ŷ ⊥⊥ A | Y; calibration if Y ⊥⊥ A | Ŷ.

We will define a DIBI formula P such that a distribution µ

satisfies X ⊥⊥ Y | Z if and only if its lifted kernel fµ := 〈〉 7→ f

satisfies P. For this, we will need a basic atomic proposition

which describes the domain and range of kernels.

Definition V.2 (Basic atomic proposition). For sets of vari-

ables A, B ⊆ Var, a basic atomic proposition has the form

(A ⊲ [B]). We give the following semantics to these formulas:

f |= (A ⊲ [B]) iff there exists f ′ ⊑ f

such that dom(f ′) = A and range(f ′) ⊇ B.

For example, f : Mem[y] → D(Mem[y, z]) defined by

f (y 7→ v) := unit(y 7→ v, z 7→ v) satisfies (y ⊲ [y]),

(y ⊲ [z]), (y ⊲ [∅]), (y ⊲ [y, z]), (∅ ⊲ [∅]), and no other atomic

propositions.

Theorem V.1. Given distribution µ ∈ D(Mem[Var]), then for

any X, Y, Z ⊆ Var,

fµ |= (∅ ⊲ [Z]) # (Z ⊲ [X]) ∗ (Z ⊲ [Y]) (8)

if and only if X ⊥⊥ Y | Z and X ∩ Y ⊆ Z are both satisfied.

The restriction X ∩ Y ⊆ Z is harmless: when X ⊥⊥ Y | Z but

X ∩ Y * Z, X ∩ Y must be deterministic given Z (see Theo-

rem A.12), and it suffices to check X ⊥⊥ Y | Z ∪ (X ∩ Y). For

simplicity, we abbreviate the formula (∅ ⊲ [Z]) # ((Z ⊲ [X]) ∗

(Z ⊲ [Y])) as [Z] # ([X] ∗ [Y]).

Proof sketch. For the forward direction, suppose fµ satisfies 8.

Then by Theorem A.38, there exist f , g, and h in MD with f ⊙

(g⊕h) ⊑ fµ, where f : Mem[∅]→ D(Mem[Z]), g : Mem[Z]→

D(Mem[Z∪X]), and h : Mem[Z]→ D(Mem[Z∪Y]); we also

9

have X ∩ Y ⊆ Z as f ⊙ (g ⊕ h) is defined. Since dom(fµ) =

Mem[∅], f ⊙ (g ⊕ h) ⊑ fµ implies:

f ⊙ (g ⊕ h) = πZ∪X∪Y fµ and f = πZ fµ.

Further, we can show that f ⊙ (g ⊕ h) = f ⊙ g ⊙ (unitX ⊕ h) =

f ⊙ h ⊙ (unitY ⊕ g), and thus:

f ⊙ g = πZ∪X fµ and f ⊙ h = πZ∪Y fµ.

These imply that g (h resp.) encodes the conditional distribu-

tions of X (Y resp.) given Z, and g⊕h encodes the conditional

distribution of (X, Y) given Z. Hence, the conditional distribu-

tion of (X, Y) given Z is equal to the product distribution of

X given Z and Y given Z, and so X ⊥⊥ Y | Z holds in µ.

For the reverse direction, suppose that (a) X ⊥⊥ Y | Z holds

in µ and (b) X∩Y ⊆ Z. Now, consider πX∪Y∪Z fµ, the marginal

distribution on (X, Y, Z) encoded as a kernel, and observe that

πX,Y,Z fµ = f ⊙ f ′, where f encodes the marginal distribution of

Z, and f ′ is the conditional distribution of (X, Y) given values

of Z. From (a), the conditional distribution of (X, Y) given Z

is the product of the conditional distributions of X given Z,

and Y given Z, that is f ′ = g⊕h, where g (resp. h) encode the

conditional distribution of X (resp. Y) given Z. Then by (b),

f ⊙ (g ⊕ h) is defined and f ⊙ (g ⊕ h) = πX∪Y∪Z fµ ⊑ fµ. It is

straightforward to see that f ⊙ (g⊕h) satisfies [Z] # ([X] ∗ [Y]).

Hence, persistence shows that fµ also satisfies [Z] # ([X] ∗ [Y]).

See Theorem A.11 for details. �

B. Join dependency

Recall that a relation R over attributes X ∪ Y satisfies the

Join Dependency (JD) X ⊲⊳ Y if R = RX ⊲⊳ RY . As we

illustrated through the Researcher-Field-Conference example

in Section IV, join dependencies can enable a relation to

be represented more compactly. By interpreting the atomic

propositions in the relational model, JD is captured by the

same formula we used for CI.

Theorem V.2. Let R ∈ P(Mem[Var]) and X, Y be sets of

attributes such that X∪Y = Var. The lifted relation fR = 〈〉 7→

R satisfies fR |= [X ∩ Y] # ([X] ∗ [Y]) iff R satisfies the join

dependency X ⊲⊳ Y.

JD is a special case of Embedded Multivalued Dependency

(EMVD), where the relation R may have more attributes than

X∪Y. It is straightforward to encode EMVD in our logic, but

for simplicity we stick with JD.

Proof sketch. For the forward direction, by Theorem A.38,

there exist f , g, and h ∈ MP such that f : Mem[∅] →

P(Mem[X∩Y]), g : Mem[X∩Y]→ P(Mem[X]), h : Mem[X∩

Y]→ P(Mem[Y]), and f ⊙ (g ⊕ h) ⊑ fR. Since by assumption

X ∪ Y = Var, we must have f ⊙ (g ⊕ h) = fR.

Unfolding ⊕ and ⊙ and using the fact that range(f) =

dom(g) = dom(h), we can show:

f ⊙ (g ⊕ h)(〈〉) = {u ⊲⊳ (v1 ⊲⊳ v2) | u ∈ f (〈〉), v1 ∈ g(u), v2 ∈ h(u)}.

Since ⊲⊳ is commutative, associative and idempotent, we have:

f ⊙ (g ⊕ h)(〈〉) = {(u ⊲⊳ v1) ⊲⊳ (u ⊲⊳ v2) | u ∈ f (〈〉), v1 ∈ g(u), v2 ∈ h(u)}

= f ⊙ g(〈〉) ⊲⊳ f ⊙ h(〈〉).

We can also convert the parallel composition of g, h into

sequential composition by padding to make the respective

domain and range match: f ⊙ (g ⊕ h) = f ⊙ g ⊙ (unitX ⊕ h) =

f ⊙ h ⊙ (unitY ⊕ g). Hence f ⊙ g = πX fR and f ⊙ h = πY fR,

which implies f ⊙ g(〈〉) = RX and f ⊙ h(〈〉) = RY . Thus:

R = f ⊙ (g ⊕ h)(〈〉) = f ⊙ g(〈〉) ⊲⊳ f ⊙ h(〈〉) = RX ⊲⊳ RY ,

so R satisfies the join dependency X ⊲⊳ Y. The reverse direction

is analogous to Theorem V.1. See Theorem A.14 for details.

�

C. Proving and validating the semi-graphoid axioms

Conditional independence and join dependency are closely

related in our models. Indeed, there is a long line of research

on generalizing these properties to other independence-like no-

tions, and identifying suitable axioms. Graphoids are perhaps

the most well-known approach [10]; Dawid [26] has a similar

notion called separoids.

Definition V.3 (Graphoids and semi-graphoids). Suppose that
I(X, Z, Y) is a ternary relation on subsets of Var (i.e., X, Z, Y ⊆
Var). Then I is a graphoid if it satisfies:

I(X,Z,Y)⇔ I(Y,Z,X) (Symmetry)

I(X,Z,Y ∪W)⇒ I(X,Z,Y) ∧ I(X,Z,W) (Decomposition)

I(X,Z,Y ∪W)⇒ I(X,Z ∪W, Y) (Weak Union)

I(X,Z,Y) ∧ I(X,Z ∪ Y,W) ⇔ I(X,Z,Y ∪W) (Contraction)

I(X,Z ∪W, Y) ∧ I(X,Z ∪ Y,W)⇒ I(X,Z,Y ∪W) (Intersection)

If I satisfies the first four properties, then it is a semi-graphoid.

Intuitively, I(X, Z, Y) states that knowing Z renders X irrele-

vant to Y. If we fix a distribution over µ ∈ D(Mem[Var]), then

taking I(X, Z, Y) to be the set of triples such that X ⊥⊥ Y | Z

holds (in µ) defines a semi-graphoid. Likewise, if we fix a

relation R ∈ P(Mem[Var]), then the triples of sets of attributes

such that R satisfies an Embedded Multivalue Dependency

(EMVD) forms a semi-graphoid [23, 27].

Previously, we showed that the DIBI formula [Z]#([X] ∗ [Y])

asserts conditional independence of X and Y given Z in MD,

and join dependency X ⊲⊳ Y in MPwhen Z = X ∩ Y. Here, we

show that the semi-graphoid axioms can be naturally translated

into valid formulas in our concrete models.

Theorem V.3. Given a model M, define I(X, Z, Y) iff M |= [Z]#
([X] ∗ [Y]). Then, Symmetry, Decomposition, Weak Union,

and Contraction are valid when M is the probabilistic or

the relational model. Furthermore, Symmetry is derivable in

the proof system, and Decomposition is derivable given the

following axiom, valid in both models:

(Z ⊲ [Y ∪W])↔ (Z ⊲ [Y]) ∧ (Z ⊲ [W]) (Split)

Proof sketch. We comment on the derivable axioms. To derive

Symmetry, we use the ∗-Comm proof rule to commute the

10

separating conjunction. The proof of Decomposition uses the

axiom Split to split up Y ∪ W, and then uses proof rules

∧3 and ∧4 to prove the two conjuncts. We show derivations

(Theorems A.15 and A.16) and prove validity (Theorems A.17

and A.18) in Appendix G. �

VI. Application: Conditional Probabilistic Separation Logic

As our final application, we design a separation logic for

probabilistic programs. We work with a simplified probabilis-

tic imperative language with assignments, sampling, sequenc-

ing, and conditionals; our goal is to show how a DIBI-based

program logic could work in the simplest setting. For lack of

space, we only show a few proof rules and example programs

here; we defer the full presentation of the separation logic, the

metatheory, and the examples to Appendix H.

Proof rules: CPSL includes novel proof rules for ran-

domized conditionals and inherits the frame rule from PSL [9].

Here, we show two of the rules and explain how to use them

in the simple program from Eq. (1), reproduced here:

Simple := x $← B1/2; y $← B1/2; z← x ∨ y

CPSL has Hoare-style rules for sampling and assignments:

Samp
x < FV(d) ∪ FV(P)

⊢ {P} x $← d {P # (FV(d) ⊲ [x])}

Assn
x < FV(e) ∪ FV(P)

⊢ {P} x← e {P # (FV(e) ⊲ [x])}

Using Samp and the fact that the coin-flip distribution B1/2 has

no free variables, we can infer:

⊢ {⊤} x $← B1/2 {(∅ ⊲ [x])} ⊢ {⊤} y $← B1/2 {(∅ ⊲ [y])}

Applying a variant of the frame rule, we are able to derive:

⊢ {⊤} x $← B1/2; y $← B1/2 {(∅ ⊲ [x]) ∗ (∅ ⊲ [y])}

Using Assn on P = (∅ ⊲ [x]) ∗ (∅ ⊲ [y]) and the fact that z is

not a free variable in either P or x ∨ y:

⊢ {P} z← x ∨ y {P # ({x, y} ⊲ [z])}

Putting it all together, we get the validity of triple:

⊢ {⊤} Simple {((∅ ⊲ [x]) ∗ (∅ ⊲ [y])) # ({x, y} ⊲ [z])}

stating that z depends on x and y, which are independent.

Example programs: Figure 6 introduces two example

programs. CommonCause (Figure 6a) models a distribution

where two random observations share a common cause.

Specifically, we consider z, x, and y to be independent random

samples, and a and b to be values computed from (x, z)

and (y, z), respectively. Intuitively, z, x, y could represent

independent noisy measurements, while a and b could rep-

resent quantities derived from these measurements. Since a

and b share a common source of randomness z, they are not

independent. However, a and b are independent conditioned

on the value of z—this is a textbook example of conditional

z $← B1/2;
x $← B1/2;
y $← B1/2;
a← x ∨ z;
b← y ∨ z

(a) CommonCause

z $← B1/2;
if z then

x $← Bp; y $← Bp

else
x $← Bq; y $← Bq

(b) CondSamples

Fig. 6: Example programs

independence. Our program logic can establish the following

judgment capturing this fact:

⊢ {⊤} CommonCause {(∅ ⊲ [z]) # ((z ⊲ [a]) ∗ (z ⊲ [b]))}

The program CondSamples (Figure 6b) is a bit more com-

plex: it branches on a random value z, and then assigns x

and y with two independent samples from Bp in the true

branch, and Bq in the false branch. While we might think

that x and y are independent at the end of the program since

they are independent at the end of each branch, this is not true

because their distributions are different in the two branches.

For example, suppose that p = 1 and q = 0. Then at the end

of the first branch (x, y) = (tt, tt) with probability 1, while at

the end of the second branch (x, y) = (ff , ff) with probability

1. Thus observing whether x = tt or x = ff determines the

value of y—clearly, x and y can’t be independent. However,

x and y are independent conditioned on z. Using our program

logic’s proof rules for conditionals, we are able to prove the

following judgment capturing this fact:

⊢ {⊤} CondSamples {(∅ ⊲ [z]) # ((z ⊲ [x]) ∗ (z ⊲ [y]))}

The full development of the separation logic, consisting of

a proof system, a soundness theorem, along with the detailed

verification of the two examples above, can be found in

Appendix H.

VII. RelatedWork

Bunched implications and other non-classical logics:

DIBI extends the logic of bunched implications (BI) [11],

and shares many similarities: DIBI can be given a Kripke-

style resource semantics, just like BI, and our completeness

proof relies on a general framework for proving completeness

for bunched logics [14]. The non-commutative conjunction

and exchange rules are inspired by the logic CKBI [14].

The main difference is that our exchange rule is reversed,

due to our reading of separating conjunction ∗ as “can be

combined independently”, rather than “interleaved”. In terms

of models, the probabilistic model of DIBI can be seen as a

natural extension of the probabilistic model for BI [9]—by

lifting distributions to kernels, DIBI is able to reason about

dependencies, while probabilistic BI is not.

There are other non-classical logics that aim to model

dependencies. Independence-friendly (IF) logic [28] and de-

pendence logic [29] introduce new quantifiers and proposi-

tional atoms to state that a variable depends, or does not

depend, on another variable; these logics are each equivalent

in expressivity to existential second-order logic. More recently,

11

Durand et al. [30] proposed a probabilistic team semantics for

dependence logic, and Hannula et al. [31] gave a descriptive

complexity result connecting this logic to real-valued Turing

machines. Under probabilistic team semantics, the universal

and existential quantifiers bear a resemblance to our separating

and dependent conjunctions, respectively. It would be interest-

ing to understand the relation between these two logics, akin

to how the semantics of propositional IF forms a model of

BI [32]

Conditional independence, join dependency, and logic:

There is a long line of research on logical characterizations of

conditional independence and join dependency. The literature

is too vast to survey here. On the CI side, we can point to work

by Geiger and Pearl [33] on graphical models; on the JD side,

the survey by Fagin and Vardi [34] describes the history of the

area in database theory. There are several broadly similar ap-

proaches to axiomatizing the general properties of conditional

dependence, including graphoids [10] and separoids [26].

Categorical probability: The view of conditional inde-

pendence as a factorization of Markov kernels has previously

been explored [35, 36, 37]. Taking a different approach, Simp-

son [38] has recently introduced category-theoretic structures

for modeling conditional independence, capturing CI and JD

as well as analogues in heaps and nominal sets [39]. Roughly

speaking, conditional independence in heaps requires two

disjoint portions except for a common overlap contained in

the part that is conditioned; this notion can be smoothly

accommodated in our framework as a DIBI model where

kernels are Kleisli arrows for the identity monad ([40]) also

consider a similar notion of separation). Simpson’s notion of

conditional independence in nominal sets suggests that there

might be a DIBI model where kernels are Kleisli arrows for

some monad in nominal sets, although the appropriate monad

is unclear.

Program logics: Bunched logics are well-known for their

role in separation logics, program logics for reasoning about

heap-manipulating [12] and concurrent programs [41, 42].

Recently, separation logics have been developed for proba-

bilistic programs. Our work is most related to PSL [9], where

separation models probabilistic independence. Batz et al. [43]

gives a different, quantitative interpretation to separation in

their logic QSL, and uses it to verify expected-value properties

of probabilistic heap-manipulating programs. Finally, there are

more traditional program logics for probabilistic program. The

Ellora logic by Barthe et al. [44] has assertions for modeling

independence, but works with a classical logic. As a result,

basic structural properties of independence must be introduced

as axioms, rather than being built-in to the logical connectives.

VIII. Discussion and Future Directions

We have presented DIBI, a new bunched logic to rea-

son about dependence and independence, together with its

Kripke semantics and a sound and complete proof system.

We provided two concrete models, based on Markov and

powerset kernels, that can capture conditional independence-

like notions. We see several directions for further investigation.

Generalizing the two models: The probabilistic and re-

lational models share many similarities: both MD and MP are

sets of Kleisli arrows, and use Kleisli composition to interpret

⊙; both ⊕ operators correspond to parallel composition. Since

both the distribution and powerset monads are commutative

strong monads [45, 46], which come with a double strength

bi-functor stA,B : T (A) × T (B) → T (A × B) that seems

suitable for defining ⊕, it is natural to consider more general

models based on Kleisli arrows for such monads. Indeed,

variants of conditional independence could make sense in other

settings; taking the multiset monad instead of the powerset

monad would lead to a model where we can assert join

dependency in bags, rather than relations, and the free vector

space monad could be connected to subspace models of the

graphoid axioms [47].

However, it is not easy to define an operation generalizing

⊕ from our concrete models. The obvious choice—taking ⊕

as f1 ⊕ f2 = (f1 ⊗ f2); st—gives a total operation, but in our

concrete models ⊕ is partial, since it is not possible to compose

two arrows that disagree on their domain overlap. For instance

in the probabilistic model, there is no sensible way to use ⊕

to combine a kernel encoding the normal distribution N(0, 1)

on x with another encoding the Dirac distribution of x = 1.

We do not know how to model such coherence requirements

between two Kleisli arrows in a general categorical model,

and we leave this investigation to future work.

Restriction and intuitionistic DIBI: A challenge in de-

signing the program logic is ensuring that formulas in the

assertion logic satisfy restriction (see Appendix J), and one

may wonder if a classical version of DIBI would be more

suitable for the program logic—if assertions were not required

to be preserved under kernel extensions, it might be easier

to show that they satisfy restriction. However, a classical

logic would require assertions to specify the dependence

structure of all variables, which can be quite complicated.

Moreover, intuitionistic logics like probabilistic BI can also

satisfy the restriction property, so the relevant design choice

is not classical versus intuitionistic.

Rather, the more important point appears to be whether the

preorder can extend a kernel’s domain. If this is allowed—

as in DIBI—then kernels satisfying an assertion may have

extraneous variables in the domain. However, this choice also

makes the dependent conjunction P # Q more flexible: Q does

not need to exactly describe the domain of the second kernel,

which is useful since the range of the first kernel cannot be

constrained by P. This underlying tension—allowing the range

to be extended, while restricting the domain—is an interesting

subject for future investigation.

Acknowledgments

We thank the anonymous reviewers for thoughtful com-

ments and feedback. This work was partially supported by

the EPSRC grant (EP/S013008/1), the ERC Consolidator

Grant AutoProbe (#101002697) and a Royal Society Wolfson

Fellowship. This work was also partially supported by the NSF

(#2023222 and #1943130) and Facebook.

12

References

[1] D. Kozen, “Semantics of probabilistic programs,”

Journal of Computer and System Sciences, vol. 22,

no. 3, pp. 328–350, 1981. [Online]. Available:

https://doi.org/10.1016/0022-0000(81)90036-2

[2] A. D. Gordon, T. Graepel, N. Rolland, C. V.

Russo, J. Borgström, and J. Guiver, “Tabular: a

schema-driven probabilistic programming language,” in

ACM SIGPLAN–SIGACT Symposium on Principles

of Programming Languages (POPL), San Diego,

California. ACM, 2014, pp. 321–334. [Online].

Available: https://doi.org/10.1145/2535838.2535850

[3] N. D. Goodman, V. K. Mansinghka, D. M. Roy,

K. Bonawitz, and J. B. Tenenbaum, “Church: a language

for generative models,” CoRR, 2012. [Online]. Available:

http://arxiv.org/abs/1206.3255

[4] F. D. Wood, J. van de Meent, and V. Mansinghka, “A

new approach to probabilistic programming inference,”

in International Conference on Artificial Intelligence and

Statistics (AISTATS), Reykjavik, Iceland, 2014, pp. 1024–

1032.

[5] T. Ehrhard, M. Pagani, and C. Tasson, “Measurable

cones and stable, measurable functions: a model for

probabilistic higher-order programming,” Proceedings

of the ACM on Programming Languages, no.

POPL, pp. 59:1–59:28, 2018. [Online]. Available:

https://doi.org/10.1145/3158147

[6] S. Staton, H. Yang, F. D. Wood, C. Heunen, and

O. Kammar, “Semantics for probabilistic programming:

higher-order functions, continuous distributions, and

soft constraints,” in IEEE Symposium on Logic in

Computer Science (LICS), New York, New York.

ACM, 2016, pp. 525–534. [Online]. Available:

https://doi.org/10.1145/2933575.2935313

[7] F. Dahlqvist and D. Kozen, “Semantics of higher-order

probabilistic programs with conditioning,” Proceedings

of the ACM on Programming Languages, no.

POPL, pp. 57:1–57:29, 2020. [Online]. Available:

https://doi.org/10.1145/3371125

[8] S. Barocas, M. Hardt, and A. Narayanan, Fairness and

Machine Learning, 2019, http://www.fairmlbook.org.

[9] G. Barthe, J. Hsu, and K. Liao, “A probabilistic sepa-

ration logic,” Proceedings of the ACM on Programming

Languages, no. POPL, pp. 55:1–55:30, 2019.

[10] J. Pearl and A. Paz, Graphoids: A graph-based logic for

reasoning about relevance relations. : University of

California (Los Angeles). Computer Science Department,

1985.

[11] P. W. O’Hearn and D. J. Pym, “The logic of bunched

implications,” Bulletin of Symbolic Logic, vol. 5, pp.

215–244, 1999.

[12] P. W. O’Hearn, J. C. Reynolds, and H. Yang, “Local

reasoning about programs that alter data structures,”

in International Workshop on Computer Science Logic

(CSL), Paris, France, 2001, pp. 1–19. [Online].

Available: https://doi.org/10.1007/3-540-44802-0 1

[13] D. Galmiche, M. Marti, and D. Méry, “Relating labelled

and label-free bunched calculi in BI logic,” in Automated

Reasoning with Analytic Tableaux and Related Methods.

Springer International Publishing, 2019, pp. 130–146.

[14] S. Docherty, “Bunched logics: a uniform approach,”

Ph.D. dissertation, UCL (University College London),

2019.

[15] D. Galmiche and D. Larchey-Wendling, “Expressivity

properties of Boolean BI through relational models,”

in Foundations of Software Technology and Theoretical

Computer Science (FSTTCS), Kolkata, India. Springer,

2006, pp. 357–368.

[16] Q. Cao, S. Cuellar, and A. W. Appel, “Bringing order

to the separation logic jungle,” in Asian Symposium on

Programming Languages and Systems (APLAS), Suzhou,

China. Springer, 2017, pp. 190–211.

[17] D. J. Pym, P. W. O’Hearn, and H. Yang,

“Possible worlds and resources: the semantics

of BI,” Theoretical Computer Science, vol.

315, no. 1, pp. 257–305, 2004. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0304397503006248

[18] T. Hoare, B. Möller, G. Struth, and I. Wehrman, “Con-

current Kleene algebra and its foundations,” The Journal

of Logic and Algebraic Programming, vol. 80, no. 6, pp.

266–296, 2011.

[19] R. Goldblatt, “Varieties of complex algebras,”

Annals of Pure and Applied Logic, vol. 44,

no. 3, pp. 173–242, 1989. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/0168007289900328

[20] M. Giry, “A categorical approach to probability theory,”

Categorical aspects of topology and analysis, pp. 68–85,

1982.

[21] E. Moggi, “Notions of computation and monads,”

Information and Computation, vol. 93, no. 1, pp.

55–92, 1991, selections from 1989 IEEE Symposium

on Logic in Computer Science. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/0890540191900524

[22] P. Panangaden, Labelled Markov Processes. Imperial

College Press, 2009.

[23] R. Fagin, “Multivalued dependencies and a new normal

form for relational databases,” ACM Trans. Database

Syst., vol. 2, no. 3, pp. 262–278, 1977. [Online].

Available: https://doi.org/10.1145/320557.320571

[24] S. Abiteboul, R. Hull, and V. Vianu, Foundations of

databases. : Addison-Wesley Reading, 1995, vol. 8.

[25] A. P. Dawid, “Conditional independence in statistical

theory,” Journal of the Royal Statistical Society: Series

B (Methodological), vol. 41, no. 1, pp. 1–15, 1979.

[26] ——, “Separoids: A mathematical framework for condi-

tional independence and irrelevance,” Annals of Mathe-

matics and Artificial Intelligence, vol. 32, no. 1-4, pp.

335–372, 2001.

[27] J. Pearl and T. Verma, “The logic of

representing dependencies by directed graphs,” in

AAAI Conference on Artificial Intelligence, Seattle,

13

https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1145/2535838.2535850
http://arxiv.org/abs/1206.3255
https://doi.org/10.1145/3158147
https://doi.org/10.1145/2933575.2935313
https://doi.org/10.1145/3371125
http://www.fairmlbook.org
https://doi.org/10.1007/3-540-44802-0_1
http://www.sciencedirect.com/science/article/pii/S0304397503006248
http://www.sciencedirect.com/science/article/pii/0168007289900328
http://www.sciencedirect.com/science/article/pii/0890540191900524
https://doi.org/10.1145/320557.320571

WA, 1987, pp. 374–379. [Online]. Available:

http://www.aaai.org/Library/AAAI/1987/aaai87-067.php

[28] J. Hintikka and G. Sandu, “Informational independence

as a semantical phenomenon,” in Logic, Methodology

and Philosophy of Science VIII, ser. Studies in

Logic and the Foundations of Mathematics. Elsevier,

1989, vol. 126, pp. 571–589. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0049237X08700661

[29] J. Väänänen, Dependence Logic: A New Approach to

Independence Friendly Logic, ser. London Mathematical

Society Student Texts. Cambridge University Press,

2007.

[30] A. Durand, M. Hannula, J. Kontinen, A. Meier,

and J. Virtema, “Probabilistic team semantics,” in

International Symposium on Foundations of Information

and Knowledge Systems (FoIKS), Budapest, Hungary,

ser. Lecture Notes in Computer Science, vol. 10833.

Springer, 2018, pp. 186–206. [Online]. Available:

https://doi.org/10.1007/978-3-319-90050-6 11

[31] M. Hannula, J. Kontinen, J. Van den Bussche, and

J. Virtema, “Descriptive complexity of real computation

and probabilistic independence logic,” in IEEE Sympo-

sium on Logic in Computer Science (LICS), Saarbrücken,

Germany, 2020, pp. 550–563.

[32] S. Abramsky and J. A. Väänänen, “From IF to BI,”

Synthese, vol. 167, no. 2, pp. 207–230, 2009. [Online].

Available: https://doi.org/10.1007/s11229-008-9415-6

[33] D. Geiger and J. Pearl, “Logical and algorithmic

properties of conditional independence and graphical

models,” The Annals of Statistics, vol. 21,

no. 4, pp. 2001–2021, 1993. [Online]. Available:

http://www.jstor.org/stable/2242326

[34] R. Fagin and M. Y. Vardi, “The theory of

data dependencies - an overview,” in International

Colloquium on Automata, Languages and Programming

(ICALP), Antwerp, Belgium, 1984, pp. 1–22. [Online].

Available: https://doi.org/10.1007/3-540-13345-3 1

[35] B. Jacobs and F. Zanasi, “A formal semantics of influence

in bayesian reasoning,” in International Symposium on

Mathematical Foundations of Computer Science (MFCS),

Aalborg, Denmark, ser. Leibniz International Proceedings

in Informatics, vol. 83. Schloss Dagstuhl–Leibniz

Center for Informatics, 2017, pp. 21:1–21:14. [Online].

Available: https://doi.org/10.4230/LIPIcs.MFCS.2017.21

[36] K. Cho and B. Jacobs, “Disintegration and bayesian

inversion via string diagrams,” Math. Struct. Comput.

Sci., vol. 29, no. 7, pp. 938–971, 2019. [Online].

Available: https://doi.org/10.1017/S0960129518000488

[37] T. Fritz, “A synthetic approach to markov

kernels, conditional independence and theorems

on sufficient statistics,” Advances in Mathematics,

vol. 370, pp. 107–239, 2020. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0001870820302656

[38] A. Simpson, “Category-theoretic structure for

independence and conditional independence,” in

Conference on the Mathematical Foundations

of Programming Semantics (MFPS), Halifax,

Canada, 2018, pp. 281–297. [Online]. Available:

https://doi.org/10.1016/j.entcs.2018.03.028

[39] A. M. Pitts, Nominal Sets: Names and Symmetry in

Computer Science, ser. Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press, 2013.

[40] J. Brotherston and C. Calcagno, “Classical BI: A

logic for reasoning about dualising resources,” in

ACM SIGPLAN–SIGACT Symposium on Principles of

Programming Languages (POPL), Savannah, Georgia.

ACM, 2009, pp. 328—-339. [Online]. Available:

https://doi.org/10.1145/1480881.1480923

[41] P. W. O’Hearn, “Resources, concurrency, and local

reasoning,” Theoretical Computer Science, vol. 375,

no. 1, pp. 271–307, 2007, festschrift for John

C. Reynolds’s 70th birthday. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S030439750600925X

[42] S. Brookes, “A semantics for concurrent separation

logic,” Theoretical Computer Science, vol. 375,

no. 1–3, pp. 227–270, 2007. [Online]. Available:

https://doi.org/10.1016/j.tcs.2006.12.034

[43] K. Batz, B. L. Kaminski, J. Katoen, C. Matheja,

and T. Noll, “Quantitative separation logic: a logic

for reasoning about probabilistic pointer programs,”

Proceedings of the ACM on Programming Languages,

no. POPL, pp. 34:1–34:29, 2019. [Online]. Available:

https://doi.org/10.1145/3290347

[44] G. Barthe, T. Espitau, M. Gaboardi, B. Grégoire,

J. Hsu, and P. Strub, “An assertion-based program

logic for probabilistic programs,” in European

Symposium on Programming (ESOP), Thessaloniki,

Greece, 2018, pp. 117–144. [Online]. Available:

https://doi.org/10.1007/978-3-319-89884-1 5

[45] B. Jacobs, “Semantics of weakening and contraction,”

Annals of pure and applied logic, vol. 69, no. 1, pp. 73–

106, 1994.

[46] A. Kock, “Monads on symmetric monoidal closed cate-

gories,” Archiv der Mathematik, vol. 21, no. 1, pp. 1–10,

1970.

[47] S. Lauritzen, Graphical Models. Clarendon Press, 1996.

14

http://www.aaai.org/Library/AAAI/1987/aaai87-067.php
http://www.sciencedirect.com/science/article/pii/S0049237X08700661
https://doi.org/10.1007/978-3-319-90050-6_11
https://doi.org/10.1007/s11229-008-9415-6
http://www.jstor.org/stable/2242326
https://doi.org/10.1007/3-540-13345-3_1
https://doi.org/10.4230/LIPIcs.MFCS.2017.21
https://doi.org/10.1017/S0960129518000488
http://www.sciencedirect.com/science/article/pii/S0001870820302656
https://doi.org/10.1016/j.entcs.2018.03.028
https://doi.org/10.1145/1480881.1480923
http://www.sciencedirect.com/science/article/pii/S030439750600925X
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1145/3290347
https://doi.org/10.1007/978-3-319-89884-1_5

Appendix

A. Section III: omitted proof

Lemma A.1. P ∗ Q ⊢ P # Q

Proof. For better readability, we break the proof tree down into two components.

#-Right Unit
P ⊢ P # I

#-Left Unit
Q ⊢ I # Q

∗-Conj
P ∗ Q ⊢ (P # I) ∗ (I # Q)

RevEx
(P # I) ∗ (I # Q) ⊢ (P ∗ I) # (I ∗ Q)

Cut
P ∗ Q ⊢ (P ∗ I) # (I ∗ Q)

With P ∗ Q ⊢ (P ∗ I) # (I ∗ Q), we construct the following

P ∗ Q ⊢ (P ∗ I) # (I ∗ Q)

∗-Unit
P ∗ I ⊢ P

∗-Comm
I ∗ Q ⊢ Q ∗ I

∗-Unit
Q ∗ I ⊢ Q

Cut
I ∗ Q ⊢ Q

#-Conj
(P ∗ I) # (I ∗ Q) ⊢ P # Q

Cut
P ∗ Q ⊢ P # Q

This proof uses the admissible rule Cut, which can be derived as follows:

Q ⊢ R
∧2

P ∧ Q ⊢ R
→

P ⊢ Q→ R P ⊢ Q
MP

P ⊢ R

�

B. Section III-C, Soundness and Completeness: Omitted Details

Theorem III.2. P ⊢ Q is derivable iff JPK ≤ JQK for all algebraic interpretations J−K.

Proof. Soundness can be established by a straightforward induction on the proof rules. For completeness, we can define a

Lindenbaum-Tarski algebra by quotienting FormDIBI by the equivalence relation P ≡ Q iff P ⊢ Q and Q ⊢ P derivable. This

yields a DIBI algebra, and moreover, [P]≡ ≤ [Q]≡ iff [P → Q]≡ = [⊤]≡ iff ⊤ ⊢ P → Q derivable iff P ⊢ Q derivable. Hence

for any P,Q such that P ⊢ Q is not derivable, in the Lindenbaum-Tarski algebra (with the canonical interpretation sending

formulas to their equivalence class) [P]≡ � [Q]≡ holds, establishing completeness. �

A filter on a bounded distributive lattice A is a non-empty set F ⊆ A such that, for all x, y ∈ A, (1) x ∈ F and x ≤ y implies

y ∈ F; and (2) x, y ∈ F implies x ∧ y ∈ F. It is a proper filter if it additionally satisfies (3) ⊥ < F, and a prime filter if in

addition it also satisfies (4) x ∨ y ∈ F implies x ∈ F or y ∈ F. The order dual version of these definitions gives the notions of

ideal, proper ideal and prime ideal. We denote the sets of proper and prime filters of A by FA and PFA respectively, and the

sets of proper and prime ideals of A by IA and PIA respectively.

To prove that prime filter frames are DIBI frames we require an auxiliary lemma that can be used to establish the existence

of prime filters. First some terminology: a ⊆-chain is a sequence of sets (Xα)α<λ such that α ≤ α′ implies Xα ⊆ Xα′ . A basic

fact about proper filters (ideals) is that the union of a ⊆-chain of proper filters (ideals) is itself a proper filter (ideal). We lift

the terminology to n-tuples of sets by determining (X1
α, . . . , X

n
α)α<λ to be a ⊆-chain if each (Xi

α)α<λ is a ⊆-chain.

Definition A.1 (Prime Predicate). A prime predicate is a map P : Fn
A
× Im
A
→ {0, 1}, where n,m ≥ 0 and n + m ≥ 1, such that

a) Given a ⊆-chain (F0
α, . . . , F

n
α, I

0
α, . . . , I

m
α)α<λ of proper filters/ideals,

min{P(F0
α, . . . , I

m
α) | α < λ} ≤ P(

⋃

α

F0
α, . . . ,

⋃

α

Im
α);

b) P(. . . ,H0 ∩ H1, . . .) ≤ max{P(. . . ,H0, . . .), P(. . . ,H1, . . .)}.

Intuitively, a prime predicate is a property of proper filter/ideal sequences whose truth value is inherited by unions of chains,

and is witnessed by one of H0 or H1 whenever witnessed by H0 ∩ H1. The proof of the next lemma can be found in [14].

Lemma A.2 (Prime Extension Lemma [14, Lemma 5.7]). If P is an (n+m)-ary prime predicate and F0, . . . , Fn, I0, . . . , Im an

(n+m)-tuple of proper filters and ideals such that P(F0, . . . , Fn, I0, . . . , Im) = 1 then there exists a (n+m)-tuple of prime filters

and ideals F
pr

0
, . . . , F

pr
n , I

pr

0
, . . . I

pr
m such that P(F

pr

0
, . . . , F

pr
n , I

pr

0
, . . . I

pr
m) = 1. �

Now, whenever prime filters are required that satisfy a particular property (for example, an existentially quantified consequent

of a frame axiom), it is sufficient to show that the property defines a prime predicate and there exists proper filters satisfying

it. We also note the following useful properties of DIBI algebras, which are special cases of those found in [14, Proposition

6.2].

15

Lemma A.3. Given any DIBI algebra A, for all a, b, c ∈ A and ◦ ∈ {∗, #}, the following properties hold:

(a ∨ b) ◦ c = (a ◦ c) ∨ (b ◦ c) a ◦ (b ∨ c) = (a ◦ b) ∨ (a ◦ c)

a ≤ a′ and b ≤ b′ implies a ◦ b ≤ a′ ◦ b′ ⊥ ◦ a = ⊥ = a ◦ ⊥

Proposition A.4. For any DIBI algebra A, the prime filter frame Pr(A) is a DIBI frame.

Proof. All but one of the frame axioms can be verified in an identical fashion to the analogous proof for BI [14, Lemma

6.24], and ⊕A and ⊙A are both Up-Closed and Down-Closed. We focus on the novel frame axiom: Reverse Exchange. For

readability we omit the A subscripts on operators. Assume there are prime filters such that Fx ⊇ F′x ∈ Fy ⊕ Fz, Fy ∈ Fy1
⊙ Fy2

and Fz ∈ Fz1
⊙ Fz2

. We will prove that

P(F,G) =

1 if Fx ∈ F ⊙G and F ∈ Fy1

⊕ Fz1
and G ∈ Fy2

⊕ Fz2

0 otherwise

is a prime predicate, abusing notation to allow ⊙ and ⊕ to be defined for non-prime filters.

For a), suppose (Fα,Gα)α≤λ is a ⊆-chain such that for all α, P(Fα,Gα) = 1. Call F =
⋃
α Fα and G =

⋃
αGα. We must

show that P(F,G) = 1. Let a ∈ F, b ∈ G. Then a ∈ Fα, b ∈ Gβ for some α, β. Wolog, we may assume α ≤ β. Then since

Fx ∈ Fβ ⊙Gβ, we have that a # b ∈ Fx as required, so Fx ∈ F ⊙G. F ∈ Fy1
⊕ Fz1

and G ∈ Fy2
⊕ Fz2

hold trivially.

For b), suppose for contradiction that P(F ∩ F′,G) = 1, P(F,G) = 0 and P(F′,G) = 0. From P(F ∩ F′,G) = 1 we know

F, F′ ∈ Fy1
⊕ Fy2

: for all a ∈ Fy1
, b ∈ Fy2

, a ∗ b ∈ F ∩ F′ ⊆ F, F′. So the only way this can be the case is if Fx < F ⊙ G

and Fx < F′ ⊙ G. Hence there exists a ∈ F, b ∈ G such that a # b < Fx, and a′ ∈ F′, b′ ∈ G such that a′ # b′ < Fx. It

follows by properties of filters that a ∨ a′ ∈ F ∩ F′ and b′′ = b ∧ b′ ∈ G. Hence (a ∨ a′) ∗ b′′ ∈ Fx by assumption, and

(a ∨ a′) ∗ b′′ = (a ∗ b′′) ∨ (a′ ∗ b′′). Since Fx is prime, this means either a ∗ b′′ ∈ Fx or a′ ∗ b′′ ∈ Fx. But that’s not possible:

a ∗ b′′ ≤ a ∗ b and a′ ∗ b′′ ≤ a′ ∗ b′, so whichever holds results in a contradiction. Hence either P(F,G) = 1 or P(F′,G) = 1

as required. The argument for the second component is similar.

Now consider F = {c | ∃a ∈ Fy1
, b ∈ Fz1

(c ≥ a ∗ b)} and G = {c | ∃a ∈ Fy2
, b ∈ Fz2

(c ≥ a ∗ b)}. These are both proper filters.

Focusing on F (both arguments are essentially identical), it is clearly upwards-closed. Further, it is closed under ∧: if c, c′ ∈ F

because c ≥ a ∗ b and c′ ≥ a′ ∗ b′ for a, a′ ∈ Fy1
and b, b′ ∈ Fz1

then c ∧ c′ ≥ (a ∗ b) ∧ (a′ ∗ b′) ≥ (a ∧ a′) ∗ (b ∧ b′), with

a ∧ a′ ∈ Fy1
and b ∧ b′ ∈ Fz1

. It is proper, because if ⊥ ∈ F, then there exists a ∈ Fy1
and b ∈ Fz1

such that a ∗ b = ⊥. Let

c ∈ Fy2
and d ∈ Fz2

be arbitrary. Then by our initial assumption, a # c ∈ Fy and b # d ∈ Fz. Hence (a # c) ∗ (b # d) ∈ Fx′ ⊆ Fx.

However, by the Reverse Exchange algebraic axiom, (a # c) ∗ (b # d) ≤ (a ∗ b) # (c ∗ d) = ⊥ # (c ∗ d) = ⊥. By upwards-closure,

⊥ ∈ Fx, which is supposed to be a prime, and therefore proper, filter, which gives a contradiction.

By definition, F ∈ Fy1
⊕ Fz1

and G ∈ Fy2
⊕ Fz2

. To see that Fx ∈ F ⊙ G, let c ∈ F (with c ≥ a ∗ b for some a ∈ Fy1
and

b ∈ Fz1
) and c′ ∈ G (with c′ ≥ a′ ∗ b′ for some a′ ∈ Fy2

and b ∈ Fz2
). By assumption a # a′ ∈ Fy and b # b′ ∈ Fz, and so

(a # a′) ∗ (b # b′) ∈ Fx′ ⊆ Fx. By the algebraic Reverse Exchange axiom, we obtain (a ∗ b) # (a′ ∗ b′) ∈ Fx, and by monotonicity

of # and upwards-closure of Fx we obtain c # c′ ∈ Fx. Hence P(F,G) = 1 and by Lemma A.2 there are prime F,G with

P(F,G) = 1. This verifies that the Reverse Exchange frame axiom holds. �

Proposition A.5. For any DIBI frame X, the complex algebra Com(X) is a DIBI algebra.

Proof. We focus on the Reverse Exchange algebraic axiom (the other DIBI algebra properties can be proven in identical

fashion to the analogous proof for BI [14, Lemma 6.22]). Suppose x ∈ (A ⊲ B) • (C ⊲ D). Then there exists x′, y, z such that

x ⊒ x′ ∈ y ⊕ z, with y ∈ A ⊲ B and z ∈ C ⊲ D. In turn, there thus exists y1, y2, z1, z2 such that y ∈ y1 ⊙ y2 and z ∈ z1 ⊙ z2 with

y1 ∈ A, y2 ∈ B, z1 ∈ C and z2 ∈ D. By the Reverse Exchange frame axiom, there exist u, v such that u ∈ y1 ⊕ z1, v ∈ y2 ⊕ z2 and

x′ ∈ u ⊙ v. Hence u ∈ A • C, v ∈ B • D and x′ ∈ (A •C) ⊲ (B • D). Since x′ ⊑ x and (A •C) ⊲ (B • D) is an upwards-closed set,

x ∈ (A • C) ⊲ (B • D) as required. �

Now clearly every persistent valuation V on a Kripke frame X generates an algebraic interpretation J−KV on Com(X) with

the property that x |=V P iff x ∈ JPK (note that the complex algebra operations are defined precisely as the corresponding

semantic clauses). Similarly, by the Representation Theorem, given an algebraic interpretation J−K on A, a persistent valuation

VJ−K on Pr(A) can be defined by VJ−K(p) = {F ∈ PFA | JpK ∈ F} = θA(JpK). That θ is a monomorphism into Com(Pr(A))

establishes that, for all P ∈ FormDIBI, F |=VJ−K
P iff JPK ∈ F.

Theorem III.6 (Soundness and Completeness). P ⊢ Q is derivable iff P |= Q.

Proof. Assume P 6|= Q. Then there exists a DIBI model (X,V) and a state x ∈ X such that x |= P but x 6|= Q. Hence

JPKV * JQKV in Com(X), so, by Theorem III.2, P ⊢ Q is not derivable. Now assume P ⊢ Q is not derivable. By Theorem III.2

there exists a DIBI algebra A and an interpretation J−K such that JPK � JQK. From this it can be established that there is a

prime filter F on A such that JPK ∈ F and JQK < F. Hence F |=VJ−K
P but F 6|=VJ−K

Q, so P 6|= Q. �

16

C. Section IV-B, probabilistic model: omitted proofs

a) Remark: In the following, we sometimes abbreviate dom(fi) as Di and range(fi) as Ri.
In the proof of Theorem IV.1 we use that MD is closed under ⊕ and ⊙, which we prove next.

Lemma A.6. MD is closed under ⊕ and ⊙.

Proof. For any f1, f2 ∈ MD, we need to show that

• If f1 ⊕ f2 is defined, then f1 ⊕ f2 ∈ MD. Recall that f1 ⊕ f2 is defined if and only if R1 ∩ R2 = D1 ∩ D2, which implies that

(R1 ∪ R2) \ (D1 ∪ D1) = (R1 \ D1) ∪ (R2 \ D2), and (R1 \ D1) ∩ (R2 \ D2) = ∅.
So we can split any memory assignment on (R1 ∪R2) \ (D1∪D2) into two disjoint parts, one on R1 \D1, another on R2 \D2.
State f1 ⊕ f2 preserves the input because for any d ∈Mem[D1 ∪ D2], we can obtain (⋆):

(πD1∪D2
(f1 ⊕ f2))(d)(d)

=
∑

x

(f1 ⊕ f2)(d)(d ⊲⊳ x) (x ∈Mem[(R1 ∪ R2) \ (D1 ∪ D2)])

†
=

∑

x1,x2

f1(dD1)(dD1 ⊲⊳ x1) · f2(dD2)(dD2 ⊲⊳ x2) (x1 ∈Mem[R1 \ D1], x2 ∈Mem[R2 \ D2])

=

∑

x1∈Mem[R1\D1]

f1(dD1)(dD1 ⊲⊳ x1)

 ·

∑

x2∈Mem[R2\D2]

f2(dD2)(dD2 ⊲⊳ x2)

= 1 · 1 = 1 (Using f1, f2 ∈ MD)

Step † follows using (R1∪R2)\(D1∪D1) = (R1\D1)∪(R2\D2) and (R1\D1)∩(R2\D2) = ∅. Then, for any d ∈Mem[D1∪D2],

(f1 ⊕ f2)(d) is a distribution since:∑

m∈Mem[R1∪R2]

(f1 ⊕ f2)(d)(m)

=
∑

m∈Mem[R1∪R2]

f1(dD1)(mR1) · f2(dD2)(mR2)

‡
=

∑

x1,x2

f1(dD1)(dD1 ⊲⊳ x1) · f2(dD2)(dD2 ⊲⊳ x2) (x1 ∈Mem[R1 \ D1], x2 ∈Mem[R2 \ D2])

= 1 (Using (⋆))

Step ‡ follows using (R1 \ D1) ∩ (R2 \ D2) = ∅, and the fi term is 0 when dDi , mDi .
Thus, f1 ⊕ f2 is a kernel in MD.

• If f1 ⊙ f2 is defined, then f1 ⊙ f2 ∈ MD. Recall that f1 ⊙ f2 : Mem[D1] → D(Mem[R2]) is defined iff R1 = D2. f1 ⊙ f2
preserves the input because for any d ∈Mem[D1], we can obtain (♠)

(πD1
f1 ⊙ f2)(d)(d)

=
∑

x∈Mem[R2\D1]

(f1 ⊙ f2)(d)(d ⊲⊳ x)

=
∑

x∈Mem[R2\D1]

f1(d)(d ⊲⊳ xR1\D1) · f2(d ⊲⊳ xR1\D1)(d ⊲⊳ x)

=
∑

x1

f1(d)(d ⊲⊳ x1) ·

∑

x2

f2(d ⊲⊳ x1)(d ⊲⊳ x1 ⊲⊳ x2)

 (x1 ∈Mem[R1 \ D1], x2 ∈Mem[R2 \ R1])

=
∑

x1∈Mem[R1\D1]

(f1(d)(d ⊲⊳ x1) · 1) (Using f2 ∈ MD)

= 1

Then, for any d ∈ D1, (f1 ⊙ f2)(d) is a distribution as∑

m∈R2

(f1 ⊙ f2)(d)(m) =
∑

m∈R2

f1(d)(mR1) · f2(mR1)(m) (Equation (7))

♥
=

∑

x∈R2\D1

f1(d)(d ⊲⊳ xR1\D1) · f2(d ⊲⊳ xR1\D1)(d ⊲⊳ x)

= 1 (Using (♠))

17

Step ♥ follows since the fi term is 0 when dDi , mDi .

Thus f1 ⊙ f2 is a kernel in MD. �

Lemma A.7. The probabilistic model MD is a T -model defined in Definition A.9, for T = D.

Proof. MD satisfies condition (1)–(4) and (10) by construction, so we only prove (5)–(9).

(5) We show that when (f ⊕ g) ⊕ h and f ⊕ (g ⊕ h) are defined, (f ⊕ g) ⊕ h = f ⊕ (g ⊕ h). Consider f : Mem[S] →

D(Mem[S ∪T]), g : Mem[U]→ D(Mem[U ∪V]), and h : Mem[W]→ D(Mem[W ∪ X]). For any d ∈Mem[S ∪U ∪W],

and m ∈Mem[S ∪ T ∪ U ∪ V ∪W ∪ X],

((f ⊕ g) ⊕ h)(d)(m) =
(
f (dS)(mS∪T) · g(dU)(mU∪V)

)
· h(dW)(mW∪X) (def. ⊕)

= f (dS)(mS∪T) ·
(
g(dU)(mU∪V) · h(dW)(mW∪X)

)

= (f ⊕ (g ⊕ h))(d)(m)

(6) When f1 ⊕ f2 and f2 ⊕ f1 defined, f1 ⊕ f2 = f2 ⊕ f1.

For any d ∈Mem[D1 ∪ D2], m ∈ D(Mem[R1 ∪ R2]) such that d ⊲⊳ m is defined,

(f1 ⊕ f2)(d)(m) := f1(dD1)(mR1) · f2(dD2)(mR2) = f2(dD2)(mR2) · f1(dD1)(mR1) = (f2 ⊕ f1)(d)(m)

Thus, f1 ⊕ f2 = f2 ⊕ f1.

(7) For any f : Mem[A]→ D(Mem[A ∪ X]) ∈ M, and any S ⊆ A, we must show

f ⊕ unitS = f

Since S ⊆ A, we have dom(f ⊕ unitS) = A∪ S = A = dom(f) and range(f ⊕ unitS) = A∪ X ∪ S = A∪ X = range(f). For

any d ∈Mem[A], and any r ∈Mem[A ∪ X] such that d ⊗ r is defined, we have

(f ⊕ unitS)(d)(r) = f (d)(r) · unit(dS)(rS)

= f (d)(r) · 1 = f (d)(r)

Hence, f ⊕ unitS = f .

(8) We show that when both (f1 ⊕ f2) ⊙ (f3 ⊕ f4) and (f1 ⊙ f3) ⊕ (f2 ⊙ f4) are defined, it hold that

(f1 ⊕ f2) ⊙ (f3 ⊕ f4) = (f1 ⊙ f3) ⊕ (f2 ⊙ f4).

First note that the well-definedness of both terms we can conclude that D1 ⊆ R1 = D3 ⊆ R3, D2 ⊆ R2 = D4 ⊆ R4, where

Di = dom(fi) and Ri = range(fi). Moreover, both terms are of type Mem[D1 ∪ D2] → D(Mem[R3 ∪ R4]), and, for any

d ∈ D1 ∪ D2 and m ∈ R3 ∪ R4:

(
(f1 ⊕ f2) ⊙ (f3 ⊕ f4)

)
(d)(m) = (f1 ⊕ f2)(d)(mR1∪R2) · (f3 ⊕ f4)(mD3∪D4)(m) (Equation (7))

=
(
f1(dD1)(mR1) · f2(dD2)(mR2)

)
·
(
f3(mD3)(mR3) · f4(mD4)(mR4)

)
(
(f1 ⊙ f3) ⊕ (f2 ⊙ f4)

)
(d)(m) = (f1 ⊙ f3)(dD1)(mR3) · (f2 ⊙ f4)(dD2)(mR3)

=
(
f1(dD1)(mR1) · f3(dD3)(mR3)

)
·
(
f2(dD2)(mR2) · f4(dD4)(mR4)

)

=
(
f1(dD1)(mR1) · f2(dD2)(mR2)

)
·
(
f3(mD3)(mR3) · f4(mD4)(mR4)

)

Thus, (f1 ⊙ f3) ⊕ (f2 ⊙ f4) = (f1 ⊕ f2) ⊙ (f3 ⊕ f4).

(9) Proved in Theorem A.6 �

Theorem IV.1. (MD,⊑,⊕,⊙,MD) is a DIBI frame.

Proof. By Theorem A.37 that all T -models are DIBI frames and by Theorem A.7 that MD is a T -model, MD is a DIBI

frame. �

18

D. Section IV-D, relational model: omitted proofs

For the proof of Theorem IV.2 we need the following closure property.

Lemma A.8. MP is closed under ⊕ and ⊙.

Proof. For any f1, f2 ∈ MP, we need to show that :

• If f1 ⊕ f2 is defined, then f1 ⊕ f2 ∈ MP. Recall that f1 ⊕ f2 is defined if and only if R1 ∩ R2 = D1 ∩ D2, which implies that

(D1 ∪ D2) ∩ R1 = (D1 ∩ R1) ∪ (D2 ∩ R1) = D1 ∪ (D2 ∩ D1) = D1

(D1 ∪ D2) ∩ R2 = (D1 ∩ R2) ∪ (D2 ∩ R2) = (D1 ∩ D2) ∪ D2 = D2

We show f1 ⊕ f2 also preserves the input: for any d ∈Mem[D1 ∪ D2],

(πD1∪D2
(f1 ⊕ f2))(d) = πD1∪D2

((f1 ⊕ f2)(d))

= πD1∪D2
f1(dD1) ⊲⊳ f2(dD2)

†
= πD1

f1(dD1) ⊲⊳ πD1
f2(dD2)

= {dD1 } ⊲⊳ {dD2 } (Because f1, f2 ∈ MP)

= {d}.

Step † follows because (D1 ∪ D2) ∩ R1 = D1 and (D1 ∪ D2) ∩ R2 = D2.
• If f1⊙ f2 is defined, then f1⊙ f2 ∈ MP. Recall f1⊙ f2 is defined iff R1 = D2, and gives a map of type Mem[D1]→ D(Mem[R2]).

We show that f1 ⊙ f2 preserves the input: for any d ∈Mem[D1],

(πD1
f1 ⊙ f2)(d) = (πD1

f1)(d) (Because D1 ⊆ R1 = D2)

= unitD1
(d)

Thus, πD1
f1 ⊙ f2 = unitD1

and hence f1 ⊙ f2 preserves the input. �

Lemma A.9. The relational model MP is a T -model Definition A.9 for the monad T = P.

Proof. MP satisfies conditions (1)–(4) and (10) by construction, so we only prove (5)–(9).

(5) We show that when both (f⊕g)⊕h and f⊕(g⊕h) are defined, (f⊕g)⊕h = f⊕(g⊕h). Consider f : Mem[S]→ P(Mem[S∪T]),

g : Mem[U]→ P(Mem[U ∪ V]), and h : Mem[W]→ P(Mem[W ∪ X]). For any d ∈Mem[S ∪ U ∪W],

((f ⊕ g) ⊕ h)(d) =
(
f (dS) ⊲⊳ f2(dU)

)
⊲⊳ f3(dV)

= f (dS) ⊲⊳
(
g(dU) ⊲⊳ h(dV)

)
(By associativity of ⊲⊳)

= (f ⊕ (g ⊕ h))(d)

(6) When both f1 ⊕ f2 and f2 ⊕ f1 are defined, they are equal.
Analogous to MD, instead of followed from the commutativity of ·, it follows from the commutativity of ⊲⊳.

(7) For any f : Mem[A]→ P(Mem[A ∪ X]), and any S ⊆ A, we must show

f ⊕ unitS = f

Since S ⊆ A, so dom(f ⊕ unitS) = A ∪ S = A = dom(f), and range(f ⊕ unitS) = A ∪ X ∪ S = A ∪ X = range(f). For any

d ∈Mem[A], we have

(f ⊕ unitS)(d) = f (d) ⊲⊳ unitS (dS) = f (d) ⊲⊳ {dS } = f (d)

Hence, f ⊕ unitS = f .
(8) We show that when both (f1 ⊕ f2) ⊙ (f3 ⊕ f4) and (f1 ⊙ f3) ⊕ (f2 ⊙ f4) are defined, it hold that

(f1 ⊕ f2) ⊙ (f3 ⊕ f4) = (f1 ⊙ f3) ⊕ (f2 ⊙ f4).

Take Di = dom(fi) and Ri = range(fi) and note that well-definedness of the above terms implies that R1 = D3 and
R2 = D4. Both terms have type Mem[D1 ∪ D2]→ P(Mem[R3 ∪ R4]), and, for any d ∈ D1 ∪ D2:

(
(f1 ⊕ f2) ⊙ (f3 ⊕ f4)

)
(d) = {v | u ∈ (f1 ⊕ f2)(d), v ∈ (f3 ⊕ f4)(u)}

= {v | u ∈ f1(dD1) ⊲⊳ f2(dD2), v ∈ f3(uD3) ⊲⊳ f4(uD4)} (Def. ⊕)

= {v | v ∈ f3(x) ⊲⊳ f4(y), x ∈ f (dD1), y ∈ g(dD2)} (⋆)

= {v1 ⊲⊳ v2 | v1 ∈ f3(x), v2 ∈ f4(y), x ∈ f (dD1), y ∈ g(dD2)}
(
(f1 ⊙ f3) ⊕ (f2 ⊙ f4)

)
(d) = (f1 ⊙ f3)(dD1) ⊲⊳ (f2 ⊙ f4)(dD2) (Def. ⊕)

= {v1 | u1 ∈ f1(dD1), v1 ∈ f3(u1)} ⊲⊳ {v2 | u2 ∈ f2(dD2), v2 ∈ f4(u2)} (Def. ⊗)

= {v1 ⊲⊳ v2 | v1 ∈ f3(u1), v2 ∈ f4(u2), u1 ∈ f1(dD1), u2 ∈ f2(dD2)}

19

The step marked with (⋆) follows from the fact that R1 = D3 and R2 = D4 implies that for any u ∈ f (dD1) ⊲⊳ g(dD2), we

have uD3 = x ∈ f1(dD1) and uD3 = y ∈ f1(dD1). �

(9) Proved in Theorem A.8.

Theorem IV.2. (MP,⊑,⊕,⊙,MP) is a DIBI frame.

Proof. By Theorem A.37 that all T -models are DIBI frames and by Theorem A.9 that MP is a T -model, MP is a DIBI

frame. �

E. Section V-A, Conditional Independence: Omitted Details

First, we prove Theorem A.10 so we can use Theorem A.38 for MD.

Lemma A.10 (Disintegration). If f = f1 ⊙ f2 , then πR1
f = f1. Conversely, if πR1

f = f1, then there exists g such that f = f1⊙g.

Proof. For the forwards direction, suppose that f = f1 ⊙ f2. Then,

πR1
f = πR1

(f1 ⊙ f2) = f1 ⊙ (πR1
f2) = f1 ⊙ unitMem[R1] = f1.

Thus, πR1
f = f1. For the converse, assume πR1

f = f1. Define g : Mem[R1] → D(Mem[range(f)]) such that for any r ∈

Mem[R1], m ∈Mem[range(f)] such that r ⊲⊳ m is defined, let

g(r)(m) :=

f (rD1)(m)

(πR1
f)(rD1)(r)

: (πR1
f)(rD1)(r) , 0

0 : (πR1
f)(rD1)(r) = 0

We need to check that g ∈ MD. Fixing any r ∈Mem[R1], denote the distribution Pr f (rD1) as µr , then

(πR1
f)(rD1)(r) =

µr(range(f) = m)

µr(R1 = r)
= µr(range(f) = m | R1 = r) (if (πR1

f)(rD1)(r) , 0)

∑

m∈Mem[range(g)]

g(r)(m) =
∑

m∈Mem[range(g)]

µr(range(f) = m | R1 = r) = 1

so g does map any input to a distribution, and g preserves the input.

By their types, f1⊙g is defined, and for any d ∈Mem[D1], m ∈Mem[range(f)] such that d ⊲⊳ m is defined. If (πR1
f)(d)(mR1) ,

0, then

(f1 ⊙ g)(d)(m) = f1(d)(mR1) · g(mR1)(m) = f1(d)(mR1) ·
f (mD1)(m)

(πR1
f)(mD1)(m)

= f1(d)(mR1) ·
f (mD1)(m)

f1(mD1)(mR1)

= f (d)(m) (d ⊲⊳ m is defined iff d = mD1)

If (πR1
f)(d)(mR1) , 0, then f (d)(m) = 0, and (f1 ⊙ g)(d)(m) = f1(d)(mR1) · g(mR1)(m) = 0 = f (d)(m). Thus, f1 ⊙ g = f . �

Theorem V.1. Given distribution µ ∈ D(Mem[Var]), then for any X, Y, Z ⊆ Var,

fµ |= (∅ ⊲ [Z]) # (Z ⊲ [X]) ∗ (Z ⊲ [Y]) (8)

if and only if X ⊥⊥ Y | Z and X ∩ Y ⊆ Z are both satisfied.

Proof. This result follows by combining Theorem A.11 and Theorem A.38. �

Lemma A.11. For a distribution µ on Var, S , X, Y ⊆ Var, there exist f1 : Mem[∅]→ D(Mem[S]), f2 : Mem[S]→ D(Mem[S ∪

X]), f3 : Mem[S]→ D(Mem[S ∪ Y]), such that f1 ⊙ (f2 ⊕ f3) ⊑ fµ, if and only if X ⊥⊥ Y | S and also X ∩ Y ⊆ S .

Proof. Forward direction: Assume the existence of f1, f2, f3 satisfying f1 ⊙ (f2 ⊕ f3) ⊑ fµ. We must prove X ⊥⊥ Y | S and

X ∩ Y ⊆ S .

1) X ∩ Y ⊆ S : f2 ⊕ f3 defined implies (X ∪ S) ∩ (Y ∪ S) ⊆ S ∩ S . Thus, X ∩ Y ⊆ S

2) X ⊥⊥ Y | S : By assumption, f1 ⊙ (f2 ⊕ f3) ⊑ fµ. Theorem A.10 gives us f1 ⊙ (f2 ⊕ f3) = πS∪X∪Y(fµ), and f1 = πS (fµ). For any

m ∈Mem[X ∪ Y ∪ S], mX ⊲⊳ mY ⊲⊳ mS is defined. Thus,

µ(X = mX , Y = mY , S = mS) = (πX∪Y∪Sµ)(m
X ⊲⊳ mY ⊲⊳ mS) (By definition µ)

= πX∪Y∪S (fµ)(〈〉)(m
X ⊲⊳ mY ⊲⊳ mS)

= f1 ⊙ (f2 ⊕ f3)(〈〉)(mX ⊲⊳ mY ⊲⊳ mS)

20

Similarly, µ(S = mS) := (πSµ)(m
S). We have f1 = πS (fµ), and so

µ(S = mS) = (πSµ)(m
S) =

(
πS (fµ)

)
(〈〉)(mS) = f1(〈〉)(mS) (9)

By definition of conditional probability, when µ(S = mS) , 0,

µ(X = mX , Y = mY | S = mS) =
µ(X = mX , Y = mY , S = mS)

µ(S = mS)

=
f1 ⊙ (f2 ⊕ f3)(〈〉)(mS ⊲⊳ mX ⊲⊳ mY)

f1(〈〉)(mS)

By Eq. (7): f1 ⊙ (f2 ⊕ f3)(〈〉)(mS ⊲⊳ mX ⊲⊳ mY) = f1(〈〉)(mS) · (f2 ⊕ f3)(mS)(mS ⊲⊳ mX ⊲⊳ mY). Thus,

µ(X = mX , Y = mY | S = mS) =
f1 ⊙ (f2 ⊕ f3)(〈〉)(mS ⊲⊳ mX ⊲⊳ mY)

f1(〈〉)(mS)

= (f2 ⊕ f3)(mS)(mS ⊲⊳ mX ⊲⊳ mY)

= f2(mS)(mX∪S) · f3(mS)(mY∪S) (10)

Let f ′2 = f2 ⊕ unitMem[Y], f ′3 = f3 ⊕ unitMem[X]. By Theorem A.35,

f1 ⊙ (f2 ⊕ f3) = f1 ⊙ f2 ⊙ (f3 ⊕ unitMem[X]) = f1 ⊙ f2 ⊙ f ′3

f1 ⊙ (f2 ⊕ f3) = f1 ⊙ (f3 ⊕ f2) = f1 ⊙ f3 ⊙ (f2 ⊕ unitMem[Y]) = f1 ⊙ f3 ⊙ f ′2

Theorem A.10 gives us πX∪S (fµ) = f1 ⊙ f2, and πY∪S (fµ) = f1 ⊙ f3, Therefore,

µ(X = mX , S = mS) := (πX∪Sµ)(m
S ⊗ mX)

= (πX∪S (fµ))(〈〉)(m
S ⊗ mX)

= (f1 ⊙ f2)(〈〉)(mS ⊗ mX) (11)

= f1(〈〉)(mS) · f2(mS)(mS ⊗ mX)

µ(Y = mY , S = mS) := (πY∪Sµ)(m
S ⊗ mY)

= (πY∪S (fµ)(〈〉)(m
S ⊗ mY)

= (f1 ⊙ f3)(〈〉)(mS ⊗ mY) (12)

= f1(〈〉)(mS) · f3(mS)(mS ⊗ mY)

Thus, by definition of conditional probability.

µ(X = mX | S = mS) =
µ(X = mX , S = mS)

µ(S = mS)

=
f1(〈〉)(mS) · f2(mS)(mS∪X)

f1(〈〉)(mS)

= f2(mS)(mS∪X) (13)

µ(X = mY | S = mS) =
µ(X = mX , S = mS)

µ(S = mS)

=
f1(〈〉)(mS) · f3(mS)(mS∪Y)

f1(〈〉)(mS)

= f3(mS)(mS∪Y) (14)

Substituting Eq. (13) and Eq. (14) into the equation Eq. (10), we have

µ(X = mX , Y = mY | S = mS) = µ(X = mX | S = mS) · µ(X = mY | S = mS))

Thus, X, Y are conditionally independent given S . This completes the proof for the first direction.

Backward direction: We want to show that if X ⊥⊥ Y | S and X∩Y ⊆ S then f1⊙ (f2⊕ f3) ⊑ fµ. Given µ, we define f1 = πS (fµ)

and construct f2, f3 as follows:

Let f2 : Mem[S]→ D(Mem[S ∪ X]). For any s ∈Mem[S], x ∈Mem[X] such that s ⊗ x is defined, when f1(〈〉)(s) , 0, let

f2(s)(s ⊗ x) :=
(πS∪X fµ)(〈〉)(s ⊗ x)

f1(〈〉)(s)

21

(When f1(〈〉)(s) = 0, we can define f2(s)(s ⊗ x) arbitrarily as long as f2(s) is a distribution, because that distribution will be

zeroed out in f1 ⊙ (f2 ⊕ f3) anyway.)

Similarly, let f3 : Mem[S] → D(Mem[S ∪ Y]). For any s ∈ Mem[S], x ∈ Mem[Y] such that s ⊗ y is defined, when

f1(〈〉)(s) , 0, let

f3(s)(s ⊗ y) :=
(πS∪Y fµ)(s ⊗ y)

f1(〈〉)(s)

By construction, f1, f2, f3 each has the type needed for the lemma. We are left to prove that given any s ∈Mem[S], f2 and f3
are kernels in MD, f1 ⊙ (f2 ⊕ f3) is defined, and f1 ⊙ (f2 ⊕ f3) ⊑ fµ.

• State f2 is in MD.

We need to show that for any s ∈Mem[S], f2(s) forms a distribution, and also f2 preserves the input. For any s ∈Mem[S],

by equation Eq. (9), f1(〈〉)(s) = µ(S = s).

If f1(〈〉)(s) = 0, then we define f2(s) arbitrarily but make sure f2(s) is a distribution.

If f1(〈〉)(s) , 0: for any x ∈Mem[X] such that s ⊗ x is defined, (πS∪X fµ)(〈〉)(s ⊗ x) = µ(S = s, X = x), so

f2(s)(s ⊗ x) =
(πS∪X fµ)(〈〉)(s ⊗ x)

f1(〈〉)(s)

=
µ(S = s, X = x)

µ(S = s)
= µ(X = x | S = s)

Thus, f2(s) is a distribution for any s ∈Mem[S].

Also, f2(s)(s⊗x) is non-zero only when s⊗x is defined, i.e., when (s⊗x)S = s. So (πS f2)(s)(s) =
∑

x∈Mem[X] f2(s)(s⊗x) = 1,

and thus πS f2 = unitMem[S]. Therefore, f2 preserves the input.

Therefore, f2 ∈ MD.

• State f3 is in MD. Similar as above.

• State f1 ⊙ (f2 ⊕ f3) is defined.

f2⊕ f3 is defined because R2∩R3 = (S∪X)∩(S∪Y) = S∪(X∩Y), and by assumption, X∩Y ⊆ S , so S∪(X∩Y) = S = D2∩D3.

Then f1 ⊙ (f2 ⊕ f3) is defined because dom(f2 ⊕ f3) = D2 ∪ D3 = S ∪ S = S = range(f1).

• State f1 ⊙ (f2 ⊕ f3) ⊑ fµ.

It suffices to show that there exists g such that (f1 ⊙ (f2 ⊕ f3)) ⊙ g = fµ.

For any s ∈Mem[S], x ∈Mem[X], y ∈Mem[Y] such that s ⊗ x ⊗ y is defined,

f1 ⊙ (f2 ⊕ f3)(〈〉)(s ⊗ x ⊗ y) = f1(〈〉)(s) · f2 ⊕ f3(s)(s ⊗ x ⊗ y)

= f1(〈〉)(s) · (f2(s)(s ⊗ x) · f3(s)(s ⊗ y))

= µ(S = s) · (µ(X = x | S = s) · µ(Y = y | S = s)) (15)

Because X, Y are conditionally independent given S in the distribution q, so

µ(X = x | S = s) · µ(Y = y | S = s) = µ(X = x, Y = y | S = s) (16)

Substituting Eq. (16) into Eq. (15), we have

f1 ⊙ (f2 ⊕ f3)(〈〉)(s ⊗ x ⊗ y) = µ(S = s) · µ(X = x, Y = y | S = s)

= µ(X = x, Y = y, S = s)

Let g : Mem[X ∪ Y ∪ S] → D(Mem[Val]) such that for any d ∈ Mem[X ∪ Y ∪ S], m ∈ Mem[Val] such that d ⊗ m is

defined, let

g(d)(m) = µ(Val = m | X ∪ Y ∪ S = d)

Then, (f1 ⊙ (f2 ⊕ f3)) ⊙ g is defined, and

(f1 ⊙ (f2 ⊕ f3) ⊙ g)(〈〉)(m) = (f1 ⊙ (f2 ⊕ f3))(〈〉)(mX∪Y∪S) · g(mX∪Y∪S)(m)

= µ(Val = m)

Thus, (f1 ⊙ (f2 ⊕ f3)) ⊙ g = fµ, and therefore f1 ⊙ (f2 ⊕ f3) ⊑ fµ.

This completes the proof for the backwards direction. �

Lemma A.12. If X, Y are conditionally independent given S , then values on X ∩ Y is determined given values on S .

22

Proof. For any x ∈ Mem[X], y ∈ Mem[Y], s ∈ Mem[S], m ∈ Mem[M], when µ(X = x, Y = y,M = m | S = s) , 0, it must

x ⊗ y ⊗ s ⊗ m is defined. Note that x ⊗ y ⊗ s ⊗ m defined only if m = πM x = πMy, which implies that m ⊗ x = x, m ⊗ y = y,

m ⊗ x ⊗ y = x ⊗ y.

Let M = X ∩ Y, X̂ = X \ Y, Ŷ = Y \ X. By assumption, X, Y are conditionally independent given S , so x ∈ Mem[X],

y ∈Mem[Y], s ∈Mem[S], m ∈Mem[M]

µ(X = x | S = s) · µ(Y = y | S = s) = µ(X = x, Y = y | S = s),

which implies that, if we denote x′ = π
X̂

x, y′ = π
Ŷ
y,

µ(X̂ = x′,M = m | S = s) · µ(Ŷ = y′,M = m | S = s) = µ(X̂ = x′, Ŷ = y′,M = m | S = s) (17)

For any probabilistic events E1, E2, E3, µ(E1, E2 | E3) = µ(E1 | E2, E3) · µ(E2 | E3). Thus, Eq. (17) implies that

µ(X̂ = x′ | M = m, S = s) · µ(Ŷ = y′ | M = m, S = s) · µ(M = m | S = s) = µ(X̂ = x′, Ŷ = y′ | M = m, S = s) (18)

Then, for any s ∈Mem[S],m ∈Mem[M] such that m ⊗ s is defined and µ(M = m, S = s) , 0,
∑

x′∈Mem[X̂],y′∈Mem[Ŷ]

µ(X̂ = x′ | M = m, S = s) · µ(Ŷ = y′ | M = m, S = s) · µ(M = m | S = s)

=
∑

x′∈Mem[X̂],y′∈Mem[Ŷ]

µ(X̂ = x′, Ŷ = y′ | M = m, S = s) (Because of Eq. (18))

=1 (19)

Meanwhile, for any s ∈Mem[S],m ∈Mem[M] such that m ⊗ s is defined and µ(M = m, S = s) , 0,
∑

x′∈Mem[X̂],y′∈Mem[Ŷ]

µ(X̂ = x′ | M = m, S = s) · µ(Ŷ = y′ | M = m, S = s) · µ(M = m | S = s)

=

∑

x′∈Mem[X̂],y′∈Mem[Ŷ]

µ(X̂ = x′ | M = m, S = s) · µ(Ŷ = y′ | M = m, S = s)

 · µ(M = m | S = s)

=

∑

x′∈Mem[X̂]

µ(X̂ = x′ | M = m, S = s)

 ·

∑

y′∈Mem[Ŷ]

µ(Ŷ = y′ | M = m, S = s)

 · µ(M = m | S = s)

=1 · µ(M = m | S = s) (20)

Combining Eq. (20) and Eq. (19), we derive µ(M = m | S = s) = 1. That is, when X ⊥⊥ Y | S , whether M ⊇ S or not, m ⊗ s is

defined and µ(M = m, S = s) , 0 implies µ(M = m | S = s) = 1. Thus, X ⊥⊥ Y | S renders values on X ∩ Y deterministic given

values on S . �

F. Section V-B, Join Dependency: Omitted Details

We again prove a disintegration lemma for MP Theorem A.13 so that we can use Theorem A.38 on MP.

Lemma A.13 (Disintegration). If f = f1 ⊙ f2 and D2 = R1, then πR1
f = f1. Conversely, if πR1

f = f1, then there exists g such

that f = f1 ⊙ g.

Proof. Assume f = f1 ⊙ f2 and D2 = R1. Then,

πR1
f = πR1

(f1 ⊙ f2) = f1 ⊙ (πR1
f2) = f1 ⊙ unitMem[R1] = f1.

Conversely, assume πR1
f = f1. Define g : Mem[R1]→ P(Mem[R2]) by g(r) = {s ⊗ r | s ∈ f (rD1)}.

(f1 ⊙ g)(d) = {u | u ∈ g(r), r ∈ f1(d)} = {s ⊗ r | s ∈ f (rD1), r ∈ πR1
f (d)} = {s | s ∈ f (d)} = f (d).

�

Theorem V.2. Let R ∈ P(Mem[Var]) and X, Y be sets of attributes such that X ∪ Y = Var. The lifted relation fR = 〈〉 7→ R

satisfies fR |= [X ∩ Y] # ([X] ∗ [Y]) iff R satisfies the join dependency X ⊲⊳ Y.

Proof. The result follows from combining Theorem A.14 and Theorem A.38. �

Lemma A.14. For a relation R on Val, X, Y ⊆ Val, there exists f1 : Mem[∅]→ P(Mem[X∩Y]), f2 : Mem[X∩Y]→ P(Mem[X]),

f3 : Mem[X ∩ Y] → P(Mem[Y]), such that f1 ⊙ (f2 ⊕ f3) ⊑ fR, if and only if RX∪Y = RX ⊲⊳ RY .

23

Proof. Forward Direction: Assuming there exist f1, f2, f3 such that f1⊙ (f2⊕ f3) ⊑ fR, we want to show that RX∪Y = RX ⊲⊳ RY .

We have f1 ⊙ (f2 ⊕ f3) ⊑ fR and fR with empty domain. Hence, there exists h ∈ MP such that

fR = (f1 ⊙ (f2 ⊕ f3)) ⊙ h.

Thus, f1 ⊙ (f2 ⊕ f3) = πX∪Y fR, and so f1 ⊙ (f2 ⊕ f3)(〈〉) = RX∪Y .

Similarly to the reasoning in Theorem A.11, by Theorem A.35, we have

f1 ⊙ f2 ⊑ f1 ⊙ (f2 ⊕ f3)

f1 ⊙ f3 ⊑ f1 ⊙ (f2 ⊕ f3)

Then, as above, f1 ⊙ f2 = πX fR, f1 ⊙ f3 = πY(fR). So, f1 ⊙ f2(〈〉) = RX , f1 ⊙ f3(〈〉) = RY .

By definition of ⊕ and ⊙,

f1 ⊙ (f2 ⊕ f3)(〈〉) = {u ⊲⊳ v | u ∈ f1(〈〉) and v ∈ f2 ⊕ f3(u)}

= {u ⊲⊳ v | u ∈ f1(〈〉) and v ∈ {v1 ⊲⊳ v2 | v1 ∈ f2(u) and v2 ∈ f3(u)}}

= {u ⊲⊳ (v1 ⊲⊳ v2) | u ∈ f1(〈〉) and v1 ∈ f2(u) and v2 ∈ f3(u)}

Since ⊲⊳ is idempotent, i.e., u ⊲⊳ u = u, commutative and associative, we have

u ⊲⊳ (v ⊲⊳ w) = (u ⊲⊳ u) ⊲⊳ (v ⊲⊳ w) = (u ⊲⊳ v) ⊲⊳ (u ⊲⊳ w).

Therefore, we can convert the previous equality into

f1 ⊙ (f2 ⊕ f3)(〈〉) = {(u ⊲⊳ v1) ⊲⊳ (u ⊲⊳ v2) | u ∈ f1(〈〉) and v1 ∈ f2(u) and v2 ∈ f3(u)}

=
{
u ⊲⊳ v1 | u ∈ f1(〈〉) and v1 ∈ f2(u)

}
⊲⊳

{
u ⊲⊳ v2 | u ∈ f1(〈〉) and v2 ∈ f3(u)

}

=(f1 ⊙ f2)(〈〉) ⊲⊳ (f1 ⊙ f3)(〈〉)

Thus, RX∪Y = RX ⊲⊳ RY .

This completes the proof for the first direction.

Backward direction: If RX∪Y = RX ⊲⊳ RY , then we want to show that there exist f1 : Mem[∅]→ P(Mem[X∩Y]), f2 : Mem[X∩

Y]→ P(Mem[X]), f3 : Mem[X ∩ Y]→ P(Mem[Y]), such that f1 ⊙ (f2 ⊕ f3) ⊑ fR.

Let f1 = f X∩Y
R

and define f2 : Mem[X ∩ Y]→ P(Mem[X]) by having

f2(s) := {r ∈ RX | rX∩Y = s}

for all s ∈Mem[X ∩ Y]. Define f3 : Mem[X ∩ Y]→ P(Mem[Y]) by having

f3(s) = {r ∈ RY | rX∩Y = s}

for all s ∈Mem[X ∩ Y].

• By construction, f1, f2, f3 have the desired types.

• States f2, f3 are both in MP.

f2 preserves the input because for any s ∈Mem[X∩Y], f2(s) as a relation only includes tuples whose projection to X∩Y

is equals to s. Thus, f2 is in MP.

Similarly, f3 is in MP.

• f1 ⊙ (f2 ⊕ f3) ⊑ fR.

First, by their types, f1 ⊙ (f2 ⊕ f3) is defined, and

f1 ⊙ (f2 ⊕ f3)(〈〉) = {u ⊲⊳ v | u ∈ f1(〈〉) and v ∈ (f2 ⊕ f3)(u)} (21)

= {u ⊲⊳ v | u ∈ f1(〈〉) and v ∈ f2(uD2) ⊲⊳ f3(uD3)}

= {u ⊲⊳ v | u ∈ f1(〈〉) and v ∈ f2(u) ⊲⊳ f3(u)} (By D2 = D3 = X ∩ Y)

= {u ⊲⊳ (vi ⊲⊳ v j) | u ∈ f1(〈〉) and vi ∈ f2(u) and v j ∈ f3(u)}

= {(u ⊲⊳ vi) ⊲⊳ (u ⊲⊳ v j) | u ∈ f1(〈〉) and vi ∈ f2(u) and v j ∈ f3(u)}

(because ⊲⊳ is idempotent, associative, commutative)

= {u ⊲⊳ vi | u ∈ f1(〈〉) and vi ∈ f2(u)} ⊲⊳ {u ⊲⊳ v j | u ∈ f1(〈〉) and v j ∈ f3(u)} (22)

24

Recall that we define f1 such that f1(〈〉) = RX∩Y , and f2(s) := {r ∈ R | rX∩Y = s}, so

{u ⊲⊳ vi | u ∈ RX∩Y and vi ∈ f2(u)} = {(u ⊲⊳ vi) | u ∈ RX∩Y and vi ∈ {r ∈ RX | rX∩Y = u}}

= {vi | vi ∈ {r ∈ RX | rX∩Y ∈ RX∩Y}}

= RX (23)

f1 ⊙ (f2 ⊕ f3) ⊑ fµ Analogously,

{u ⊲⊳ v j | u ∈ f1(〈〉) and v j ∈ f3(u)} = RY (24)

Substituting Eq. (23) and Eq. (24) into Eq. (22), we have

f1 ⊙ (f2 ⊕ f3)(〈〉) = RX ⊲⊳ RY

By assumption, RX ⊲⊳ RY = RX∪Y . Thus, f1 ⊙ (f2 ⊕ f3)(〈〉) = RX∪Y , and f1 ⊙ (f2 ⊕ f3) = πX∪Y fR. By Theorem A.13, this

implies that f1 ⊙ (f2 ⊕ f3) ⊑ fR.

Thus, the constructed f1, f2, f3 satisfy all requirements. �

G. Section V-C, graphoid axioms: Omitted Details

Lemma A.15. The following judgment is derivable in DIBI:

⊢ P # (Q ∗ R)→ P # (R ∗ Q).

Proof. We have the derivation:

Ax
P ⊢ P

∗-Comm
Q ∗ R ⊢ R ∗ Q

#-Conj
P # (Q ∗ R) ⊢ P # (R ∗ Q)

→
⊢ P # (Q ∗ R)→ P # (R ∗ Q)

�

Lemma A.16. The following judgment is derivable in DIBI:

⊢ P # (Q ∗ (R ∧ S))→ P # (Q ∗ R) ∧ P # (Q ∗ S).

Proof. We have the derivation:

Ax
P ⊢ P

Ax
Q ⊢ Q

Ax
R ∧ S ⊢ R ∧ S

∧3
R ∧ S ⊢ R

∗-Conj
Q ∗ (R ∧ S) ⊢ Q ∗ R

#-Conj
P # (Q ∗ (R ∧ S)) ⊢ P # (Q ∗ R)

Similar to left
P # (Q ∗ (R ∧ S)) ⊢ P # (Q ∗ S)

∧1
P # (Q ∗ (R ∧ S)) ⊢ P # (Q ∗ R) ∧ P # (Q ∗ S)

→
⊢ P # (Q ∗ (R ∧ S))→ P # (Q ∗ R) ∧ P # (Q ∗ S)

�

Lemma A.17 (Weak Union). The following judgment is valid in any T -model where Disintegration holds (see Theorem A.10

and Theorem A.13 for Disintegration):

|= [Z] # ([X] ∗ [Y ∪W])→ [Z ∪W] # ([X] ∗ [Y])

Proof. Let M be a T -model. If f |= [Z] # ([X] ∗ [Y∪W]), by Theorem A.38, there exist f1, f2, f3 ∈ M such that f1⊙(f2⊕ f3) ⊑ f ,

f1 : Mem[∅]→ T (Mem[Z]), f2 : Mem[Z]→ T (Mem[Z ∪ X]), f3 : Mem[Z]→ T (Mem[Z ∪ Y ∪W]).

Let f 1
3
= πZ∪W f3, then by Disintegration there exists f 2

3
∈ M such that f3 = f 1

3
⊙ f 2

3
.

Since f1 ⊙ (f2 ⊕ f3) ⊑ f , and f has empty domain, there must exists v ∈ M such that

f = f1 ⊙ (f2 ⊕ f3) ⊙ v

= f1 ⊙ f3 ⊙ (unitZ∪Y∪W ⊕ f2) ⊙ v (By Theorem A.35)

= f1 ⊙ f3 ⊙ (unitY∪W ⊕ f2) ⊙ v (By dom(f2) = Z)

= f1 ⊙ (f 1
3 ⊙ f 2

3) ⊙ (unitY∪W ⊕ f2) ⊙ v

= f1 ⊙ f 1
3 ⊙ (f 2

3 ⊙ (unitY∪W ⊕ f2)) ⊙ v

= f1 ⊙ f 1
3 ⊙ ((f2 ⊕ unitW) ⊕ f 2

3) ⊙ v (†)

25

where † follows from Theorem A.34 and dom(f2 ⊕ unitW) = Z ∪W ⊆ range(f 1
3).

Thus, f1 ⊙ f 1
3 ⊙ ((f2 ⊕ unitW) ⊕ f 2

3) ⊑ f .

Note that f1 ⊙ f 1
3

has type Mem[∅]→ TMem[Z ∪W], so f1 ⊙ f 1
3
|= (∅ ⊲ [Z ∪W]).

State f2 ⊕ unitW has type Mem[Z ∪W]→ T (Mem[Z ∪W ∪ X], so f2 ⊕ unitW |= (Z ∪W ⊲ [X]).

State f 2
3 has type Mem[Z ∪W]→ T (Mem[Z ∪W ∪ Y]), so f 2

3 |= (Z ∪W ⊲ [Y]).

Therefore, f1 ⊙ f 1
3
⊙ ((f2 ⊕ unitW) ⊕ f 2

3
) |= (∅ ⊲ [Z ∪W]) # (Z ∪W ⊲ [X]) ∗ (Z ∪W ⊲ [Y]).

By persistence, f |= [Z ∪W] # ([X] ∗ [Y]), and Weak Union is valid. �

Lemma A.18 (Contraction). The following judgment is valid in any T -model:

|= ([Z] # ([X] ∗ [Y])) ∧ ([Z ∪ Y] # ([X] ∗ [W]))→ [Z] # ([X] ∗ [Y ∪W])

Proof. Let M be a T -model. If h |= ([Z] # ([X] ∗ [Y])) ∧ ([Z ∪ Y] # ([X] ∗ [W])), then

• h |= [Z] # ([X] ∗ [Y]). By Theorem A.38, there exists f1, f2, f3 such that f1 : Mem[∅] → T (Mem[Z]), f2 : Mem[Z] →

T (Mem[Z ∪ X]), f3 : Mem[Z]→ T (Mem[Z ∪ Y]), and f1 ⊙ (f2 ⊕ f3) ⊑ h.

Note f1 ⊙ (f2 ⊕ f3) has type Mem[∅]→ T (Mem[Z ∪ Y ∪ Z]).

• h |= [Z ∪ Y] # ([X] ∗ [W]). By Theorem A.38, there exists g1, g2, g3 such that g1 : Mem[∅] → T (Mem[Z ∪ Y]), g2 :

Mem[Z ∪ Y]→ T (Mem[Z ∪ Y ∪ X]), g3 : Mem[Z ∪ Y]→ T (Mem[Z ∪ Y ∪W]), and g1 ⊙ (g2 ⊕ g3) ⊑ h.

Note g1 ⊙ g2 has type Mem[∅]→ T (Mem[Z ∪ Y ∪ X]).

By Theorem A.39, f1 ⊙ (f2 ⊕ f3) = g1 ⊙ g2.

g1 ⊙ (g2 ⊕ g3) = g1 ⊙ (g2 ⊕ unitZ∪Y) ⊙ (unitZ∪Y∪X ⊕ g3) (By!Theorem A.35)

= g1 ⊙ g2 ⊙ (unitZ∪X ⊕ g3) (Because Z ∪ Y ⊆ dom(g2), Y ⊆ dom(g3))

= f1 ⊙ (f2 ⊕ f3) ⊙ (unitZ∪X ⊕ g3) (f1 ⊙ (f2 ⊕ f3) = g1 ⊙ g2)

= f1 ⊙
(
(f2 ⊙ unitZ∪X) ⊕ (f3 ⊙ g3)

)
(By Exchange equality)

= f1 ⊙
(
f2 ⊕ (f3 ⊙ g3)

)

By their types, it is easy to see that f1 |= (∅ ⊲ [Z]), f2 |= (Z ⊲ [X]), f3 ⊙ g3 |= (Z ⊲ [Y ∪W]). So,

f1 ⊙ (f2 ⊕ (f3 ⊙ g3)) |= [Z] # ([X] ∗ [Y ∪W]).

Also, note that h ⊒ g1 ⊙ (g2 ⊕ g3) = f1 ⊙ (f2 ⊕ (f3 ⊙ g3)), so by persistence,

h |= (∅ ⊲ [Z]) # ((Z ⊲ [X]) ∗ (Z ⊲ [Y ∪W])). �

H. Section VI, Conditional Probabilistic Separation Logic

As our final application, we design a separation logic for probabilistic programs. We work with a simplified probabilistic

imperative language with assignments, sampling, sequencing, and conditionals; our goal is to show how a DIBI-based program

logic could work in the simplest setting. Following the design of PSL [9], a richer program logic could also layer on constructs

for deterministic assignment and deterministic control flow (conditionals and loops) at the cost of increasing the complexity

of the programming language and semantics. We do not foresee difficulties in implementing these extensions, and we leave

them for future work.

I. A basic probabilistic programming language

Program syntax: Let Var be a fixed, finite set of program variables. We will consider the following programming language:

Exp ∋ e ::= x ∈ Var | tt | ff | e ∧ e′ | e ∨ e′ | · · ·

Com ∋ c ::= skip | x ← e | x $← Bp (p ∈ [0, 1])

| c ; c′ | if x then c else c′

We assume that all variables and expressions are Boolean-valued, for simplicity. The only probabilistic command is x $← Bp,

which draws from a p-biased coin flip (i.e., probability of tt is p) and stores the result in x; for instance, x $← B1/2 samples

from a fair coin flip.

26

Jx ← eKµ := bind(µ,m 7→ unit(m[x 7→ JeK(m)]))

Jx $← BpKµ := bind(µ,m 7→ bind(Bernp, v 7→ unit(m[x 7→ v])))

Jc ; c′Kµ := Jc′K(JcKµ)

Jif b then c else c′Kµ := (JcKµ | Jb = ttK) ⊕p (Jc′Kµ | Jb = ff K) where p := µ(Jb = ttK)

Fig. 7: Program semantics

z $← B1/2;
x $← B1/2;
y $← B1/2;
a← x ∨ z;
b← y ∨ z

(a) CommonCause

z $← B1/2;
if z then

x $← Bp; y $← Bp

else
x $← Bq; y $← Bq

(b) CondSamples

Fig. 8: Example programs

Program semantics: Following Kozen [1], we give programs a denotational semantics as distribution transformers JcK :

D(Mem[Var]) → D(Mem[Var]), see Figure 7. To define the semantics of randomized conditionals, we will use operations

for conditioning to split control flow, and convex combinations to merge control flow. More formally, let µ ∈ D(A) be a

distribution, let S ⊆ A be an event, and let µ(S) be the probability of S in µ. Then the conditional distribution of µ given S is:

(µ | S)(a) :=

µ(a)

µ(S)
: a ∈ S , µ(S) , 0

0 : a < S .

For convex combination, let p ∈ [0, 1] and µ1, µ2 ∈ D(A). We define:

(µ1 ⊕p µ2)(a) := p · µ1(a) + (1 − p) · µ2(a).

When p = 0 or p = 1, we define ⊕p lazily: µ1 ⊕0 µ2 := µ2 and µ1 ⊕1 µ2 := µ1. Conditioning and convex combination are

inverses in the following sense: µ = (µ | S) ⊕µ(S) (µ | S).

Example A.1. Figure 8 introduces two more example programs. The program CommonCause (Figure 8a) generates a distribution

where two random observations share a common cause. Specifically, z, x, and y are independent random samples, and a and b are

values computed from (x, z) and (y, z), respectively. Intuitively, z, x, y could represent independent noisy measurements, while

a and b could represent quantities derived from these measurements. Since a and b share a common source of randomness z,

they are not independent. However, a and b are independent conditioned on the value; this is a textbook example of conditional

independence.

The program CondSamples (Figure 8b) is a bit more complex: it branches on a random value z, and then assigns x and y

with two independent samples from Bp in the true branch, and Bq in the false branch. While we might think that x and y

are independent at the end of the program since they are independent at the end of each branch, this is not true because their

distributions are different in the two branches. For example, suppose that p = 1 and q = 0. Then at the end of the first branch

(x, y) = (tt, tt) with probability 1, while at the end of the second branch (x, y) = (ff , ff) with probability 1. Thus observing

whether x = tt or x = ff determines the value of y—clearly, x and y can’t be independent. However, x and y are independent

conditioned on z. Verifying this example relies on the proof rule for conditionals.

J. CPSL: Assertion Logic

Like all program logics, CPSL is constructed in two layers: the assertion logic describes program states—here, probability

distributions—while the program logic describes probabilistic programs, using the assertion logic to specify pre- and post-

conditions. Our starting point for the assertion logic is the probabilistic model of DIBI introduced in Section IV, with atomic

assertions as in Section V. However, it turns out that the full logic DIBI is not suitable for a program logic. The main problem

is that not all formulas in DIBI satisfy a key technical condition, known as restriction.

Definition A.2 (Restriction). A formula P satisfies restriction if: a Markov kernel f satisfies P if and only if there exists

f ′ ⊑ f such that range(f ′) ⊆ FV(P) and f ′ |= P.

The reverse direction is immediate by persistence, but the forward direction is more delicate. Restriction was first considered

by Barthe et al. [9] while developing PSL: formulas satisfying restriction are preserved if the program does not modify variables

appearing in the formula. This technical property is crucial to supporting Frame-like rules in PSL, which are also used to derive

27

general versions of rules for assignment and sampling, so failure of the restriction property imposes severe limitations on the

program logic. In PSL, assertions were drawn from BI with atomic formulas for modeling random variables. Using properties

specific to probability distributions, they showed that their logic is well-behaved with respect to restriction: all formulas satisfy

this property. However, DIBI is richer than BI, and there are simple formulas where restriction fails.

Example A.2 (Failure of restriction). Consider the formula P := ⊤ # (x ⊲ [x]), and consider the kernel f : Mem[z] →

D(Mem[x, z]) with f (z 7→ c) := unit(x 7→ c, z 7→ c). Letting f1 : Mem[z]→ D(Mem[x, z]) and f2 : Mem[x, z]→ D(Mem[x, z])

with f1(z 7→ c) := unit(x 7→ c, z 7→ c) |= ⊤ and f2 := unitMem[x] ⊕ unitMem[z] |= (x ⊲ [x]), we have f = f1 ⊙ f2 |= P. Any subkernel

f ′ ⊑ f satisfying P and witnessing restriction must be of type f ′ : Mem[x] → D(Mem[x]), but it is not hard to check that

there is no such subkernel.

To address this problem, we will identify a fragment of DIBI that satisfies restriction and is sufficiently rich to support an

interesting program logic. Intuitively, restriction may fail for P when a kernel satisfying P (i) implicitly requires unexpected

variables in its domain, or (ii) does not describe needed variables in its range. Thus, we employ syntactic conditions to

approximate which variables may appear in the domain (FVD), and which variables must appear in the range (FVR).

Definition A.3 (FVD and FVR). For the formulas in FormRDIBI generated by probabilistic atomic propositions, conjunctions

(∧, ∗, #) and disjunction (∨), we define two sets of variables:

FVD(⊤) = FVD(⊥) := ∅ FVR(⊤) = FVR(⊥) := ∅

FVD(A ⊲ B) := FV(A) FVR(A ⊲ B) := FV(A) ∪ FV(B)

FVD(P ∧ Q) := FVD(P) ∪ FVD(Q) FVR(P ∧ Q) := FVR(P) ∪ FVR(Q)

FVD(P ∗ Q) := FVD(P) ∪ FVD(Q) FVR(P ∗ Q) := FVR(P) ∪ FVR(Q)

FVD(P # Q) := FVD(P) ∪ FVD(Q) FVR(P # Q) := FVR(P) ∪ FVR(Q)

FVD(P ∨ Q) := FVD(P) ∪ FVD(Q) FVR(P ∨ Q) := FVR(P) ∩ FVR(Q)

Now, we have all the ingredients to introduce our assertions. The logic RDIBI is a fragment of DIBI with atomic propositions

AP, with formulas FormRDIBI defined by the following grammar:

P,Q ::= AP | ⊤ | ⊥ | P ∨ Q | P ∗ Q

| P # Q (FVD(Q) ⊆ FVR(P))

| P ∧ Q (FVR(P) = FVR(Q) = FV(P) = FV(Q)).

The side-condition for P # Q ensures that variables used by Q are described by P. The side-condition for P ∧ Q is the most

restrictive—to understand why we need it, consider the following example.

Example A.3 (Failure of restriction for ∧). Consider the formula P := (∅ ⊲ [x]) ∧ (∅ ⊲ [y]), and kernel f : Mem[z] →

D(Mem[x, y, z]) with f (z 7→ tt) being the distribution with x a fair coin flip, y = x, and z = tt, and f (z 7→ ff) being the distribution

with x a fair coin flip, y = ¬x, and z = ff . Then, there exist f1 : Mem[∅]→ D(Mem[x]) and f2 : Mem[∅]→ D(Mem[y]) such

that f1 ⊑ f and f2 ⊑ f . Since f1 |= (∅ ⊲ [x]) and f2 |= (∅ ⊲ [y]), it follows f |= P. But, because z is correlated with (x, y), there

is no kernel f ′ : Mem[∅]→ D(Mem[x, y]) satisfying P such that f ′ ⊑ f .

When we take atomic propositions from Section V, formulas are pairs of sets of variables: (A ⊲ [B]) where A, B ⊆ Var.

With these atoms, all formulas in RDIBI satisfy restriction. Before showing this property, however, we will enrich the atomic

propositions to describe more fine-grained information about the domain and range of kernels:

Domain. Given a kernel f , the existing atomic propositions can only describe properties that hold for all (well-typed) inputs

m to f . We would like to be able to describe properties that hold for only certain inputs, e.g., for memories m where a

variable z is true.

Range. Given any input m to a kernel f , the existing atomic propositions can only guarantee the presence of variables in

the output distribution f (m). We would like describe more precise information about f (m), e.g., that certain variables are

independent conditioned on a particular value of m, rather on all values of m.

Our strategy will be to extend atomic propositions to all pairs of logical formula (D ⊲ R), where D is a logical formula over

the kernel domain (i.e., memories), while R is a logical formula over the kernel range (i.e., distributions over memories).

To describe memories, we take a simple propositional logic for the domain logic.

Definition A.4 (Domain logic). The domain logic has formulas D of the form S : pd, where S ⊆ Var is a subset of variables

and: pd ::= x = e | ⊤ | ⊥ | pd ∧ p′
d
| pd ∨ p′

d
. A formula S : pd is satisfied in m ∈Mem[T], written m |=d S : pd, if S = T and

pd holds in m.

28

We can read S : pd as “memories over S such that pd” and abbreviate S : ⊤ as just S . To describe distributions over

memories, we adapt probabilistic BI [9] for the range logic.

Definition A.5 (Range logic). The range logic has the following formulas from probabilistic BI:

pr ::= [S] (S ⊆ Var) | x ∼ d | x = e | ⊤ | ⊥ | pr ∧ p′r | pr ∗ p′r.

We give a semantics where states are distributions over memories: Mr = {µ : D(Mem[S]) | S ⊆ Var}. We define a preorder

on states via µ1 ⊑r µ2 if and only if dom(µ1) ⊆ dom(µ2) and πdom(µ1)µ2 = µ1, and we define a partial binary operation on states:

if dom(µ1) = S 1 ∪ T and dom(µ2) = S 2 ∪ T with S 1, S 2, T disjoint, and πTµ1 = πTµ2 = unit(m) for some m ∈Mem[T], then

µ1 ⊕r µ2 := πS 1
µ1 ⊗ unit(m) ⊗ πS 2

µ2

where ⊗ takes the independent product of two distributions over disjoint domains; otherwise ⊕r is not defined. This operation

generalizes the monoid from probabilistic BI to allow combining distributions with overlapping domains if the distributions

over the overlap are deterministic and equal; this mild generalization is useful for our setting, where distributions often have

deterministic variables (e.g., variables corresponding to the input of kernels).

Then, we define the semantics of the range logic as:

µ |=r ⊤ always µ |=r ⊥ never

µ |=r [S] iff S ⊆ dom(µ)

µ |=r x ∼ d iff x ∈ dom(µ) and πxµ = JdKmv, where unit(mv) = πFV(d)µ

µ |=r x = e iff {x}, FV(e) ⊆ dom(µ) and µ(Jx = eK) = 1

µ |=r pr ∧ p′r iff µ |=r pr and µ |=r p′r
µ |=r pr ∗ p′r iff there exists µ1 ⊕r µ2 ⊑ µ with µ1 |=r pr and µ2 |=r p′r.

Now, we can give a semantics to our enriched atomic propositions.

Definition A.6. Given a kernel f and atomic proposition (D ⊲ R), we define a persistent semantics:

f |= (D ⊲ R) iff there exists f ′ ⊑ f such that m |=d D implies m ∈ dom(f ′) and f (m) |=r R.

Atomic propositions satisfy the following axiom schemas, inspired by Hoare logic.

Proposition A.19. The following axiom schemas for atomic propositions are sound.

(S : pd ⊲ pr) ∧ (S : p′d ⊲ p′r)→ (S : pd ∧ p′d ⊲ pr ∧ p′r) if FV(pr) = FV(p′r) (AP-And)

(S : pd ⊲ pr) ∧ (S : p′d ⊲ p′r)→ (S : pd ∨ p′d ⊲ pr ∨ p′r) (AP-Or)

(S : pd ⊲ pr) ∗ (S ′ : p′d ⊲ p′r)→ (S ∪ S ′ : pd ∧ p′d ⊲ pr ∗ p′r) (AP-Par)

p′d → pd and |=r pr → p′r implies |= (S : pd ⊲ pr)→ (S : p′d ⊲ p′r) (AP-Imp)

Finally, formulas in RDIBI satisfy restriction.

Theorem A.20 (Restriction in RDIBI). Let P ∈ FormRDIBI with atomic propositions (D ⊲ R), as described above. Then f |= P

if and only if there exists f ′ ⊑ f such that range(f ′) ⊆ FV(P) and f ′ |= P.

Proof sketch.. By induction on P, proving a stronger statement: f |= P if and only if there exists f ′ ⊑ f such that dom(f ′) ⊆

FVD(P), and FVR(P) ⊆ range(f ′) ⊆ FV(P). �

K. CPSL: program logic

With the assertion logic set, we are now ready to introduce our program logic. Judgments in CPSL have the form {P} c {Q},

where c ∈ Com is a probabilistic program and P,Q ∈ FormRDIBI are restricted assertions. As usual, a program in a judgment

maps states satisfying the pre-condition to states satisfying the post-condition.

Definition A.7 (CPSL Validity). A CPSL judgment {P} c {Q} is valid, written |= {P} c {Q}, if for every input distribution

µ ∈ D(Mem[Var]) such that the lifted input fµ : Mem[∅]→ D(Mem[Var]) satisfies fµ |= P, the lifted output satisfies fJcKµ |= Q.

The proof rules of CPSL are presented in Figure 9. Note that all rules implicitly require that assertions are from RDIBI,

e.g., the rule Assn requires that the post-condition P # (FV(e) ⊲ x = e) is a formula in RDIBI, which in turn requires that

FV(e) = FVD(FV(e) ⊲ x = e) ⊆ FVR(P).

The rules Skip, Seqn, Weak are standard, we comment on the other, more interesting rules. Assn and Samp allow forward

reasoning across assignments and random sampling commands. In both cases, a pre-condition that does not mention the assigned

variable x is augmented with new information tracking the value or distribution of x, and variables x may depend on.

29

Assn
x < FV(e) ∪ FV(P)

⊢ {P} x← e {P # (FV(e) ⊲ x = e)}
Samp

x < FV(d) ∪ FV(P)

⊢ {P} x $← d {P # (FV(d) ⊲ x ∼ d)}

Skip
⊢ {P} skip {P}

Seqn
⊢ {P} c {Q} ⊢ {Q} c′ {R}

⊢ {P} c ; c′ {R}

DCond

⊢ {(∅ ⊲ b = tt) # P} c {(∅ ⊲ b = tt) # (b : b = tt ⊲ Q1)}
⊢ {(∅ ⊲ b = ff) # P} c′ {(∅ ⊲ b = ff) # (b : b = ff ⊲ Q2)}

⊢ {(∅ ⊲ [b]) # P} if b then c else c′ {(∅ ⊲ [b]) # ((b : b = tt ⊲ Q1) ∧ (b : b = ff ⊲ Q2))}

Weak

⊢ {P} c {Q}
|= P′ → P ∧ Q→ Q′

⊢ {P′} c {Q′}
Frame

⊢ {P} c {Q} FV(R) ∩MV(c) = ∅
FV(Q) ⊆ FVR(P) ∪WV(c) RV(c) ⊆ FVR(P)

⊢ {P ∗ R} c {Q ∗ R}

Fig. 9: Proof rules: CPSL

DCond allows reasoning about probabilistic control flow, and the ensuing conditional dependence that may result. The main

pre-condition P is allowed to depend on the guard variable b—recalling that FVD(P) ⊆ FVR(∅ ⊲ [b])—and P is preserved as a

pre-condition for both branches. The post-conditions allows introducing new facts (b : b = tt ⊲ Q1) and (b : b = tt ⊲ Q2), which

are then combined in the post-condition of the entire conditional command. As in PSL, the rule for conditionals does not allow

the branches to modify the guard b—this restriction is needed to accurately associate each post-condition to each branch.

Finally, Frame is the frame rule for CPSL. Much like in PSL, the rule involves three classes of variables: MV(c) is the

set of variables that c may write to, RV(c) is the set of variables that c may read from the input, and WV(c) is the set of

variables that c must write to; these variable sets are defined in Appendix N. Then, Frame is essentially the same as in PSL.

The first side-condition FV(R) ∩MV(c) ensures that the framing condition is not modified—this condition is fairly standard.

The second and third side-conditions are more specialized. First, the variables described by Q in the post-condition are either

already described by P in the pre-condition, or are written by c. Second, the variables read by c must be described by P in

the pre-condition. These two side-conditions ensure that variables mentioned by Q that were not already independent of R are

freshly written, and freshly written variables are derived from variables that were already independent of R.

Theorem A.21 (CPSL Soundness). CPSL is sound: derivable judgments are valid.

Proof sketch. By induction on the proof derivation. The restriction property is used repeatedly to constrain the domains and

ranges of kernels witnessing different sub-assertions, ensuring that pre-conditions about unmodified variables continue to hold

in the post-condition. �

L. Example: proving conditional independence for programs

Now, we show how to use CPSL to verify our two example programs in Figure 8. In both cases, we will prove a conditional

independence assertion as the post-condition. We will need some axioms for implications between formulas in RDIBI; these

axioms are valid in our probabilistic model MD.

Proposition A.22. (Axioms for RDIBI) The following axioms are sound, assuming both precedent and antecedent are in

FormRDIBI.

(P # Q) # R→ P # (Q ∗ R) (Indep-1)

P # Q→ P ∗ Q if FVD(Q) = ∅ (Indep-2)

P # Q→ P # (Q ∗ (S ⊲ [S])) (Pad)

(P ∗ Q) # (R ∗ S)→ (P # R) ∗ (Q # S) (RestExch)

We briefly explain the axioms. Indep-1 holds because P # (Q ∗ R) ∈ FormRDIBI implies that R only mentions variables that

are guaranteed to be in P. Indep-2 holds because any kernel witnessing Q depends on no variables and thus independent of

any kernel witnessing P. Pad allows conjoining (S ⊲ [S]) to the second conjunct; since P # (Q ∗ (S ⊲ [S])) is in RDIBI, S

can only mention variables that are already in P. Finally, RestExch shows that the standard exchange law holds for restricted

assertions. We defer the proof to Appendix O.

We also need the following axioms for a particular form of atomic propositions, in addition to the axioms for general atomic

propositions in Theorem A.19.

30

Proposition A.23. (Axioms for atomic propositions) The following axioms are sound.

(S ⊲ [A] ∗ [B])→ (S ⊲ [A]) ∗ (S ⊲ [B]) if A ∩ B ⊆ S (RevPar)

(S ⊲ [A] ∗ [B])→ (S ⊲ [A ∪ B]) (UnionRan)

(A ⊲ [B]) # (B ⊲ [C])→ (A ⊲ [C]) (AtomSeq)

(A ⊲ [B])→ (A ⊲ [A]) # (A ⊲ [B]) (UnitL)

(A ⊲ [B])→ (A ⊲ [B]) # (B ⊲ [B]) (UnitR)

We defer the proof to Appendix O.

Now, we will describe how to verify our example programs, CommonCause and CondSamples. Throughout, we must ensure

that all formulas used in CPSL rules or RDIBI axioms are in FormRDIBI. The product # raises a tricky point: FormRDIBI is not

closed under reassociating #, so we add parentheses for formulas that must be in RDIBI. However, we may soundly use the

full proof system of DIBI when proving implications between RDIBI assertions, since RDIBI is a fragment of DIBI.

Verification of CommonCause: We aim to prove the following judgment:

⊢ {⊤} CommonCause {(∅ ⊲ [z]) # ((z ⊲ [a]) ∗ (z ⊲ [b]))}

By Theorem V.1, this shows that a, b are conditionally independent given z at the end of the program. Using Samp to handle

the sampling for z, x, y, we can prove the assertion: (∅ ⊲ [z]) # (∅ ⊲ [x]) # (∅ ⊲ [y]). Using Axioms Pad, UnitL, AP-Par, UnionRan,

and # Assoc, this assertion implies (∅ ⊲ [z]) # (z ⊲ [z, x]) # (z ⊲ [z, y]). We take this as the pre-condition before assigning to a and

assigning to b. After the assignments, Assn proves:

((
(∅ ⊲ z) # (z ⊲ [z, x]) # (z ⊲ [z, y])

)
(z, x ⊲ [a])

)
(z, y ⊲ [b]).

Then, we can apply Indep-1 to derive:(∅ ⊲ [z]) #
(
(z ⊲ [z, x]) # (z, x ⊲ [a])

)
∗

(
(z ⊲ [z, y]) # (z, y ⊲ [b])

)
. By Axiom AtomSeq, we

obtain the desired post-condition: (∅ ⊲ [z]) # ((z ⊲ [a]) ∗ (z ⊲ [b])). �

Verification of CondSamples: We aim to show the following judgment:

⊢ {⊤} CondSamples {(∅ ⊲ [z]) # ((z ⊲ [x]) ∗ (z ⊲ [y]))}

By Theorem V.1, this shows that x, y are conditionally independent given z at the end of the program. Starting with the sampling

statement for z, applying Samp and Axiom Indep-2 gives:

⊢ {⊤} z $← B1/2 {(∅ ⊲ [z]) # ⊤}.

To reason about the branching, we use DCond. We start with the first branch. By Samp, Weak and Seq, we have ⊢ {(∅ ⊲

z = tt) # ⊤} x $← Bp # y $← Bp {(∅ ⊲ z = tt) # (∅ ⊲ [x]) # (∅ ⊲ [y])}. As before, Axioms Pad, UnitL, AP-Par, UnionRan, together

with # Assoc give the post-condition

(∅ ⊲ z = tt) # (z ⊲ [z, x]) # (z ⊲ [z, y]).

Applying Axiom Indep-1, we can show (∅ ⊲ z = tt) # ((z ⊲ [z, x]) ∗ (z ⊲ [z, y])) at the end of the branch. Thus: ⊢ {(∅ ⊲

z = tt) # ⊤} x $← Bp # y $← Bp {(∅ ⊲ z = tt) # (z : z = tt ⊲ [z, x] ∗ [z, y])}. The second branch is similar:

⊢ {(∅ ⊲ z = ff) # ⊤} x $← Bq # y $← Bq {(∅ ⊲ z = ff) # (z : z = ff ⊲ [z, x] ∗ [z, y])}.

Applying DCond, we have:

⊢ {(∅ ⊲ [z])} CondSamples {(∅ ⊲ [z]) # ((z : z = tt ⊲ [z, x] ∗ [z, y]) ∧ (z = ff ⊲ [z, x] ∗ [z, y]))}.

By AP-Or, the postcondition implies (∅ ⊲ [z]) # ((z : z = tt ∨ z = ff) ⊲ [z, x] ∗ [z, y] ∨ [z, x] ∗ [z, y]). In the domain and range

logic, we have: |=d z : ⊤ → z : (z = tt ∨ z = ff) and

|=r [z, x] ∗ [z, y] ∨ [z, x] ∗ [z, y]→ [z, x] ∗ [z, y].

So AP-Imp implies (∅ ⊲ [z]) # (z ⊲ [z, x] ∗ [z, y]). We can then apply RevPar because {z, x} ∩ {z, y} = z, deriving the postcondition

(∅ ⊲ [z]) # ((z ⊲ [z, x]) ∗ (z ⊲ [z, y])). By Axiom Split, we obtain the desired post-condition: (∅ ⊲ [z]) # ((z ⊲ [x]) ∗ (z ⊲ [y])). �

31

M. Section J, atomic propositions: Omitted Details

As we described in Appendix J, atomic formulas for CPSL are of the form (D ⊲ R). The domain assertions D are of the

form S : φd, where S is a set of variables and φd describes memories, and the range assertions R are of the form φr, where

φr is from a fragment of probabilistic BI.

Proposition A.24. The following axiom schemas for atomic propositions are sound.

(S : pd ⊲ pr) ∧ (S : p′d ⊲ p′r)→ (S : pd ∧ p′d ⊲ pr ∧ p′r) if FV(pr) = FV(p′r) (AP-And)

(S : pd ⊲ pr) ∧ (S : p′d ⊲ p′r)→ (S : pd ∨ p′d ⊲ pr ∨ p′r) (AP-Or)

(S : pd ⊲ pr) ∗ (S ′ : p′d ⊲ p′r)→ (S ∪ S ′ : pd ∧ p′d ⊲ pr ∗ p′r) (AP-Par)

p′d → pd and |=r pr → p′r implies |= (S : pd ⊲ pr)→ (S : p′d ⊲ p′r) (AP-Imp)

Proof. We check each of the axioms.

Case: AP-And. Suppose that w |= (S : pd ⊲ pr) ∧ (S : p′
d
⊲ p′r). By semantics of atomic propositions, there exists w1 ⊑k w

and w2 ⊑k w such that for all m ∈ Mem[S] such that m |=d pd ∧ p′
d
, we have w1(m) |=r pr and w2(m) |=r p′r. By restriction

(Theorem A.20), we may assume that range(w1) = FV(pr) = FV(p′r) = range(w2). Thus, Theorem A.25 implies that w1 = w2,

and so w |= (S : pd ∧ p′
d
⊲ pr ∧ p′r).

Case: AP-Or. Immediate, by semantics of ∨.

Case: AP-Par. Suppose that w |= (S : pd ⊲ pr) ∗ (S ′ : p′
d
⊲ p′r). We will show that w |= (S ∪ S ′ : pd ∗ p′

d
⊲ pr ∗ p′r).

By semantics of atomic propositions, there exists w1 ⊑k w and w2 ⊑k w such that w1 ⊕w2 ⊑ w, and for all m1 ∈Mem[S] such

that m1 |=d pd, we have w1(m1) |=r pr, and for all m2 ∈Mem[S ′] such that m2 |=d p′
d
, we have w2(m2) |=r p′r.

Now for any m ∈ Mem[S ∪ S ′] such that m |=d pd ∧ p′
d
, we have mS |=d pd and mS ′ |=d p′

d
. Thus w1(mS) |=r pr and

w2(mS ′) |=r p′r. Letting T = S ∩ S ′ and T1 = S \ T ; T2 = S ′ \ T be disjoint sets, and noting that w1,w2 both preserve inputs

on T , we have:

w1 ⊕ w2(m) = πT1
w1(mS) ⊗ unit(mT) ⊗ πT2

w2(mS ′)

= (πT1
w1(mS) ⊗ unit(mT)) ⊕r (unit(mT) ⊗ πT2

w2(mS ′))

= w1(mS) ⊕r w2(mS ′)

|=r pr ∗ p′r

Thus, w |= (S ∪ S ′ : pd ∗ p′
d
⊲ pr ∗ p′r).

Case: AP-Imp. Immediate, by semantics of →.

�

For the proof of Theorem A.20, we need the following characterization of g ⊑ f .

Proposition A.25. Let f be a Markov kernel, and let D ⊆ dom(f) ⊆ R ⊆ range(f). Then we have πR(f (m)) = g(m′) for all

m′ ∈Mem[D],m ∈Mem[dom(f)] such that mD = m′ if and only if g ⊑ f and dom(g) = D, range(g) = R.

Proof. For the reverse direction, suppose that f = (g ⊕ unitS) ⊙ v, with S disjoint from dom(g). Since range(g) ⊆ dom(v), we

have:

πR(f (m)) = πR((g ⊕ unitS)(m))

= πR(g(mD) ⊕ unitS (mS))

= πR(g(mD)) ⊗ πR(unitS (mS))

= g(mD)

= g(m′).

For the forward direction, evidently dom(g) = D and range(g) = R. Since f preserves input to output, we have πdom(f)(g(m′)) =

πdom(f)(f (m)) = unit(m′) so g preserves input to output and g is a Markov kernel. We claim that g ⊑ f . First, consider

g ⊕ unitdom(f)\D; write D′ = dom(f) \ D. For any m ∈Mem[dom(f)], we have:

πD′∪R(f (m)) = πR(f (m)) ⊗ πD′(f (m))

= g(mD) ⊗ unitD′ (m
D′)

= (g ⊕ unitD′)(m).

32

So by Theorem A.10, for every m ∈Mem[dom(f)] there exists a family of kernels g′m : Mem[D′ ∪ R]→ D(Mem[range(f)])

such that

f (m) = bind((g ⊕ unitD′)(m), g′m)

Defining g′(m) , g′
mdom(f)(m), we have:

f (m) = ((g ⊕ unitD′) ⊙ g′)(m)

and so g ⊑ f . �

We prove that all assertions in the restricted logic RDIBI satisfy restriction.

Theorem A.20 (Restriction in RDIBI). Let P ∈ FormRDIBI with atomic propositions (D ⊲ R), as described above. Then f |= P

if and only if there exists f ′ ⊑ f such that range(f ′) ⊆ FV(P) and f ′ |= P.

Proof. The reverse direction is immediate from persistence. For the forward direction, we argue by induction with a stronger

hypothesis. If f |= P, we call a state f ′ a witness of f |= P if f ′ ⊑ f , FVR(P) ⊆ range(f ′) ⊆ FV(P), dom(f ′) ⊆ FVD(P), and

f ′ |= P. We show that f |= P implies that there is a witness f ′ |= P, by induction on P.

Case (D ⊲ R): We will use two basic facts, both following from the form of the domain and range assertions:

1) If m |=d D, then dom(m) = FV(D).

2) If µ |=r R, then dom(µ) ⊇ FV(D).

f |= (D ⊲ R) implies that there exists f ′ ⊑ f such that for any m ∈ Md such that m |=d D, f ′(m) is defined and f ′(m) |=r R.

Let T = range(f ′) ∩ (FV(D) ∪ FV(R)). We claim that πT f ′ is the desired witness for f |= P.

• πT f ′ is defined and πT f ′ ⊑ f because:

dom(f ′) = dom(m) (for any m ∈ Md such that m |=d D)

= FV(D)

⊆ T.

Thus πT f ′ is defined, and πT f ′ ⊑ f ′ ⊑ f .

• range(πT f ′) = T ⊆ FV(D) ∪ FV(R) = FV(P).

• πT f ′ |= (D ⊲ R): For any m ∈ Md such that m |=d D, f ′(m) is a distribution. Based on the restriction theorem for probabilistic

BI, πFV(R)∩range(f ′)(f ′(m)) |= R too. Since T ⊇ FV(R)∩ range(f ′), persistence in Mr, implies πT (f ′(m)) |= R. By definition of

marginalization on kernels, (πT f ′)(m) = πT (f ′(m)). Since (πT f ′)(m) |= R, we have πT f ′ |= (D ⊲ R) as well.

• FVD(P) = FV(D), so dom(πT f ′) = dom(m) = FV(D) = FVD(P).

• FVR(P) = FV(D ⊲ R) = FV(D) ∪ FV(R), so

range(πT f ′) ⊇ dom((πT f ′)(m)) (for any m ∈ Md such that m |=d D)

⊇ FV(D) ∪ FV(R) (By (πT f ′)(m) |= R)

= FVR(P).

so πT f ′ is a desired witness for f |= P.

Case Q ∧ R: Assuming FVR(Q) = FV(Q) = FVR(R) = FV(R). By definition, f |= Q ∧ R implies that f |= Q and f |= R. By

induction, there exists f ′ ⊑ f such that FVR(Q) = range(f ′) = FV(Q), dom(f ′) ⊆ FVD(Q), and f ′ |= Q, and there exists

f ′′ ⊑ f such that FVR(R) = range(f ′′) = FV(R), dom(f ′′) ⊆ FVD(R) and f ′′ |= R. Thus, range(f ′) = range(f ′′).

Note that dom(f ′) = dom(f) ∩ range(f ′) because in our models, f ′ ⊑ f implies that there exists S and some v such that

f = (f ′ ⊕ ηS)⊙ v, and we can make S disjoint of dom(f ′) and range(f ′) wolog. Then, dom(f) = dom(f ′ ⊕ S) = dom(f ′)∪ S ,

and range(f ′) = range(f ′ ⊕ S) \ S , so dom(f) ∪ range(f ′) ⊆ dom(f ′). Meanwhile, since dom(f ′) ⊆ dom(f) and dom(f ′) ⊆

range(f ′), dom(f ′) ⊆ dom(f) ∩ range(f ′). So dom(f ′) = dom(f) ∩ range(f ′). Similarly, dom(f ′′) ⊆ dom(f) ∩ range(f ′′), so

range(f ′) = range(f ′′) implies that dom(f ′) = dom(f ′).

Since dom(f ′) = dom(f ′′) and range(f ′) = range(f ′′), Theorem A.25 implies that f ′ = f ′′. This is the desired witness:

f ′ = f ′′ |= Q and f ′ = f ′′ |= R.

Case Q ∨ R: f |= Q ∨ R implies that f |= Q or f |= R.

Without loss of generality, suppose f |= Q. By induction, there exists f ′ ⊑ f such that FVR(Q) ⊆ range(f ′) ⊆ FV(Q),

dom(f ′) ⊆ FVD(Q). Then:

range(f ′) ⊆ FV(Q) ∪ FV(R) = FV(P)

range(f ′) ⊇ FVR(Q) ∩ FVR(R) = FVR(P)

dom(f ′) ⊆ FV(Q) ∪ FV(R) = FVD(P).

33

Thus, f ′ is a desired witness.

Case Q # R: Assuming FVD(R) ⊆ FVR(Q).

f |= Q # R implies that there exists f1, f2 such that f1 ⊙ f2 = f , f1 |= Q, and f2 |= R. f1 ⊙ f2 is defined so range(f1) = dom(f2).

By induction, there exists f ′1 ⊑ f1 such that f ′1 |= Q, FVR(Q) ⊆ range(f ′1) ⊆ FV(Q) and dom(f ′1) ⊆ FVD(Q), and there exists

f ′
2
⊑ f2 such that f ′

2
|= Q, FVR(R) ⊆ range(f ′

2
) ⊆ FV(R), and dom(f ′

2
) ⊆ FVD(R).

Now, f̂ = f ′1 ⊙ (f ′2 ⊕ unitrange(f ′
1
)\dom(f ′

2
)) is defined because dom(f ′2) ⊆ FVD(R) ⊆ FVR(Q) ⊆ range(f ′1). Then, we have

f̂ |= Q # R

range(f̂) = range(f ′1) ∪ range(f ′2) ⊆ FV(Q) ∪ FV(R) = FV(P)

range(f̂) = range(f ′1) ∪ range(f ′2) ⊇ FVR(Q) ∪ FVR(R) = FVR(P)

dom(f̂) = dom(f ′1) ⊆ FVD(Q) = FVD(P).

f ′1 ⊑ f , f ′2 ⊕ unitrange(f ′
1
)\dom(f ′

2
)⊕ ⊑ f2, so by Theorem A.36, f̂ = f ′1 ⊙ (f ′2 ⊕ unitrange(f ′

1
)\dom(f ′

2
)) ⊑ f1 ⊙ f2 = f .

Thus, f̂ is a desired witness.

Case Q ∗ R: f |= Q ∗ R implies that there exists f1, f2 such that f1 ⊕ f2 ⊑ f , f1 |= Q, and f2 |= R.

By induction, there exists f ′1 ⊑ f1 such that f ′1 |= Q, FVR(Q) ⊆ range(f ′1) ⊆ FV(Q) and dom(f ′1) ⊆ FVD(Q), and there exists

f ′
2
⊑ f2 such that f ′

2
|= Q, FVR(R) ⊆ range(f ′

2
) ⊆ FV(R), and dom(f ′

2
) ⊆ FVD(R). By downwards closure of ⊕, f ′

1
⊕ f ′

2
is

defined and f ′1 ⊕ f ′2 ⊑ f1 ⊕ f2 ⊑ f . We have f ′1 ⊕ f ′2 |= Q ∗ R, and

range(f ′1 ⊕ f ′2) = range(f ′1) ∪ range(f ′2) ⊆ FV(Q) ∪ FV(R) = FV(P)

range(f ′1 ⊕ f ′2) = range(f ′1) ∪ range(f ′2) ⊇ FVR(Q) ∪ FVR(R) = FVR(P)

dom(f ′1 ⊕ f ′2) = dom(f ′1) ∪ dom(f ′2) ⊆ FVD(Q) ∪ FVD(R) = FVD(P).

Thus, f ′
1
⊕ f ′

2
is a desired witness.

�

N. Section K, CPSL: Omitted Details

To prove soundness for CPSL (Theorem A.21), we rely on a few lemmas about program semantics.

Lemma A.26. Suppose that e is an expression not containing x, and let µ ∈ D(Mem[Var]). Then:

fJx←eKµ = fµ ⊙ (m 7→ unit(mVar\{x})) ⊙ ((m1 7→ unit(m1 ∪ (x 7→ JeK(m1)))) ⊕ (m2 7→ unit(m2)))

where m1 ∈Mem[Var \ {x}] and m2 ∈Mem[Var \ {x} \ FV(e)].

Lemma A.27. Suppose that d is a distribution expression not containing x, and let µ ∈ D(Mem[Var]). Then:

fJx $←dKµ = fµ ⊙ (m 7→ unit(mVar\{x})) ⊙ ((JdK ⊙ (v 7→ [x 7→ v])) ⊕ (m1 7→ unit(m1)) ⊕ (m2 7→ unit(m2)))

where m1 ∈Mem[Var \ {x}] and m2 ∈Mem[Var \ {x} \ FV(d)], and JdK : Mem[FV(d)]→ D(Val).

The rule Frame relies on simple syntactic conditions for approximating which variables may be read, which variables must

be written before they are read, and which variables may be modified.

Definition A.8. RV,WV,MV are defined as follows:

RV(x← e) := FV(e) RV(x $← d) := FV(d)

RV(c ; c′) := RV(c) ∪ (RV(c′) \WV(c)) RV(if b then c else c′) := FV(b) ∪ RV(c) ∪ RV(c′)

WV(x← e) := {x} \ FV(e) WV(x $← d) := {x} \ FV(d)

WV(c ; c′) :=WV(c) ∪ (WV(c′) \ RV(c)) WV(if b then c else c′) := (WV(c) ∩WV(c′)) \ FV(b)

MV(x← e) := {x} MV(x $← d) := {x}

MV(c ; c′) := MV(c) ∪MV(c′) MV(if b then c else c′) := MV(c) ∪MV(c′)

Other analyses are possible, so long as non-modified variables are preserved from input to output, and output modified

variables depend only on input read variables.

Lemma A.28 (Soundness for RV, WV, MV [9]). Let µ′ = JcKµ, and let R = RV(c),W = WV(c),C = Var \MV(c). Then:

34

1) Variables outside of MV(c) are not modified: πC(µ′) = πC(µ).

2) The sets R and W are disjoint.

3) There exists f : Mem[R]→ D(Mem[MV(c)]) with µ′ = bind(µ,m 7→ f (πR(m)) ⊗ unit(πC(m))).

We recall the definition of validity in CPSL.

Definition A.7 (CPSL Validity). A CPSL judgment {P} c {Q} is valid, written |= {P} c {Q}, if for every input distribution

µ ∈ D(Mem[Var]) such that the lifted input fµ : Mem[∅]→ D(Mem[Var]) satisfies fµ |= P, the lifted output satisfies fJcKµ |= Q.

Now, we are ready to prove soundness of CPSL.

Theorem A.21 (CPSL Soundness). CPSL is sound: derivable judgments are valid.

Proof. By induction on the derivation. Throughout, we write µ : D(Mem[Var]) for the input and f : Mem[∅]→ D(Mem[Var])

for the lifted input, and we assume that f satisfies the pre-condition of the conclusion.

Case: Assn. By restriction (Theorem A.20), there exists k1 ⊑ f such that FV(e) ⊆ S FV(P) ⊆ range(k1) ⊆ FV(P); let

K = range(k1). Since f has empty domain, we have f = k1 ⊙ k2 for some k2 : Mem[K]→ D(Mem[Var]). Let f ′ = fJx←eKµ be

the lifted output. By Theorem A.26 and associativity, we have:

f ′ = f ⊙ (m 7→ unit(mVar\{x})) ⊙ ((m1 7→ unit(m1 ∪ (x 7→ JeK(m1)))) ⊕ (m2 7→ unit(m2)))

= k1 ⊙ k2 ⊙ (m 7→ unit(mVar\{x}))︸ ︷︷ ︸
j

⊙(m1 7→ unit(m1 ∪ (x 7→ JeK(m1)))︸ ︷︷ ︸
j1

⊕m2 7→ unit(m2)︸ ︷︷ ︸
j2

)

where m : Mem[Var], m1 : Mem[FV(e)], and m2 : Mem[Var \ FV(e) \ {x}]. Note that even though the components of j do not

preserve input to output, j itself does preserve input to output; j1 and j2 also evidently have this property. Now since k ⊑ j

and k1 |= P, we have j |= P. Since j1 ⊑ j1 ⊕ j2 and j1 |= (FV(e) ⊲ x = e), we have j1 ⊕ j2 |= (FV(e) ⊲ x = e) as well. Thus, we

conclude f ′ |= P # (FV(e) ⊲ x = e).

Case: Samp. By restriction (Theorem A.20), there exists k1 ⊑ f such that FV(d) ⊆ S FV(P) ⊆ range(k1) ⊆ FV(P); let

K = range(k1). Since f has empty domain, we have f = k1 ⊙ k2 for some k2 : Mem[K]→ D(Mem[Var]). Let f ′ = fJx←eKµ be

the lifted output. By Theorem A.27 and associativity, we have:

f ′ = f ⊙ (m 7→ unit(mVar\{x})) ⊙ ((JdK ⊙ (v 7→ [x 7→ v])) ⊕ (m1 7→ unit(m1)) ⊕ (m2 7→ unit(m2)))

= k1 ⊙ k2 ⊙ (m 7→ unit(mVar\{x}))︸ ︷︷ ︸
j

⊙((JdK ⊙ (v 7→ [x 7→ v])) ⊕ (m1 7→ unit(m1))︸ ︷︷ ︸
j1

⊕m2 7→ unit(m2)︸ ︷︷ ︸
j2

)

where m : Mem[Var], JdK : Mem[FV(d)] → D(Mem[Val]), m1 : Mem[FV(d)], and m2 : Mem[Var \ FV(d) \ {x}]. Note that

even though the components of j do not preserve input to output, j itself does preserve input to output; j1 and j2 also evidently

have this property. Now since k ⊑ j and k1 |= P, we have j |= P. Since j1 ⊑ j1 ⊕ j2 and j1 |= (FV(d) ⊲ x ∼ d), we have

j1 ⊕ j2 |= (FV(d) ⊲ x ∼ d) as well. Thus, we conclude f ′ |= P # (FV(d) ⊲ x ∼ d).

Case: Skip. Trivial.

Case: Seqn. Trivial.

Case: DCond. Since all assertions are in RDIBI, we have FVD(P) ⊆ FVR(∅ ⊲ [b]) = {b}. Since f |= (∅ ⊲ [b]), there exists k1, k2

such that k1 ⊙ k2 = f , with k1 |= (∅ ⊲ [b]) and k2 |= P.

By restriction (Theorem A.20), there exists j1 such that j1 ⊑ k1 and

dom(j1) ⊆ FVD(∅ ⊲ [b]) = ∅

{b} = FVR(∅ ⊲ [b]) ⊆ range(j1) ⊆ FV(∅ ⊲ [b]) = {b}.

By restriction (Theorem A.20), there exists j2 such that j2 ⊑ k2 and j2 |= P, and dom(j2) ⊆ FVD(P) ⊆ FVR(∅ ⊲ [b]) = {b}.

Since dom(k2) = range(k1) ⊇ {b}, we may assume without loss of generality that j2 |= P, j2 ⊑ k2, and dom(j2) = {b}. Thus

j1 ⊙ j2 is defined, and so j1 ⊙ j2 ⊑ k1 ⊙ k2 ⊑ f by Theorem A.36.

By Theorem A.10, there exists j : Mem[range(j2)]→ D(Mem[Var]) such that j1⊙ (j2⊙ j) = (j1⊙ j2)⊙ j = f . Since j2 ⊑ j2⊙ j,

we have j2 ⊙ j |= P. Thus, we may assume without loss of generality that range(j2) = Var and j1 ⊙ j2 = f = µ.

Let ltt, lff : Mem[∅]→ D(Mem[b]) be defined by ltt(〈〉) = unit[b = tt] and lff (〈〉) = unit[b = ff]; evidently, ltt |= (∅ ⊲ b = tt) and

lff |= (∅ ⊲ b = ff). Now, we have:

fµ|Jb=ttK = ltt ⊙ j2

fµ|Jb=ff K = lff ⊙ j2

35

where each equality holds if the left side is defined. Regardless of whether the conditional distributions are defined, we always

have:

ltt ⊙ j2 |= (∅ ⊲ b = tt) # P

lff ⊙ j2 |= (∅ ⊲ b = ff) # P.

Since both of these kernels have empty domain, we have ltt⊙ j2 = νtt and lff⊙ j2 = νff for two distributions νtt, νff ∈ D(Mem[Var]).

By induction, we have:

fJcKνtt |= (∅ ⊲ b = tt) # (b : b = tt ⊲ Q1)

fJcKνff |= (∅ ⊲ b = ff) # (b : b = ff ⊲ Q2).

By similar reasoning as for the pre-conditions, there exists k′1, k
′
2 : Mem[b] → D(Mem[Var]) such that k′1 |= (b : b = tt ⊲ Q1)

and k′
2
|= (b : b = ff ⊲ Q2), and:

fJcKνtt = ltt ⊙ k′1 fJcKνff = lff ⊙ k′2.

Let k′ : Mem[b]→ D(Mem[Var]) be the composite kernel defined as follows:

k′([b 7→ v]) ,

k′1([b 7→ tt]) : v = tt

k′
2
([b 7→ ff]) : v = ff

.

By assumption, k′ |= ((b : b = tt ⊲ Q1)∧ (b : b = ff ⊲ Q2)). Now, let p , µ(Jb = ttK) be the probability of taking the first branch.

Then we can conclude:

fJif b then c else c′Kµ = fJcK(µ|Jb=ttK)⊕pJc′K(µ|Jb=ttK)

= fJcKνtt⊕pJcKνff

= fJcKνtt ⊕p fJcKνff

= (ltt ⊙ k′1) ⊕p (lff ⊙ k′2)

= (ltt ⊙ k′) ⊕p (lff ⊙ k′)

= (ltt ⊕p lff) ⊙ k′

|= (∅ ⊲ [b]) # ((b : b = tt ⊲ Q1) ∧ (b : b = ff ⊲ Q2)).

Above, k1 ⊕p k2 lifts the convex combination operator from distributions to kernels from Mem[∅]. We show the last equality

in more detail. For any r ∈Mem[Var]:

(ltt ⊙ k′) ⊕p (lff ⊙ k′)(〈〉)(r)

= p · (ltt ⊙ k′)(〈〉)(r) + (1 − p) · (lff ⊙ k′)(〈〉)(r)

= p · (ltt ⊙ k′)(〈〉)(r) + (1 − p) · (lff ⊙ k′)(〈〉)(r)

= p · ltt(〈〉)(b 7→ tt) · k′(b 7→ tt)(r) + (1 − p) · lff (〈〉)(b 7→ ff) · k′(b 7→ ff)(r)

= ((ltt ⊕p lff) ⊙ k′)(〈〉)(r).

where the penultimate equality holds because ltt and lff are deterministic.

Case: Weak. Trivial.

Case: Frame. The proof for this case follows the argument for Frame rule in PSL, with a few minor changes.

There exists k1, k2 such that k1 ⊕ k2 ⊑ f , and k1 |= P and k2 |= R; let S 1 , range(k1), and note that RV(c) ⊆ S 1 by the last

side-condition. By restriction (Theorem A.20), there exists k′2 ⊑ k2 such that k′2 |= R and range(k′2) ⊆ FV(R); let S 2 , range(k′2).

Since k1 and k2 have empty domains, S 1 and S 2 must be disjoint. Let S 3 = Var \ S 2 \ S 1. Since WV(c) is disjoint from S 2 by

the first side-condition, we have WV(c) ⊆ S 1 ∪ S 3.

Let f ′ = fJcKµ be the lifted output. By induction, we have f ′ |= Q; by restriction (Theorem A.20), there exists k′
1
⊑ f ′ such

that range(k′1) ⊆ FV(Q) and k′1 |= Q. By the third side condition, RV(c) ⊆ FVR(P) ⊆ S 1.

By soundness of RV and WV (Theorem A.28), all variables in WV(c) must be written before they are read and there is a

function F : Mem[S 1]→ D(Mem[WV(c) ∪ S 1]) such that:

πWV(c)∪S 1
JcKµ = bind(µ,m 7→ F(mS 1)).

Since S 2 ⊆ FV(R), variables in S 2 are not in MV(c) by the first side-condition, and S 2 is disjoint from WV(c) ∪ S 1. By

soundness of MV, we have:

πWV(c)∪S 1∪S 2
JcKµ = bind(πWV(c)∪S 1∪S 2

µ, F ⊕ unit)

36

where unit : Mem[WV(c) ∪ S 2]→ D(Mem[WV(c) ∪ S 2]).

Since S 1 and S 2 are independent in µ, we know that S 1 ∪WV(c) and S 2 are independent in JcKµ. Hence:

fπS 1∪WV(c)JcKµ ⊕ fπS 2
JcKµ ⊑ f ′.

By induction, f ′ |= Q. Furthermore, FV(Q) ⊆ FVR(P) ∪WV(c) ⊆ S 1 ∪WV(c) by the second side-condition. By restriction

(Theorem A.20), fπS 1∪WV(c)JcKµ |= Q. Furthermore, πS 2
JcKµ = πS 2

µ, so πS 2
JcKµ |= R as well. Thus, f ′ |= Q ∗ R as desired.

�

O. Section L, proving CI: omitted proofs

Proposition A.29. (Axioms for RDIBI) The following axioms are sound, assuming both precedent and antecedent are in

FormRDIBI.

(P # Q) # R→ P # (Q ∗ R) (Indep-1)

P # Q→ P ∗ Q if FVD(Q) = ∅ (Indep-2)

P # Q→ P # (Q ∗ (S ⊲ [S])) (Pad)

(P ∗ Q) # (R ∗ S)→ (P # R) ∗ (Q # S) (RestExch)

Proof. We prove them one by one.

Indep-1 We want to show that when (P # Q) # R, P # (Q ∗ R) are both formula in RDIBI, f |= (P # Q) # R implies f |= P # (Q ∗ R).

By proof system of DIBI, f |= (P # Q) # R implies that f |= P #
(
Q # R

)
. While P #

(
Q # R

)
may not satisfy the restriction property,

that is okay because we will only used conditions guaranteed by the fact that (P # Q) # R, P # (Q ∗ R) ∈ FormRDIBI. In particular,

we rely on P,Q,R each satisfies restriction, and FVD(Q ∗ R) ⊆ FVR(P), which implies that

FVD(R) ⊆ FVD(Q ∗ R) ⊆ FVR(P) (25)

f |= P #
(
Q # R

)
implies there exists fp, fq, fr such that fp |= P, fq |= Q, and fr |= R, and fp ⊙ (fq ⊙ fr) = f .

By restriction property Theorem A.20, fq |= Q implies that there exists f ′q ⊑ fq such that FVR(Q) ⊆ range(f ′q) ⊆ FV(Q) and

dom(f ′q) ⊆ FVD(Q). f ′q ⊑ fq so there exists v, T such that fq = (f ′q ⊕k unitT) ⊙ v.

Similarly, fr |= R, by Theorem A.20, there exists f ′r ⊑ fr such that FVR(R) ⊆ range(f ′r) ⊆ FV(R) and dom(f ′r) ⊆ FVD(R).

f ′r ⊑ fr so there exists u, S such that fr = (f ′r ⊕k unitS) ⊙ u.

Now, we claim that FVD(R) ⊆ dom(f ′q ⊕ unitT):

By Theorem A.20 fp |= P implies that there exists f ′p ⊑ fp such that FVR(P) ⊆ range(f ′p) ⊆ FV(P), dom(f ′p) ⊆

FFV(P), and f ′p |= P. Thus, FVR(P) ⊆ range(fp) = dom(fq).

Recall that FVD(R) ⊆ FVR(P), so FVD(R) ⊆ dom fq = dom f ′q ⊕ unitT .

As a corollary, we have dom(f ′r) ⊆ FVD(R) ⊆ dom(f ′q ⊕ unitT) ⊆ dom(v), and dom(f ′r) ⊆ FVD(R) ⊆ dom(f ′q ⊕ unitT). Then,

fq ⊙ fr =
(
(f ′q ⊕ unitT) ⊙ v

)
⊙

(
(f ′r ⊕ unitS) ⊙ u

)

= (f ′q ⊕ unitT) ⊙
(
v ⊙ (f ′r ⊕ unitS)

)
⊙ u (By standard associativity of ⊙)

= (f ′q ⊕ unitT) ⊙ (f ′r ⊕ v) ⊙ u (By Theorem A.34 and dom(f ′r) ⊆ dom(v))

= (f ′q ⊕ unitT) ⊙ ((f ′r ⊙ unitrange(f ′r)) ⊕ (unitdom(v) ⊙ v) ⊙ u

= (f ′q ⊕ unitT) ⊙ (f ′r ⊕ unitdom(v)) ⊙ (unitrange(f ′r) ⊕ v) ⊙ u (♥)

= ((f ′q ⊕ unitT) ⊕ f ′r) ⊙ (v ⊕ unitrange(f ′r)) ⊙ u (†)

= ((f ′q ⊕ unitT) ⊙ v) ⊕ (f ′r ⊙ unitrange(f ′r)) ⊙ u (♥)

= fq ⊕ fr

where † follows from Theorem A.34, dom(f ′r) ⊆ dom(f ′q ⊕ unitT) and exact commutativity, ♥ follows from

Eq. (Exchange equality) and Theorem A.33.

Thus, fq ⊙ fr |= Q ∗ R. And by satisfaction rules,

f |= P # (Q ∗ R)

Indep-2 We want to show that under the special condition FVD(Q) = ∅, f |= P # Q implies that f |= P ∗ Q.

If f |= P # Q, then there exists fp, fq such that fp ⊙ fq = f and fp |= P, fq |= Q.

By restriction property Theorem A.20, fq |= Q implies that there exists f ′q ⊑ fq such that FVR(Q) ⊆ range(f ′q) ⊆ FV(Q) and

dom(f ′q) ⊆ FVD(Q). f ′q ⊑ fq so there exists v, T such that fq = (f ′q ⊕k unitT) ⊙ v.

37

Since dom(f ′q) ⊆ FVD(Q) and FVD(Q) = ∅, it must dom(f ′q) = ∅, and thus no matter what the domain of fp is, dom(f ′q) ⊆

dom(fp). Thus,

fp ⊙ fq = fp ⊙ (f ′q ⊕ unitT) ⊙ v

= (fp ⊕ f ′q) ⊕ v (By Theorem A.34 and dom(f ′q) ⊆ dom(fp))

Thus, fp ⊕ f ′q ⊑ fp ⊙ fq = f . By satisfaction rules, fp |= P and f ′q |= Q implies that fp ⊕ f ′q |= P ∗ Q. Thus, by persistence,

f |= P ∗ Q

Pad We want to show that when P # Q, P # (Q ∗ (S ⊲ [S])) are both in FormRDIBI, f |= P # Q implies f |= P # (Q ∗ (S ⊲ [S])).

One key guarantee we rely on from the grammar of FormRDIBI is that

FVD(Q) ∪ S = FVD(Q ∗ (S ⊲ [S])) ⊆ FVR(P).

When f |= P # Q, there exists fp, fq such that fp ⊙ fq = f and fp |= P, fq |= Q,

By Theorem A.20, fp |= P implies that there exists f ′p ⊑ fp such that FVR(P) ⊆ range(f ′p) ⊆ FV(P), dom(f ′p) ⊆

FFV(P), and f ′p |= P. By the fact that fp ⊙ fq is defined, and that the definition of preorder in our concrete models, f ′p ⊑ fp

implies

dom(fq) = range(fp) ⊇ range(f ′p) ⊇ FVR(P) ⊇ S

Since fq preserves input, S ⊆ dom(fq) implies that fq = fq ⊕ unitS , and thus fp ⊙ fq = fp ⊙ (fq ⊕ unitS).

Note that unitS |= (S ⊲ [S]), and fq |= Q. Thus, fq ⊕ unitS |= Q ∗ (S ⊲ [S]). Since fp |= P, it follows that

fp ⊙ (fq ⊕ unitS) |= P # (Q ∗ (S ⊲ [S]))

Since f = fp ⊙ fq = fp ⊙ (fq ⊕ unitS),

f |= P # (Q ∗ (S ⊲ [S]))

RestExch We want to show that when (P ∗ Q)#(R ∗ S) and (P#R) ∗ (Q#S) are both formula in FormRDIBI, f |= (P ∗ Q)#(R ∗ S)

implies f |= (P ∗ R) ∗ (Q ∗ S).

The key properties that being in FormRDIBI guarantees us are that

FVD(R) ⊆ FVR(P) FVD(S) ⊆ FVR(Q)

FVD(R ∗ S) = FVD(R) ∪ FVD(S) ⊆ FVR(P ∗ Q) = FVR(P) ∪ FVR(Q)

If f |= (P ∗ Q) # (R ∗ S), then there exists f1, f2 such that f1 ⊙ f2 = f , f1 |= P ∗ Q, f2 |= R ∗ S . That is, there exist u1, v1 such

that u1 ⊕ v1 ⊑ f1, u1 |= P, and v1 |= Q; there exist u2, v2 such that u2 ⊕ v2 ⊑ f2, u2 |= R, v2 |= S .

By Theorem A.20,

• u1 |= P implies there exists u′
1
⊑ u1 such that FVR(P) ⊆ range(u′

1
) ⊆ FV(P), dom(u′

1
) ⊆ FVD(P), and u′

1
|= P.

• v1 |= Q implies there exists v′1 ⊑ v1 such that FVR(Q) ⊆ range(v′1) ⊆ FV(Q), dom(v′1) ⊆ FVD(Q), and v′1 |= Q.

• u2 |= R implies there exists u′2 ⊑ u2 such that FVR(R) ⊆ range(u′2) ⊆ FV(R), dom(u′2) ⊆ FVD(R), and u′2 |= R.

• v2 |= S implies there exists v′
2
⊑ v2 such that FVR(S) ⊆ range(v′

2
) ⊆ FV(S), dom(v′

2
) ⊆ FVD(S), and v′

2
|= S .

By Downwards closure property of ⊕, u′2 ⊕ v′2 is defined and u′2 ⊕ v′2 ⊑ u2 ⊕ v2 ⊑ f2. Say that f1 = (u1 ⊕ v1 ⊕ unitS 1
) ⊙ h1,

f2 = (u′2 ⊕ v′2 ⊕ unitS 2
) ⊙ h2. Also,

dom(u′2 ⊕ v′2) = dom(u′2) ∪ dom(v′2) ⊆ FVD(R) ∪ FVD(S) ⊆ FVR(P) ∪ FVD(Q)

⊆ range(u′1) ∪ range(v′1) ⊆ range(u1) ∪ range(v1) = range(u1 ⊕ v1)

Then

f1 ⊙ f2 = (u1 ⊕ v1 ⊕ unitS 1
) ⊙ h1 ⊙ (u′2 ⊕ v′2 ⊕ unitS 2

) ⊙ h2

= (u1 ⊕ v1 ⊕ unitS 1
) ⊙ ((u′2 ⊕ v′2) ⊕ h1) ⊙ h2 (♥)

= (u1 ⊕ v1 ⊕ unitS 1
) ⊙ ((u′2 ⊕ v′2) ⊙ unitrange(u′

2
⊕v′

2
)) ⊕ (unitdom(h1) ⊙ h1) ⊙ h2

= (u1 ⊕ v1 ⊕ unitS 1
) ⊙ (u′2 ⊕ v′2 ⊕ unitdom(h1)) ⊙ (unitrange(u′

2
⊕v′

2
) ⊕ h1) ⊙ h2 (†)

= (u1 ⊕ v1 ⊕ unitS 1
) ⊙ (u′2 ⊕ v′2 ⊕ unitrange(u1⊕v1) ⊕ unitS 1

) ⊙ (unitrange(u′
2
⊕v′

2
) ⊕ h1) ⊙ h2

=
(
((u1 ⊕ v1) ⊙ (u′2 ⊕ v′2 ⊕ unitrange(u1⊕v1))) ⊕ unitS 1

)
⊙ (unitrange(u′

2
⊕v′

2
) ⊕ h1) ⊙ h2 (†)

=
(
(u1 ⊙ (u′2 ⊕ unitrange(u1))) ⊕ (v1 ⊙ (v′2 ⊕ unitrange(v1))) ⊕ unitS 1

)

⊙ (unitrange(u′
2
⊕v′

2
) ⊕ h1) ⊙ h2 († and exact commutativity, associativity)

38

where ♥ follows from Theorem A.34, dom(u′2 ⊕ v′2) ⊆ range(u1 ⊕ v1) ⊆ dom(h1), and † follows from Eq. (Exchange equality)

and Theorem A.33.

Thus, (u1 ⊙ (u′
2
⊕ unitrange(u1))) ⊕ (v1 ⊙ (v′

2
⊕ unitrange(v1))) ⊑ f1 ⊙ f2. Recall that u′

2
|= R. By persistence, u′

2
⊕ unitrange(u1) |= R.

Similarly, v′2 |= S , so by persistence, v′2 ⊕ unitrange(v1) |= S . Therefore,

(u1 ⊙ (u′2 ⊕ unitrange(u1))) ⊕ (v1 ⊙ (v′2 ⊕ unitrange(v1))) |= (P # R) ∗ (Q # S)

Then, by persistence, f |= (P # R) ∗ (Q # S).

�

Proposition A.30. (Axioms for atomic propositions) The following axioms are sound.

(S ⊲ [A] ∗ [B])→ (S ⊲ [A]) ∗ (S ⊲ [B]) if A ∩ B ⊆ S (RevPar)

(S ⊲ [A] ∗ [B])→ (S ⊲ [A ∪ B]) (UnionRan)

(A ⊲ [B]) # (B ⊲ [C])→ (A ⊲ [C]) (AtomSeq)

(A ⊲ [B])→ (A ⊲ [A]) # (A ⊲ [B]) (UnitL)

(A ⊲ [B])→ (A ⊲ [B]) # (B ⊲ [B]) (UnitR)

Proof. We prove it one by one.

RevPar Given any f |= (S ⊲ [A] ∗ [B]), by satisfaction rules and semantic of atomic propositions, there exists f ′ ⊑ f such that

for all m ∈ Md such that m |=d S , f ′(m) |=r [A] ∗ [B].

Since f ′(m) is defined and f ′(m) |=r [A] ∗ [B], it follows that dom(f ′) = S and range(f ′) ⊇ S ∪ A ∪ B. Thus, we can define

f1 = πS∪A f ′, f2 = πS∪B f ′. Note that f1 |= (S ⊲ [A]), f2 |= (S ⊲ [B]). Also, because A ∩ B ⊆ S ,

range(f1) ∩ range(f2) = (S ∪ A) ∩ (S ∪ B) = S ,

and thus f1 ⊕ f2 is defined. We now want to show that f1 ⊕ f2 ⊑ f .

Note f ′(m) |=r [A] ∗ [B] implies that there exists µ1, µ2 such that µ1 ⊕r µ2 ⊑ f ′(m), and dom(µ1) ⊇ A, dom(µ2) ⊇ B. Since f ′

preserves input on its domain S , πS f ′(m) = unit(m), so (µ1 ⊕r unit(m)) ⊕r (µ2 ⊕r unit(m)) ⊑ f ′(m) ⊕r unit(m) ⊕r unit(m) = f ′(m)

too. Let µ′
1
= πA∪S (µ1 ⊕r unit(m)) and µ′

2
= πB∪S (µ2 ⊕r unit(m)). Then due to Downwards closure in Md, µ′

1
⊕r µ

′
2

will also be

defined, and

µ′1 ⊕r µ
′
2 ⊑ (µ1 ⊕r unit(m)) ⊕r (µ2 ⊕r unit(m)) ⊑ f ′(m),

which implies that µ′1 ⊕r µ
′
2 = πS∪A∪B f ′(m). In the range model, this means that µ′1 = πS∪A f ′(m), µ′2 = πS∪B f ′(m).

Then for any m′ ∈Mem[S], any r ∈Mem[A ∪ B ∪ S],

(πS∪A∪B f ′)(m′)(r) = (πS∪A∪B f ′(m′))(r) = µ′1 ⊕r µ
′
2(r) = µ′1(rS∪A) · µ′2(rS∪B)

(f1 ⊕ f2)(m′)(r) = f1(m′)(rS∪A) · f2(m′)(rS∪B)

= (πS∪A f ′)(m′)(rS∪A) · (πS∪B f ′(m′)(rS∪B)

= µ′1(rS∪A) · µ′2(rS∪B)

Thus, f1 ⊕ f2 = πS∪A∪B f ′, which implies that f1 ⊕ f2 ⊑ f . By their types, f1 ⊕ f2 |= (S ⊲ [A]) ∗ (S ⊲ [B]).

By persistence, f |= (S ⊲ [A]) ∗ (S ⊲ [B]).

UnionRan Obvious from the semantics of atomic proposition and the range logic.

AtomSeq Given any f |= (A ⊲ [B]) # (B ⊲ [C]), by satisfaction rules and semantic of atomic propositions, there exists

• f1, f2 such that f1 ⊙ f2 = f ;

• f ′1 ⊑ f1 such that for any m ∈ Md such that m |=d A, f ′1(m) |=r [B].

• f ′
2
⊑ f2 such that for any m ∈ Md such that m |=d B, f ′

2
(m) |=r [C].

Note that f ′1(m) |=r [B] implies that B ⊆ range(f ′1), so πB f ′1 is defined. Let f ′′1 = πB f ′1 .

Note that for any m ∈ Md such that m |=d A, f ′′
1

(m) |=r [B] too, so f ′′ |= (A ⊲ [B]) too. Also, by transitivity, f ′′
1
⊑ f ′

1
⊑ f1.

Say f1 = (f ′′
1
⊕ ηS 1

) ⊙ v1, f2 = (f ′
2
⊕ ηS 2

) ⊙ v2, then since range(f ′′
1

) = B = dom(f ′
2
),

f1 ⊙ f2 = (f ′′1 ⊕ ηS 1
) ⊙ v1 ⊙ (f ′2 ⊕ ηS 2

) ⊙ v2

= (f ′′1 ⊕ ηS 1
) ⊙ (f ′2 ⊕ v1) ⊙ v2 (By Theorem A.34 and dom(f ′2) = B = range(f ′′1) ⊆ dom(v1))

= (f ′′1 ⊕ ηS 1
) ⊙ (f ′2 ⊕ ηdom(v1)) ⊙ (v1 ⊕ ηrange(f1)) ⊙ v2 (By Theorem A.35)

= (f ′′1 ⊕ ηS 1
) ⊙ (f ′2 ⊕ ηS) ⊙ (v1 ⊕ ηrange(f1)) ⊙ v2

= ((f ′′1 ⊙ f ′2) ⊕ ηS 1
) ⊙ (v1 ⊕ ηrange(f1)) ⊙ v2

39

So f ′′1 ⊙ f ′2 ⊑ f1 ⊙ f2 = f .

f ′′1 : Mem[A] → D(Mem[B]), f ′2 : Mem[B] → D(Mem[range(f ′2)])A, so f ′′1 ⊙ f ′2 : Mem[A] → D(Mem[range(f ′2)]). Since

range(f ′2) ⊇ C, it follows that f ′′1 ⊙ f ′2 |= (A ⊲ [C]), and thus f |= (A ⊲ [C]) by persistence.

UnitL If f |= (A ⊲ [B]), then there must exists f ′ ⊑ f such that for all m ∈ Md such that m |= A, f ′(m) |=r [B].

Given any witness f ′, f ′ = unitMem[A] ⊙ f ′, and also f ′ |=r (A ⊲ [B]).

Note that unitMem[A] |=r (A ⊲ [A]), so f ′ = unitMem[A] ⊙ f ′ |= (A ⊲ [A]) # (A ⊲ [B]).

UnitR Analogous as the UnitL case, except that now using the fact f ′ = f ′ ⊙ unitMem[B] for any f ′ : Mem[A]→ D(Mem[B]).

�

P. Common properties of models MDand MP

We define a more general class of models, parametric on a monad T , which encompasses both our concrete models MP

and MD. We will call them T -models and use their properties to simplify proofs of certain properties of MD and MP.

Definition A.9 (T -models). We say that (M,⊑,⊕,⊙,M) is a T -model if it satisfies the following conditions.

1) M consists of all maps of the type Mem[S]→ T (Mem[S ∪ U]), where S ,U are finite subsets of Var.

2) All m ∈ M preserve the input m : Mem[S]→ T (Mem[S ∪ U]) is in M only if πS m = unitS ;

3) ⊙ is defined to be the Kleisli composition associated with T ;

4) ⊕ is deterministic and partial: f ⊕ g is defined when range(f) ∩ range(g) = dom(f) ∩ dom(g);

5) ⊕ satisfies standard associativity: when both (f ⊕ g) ⊕ h and f ⊕ (g ⊕ h) are defined, (f ⊕ g) ⊕ h = f ⊕ (g ⊕ h);

6) When f ⊕ g are g ⊕ f are both defined, f ⊕ g = g ⊕ f .

7) For any f : Mem[A]→ T (Mem[A ∪ X]) ∈ M, and any S ⊆ A,

f ⊕ unitS = f . (Padding equality)

8) When both (f1 ⊕ f2) ⊙ (f3 ⊕ f4) and (f1 ⊙ f3) ⊕ (f2 ⊙ f4) are defined,

(f1 ⊕ f2) ⊙ (f3 ⊕ f4) = (f1 ⊙ f3) ⊕ (f2 ⊙ f4) (Exchange equality)

9) M is closed under ⊕ and ⊙;

10) For f , g ∈ M, f ⊑ g if and only if there exist v ∈ M and some finite set S such that,

g = (f ⊕ unitS) ⊙ v (26)

Below, we prove properties T -models, which would be common properties of MD and MP. Two main results are that all

T -models are DIBI frames (Theorem A.37).

Lemma A.31 (Standard associativity of ⊕). For any f1, f2, f3 ∈ M, (f1 ⊕ f2)⊕ f3 is defined if and only if f1 ⊕ (f2 ⊕ f3) is defined

and they are equal.

Proof. (f1 ⊕ f2) ⊕ f3 is defined if and only if R1 ∩ R2 = D1 ∩ D2 and (R1 ∪ R2) ∩ R3 = (D1 ∪ D2) ∩ D3.

f1 ⊕ (f2 ⊕ f3) is defined if and only if R2∩R3 = D2∩D3 and R1∩ (R2∪R3) = D1∩ (D2∪D3). Thus, to show that (f1⊕ f2)⊕ f3
is defined if and only if f1 ⊕ (f2 ⊕ f3) is defined, it suffices to show that

R1 ∩ R2 = D1 ∩ D2 (27)

(R1 ∪ R2) ∩ R3 = (D1 ∪ D2) ∩ D3 (28)

if and only if

R2 ∩ R3 = D2 ∩ D3 (29)

R1 ∩ (R2 ∪ R3) = D1 ∩ (D2 ∪ D3) (30)

We show that Eq. (29) and Eq. (30) follows from Eq. (27) and Eq. (28):

Recall that D1 ⊆ R1, D2 ⊆ R2, D3 ⊆ R3, so

• Eq. (29) follows from D2 ∩ D3 ⊆ R2 ∩ R3 and D2 ∩ D3 ⊇ R2 ∩ R3, which holds because

R2 ∩ R3 = R2 ∩ (R2 ∩ R3) ⊆ R2 ∩ ((R1 ∪ R2) ∩ R3)

= R2 ∩ ((D1 ∪ D2) ∩ D3) = R2 ∩ (D1 ∩ D3) (By Eq. (28))

⊆ (R2 ∩ D1) ∩ D3 ⊆ (R2 ∩ R1) ∩ D3 (By D1 ⊆ R1)

= (D2 ∩ D1) ∩ D3 ⊆ D2 ∩ D3 (By Eq. (27))

40

• Eq. (30) follows from (D1 ∪ D2) ∩ D3 ⊆ (R1 ∪ R2) ∩ R3 and (D1 ∪ D2) ∩ D3 ⊇ (R1 ∪ R2) ∩ R3, which holds because

R1 ∩ (R2 ∪ R3) = (R1 ∩ R2) ∪ (R1 ∩ R3) ⊆ (R1 ∩ R2) ∪ (R1 ∩ (R1 ∪ R2) ∩ R3)

= (D1 ∩ D2) ∪ (R1 ∩ (D1 ∪ D2) ∩ D3) (By Eq. (27) and Eq. (28))

= (D1 ∩ D2) ∪ ((R1 ∩ D1 ∩ D3) ∪ (R1 ∩ D2 ∩ D3))

⊆ (D1 ∩ D2) ∪ ((D1 ∩ D3) ∪ (R1 ∩ R2 ∩ D3)) (By D2 ⊆ R2)

⊆ (D1 ∩ D2) ∪ ((D1 ∩ D3) ∪ (D1 ∩ D2 ∩ D3)) (By Eq. (27))

⊆ (D1 ∩ D2) ∪ (D1 ∩ D3) = D1 ∩ (D2 ∪ D3)

We show that Eq. (27) and Eq. (28) follows from Eq. (29) and Eq. (30):

• Eq. (27) follows from D1 ∩ D2 ⊆ R1 ∩ R2 and D1 ∩ D2 ⊇ R1 ∩ R2, which holds because

R1 ∩ R2 = R1 ∩ (R2 ∪ R3) ∩ R2 = D1 ∩ (D2 ∪ D3) ∩ R2 (By Eq. (29))

= D1 ∩ ((D2 ∩ R2) ∪ (D3 ∩ R2)) = D1 ∩ (D2 ∪ (D3 ∩ R2))

⊆ D1 ∩ (D2 ∪ (R1 ∩ R2)) (By D2 ⊆ R1)

= D1 ∩ (D2 ∪ (D1 ∩ D2)) (By Eq. (29))

= D1 ∩ D2

• Eq. (28) follows from (D1 ∪ D2) ∩ D3 ⊆ (R1 ∪ R2) ∩ R3 and (D1 ∪ D2) ∩ D3 ⊇ (R1 ∪ R2) ∩ R3, which holds because

(R1 ∪ R2) ∩ R3 = (R1 ∩ R3) ∪ (R2 ∩ R3)

= (R1 ∩ (R2 ∪ R3) ∩ R3) ∪ (R2 ∩ R3)

= (D1 ∩ (D2 ∪ D3) ∩ R3) ∪ (D2 ∩ D3) (By Eq. (30))

= (D1 ∩ ((D2 ∩ R3) ∪ (D3 ∩ R3))) ∪ (D2 ∩ D3)

⊆ (D1 ∩ ((R2 ∩ R3) ∪ D3)) ∪ (D2 ∩ D3) (By D2 ⊆ R2, D3 ⊆ R3)

= (D1 ∩ ((D2 ∩ D3) ∪ D3)) ∪ (D2 ∩ D3) (By Eq. (29))

= (D1 ∩ D3) ∪ (D2 ∩ D3) = (D1 ∪ D2) ∩ D3

Thus, Eq. (27) and Eq. (28) hold if and only if Eq. (29) and Eq. (30) hold. Therefore, (f1 ⊕ f2) ⊕ f3 is defined if and only

if f1 ⊕ (f2 ⊕ f3) is defined and by Definition A.9(5) they are equal. �

Lemma A.32 (Reflexivity and transitivity of order). For any T -model M, the order ⊑ defined in M is transitive and reflexive.

Proof. Let x : Mem[A]→ T (Mem[X]) ∈ M, S = ∅, v = unitX . Then

(x ⊕ unitS) ⊙ v = (x ⊕ unit∅) ⊙ unitX

= x ⊙ unitX (By Eq. (Padding equality))

= x (By Definition A.9(3))

Thus, by Equation (26) we have x ⊑ x, and the order is reflexive.

For any x, y, z ∈ M, if x ⊑ y and y ⊑ z, then by definition of ⊑, there exist S 1 and v1 such that y = (x ⊕ unitS 1
) ⊙ v1, and

there exist S 2 and v2 such that z = (y ⊕ unitS 2
) ⊙ v2.

We can now calculate:

z = (y ⊕ unitS 2
) ⊙ v2

= (((x ⊕ unitS 1
) ⊙ v1) ⊕ unitS 2

) ⊙ v2

= (((x ⊕ unitS 1
) ⊙ v1) ⊕ (unitS 2

⊙ unitS 2
)) ⊙ v2

= (x ⊕ unitS 1
⊕ unitS 2

) ⊙ (v1 ⊕ unitS 2
) ⊙ v2 (By Exchange equality and Theorem A.33)

= (x ⊕ unitS 1∪S 2
) ⊙ ((v1 ⊕ unitS 2

) ⊙ v2)

M is closed under ⊕, ⊙, so (v1⊕unitS 2
)⊙v2 ∈ M. Thus, we can instantiate Equation (26) with S = S 1∪S 2 and v = (v1⊕unitS 2

)⊙v2

obtaining x ⊑ z. So the order is transitive. �

Proposition A.33. For any T -model M, states f1, f2, f3, f4 in M, (f1 ⊙ f3) ⊕ (f2 ⊙ f4) is defined implies (f1 ⊕ f2) ⊙ (f3 ⊕ f4)

is also defined. The converse does not always hold, but if f1 ⊙ f3 and f2 ⊙ f4 are defined, then (f1 ⊕ f2) ⊙ (f3 ⊕ f4) is defined

implies (f1 ⊙ f3) ⊕ (f2 ⊙ f4) is defined too.

41

Proof. We prove each direction individually:

• Given (f1 ⊙ f3) ⊕ (f2 ⊙ f4) is defined, it must that R1 = D3, R2 = D4, and R3 ∩ R4 = D1 ∩ D2. Thus, R1 ∩ R2 = D3 ∩ D4 ⊆

R3 ∩ R4 = D1 ∩ D2, ensuring that f1 ⊕ f2 is defined;

R3 ∩ R4 = D1 ∩ D2 ⊆ R1 ∩ R2 = D3 ∩ D4, ensuring that f3 ⊕ f4 is defined;

range(f1 ⊕ f2) = R1 ∪ R2 = D3 ∪ D4 = dom(f3 ⊕ f4), ensuring (f1 ⊕ f2) ⊙ (f3 ⊕ f4) is defined.

• Given f1 ⊙ f3 and f2 ⊙ f4 are defined, (f1 ⊙ f3) ⊕ (f2 ⊙ f4) is defined if R3 ∩ R4 = D1 ∩ D2. When (f1 ⊕ f2) ⊙ (f3 ⊕ f4) is

defined,

R3 ∩ R4 = D3 ∩ D4 (Because f3 ⊕ f4 is defined)

= R1 ∩ R2 (Because f1 ⊙ f3 and f2 ⊙ f4 are defined)

= D1 ∩ D2 (Because f1 ⊕ f2 is defined)

So (f1 ⊙ f3) ⊕ (f2 ⊙ f4) is also defined. �

Lemma A.34 (⊙ elimination). For any T -model M, and f , g ∈ M, if f ⊙ (g ⊕ unitX) is defined and dom(g) ⊆ dom(f), then

f ⊙ (g ⊕ unitX) = g ⊕ f .

Proof. Let f : Mem[S]→ T (Mem[S ∪ T]) and g : Mem[U]→ T (Mem[U ∪ V]) be in M. When U ⊆ S ,

f ⊙ (g ⊕ unitX)

= (f ⊕ unitU) ⊙ (g ⊕ unitX ⊕ unitS∪T) (By Padding equality)

= (unitU ⊕ f) ⊙ (g ⊕ unitX ⊕ unitS∪T) (By commutativity)

= (unitU ⊕ f) ⊙ (g ⊕ unitS∪T) (†)

= (unitU ⊙ g) ⊕ (f ⊙ unitS∪T) (By Theorem A.33 and Exchange equality)

= g ⊕ f �

where † follows from X ⊆ S ∪ T , which holds as f ⊙ (g ⊕ unitX) defined implies S ∪ T = X ∪ U.

Lemma A.35 (Converting ⊕ to ⊙). For any T -model M, let f : Mem[S]→ T (Mem[S∪T]) and g : Mem[U]→ T (Mem[U∪V])

be in M. If f ⊕ g is defined, then f ⊕ g = (f ⊕ unitU) ⊙ (unitS∪T ⊕ g).

Proof.

f ⊕ g = (f ⊙ unitS∪T) ⊕ (unitU ⊙ g)

= (f ⊕ unitU) ⊙ (unitS∪T ⊕ g) (By Theorem A.33 and Exchange equality)

�

Lemma A.36 (Quasi-Downwards-closure of ⊙). For any T -model M, and f , g, h, i ∈ M, if f ⊑ h, g ⊑ i, and f ⊙ g, h ⊙ i are

all defined, then f ⊙ g ⊑ h ⊙ i.

Proof. Since f ⊑ h, g ⊑ i, there must exist sets S 1, S 2 and v1, v2 ∈ M such that h = (f ⊕ unitS 1
)⊙ v1, i = (g⊕ unitS 2

)⊙ v2. f ⊙ g

is defined, so dom(g) = range(f) ⊆ range(f ⊕ unitS 1
) = dom(v1). Thus,

h ⊙ i = (f ⊕ unitS 1
) ⊙ v1 ⊙ (g ⊕ unitS 2

) ⊙ v2

= (f ⊕ unitS 1
) ⊙ (g ⊕ v1) ⊙ v2 (By Theorem A.34 and dom(g) ⊆ dom(v1))

= (f ⊕ unitS 1
) ⊙ (g ⊕ unitdom(v1)) ⊙ (unitrange(g) ⊕ v1) ⊙ v2 (By Theorem A.35)

= (f ⊕ unitS 1
) ⊙ (g ⊕ unitS 1

) ⊙ (unitrange(g) ⊕ v1) ⊙ v2 (†)

= ((f ⊙ g) ⊕ (unitS 1
⊙ unitS 1

)) ⊙ (unitrange(g) ⊕ v1) ⊙ v2 (♥)

= ((f ⊙ g) ⊕ unitS 1
) ⊙ (unitrange(g) ⊕ v1) ⊙ v2

where † follows from dom(g) = range(f) and Eq. (Padding equality), and ♥ follows from Theorem A.33 and Exchange equality.

Therefore, f ⊙ g ⊑ h ⊙ i. �

Lemma A.37. Any T -model M is in DIBI.

Proof. The axioms that we need to check are the follows.

⊕ Down-Closed We want to show that for any x′, x, y′, y ∈ M, if x′ ⊑ x and y′ ⊑ y and x ⊕ y = z, then x′ ⊕ y′ is defined, and

x′ ⊕ y′ = z′ ⊑ z.

42

Since x′ ⊑ x and y′ ⊑ y, there exist sets S 1, S 2, and v1, v2 ∈ M such that x = (x′ ⊕ unitS 1
) ⊙ v1, and y = (y′ ⊕ unitS 2

) ⊙ v2.

Thus,

x ⊕ y = ((x′ ⊕ unitS 1
) ⊙ v1) ⊕ ((y′ ⊕ unitS 2

) ⊙ v2)

=
(
(x′ ⊕ unitS 1

) ⊕ (y′ ⊕ unitS 2
)
)
⊙ (v1 ⊕ v2) (By Theorem A.33 and Exchange equality)

=
(
(x′ ⊕ y′) ⊕ (unitS 1

⊕ unitS 2
)
)
⊙ (v1 ⊕ v2) (By commutativity and associativity)

=
(
(x′ ⊕ y′) ⊕ (unitS 1∪S 2

)
)
⊙ (v1 ⊕ v2)

This derivation proved that x′ ⊕ y′ is defined, and x′ ⊕ y′ ⊑ x ⊕ y = z.

(⊙ Up-Closed) We want to show that for any z′, z, x, y ∈ M, if z = x ⊙ y and z′ ⊒ z, then there exists x′, y′ such that x′ ⊒ x,

y′ ⊒ y, and z′ = x′ ⊙ y′.

Since z′ ⊒ z, there exist set S , and v ∈ M such that z′ = (z ⊕ unitS) ⊙ v. Thus,

z′ = (z ⊕ unitS) ⊙ v

= ((x ⊙ y) ⊕ unitS) ⊙ v

= ((x ⊙ y) ⊕ (unitS ⊙ unitS)) ⊙ v

= ((x ⊕ unitS) ⊙ (y ⊕ unitS)) ⊙ v (By Theorem A.33 and Exchange equality)

= (x ⊕ unitS) ⊙ ((y ⊕ unitS) ⊙ v) (By standard associativity of ⊙)

Thus, for x′ = x ⊕ unitS and y′ = (y ⊕ unitS) ⊙ v, z′ = x′ ⊙ y′.

(⊕ Commutativity) We want to show that z = x ⊕ y implies that z = y ⊕ x. By definition of T -models: first, x ⊕ y is defined

iff range(x) ∩ range(y) = dom(x) ∩ dom(y) iff y ⊕ x is defined; second, when x ⊕ y and y ⊕ x are both defined, they are

equal. Thus, ⊕ commutativity frame condition is satisfied.

(⊕ Associativity) Since ⊕ is deterministic and partial,the associativity of ⊕ frame axiom reduces to Theorem A.31.

(⊕ Unit existence) We want to show that for any x ∈ M, there exists e ∈ E such that x = e ⊕ x. For any x : Mem[A] →

D(Mem[B]), x ⊕ unitMem[∅] is defined because B ∩ ∅ = ∅ = A ∩ ∅, and by Eq. (Padding equality), (x ⊕ unitMem[∅]) = x.

Also, unitMem[∅] ∈ E = M. So e = unitMem[∅] serves as the unit under ⊕ for any x.

(⊕ Unit Coherence) We want to show that for any y ∈ M, e ∈ E = M, if x = y ⊕ e, then x ⊒ y.

x = y ⊕ e = (y ⊙ unitrange(y)) ⊕ (unitdom(e) ⊙ e)

= (y ⊕ unitdom(e)) ⊙ (unitrange(y) ⊕ e) (By Eq. (Exchange equality))

= (y ⊕ unitdom(e)) ⊙ (e ⊕ unitrange(y)) (⊕ Commutativity)

Thus, x ⊒ y.

(⊙ Associativity) Since ⊙ is deterministic and partial, the associativity of ⊙ frame axiom reduces to the standard associativity.

Kleisli composition satisfies standard associativity, so ⊙ also satisfies standard associativity.

(⊙ Unit ExistenceL and R) Since ⊙ is the Kleisli composition, for any morphism x : Mem[A] → D(Mem[B]), unitMem[A] is

the left unit, and unitMem[B] is the right unit. For all S , unitMem[S] ∈ M = E. Thus, for any x ∈ M, there exists e ∈ E such

that e ⊙ x = x, and there exists e′ ∈ E such that x ⊙ e′ = x.

(⊙ CoherenceR) For any y ∈ M, e ∈ E = M such that x = y ⊙ e, we want to show that x ⊒ y. We just proved that

(y ⊕ unitMem[∅]) = y for any y, so x = y ⊙ e = (y ⊕ unitMem[∅]) ⊙ e, and x ⊑ y as desired.

(Unit closure) We want to show that for any e ∈ E and e′ ⊒ e, e′ ∈ E. This is evident because E = M and M is closed under

⊕ and ⊙.

(Reverse exchange) Given x = y ⊕ z and y = y1 ⊙ y2, z = z1 ⊙ z2, we want to show that there exists u = y1 ⊕ z1, v = y2 ⊕ z2,

and x = u ⊙ v.

After substitution, we get (y1⊙y2)⊕(z1⊙z2) = y⊕z = x. By Exchange equality and Theorem A.33, when (y1⊙y2)⊕(z1⊙z2)

is defined, (y1⊕z1)⊙(y2⊙z2) is also defined, and (y1⊙y2)⊕(z1⊙z2) = (y1⊕z1)⊙(y2⊕z2). Thus (y1⊕z1)⊙(y2⊕z2) = y⊕z = x,

and thus u = y1 ⊕ z1, v = y2 ⊕ z2 completes the proof. �

Lemma A.38 (Classical flavor in intuitionistic model). For any T -model M such that Disintegration holds (see Theorem A.10

and Theorem A.13), and f ∈ M,

f |= (∅ ⊲ [Z]) # ((Z ⊲ [X]) ∗ (Z ⊲ [Y]))

if and only if there exist g, h, i ∈ M, such that g : Mem[∅] → T (Mem[Z]), h : Mem[Z] → T (Mem[Z ∪ X]), i : Mem[Z] →

T (Mem[Z ∪ Y]), and g ⊙ (h ⊕ i) ⊑ f .

43

Proof. The backwards direction trivially follows from persistence. We detail the proof for the forward direction here. Suppose

f |= (∅ ⊲ [Z]) # ((Z ⊲ [X]) ∗ (Z ⊲ [Y])). Then, there exist f1, f2, f3, f4 such that f1 ⊙ f2 = f , f3 ⊕ f4 ⊑ f2, f1 |= (∅ ⊲ [Z]),

f3 |= (Z ⊲ [X]) and f4 |= (Z ⊲ [Y]).

• f1 |= (∅ ⊲ [Z]) implies that there exists f ′′
1
⊑ f1 such that dom(f ′′

1
) = ∅, and range(f ′′

1
) ⊇ Z. Let f ′

1
= πZ f ′′

1
. Note that

f ′1 : Mem[∅]→ T (Mem[Z]) and f ′1 ⊑ f ′′1 ⊑ f1. Hence, there exists some set S 1 and v1 ∈ M such that f1 = (f ′1⊕unitS 1
)⊙v1.

• f3 |= (Z ⊲ [X]) implies that there exists f ′′3 ⊑ f3 such that dom(f ′′3) = Z, and range(f ′′3) ⊇ X. Define f ′3 = πZ∪X f ′′3 . Then

f ′
3
⊑ f ′′

3
⊑ f3, and f ′

3
: Mem[Z]→ T (Mem[X ∪ Z]).

• f4 |= (Z ⊲ [Y]) implies that there exists f ′′4 ⊑ f4 such that dom(f ′′4) = Z, and range(f ′′4) ⊇ Y. Define f ′4 = πZ∪Y f ′′4 and note

that f ′4 : Mem[Z]→ T (Mem[Y ∪ Z]).

• By Downwards closure of ⊕ (Appendix P), having f3⊕ f4 defined implies that f ′
3
⊕ f ′

4
is also defined and f ′

3
⊕ f ′

4
⊑ f3⊕ f4 ⊑ f2.

Thus, there exists some v2 ∈ M and finite set S 2 such that f2 = (f ′3 ⊕ f ′4 ⊕ unitS 2
) ⊙ v2.

Using these observations, we can now calculate and show that f ′1 ⊙ (f ′3 ⊕ f ′4 ⊕ unitZ) ⊑ f1 ⊕ f2:

f1 ⊙ f2

= (f ′1 ⊕ unitS 1
) ⊙ v1 ⊙ (f ′3 ⊕ f ′4 ⊕ unitS 2

) ⊙ v2

= (f ′1 ⊕ unitS 1
) ⊙

(
f ′3 ⊕ f ′4 ⊕ v1

)
⊙ v2 (By Theorem A.34 and dom(f ′3 ⊕ f ′4) = Z ⊆ range(f ′1 ⊕ unitS 1

))

= (f ′1 ⊕ unitS 1
) ⊙

(
(f ′3 ⊕ f ′4 ⊕ unitdom(v1)) ⊙ (unitX∪Y∪Z ⊕ v1)

)
⊙ v2 (By Theorem A.35)

= (f ′1 ⊕ unitS 1
) ⊙ (f ′3 ⊕ f ′4 ⊕ unitZ ⊕ unitS 1

) ⊙ (unitX∪Y∪Z ⊕ v1) ⊙ v2 (By dom(v1) = Z ∪ S 1)

=
(
(f ′1 ⊙ (f ′3 ⊕ f ′4 ⊕ unitZ)) ⊕ (unitS 1

⊙ unitS 1
)
)
⊙ (unitX∪Y∪Z ⊕ v1) ⊙ v2 (By Eq. (Exchange equality) and Theorem A.33)

=
(
(f ′1 ⊙ (f ′3 ⊕ f ′4 ⊕ unitZ)) ⊕ unitS 1

)
⊙ (unitX∪Y∪Z ⊕ v1) ⊙ v2

=
(
(f ′1 ⊙ (f ′3 ⊕ f ′4)) ⊕ unitS 1

)
⊙ (unitX∪Y∪Z ⊕ v1) ⊙ v2 (Because f ′3 , f ′4 preserves input on Z)

To finish, take g= f ′
1

: Mem[∅]→ T (Mem[Z]), h= f ′
3

: Mem[Z]→ T (Mem[Z ∪ X]), i= f ′
4

: Mem[Z]→ T (Mem[Z ∪ Y]), and

note that g ⊙ (h ⊕ i) = f ′1 ⊙ (f ′3 ⊕ f ′4) ⊑ f1 ⊕ f2 ⊑ f . �

Lemma A.39 (Uniqueness). For any T -model M, f , g : Mem[X]→ T (Mem[X ∪Y]) in M, and arbitrary h ∈ M, if f ⊑ h and

g ⊑ h, then f = g.

Proof. f ⊑ h implies that there exists v1, S 1 such that (f ⊕ unitS 1
) ⊙ v1 = h; g ⊑ h implies that there exists v2, S 2 such that

(g ⊕ unitS 2
) ⊙ v2 = h. Take h : Mem[W]→ T (Mem[Z ∪W]), and then

f ⊕ unitS 1
= πrange(f⊕unitS 1

)h = πX∪Y∪dom(h)h

g ⊕ unitS 2
= πrange(g⊕unitS 2

)h = πX∪Y∪dom(h)h

Thus, f ⊕ unitS 1
= g ⊕ unitS 2

. Now, suppose f , g. This would imply f ⊕ unitS 1
, g ⊕ unitS 2

which is a contradiction. Thus,

f = g. �

44

	I Introduction
	II Overview of the contributions
	III The Logic DIBI
	III-A Syntax and semantics
	III-B Proof system
	III-C Soundness and Completeness of DIBI

	IV Models of DIBI
	IV-A Memories, distributions, and Markov kernels
	IV-B A concrete probabilistic model of DIBI
	IV-C Relations, join dependency, and powerset kernels
	IV-D A concrete relational model of DIBI

	V Application: Modeling Conditional and Join Dependencies
	V-A Conditional independence
	V-B Join dependency
	V-C Proving and validating the semi-graphoid axioms

	VI Application: Conditional Probabilistic Separation Logic
	VII Related Work
	VIII Discussion and Future Directions
	Appendix
	A Section III: omitted proof
	B Section III-C, Soundness and Completeness: Omitted Details
	C Section IV-B, probabilistic model: omitted proofs
	D Section IV-D, relational model: omitted proofs
	E Section V-A, Conditional Independence: Omitted Details
	F Section V-B, Join Dependency: Omitted Details
	G Section V-C, graphoid axioms: Omitted Details
	H Section VI, Conditional Probabilistic Separation Logic
	I A basic probabilistic programming language
	J CPSL: Assertion Logic
	K CPSL: program logic
	L Example: proving conditional independence for programs
	M Section J, atomic propositions: Omitted Details
	N Section K, CPSL: Omitted Details
	O Section L, proving CI: omitted proofs
	P Common properties of models MDand Metapost

