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Abstract. Lung ultrasound imaging has been shown effective in detecting typical 

patterns for interstitial pneumonia, as a point-of-care tool for both patients with 

COVID-19 and other community-acquired pneumonia (CAP). In this work, we 

focus on the hyperechoic B-line segmentation task. Using deep neural networks, 

we automatically outline the regions that are indicative of pathology-sensitive 

artifacts and their associated sonographic patterns. With a real-world data-scarce 

scenario, we investigate approaches to utilize both COVID-19 and CAP lung 

ultrasound data to train the networks; comparing fine-tuning and unsupervised 

domain adaptation. Segmenting either type of lung condition at inference may 

support a range of clinical applications during evolving epidemic stages, but also 

demonstrates value in resource-constrained clinical scenarios. Adapting real 

clinical data acquired from COVID-19 patients to those from CAP patients 

significantly improved Dice scores from 0.60 to 0.87 (p < 0.001) and from 0.43 

to 0.71 (p < 0.001), on independent COVID-19 and CAP test cases, respectively. 

It is of practical value that the improvement was demonstrated with only a small 

amount of data in both training and adaptation data sets, a common constraint for 

deploying machine learning models in clinical practice. Interestingly, we also 

report that the inverse adaptation, from labelled CAP data to unlabeled COVID-

19 data, did not demonstrate an improvement when tested on either condition. 

Furthermore, we offer a possible explanation that correlates the segmentation 

performance to label consistency and data domain diversity in this point-of-care 

lung ultrasound application.   

Keywords: Deep-Learning, Segmentation, Domain Adaptation, Lung 

Ultrasound, COVID-19, Pneumonia. 
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1 Introduction 

Over the past decade, the use of point of care ultrasound (POCUS) has increased 

alongside the growing evidence relating its use to improved patient outcomes. The 

publication of the BLUE protocol displayed the efficiency of POCUS in the diagnosis 

of the 5 most common lung pathologies compared to chest auscultation and chest x-

ray, achieving an accuracy of 90.5% [1]. POCUS was shown to be useful in the triaging 

of patients with suspected COVID-19 by following the BLUE protocol [2, 3]. Both 

COVID-19 and CAP present multiple B-lines in the early stages and areas of 

consolidation appear as infection progresses. Although computerized tomography (CT) 

scans have shown sensitivity of up to 97% [4] for the diagnosis of COVID-19, it can 

be impractical for use in ‘front-line’ settings, as it requires patients to be moved 

throughout the hospital, may risk precautious patients desaturating in scanner, and is 

time-consuming. Conversely, the BLUE protocol can be performed in a few minutes at 

the patient’s bedside, making POCUS advantageous for use during a pandemic when 

resources are low and infection risk is high. 

Several studies have investigated the use of deep learning to assist in triage, 

diagnosis, grading and monitoring of COVID-19 patients [5-10]. Methods include 

classifying and stratifying COVID-19 patients, or localizing pathological image 

features, all based on lung ultrasound (LUS) data from healthy subjects or other 

respiratory diseases, such as pulmonary edema and community-acquired pneumonia 

(CAP). To improve the specificity of computer-assisted tools, aggregating approaches 

combining pixel-, frame-, zone-, and patient-level severity scores have been proposed 

[11]. Localization, and therefore, segmentation, of pathology-sensitive LUS features 

then, on the pixel level, is fundamental. Moreover, the intuitive representation of 

segmentation, such as those of B-lines used in this study, may provide a visually 

interpretable solution in the form of a prediction for the clinician. Such segmentations 

may not only help the confidence the clinician would place on the automated computer 

prediction by localizing it, but also provides a feedback opportunity to further develop 

the assistive algorithm for improved sensitivity and specificity. 

Most existing research in machine learning, such as the work we present here, 

requires retrospectively labelled data. However, deploying such algorithms in real-

world clinical use has direct challenges. Most prominently, efficiently obtaining high-

quality labelled data [12]. For example, at the beginning of an epidemic, or during its 

fast-changing stage, representative imaging data from positive patients is usually 

scarce. Furthermore, obtaining expert labels may be even more costly during the peak 

of an outbreak. In scenarios such as these, the ability to use a pre-trained model, or an 

existing data set, perhaps from a relevant condition (CAP, in this work), could 

substantially reduce the requirements for necessary data and labeling from the target 

application, using fine-tuning or unsupervised domain adaptation. A different type of 

scenario, also investigated in this work, may be that data from a previous or ongoing 

epidemic (COVID-19, in this work) are available for training the pre-trained models or 

being used as the source domain data to be adapted to a different type of condition that 

has less, limited, or unlabeled data. Examples include pneumonia caused by a new 

epidemic, an additional variant to the existing one, or other types of pneumonia in an 
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area that lacks access to other data sources or labeling expertise. In this study, we test 

the transfer learning and domain adaptation abilities to and from the COVID-19 patient 

data, with the CAP patient data as an example of the other LUS data.  

2 Methods 

We consider two strategies for training convolutional neural networks to segment B-

lines from LUS images. The first strategy uses a supervised learning approach, 

requiring manual labeling of all input data, to segment the B-lines in the LUS images. 

The second strategy uses an unsupervised domain adaptation to adapt a segmentation 

network to an unlabeled target domain, requiring labels for only the source 

segmentation domain in training. 

 

2.1 Supervised Segmentation with U-Net 

A commonly used neural network for image segmentation, U-Net [13], was trained to 

automatically segment B-lines in COVID-19 and CAP LUS images. At inference, the 

network then predicts whether a given pixel in the image may be classified as part of a 

B-line. The use of well-established network architectures, such as U-Net, allows this 

work to focus primarily on investigating the feasibility of automatic segmentation of 

these regions of pathological interest. 

2.2 Unsupervised Segmentation via Image and Feature Alignment 

Synergistic image and feature alignment (SIFA) [14] has been used for domain 

adaptation tasks to guide the adversarial learning of an end-to-end framework for 

unsupervised image segmentation. SIFA reduces domain shift by using a generative 

adversarial network to synthetically translate images from a source domain to the target 

domain. The network is composed of a generator, which learns to translate the source 

domain image into a corresponding image of the target domain, an encoder that learns 

a shared feature-space, a decoder that learns the reverse-translation from target to 

source, and a segmenter that performs pixel-wise classification to identify different 

labels in the images. Additionally, three discriminator networks differentiate between 

the target and source inputs to the encoder, and the outputs of the decoder and 

segmenter. SIFA is trained to automatically segment B-lines in COVID-19 and CAP 

LUS images. However, in training, labels for only the source domain are required to 

learn the segmentation of the target domain.   

2.3 Implementation Details 

All neural networks were implemented in TensorFlow [15] and Keras [16]. Reference-

quality open-source code was adopted where possible for reproducibility. 

Our implementation of U-Net contained 4 layers of convolutional blocks, with an 

increasing number of channels of 16, 32, 64, and 128. Each convolutional block used 
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Batch Normalization across the channel axis between convolutional layers and a 

Dropout of 0.5 following each Batch Normalization. We employed data augmentation 

using rotation, shifting, and scaling to reduce over-fitting. All U-Net models were 

trained for 250 epochs with a mini-batch size of 16, using an equal-weight binary cross-

entropy and Dice loss and the Adam optimizer [17] with a learning rate of 0.005. 

Our implementation of SIFA and hyperparameters described below are consistent 

with the original default implementation and hyperparameters, as described in [14]. As 

in the original implementation, we employed data augmentation using rotation, shifting, 

and scaling to reduce over-fitting. All SIFA models were trained for 10,000 epochs, 

with a mini-batch size of 12. The generator, encoder, and decoder were trained using a 

weighted cycle-consistency and adversarial loss with the Adam optimizer at a learning 

rate of 0.0002. The segmenter was trained using an equal-weight cross-entropy and 

Dice loss with the Adam optimizer at a learning rate of 0.001. 

 

2.4 Data 

The US images were acquired from two hospitals by two clinicians, using a Butterfly 

iQ US probe (Butterfly Inc., Guilford, CT, USA). Experiments were conducted using 

images from six COVID-19 positive patients and seven patients with CAP. Due to the 

low prevalence of B-lines within patient scans only images with B-lines were used for 

training, to evaluate the segmentation algorithms. The resulting datasets contained 977 

and 326 images for COVID-19 and CAP, respectively. All COVID-19 diagnoses were 

confirmed by PCR tests. 

Ground-truth B-line segmentations were manually labeled by a medical student 

familiar with LUS. Segmentations were reviewed and verified by experienced US 

imaging researchers with over five years of experience with clinical US imaging. 

Example images and segmentations are provided in Figure 1. 

 

 

Fig. 1. Multiple sample LUS images and their corresponding manual segmentations. COVID-19 

images and segmentations are shown on the top row, CAP images and segmentations are shown 

on the bottom row. 
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2.5 Experiments 

Given the limited data availability, we adopt a two-way split for training and test sets, 

without a validation set. This prevents fine-tuning of network parameters or other 

hyperparameters to optimize performance, to avoid information leakage and provide 

fair estimates of model performances. As such, cross-validation was performed to 

assess the performance of models for the segmentation of B-lines in patients with 

COVID-19 and CAP under different supervision conditions in training. The COVID-

19 and CAP datasets were split into three cross-validation sets, on a patient-level. 

Splitting the data in this way ensures that no patient images are found amongst the 

different dataset splits. Efforts were made to ensure that each of the three COVID-19 

and CAP datasets were of approximately the same size. The COVID-19 datasets each 

consisted of 2 patients, with 319, 319, and 339 images, respectively. The CAP datasets 

consisted of one, two, and three patient(s), with 148, 111, and 67 images, respectively. 

In total, seven experiments are presented to evaluate and assess the performance of U-

Net and SIFA for segmentation of B-lines in patients with COVID-19 and CAP.  

Four of these seven experiments are performed with U-Net. First, we train U-Net 

with COVID-19 images. Second, we train U-Net with CAP images. Third, we train U-

Net with COVID-19 images and fine-tune with CAP images. Finally, we train U-Net 

with CAP images and fine-tune with COVID-19 images. In both instances, fine-tuning 

took place over 50 epochs at a learning rate of 0.0005. Corresponding COVID-19 and 

CAP datasets are used in training and fine-tuning when applicable. 

Three of these seven experiments are performed with SIFA. First, we train SIFA 

with a source domain of COVID-19 images and a target domain of CAP images. To 

assess if the discrepancy in dataset sizes affects the training of SIFA, we then train 

SIFA with a source domain of COVID-19 images, where we use only a reduced subset 

of the COVID-19 images and a target domain of CAP images. Finally, we train SIFA 

with a source domain of CAP images and a target domain of COVID-19 images. To 

evaluate each of the previously described methods, segmentations were evaluated based 

on a binary Dice score. We additionally report sensitivity, specificity and p-values from 

statistical t-tests at a significance level of 0.05, when comparison was made.  

3 Results 

Table 1 summarizes the Dice scores from the cross-validation experiments across all 

methods. Training with SIFA (COVID-19 Source / CAP Target) provided significantly 

higher Dice scores on COVID-19 and CAP test data than all four U-Net methods (p < 

0.001) and with SIFA (CAP Source / COVID-19 Target) (p < 0.001). Training with 

SIFA (CAP Source / COVID-19 Target) provided significantly lower Dice scores on 

the COVID-19 and CAP test data than U-Net (COVID-19) (p < 0.001),  U-Net (CAP) 

(p < 0.001), and U-Net (COVID-19 Fine-Tune w/ CAP),  (p < 0.001). Additionally, 

training with SIFA (CAP Source / COVID-19 Target) provided significantly lower 

Dice scores on the COVID-19 test data than U-Net (CAP Fine-Tune w/ COVID-19),  

(p < 0.001), but no significant difference was found to U-Net (CAP Fine-Tune w/ 

COVID-19) when applied to CAP test data (p = 0.23). Table 2 summarizes the 
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sensitivity and specificity from the cross-validation experiments and is consistent with 

the observation summarized above. 

 

Table 1. Summary of segmentation cross-validation Dice scores. STD: Standard Deviation. 

Values are presented as Mean ± STD.  

Method 
COVID-19 CAP  

Dice Dice  

U-Net (COVID-19) 0.60 ± 0.26 0.36 ± 0.24  

U-Net (CAP Fine-Tune w/ COVID-19) 0.56 ± 0.25 0.35 ± 0.26  

U-Net (CAP) 0.52 ± 0.17 0.43 ± 0.27  

U-Net (COVID-19 Fine-Tune w/ CAP) 0.55 ± 0.15 0.45 ± 0.24  

SIFA (COVID-19 Source / CAP Target) 0.87 ± 0.13 0.71 ± 0.22  

SIFA (Reduced COVID-19 Source / CAP Target) 0.83 ± 0.15 0.72 ± 0.21  

SIFA (CAP Source / COVID-19 Target) 0.32 ± 0.21  0.33 ± 0.17  

 

Table 2. Summary of segmentation cross-validation sensitivity (sens.) and specificity (spec.).  

Method 
COVID-19 CAP 

Sens. Spec. Sens. Spec. 

U-Net (COVID-19) 0.55 0.93 0.38 0.92 

U-Net (CAP Fine-Tune w/ COVID-19) 0.47 0.97 0.44 0.95 

U-Net (CAP) 0.50 0.90 0.50 0.93 

U-Net (COVID-19 Fine-Tune w/ CAP) 0.48 0.91 0.40 0.95 

SIFA (COVID-19 Source / CAP Target) 0.86 0.98 0.78 0.96 

SIFA (Reduced COVID-19 Source / CAP Target) 0.84 0.95 0.75 0.95 

SIFA (CAP Source / COVID-19 Target) 0.30 0.95 0.31 0.94 

 

Additionally, we present qualitative examples of segmentations from both methods, 

trained with all the different aforementioned approaches, on COVID-19 images and 

CAP images in Figures 2 and 3, respectively. These visualizations demonstrate the 

ability of these networks to delineate B-lines, suggesting that, in some instances, they 

may be effectively used for assisting in the interpretation of LUS in clinical practice. 
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Fig. 2. Three example LUS images, each illustrating segmentations from each of the different 

methods on COVID-19 images. Each image shows the original LUS image and the segmentation 

output corresponding to the ground truth, or the method used. Each column presents the image 

and segmentation for the method listed above them. 

 

Fig. 3. Three example LUS images, each illustrating segmentations from each of the different 

methods on CAP images. Each image shows the original LUS image and the segmentation output 

corresponding to the ground truth, or the method used. Each column presents the image and 

segmentation for the method listed above them. 
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As a retrospective analysis, we aim to explain the observed difference in 

improvement (or lack of it) between the two directions of adaptation when testing the 

resulting models on both data sets, as described above, in terms of the difference in the 

imaging data and labels available to training and testing. Figure 1 provided examples 

images with their ground-truth segmentations overlaid, from the COVID-19 and CAP 

data sets, in the upper and lower rows, respectively. It is visibly evident that CAP data 

posses substantially higher variability in location, size of the identified B-line patterns 

and their background context. This is consistent with all the data used in our study. This 

is also consistent with the annotators' experience indicating that labelling on the CAP 

data set is considered a more challenging task than that on the COVID-19 data set.  

4 Discussion 

Additionally, during initial experimentation, we evaluated the performance of a joint-

training strategy for supervised segmentation with U-Net in addition to the fine-tuning 

methods. Here, instead of fine-tuning on a pre-trained model, we train the model on 

both the COVID-19 and CAP datasets simultaneously. Notably, the performance over 

all cross-validation folds resulted in comparable Dice scores to training only on 

COVID-19 when tested on both COVID-19 and CAP test sets. For brevity, we did not 

include a full validation of this training strategy in our above-presented experiments. 

One of the interesting findings in this work is that the substantial difference between 

the adaptation from two opposite directions, from CAP to COVID-19 and from 

COVID-19 to CAP, with only the latter showing benefit of adaptation on both test 

datasets. It is not unsurprising that the adapted models may outperform the models 

trained solely with individual datasets in a supervised manner. This is compounded by 

the fact that with this adaptation, there is additional data and data diversity. However, 

this is not consistent with the performance observed when adapting from CAP to 

COVID-19. Intuitively, we may associate this with the label uncertainty and variability 

observed within the CAP images, as previously discussed in Section 3. It is important 

to note that, especially constrained by small data sets, the efficacy of domain adaptation 

is highly dependent on the data diversity and label uncertainty, one needs to be further 

understood and validated before being deployed in clinical applications.    

5 Conclusion 

In this work, we have presented the development and validation experiments for 

segmenting real clinical LUS data, acquired from both CAP and COVID-19 patients, 

and in particular the approaches for combining the two for training deep neural 

networks. We report a set of interesting experimental results that demonstrated that, in 

a small data set setting, domain adaptation can be effective in improving segmentation 

accuracy by incorporating additional unlabelled data. However, compared to the 

direction of the desirable adapting, the availability of diverse data and high-quality, 

consistent and representative labels were more strongly correlated with such 

improvement. The experimental results provided preliminary evidence for the 
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feasibility and practicality of aggregating different types of data in this POCUS 

application.  
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