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a b s t r a c t 

We present Free Point Transformer (FPT) – a deep neural network architecture for non-rigid point-set 

registration. Consisting of two modules, a global feature extraction module and a point transformation 

module, FPT does not assume explicit constraints based on point vicinity, thereby overcoming a com- 

mon requirement of previous learning-based point-set registration methods. FPT is designed to accept 

unordered and unstructured point-sets with a variable number of points and uses a “model-free” ap- 

proach without heuristic constraints. Training FPT is flexible and involves minimizing an intuitive unsu- 

pervised loss function, but supervised, semi-supervised, and partially- or weakly-supervised training are 

also supported. This flexibility makes FPT amenable to multimodal image registration problems where 

the ground-truth deformations are difficult or impossible to measure. In this paper, we demonstrate the 

application of FPT to non-rigid registration of prostate magnetic resonance (MR) imaging and sparsely- 

sampled transrectal ultrasound (TRUS) images. The registration errors were 4.71 mm and 4.81 mm for 

complete TRUS imaging and sparsely-sampled TRUS imaging, respectively. The results indicate superior 

accuracy to the alternative rigid and non-rigid registration algorithms tested and substantially lower com- 

putation time. The rapid inference possible with FPT makes it particularly suitable for applications where 

real-time registration is beneficial. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Multimodal image registration is a fundamental problem in 

edical imaging research wherein images from different modal- 

ties are transformed spatially so that corresponding anatomical 

tructures in each image are aligned. Multimodal image registra- 

ion, like unimodal registration methods, is historically divided into 

ntensity-based methods and feature-based methods ( Hajnal et al., 

001 ; Viergever et al., 2016 ). In the literature, these methods are 

istinguished according to whether the registration seeks to align 

mage features that have been extracted explicitly, for instance, 

anual or algorithm-based identification of organ boundaries and 

ther anatomical landmarks. In general, points, contours, and sur- 

aces are all commonly used features for registration. 

In many multimodal registration applications, such as MR-US 

r MR-CT alignment, intensity-based registration methods that 

inimise information-theoretic measures, such as mutual infor- 

ation and normalised mutual information ( Gaens et al., 1998 ; 
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ermosillo et al., 2002 ; Lu et al., 2008 ; Loeckx et al., 2010 ;

einrich et al., 2012 ; Mitra et al., 2012a ), or other statistical 

mage similarity metrics ( Roche et al., 1998 ; Liu et al., 2002 ;

ermosillo et al., 2002 ; Du et al., 2006 ; Hahn et al., 2010 ; De Silva

t al., 2013 ; De Silva et al., 2017 ) have been widely investigated.

ypically, the minimisation of the similarity metric is achieved by 

n iterative numerical optimization scheme. 

Despite the success of intensity-based registration methods, 

hese can perform poorly for input image modalities with very dif- 

erent pixel/voxel intensity characteristics, such as MR and ultra- 

ound. Most saliently, these differences often make it difficult to 

evelop robust intensity-based registration methods that can gen- 

ralise to different healthcare settings. In such cases, feature-based 

egistration approaches provide a viable alternative for many clin- 

cal applications when features, such as organ boundaries, can be 

efined with minimal user interaction. 

Feature-based methods have been widely employed within the 

eld of medical imaging research not only for multimodal im- 

ge registration methods but for registration in general ( Shen and 

avatzikos, 2002 ; Oliveira and Tavares, 2008 ; Pan et al., 2011 ; 

asoulian et al., 2012 ; Wu et al., 2014 ). This is often due to
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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heir simpler and less computationally complex nature with re- 

pect to intensity-based methods. Notably, many sparse, surface- 

oint-set matching algorithms require some form of regulariza- 

ion, for example, by using statistical deformable models to permit 

nly physically plausible soft-tissue deformations ( Hu et al., 2008 ; 

u et al., 2011 ; Hu et al., 2012 ; Hu et al., 2015 ; Fedorov et al.,

015 ; Wang et al., 2016 ). Additionally, the use of simple data for-

ats, such as point-sets, can provide visually intuitive and easy-to- 

nterpret representations of anatomical structures, which can aid 

linical use and be an effective basis for clinical user interaction, 

uch as manual refinement ( Mani and Arivazhagan, 2013 ), pro- 

iding feedback on registration uncertainty and quality ( Hu et al., 

016 ). 

Feature extraction has seen rapid advances in recent years given 

he development of automatic, well-validated, learning-based med- 

cal image segmentation methods. Such methods can yield real- 

ime delineation of anatomical surfaces ( Ronneberger et al., 2015 ). 

hese surfaces may be sampled into point-sets for surface match- 

ng, for example, using classical point-set registration algorithms, 

uch as the Iterative Closest Point (ICP) ( Besl and McKay, 1992 ). 

ore contemporary alternatives, such as Coherent Point Drift 

CPD) (Myronenko and Song, 2007) and Thin-Plate Spline Robust 

oint Matching ( Chui and Rangarajan, 2003 ) provide a solution for 

on-rigid registration. Gaussian mixture models (GMM) have been 

sed to compute registrations using probabilistic point correspon- 

ences ( Jian and Vemuri, 2010 ). 

Recently, several deep-learning-based medical image registra- 

ion methods have been described ( Hu et al., 2018 ; Fu et al.,

021 ; Hu et al., 2021 ). These can also be divided into intensity-

nd feature-based approaches, with the distinction apparent from 

hether the input data are image features (e.g. ( Hansen et al., 

019 ; Baum et al. 2020 ; Fu et al., 2021 )), or images (e.g. ( Yan et al.,

018 ; Hu et al., 2018 ; Haskins et al., 2019 )). Convolutional artificial

eural networks have also been used to perform medical image 

egistration by learning similarity metrics directly from the images 

 Yan et al., 2018 ; Haskins et al., 2019 ), through image synthesis

ethods that convert the appearance of one or both input modal- 

ties such that they closely resemble the other before registration 

 Onofrey et al., 2016 ; Cao et al., 2016 ; Xu et al., 2020 ), and through

einforcement learning ( Ma et al., 2017 ; Sun et al., 2018 ; Hu et al.,

021 ). Image segmentation data may be used to learn non-rigid 

tatistical deformation models which may, at inference, be used to 

uide a non-rigid surface registration ( Onofrey et al., 2017 ). Seg- 

entations have been used to determine the correspondence be- 

ween different imaging modalities in a weakly-supervised frame- 

ork, with the advantage that the input images are only required 

t inference ( Hu et al., 2018 ). 

Although widely used, classical iterative feature-based registra- 

ion methods, such as ICP, are not well-suited for applications re- 

uiring real-time registration since they are computationally in- 

ensive when processing large point/surface datasets. In contrast, 

he computationally efficient nature of deep neural networks has 

otivated their application to real-time registration ( Aoki et al., 

019 ; Liu et al., 2019 ; Wang and Solomon, 2019a ; Wang and

olomon, 2019b ; Kurobe et al., 2020 ). Several such methods (for 

xample, ( Aoki et al., 2019 ; Liu et al., 2019 )) have exploited Point-

et ( Qi et al., 2017 ), a deep learning framework for the classi-

cation and segmentation of point-sets. One such method, de- 

eloped by Aoki et al. (2019) , combined PointNet with the Lu- 

as and Kanade algorithm to create an iterative, rigid point-set 

egistration algorithm. Other works have applied PointNet as a 

eans to learn hierarchical features to their method for 3D scene 

ow ( Liu et al. 2019 ). Without using PointNet, Wang and Solomon 

2019a , 2019b ) presented methods that provide iterative, self- 

upervised, rigid registration of partial point-sets with Partial Reg- 

stration Networks (PRNet), and rigid registration as a pre-cursor to 
2 
CP with Deep Closest Point (DCP). Kurobe et al. (2020) developed 

n approach that regressed correspondence between point-sets 

y using local and global features to compute the singular value 

ecomposition for rigid registration. Interestingly, these methods 

ll rely on constrained transformation models or loss functions 

o model noise, outliers, and missing data. Additionally, while 

he above mentioned methods have been reported for rigid or 

ffine registration of point-sets, some non-rigid registration meth- 

ds have also been proposed and applied exclusively to medical 

mage registration for the analysis of lung motion ( Hansen et al., 

019 ) and multimodal image registration ( Fu et al., 2021 ). 

In this work, we describe a deep neural network architecture 

or non-rigid point-set registration, which we call Free Point Trans- 

ormer (FPT). The network consists of two parts: a global feature 

xtraction module and a point transformation module. Importantly, 

PT is not limited by the inherently unordered structure of point- 

ets and predicts a non-rigid transformation that aligns them. To 

nvestigate the application of FPT for the registration of partial vol- 

metric point-sets comprising points extracted from MRI and tran- 

rectal ultrasound (TRUS) images. This exemplar application illus- 

rates a common situation with applications in which real-time, 

nterventional imaging, such as TRUS, is used where partial (and 

otentially noisy) point data is available, in this case, because of 

he use of 2D US imaging. This work aimed to compare the accu- 

acy and speed of FPT-based point-set registration with alternative 

ethods. 

Initial results were presented in our preliminary work 

 Baum et al., 2020 ). The work presented here expands on this pre-

iminary work in several ways, and we outline our contributions as 

ollows: 

• We provide a detailed description of our methodology for un- 

supervised point-set registration; a method that accepts un- 

ordered and unstructured point-sets with a variable number of 

points. 
• We introduce our “model-free” approach which allows non- 

rigid registration using data-driven learning without known 

correspondence or heuristic constraints. 
• We introduce and describe the implementation and training 

strategies of the two modules contained within our method; 

which transforms points that are independent of those which 

define the registration and, as a result, enable various types of 

practically useful applications. 
• We present rigorous analysis validation experiments which 

compare our registration methodology, different learning-based 

methods, and classical iterative point-set registration methods 

for different clinical scenarios for the prostate MR-TRUS image 

registration application, including a set of partial-data experi- 

ments by varying levels of data availability. 

. Methods 

.1. Free Point Transformer 

Given a pair of source and target point-sets, { p s | s = 1 , . . . , N s } 
nd { p t | t = 1 , . . . , N t } , respectively, where p s and p t are D - 

imensional vectors denoting individual point spatial coordinates 

n x-, y-, and z directions (here, D = 3 ). The FPT framework aims

o learn a model for inferring a transformation function T { p s }→{ p t } , 
etween a pair of point-sets, such that it will map any new point, 

epresented by the vector ˜ p s in source coordinate space, to the tar- 

et coordinates ˜ p 

′ 
s as follows: 

˜  ′ s = T { p s } → { p t } ( ̃  p s ) (1) 

˜  s is usually sampled from the source point-set domain, but not 

ecessarily an element of { p s } . 
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Fig. 1. Schematic representation of the FPT network design for non-rigid point-set registration. The global feature extraction module takes a target and source point-set 

and applies shared input and feature transformations to both, creating a global feature vector. The point transformation module serves as a per-point transformation of the 

source point-set by determining the displacement to be added in order to obtain the transformed point-set. MLP stands for multi-layer perceptron. 
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FPT models such a spatial point transformation using a para- 

etric neural network T { p s }→{ p t } 
θ

( ̃  p s ) , with network parameters θ, 

ogether with an end-to-end network training approach. The FPT 

etwork contains two modules: a global feature extraction mod- 

le and a point transformation module. The global feature extrac- 

ion module converts point-sets into a feature vector, whereas, the 

oint transformation module predicts a displacement vector for 

he given input point ˜ p s using the feature vector. A detailed il- 

ustration of the two modules and the network training scheme 

s shown in Fig. 1 . In the following sections, we provide details 

n how these two modules are constructed and simultaneously 

rained using a training set consisting of examples of different 

oint-set pairs. 

Point-sets have important attributes which we have exploited 

n the design of the FPT, and which deliver several advantages for 

egistration purposes: First, FPT accepts unordered and unstruc- 

ured point-sets with a variable number of points. This requires the 

lobal feature extraction module to learn a representation, which 

etermines a permutation, rotation, and cardinality invariant fea- 

ure extraction step. The global feature extraction module adapts 

he previously proposed PointNet architecture ( Qi et al., 2017 ) to 

egister a pair of point-sets. Second, the FPT has two separate func- 

ions: i) predicting a transformation from the network input, regis- 

ration of the two input point-sets; ii) predicting displacements for 

ndividual given points. These two functions are implemented with 

he global feature extraction module and the point transformation 

odule, which are trained together but may be used for indepen- 

ent point-sets – i.e., those to register { p s } and { p t } – and those 

o be transformed { ̃  p s } . This flexibility is important as it allows the

etwork inputs to be different from the point-sets used for com- 

uting the loss, which may only be available during training. Third, 

he point transformation module in the proposed FPT is defined 

ithout an explicit or parameterized registration method, permit- 

ing a “model-free” approach. This leads to non-rigid registration 

sing a data-driven learning approach that prevents any collapse 

r folding that arguably may not be reflective of the data. FPT is 

rained without heuristic constraints, such as deformation smooth- 

ess or hand-engineered noise models. Training in this manner 

n

3 
ay ultimately be beneficial, as the restrictions imposed by such 

onstraints or models enforce deformation that may over-simplify 

he complex soft tissue deformation and observable inter-structure 

otion. As a result of these attributes and considerations, FPT is 

ersatile and permits generalization to partial data while learn- 

ng from complete data. The FPT supports different types of learn- 

ng supervision, including fully-supervised, semi-supervised, and 

artially- or weakly-supervised training (see also a brief discussion 

n Section 2.2 ). However, in this work, we focus on training the FPT 

sing an unsupervised learning approach, which allows it to learn 

rom raw point-set data without the need for ground-truth trans- 

ormations. As we demonstrate for our exemplar use-case, this al- 

ows an end-to-end process to be achieved, which includes data 

cquisition followed by registration in real-time, an ability that is 

ery important for many time-critical medical applications of im- 

ge registration. 

.1.1. Global Feature Extraction Module 

PointNet ( Qi et al., 2017 ) was originally designed to convert 

oint-sets into permutation and rotation invariant feature vectors 

or classification and segmentation tasks. From the original Point- 

et architecture ( Qi et al., 2017 ), we utilized the input and feature

ransformation and global information aggregation components to 

reate high-dimensional feature vectors. Unlike the original Point- 

et architecture, which learns a 3 × 3 transformation matrix and 

ubsequently multiplies this learned transform by the coordinates 

f the input points ( Qi et al., 2017 ), FPT’s global feature extrac- 

ion module learns a 4 × 4 transformation matrix to better allow 

or the representation of 3D translation in homogeneous coordi- 

ates, in addition to any rotation, scaling, shearing or reflections 

hich may be represented in the original 3 × 3 transformation 

atrix. As in PointNet, this 4 × 4 transformation matrix is then 

sed to transform the coordinates of the input points. This modi- 

cation resulted from initial experimental results wherein a lower 

ranslational error was observed when the adapted PointNet was 

iven the ability to encode translational differences more easily be- 

ween point-sets in its feature representations. Additionally, batch 

ormalization layers were removed from the PointNet to prevent 



Z.M.C. Baum, Y. Hu and D.C. Barratt Medical Image Analysis 74 (2021) 102231 

t

t

P  

l

g

a

g

w

t

r

s

t

2

m

f

v

p

m

l

x

w

x

w

e

w

x

w

p

u

x

t  

c

o

s

n

d

s

a

t

o

f

i

m  

e

p  

g

m

M

w

s

k

J

m

t

[

f

m

2

n

b

g  

t

S

θ

w

b

n

m

t  

p

t

p

p

f

 

 

 

{ p t } are the network input available during inference. 
he normalization of translational differences between source and 

arget point-sets. In FPT, the above modifications create a single 

ointNet shared between the input point-sets { p s } and { p t } , as il-

ustrated in Fig. 1 . The module, in turn, generates feature vectors 

 s and g t with pre-defined lengths, from the source and target { p s } 
nd { p t } , respectively. 

 = f 
{ p s } → { p t } 
θ f eat 

(2) 

here g = [ g T s , g 
T 
t ] 

T is the concatenated K-dimensional global fea- 

ure vector and f 
{ p s }→{ p t } 
θ f eat 

denotes the modified PointNet that 

epresents a set-order-sensitive feature extraction function, i.e. 

f 
{ p s }→{ p t } 
θ f eat 

� = f 
{ p t }→{ p s } 
θ f eat 

, which is invariant to the point-order in each 

et. θ f eat are the network parameters in the global feature extrac- 

ion module. 

.1.2. Point Transformation Module 

The point transformation module serves as a per-point transfor- 

ation model f g that predicts the displacement vector that trans- 

orms a point ˜ p s to ˜ p 

′ 
s , conditioned on the computed global feature 

ector g ( Eq. 2 ): 

˜  ′ s = f θtrans 
( ̃  p s | g ) (3) 

In this work, we use a multi-layer perceptron (MLP) network to 

odel this transformation with network parameters θtrans . Without 

oss of generality, the hidden units at l th layer in a L -layer MLP, 

 

(l) = [ x (l) 
j 

] T , j = 1 , . . . , J (l) , representing the output feature vector 

ith J (l) ( l = 1 , . . . , L ) elements can be given in a recursive form: 

 

( l ) 
j 

= a ( l ) 

( 

J ( l−1 ) ∑ 

j=1 

w 

( l ) 
j 

x ( 
l−1 ) 

j 
+ w 

( l ) 
0 

) 

(4) 

here a (l) is the element-wise activation function (rectified lin- 

ar units are used in this work); and w 

(l) 
j 

( j = 1 , . . . , J ( l−1 ) ) are the 

eights for each of the J ( l−1 ) elements in the input feature vector 

 

( l−1 ) = [ x ( l−1 ) 
j 

] T ( j = 1 , . . . , J ( l−1 ) ) from the previous layer. Together 

ith the scalar bias weight w 

(l) 
0 

, the point transformation module 

arameters are θtrans = [ [ w 

(l) 
j 

] T 
j=0 , 1 , ... , J ( l−1 ) ] 

T 
l=1 , ... ,L 

. 

The point transformation module f θtrans 
is specified by the mod- 

le input and output, the point-concatenated global feature vector 

 

(0) = [ g T , ̃  p 

T 
s ] 

T and the displacement vector d i = x (L ) , respectively; 

herefore, J (0) = K + 3 and J (L ) = 3 . The transformed point can be

omputed by ˜ p 

′ 
s = ˜ p s + d i . Predicting the displacement d i , instead 

f the transformed points ˜ p 

′ 
s directly, which we found empirically 

implified the initialisation of the model training. It is important to 

ote that the transformation model parameterised by the above- 

escribed MLP does not have constraints on the transformation 

moothness, which are commonly imposed with assumptions such 

s coherence between adjacent points, giving a less constrained 

ransformation. 

The use of MLP parameterisation also facilitates an efficient 

ne-dimensional (1D) convolution implementation for multiple 

eature vectors during the FPT network training. For each network 

nput point-set pair, { p s } and { p t } , the global feature extraction 

odule computes a global feature vector g ( Eq. 2 ). In the gen-

ral case, the point transformation module aims to transform a 

oint-set { ̃  p s } , s = 1 , . . . , ˜ N s , using Eq. (3) , conditioned on the same

lobal feature vector g . Assume a row-wise concatenated “feature 
4 
atrix” M 

(l) , l= 1,…L, at l th layer, such that: 

 

( l ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

(
x 

( l ) 
s =1 

)T 

(
x 

( l ) 
s =2 

)T 

. . . (
x 

( l ) 

s = ̃ N s 

)T 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

here M 

(0) = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

[ g T , ˜ p 

T 
s =1 

] 

[ g T , ˜ p 

T 
s =2 ] 

. . 

. 

[ g T , ˜ p 

T 
s = ̃ N s 

] 

⎤ 

⎥ ⎥ ⎥ ⎦ 

and M 

(L ) = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

d 

T 
i =1 

d 

T 
i =2 
. 
. 
. 

d 

T 
i = ̃ N s 

⎤ 

⎥ ⎥ ⎥ ⎦ 

Now, for computing the output feature vector at the l th layer, 

ubstituting the network weight w 

(l) 
j 

in Eq. 4 with a scalar weight 

 

1 , (l) 
j 

, the j th of the J ( l−1 ) 1D convolution kernels for each of the 

 

(l) elements. The J ( l−1 ) × J (l) kernels are convolved over all ˜ N s ele- 

ents in the column space of the feature matrices M 

(l) because 

he MLP weights are shared between all the input row vectors 

 g T , ˜ p 

T 
s ] in the feature matrices. The rows representing different 

eature-vector-concatenated points in { ̃  p s } remain independently 

ultiplied by the 1D kernel. 

.2. FPT Network Training 

The FPT network described here were trained to optimise the 

etwork parameters θ = [ θT 
f eat 

, θT 
trans ] 

T by minimising the distance 

etween the transformed source point-set { ̃  p 

′ 
s } and a given tar- 

et point-set { ̃  p t } , t = 1 , . . . , ˜ N t . The specific form of the func-

ion L ( { ̃  p 

′ 
s } , { ̃  p t }| θ) serves as the training loss and is described in 

ection 2.2.1 , while the goal of the network training is: 

ˆ = min 

θ
E �

[
E ˜ �

[
L 

({
˜ p 

′ 
s 

}
, { ̃  p t } 

)]]
= min 

θ
E �

[ 
E ˜ �

[ 
L 

({ 

T { p s } → { p t } 
θ ( ̃  p s ) 

} 

, { ̃  p t } 
)] ] 

(5) 

here ˜ p 

′ 
s = T { p s }→{ p t } 

θ
( ̃  p s ) = f θtrans 

( ̃  p s | f { p s }→{ p t } 
θ f eat 

) is parameterised 

y two neural networks, as described above; E �[ ·] and E ˜ �[ ·] de- 

ote the expectation operators over the training point-set-pair do- 

ains � and 

˜ �, training examples for { p s } and { p t } to compute 

he global feature, and training examples of { ̃  p s } and { ̃  p t } for com-

uting the distance-based loss, respectively. This general form of 

raining lets FPT provide the flexibility to allow the network input 

oint-sets { p s } and { p t } to differ from the training “ground-truth”

oint-sets { ̃  p s } and { ̃  p t } . This formulation can be applied in the 

ollowing scenarios: 

1. Unsupervised learning of point-set registration, i.e., { ̃  p s } = { p s } 
and { ̃  p t } = { p t } . 

2. Partial data registration with full data available in training, e.g., 

{ p s } ⊆ { ̃  p s } or { p t } ⊆ { ̃  p t } . This will provide a loss computed

from, in general, stronger supervision { ̃  p s } and { ̃  p t } , while test 

data at inference are more likely to have a different distribution 

that is similar to what is represented by { p s } and { p t } . 
3. Training-time bootstrap resampling ( Saeed et al., 2020 ), when 

{ ̃  p s } , { p s } , { ̃  p t } or { p t } is large or the difference between their

sizes – i.e., the difference in the number of points – is large. 

This allows sampling a subset of any of these point-sets during 

a stochastic or mini-batch gradient descent while maintaining 

an unbiased gradient. 

4. Weakly-supervised learning, i.e., { p s } ⊇ { ̃  p s } or { p t } ⊇ { ̃  p t } , yet

{ ̃  p s } and { ̃  p t } are point sets with known point-to-point corre- 

spondence, which are available during training, while { p s } and 
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.2.1. Loss Functions 

In this work, two loss functions are compared to measure the 

istance between two point-sets. The first, a widely used met- 

ic for determining the mean nearest neighbor distances between 

oint-sets; the Chamfer Distance ( Fan et al., 2017 ). Second, we 

mploy the negative log-likelihood of a Gaussian mixture model 

GMM) to encourage the network to minimize the difference be- 

ween the distributions of the point-sets. A two-way Chamfer Dis- 

ance is used in this work as follows: 

 CD 

({
˜ p 

′ 
s 

}
, { ̃  p t } 

)
= 

1 

˜ N t 

(∑ 

t ∈ [ 1 , ̃ N t ] 
min s ∈ [ 1 , ̃ N s ] 

∥∥˜ p t − ˜ p 

′ 
s 

∥∥2 

2 

)
+ 

1 

˜ N s 

(∑ 

s ∈ [ 1 , ̃ N s ] 
min t ∈ [ 1 , ̃ N t ] 

∥∥˜ p t − ˜ p 

′ 
s 

∥∥2 

2 

)
(6) 

Unlike Chamfer Distance, the negative log-likelihood of a GMM 

s one of the alternatives which requires explicit parameters when 

onsidering outliers or noise levels. We assume that the spatially 

ransformed source point-set { ̃  p 

′ 
s } define the centres of the ˜ N s 

aussian clusters in a mixture model with 

˜ N s + 1 clusters, with the 

dditional cluster being a uniform distribution (with a probability 

f 1 
˜ N t 

) for potential outliers ( Myronenko and Song, 2010 ). Given the 

arget point-set { ̃  p t } as the model-fitting data, the GMM training 

oss can then be defined as the negative log-likelihood function of 

he mixture model, as follows: 

 GMM 

({
˜ p 

′ 
s 

}
, { ̃ p t } 

)
= −

∑ ˜ N t 

t=1 
log 

( 

u 
1 

˜ N t 

+ ( 1 − u ) 
1 

˜ N s 

∑ ˜ N s 

s =1 

( 

1 (
2 πσ 2 

) D 
2 

e −
‖ ̃ p t −˜ p ′ s ‖ 2 

2 σ2 

) ) 

(7) 

here σ 2 is the isotropic covariance; 1 
˜ N s 

is the equal membership 

robabilities among the ˜ N s Gaussian clusters that are defined by 

he source point-set; and u, 0 ≤ u ≤ 1 , weights the uniform distri- 

ution. The loss function thus has two parameters, σ 2 and u . 

As the FPT architecture does not explicitly constrain transfor- 

ations from potential folding, collapse, or severe distortion of 

he transformed point-sets, the two-way construction of the loss 

unctions, including both the Chamfer Distance and negative log- 

ikelihood of a GMM, are employed in this work. It is interesting 

o find that, during the training, relaxing constraints such as ‘one- 

o-one’ correspondence did not cause unrealistic, extremely non- 

mooth deformation, based on point-set data extracted from real- 

orld clinical images. 

. Experiments 

.1. Exemplar Clinical Application 

Prostate MR-TRUS image fusion is a technique for using MR 

mages to perform tumour-targeted needle biopsy ( Moore et al., 

013 ; Marks et al., 2013 ) and minimally-invasive treatments 

 Dickinson et al., 2013 ) in patients for whom clinically significant 

rostate cancer is suspected or confirmed. The techniques involve 

resenting information on the location and size of MRI-visible le- 

ions/tumours to complement the information provided by real- 

ime TRUS images so that needles and other instruments can be 

laced to accurately target specific tissue regions. MRI-derived le- 

ion/tumour information is typically displayed as a visual overlay 

uperimposed on TRUS images, as a composite MR-TRUS image, or 

ith the MR and TRUS images presented side-by-side. Displaying 

he images using any of these methods requires accurate registra- 

ion. In this section, we used this registration task as an example 

o demonstrate how our FPT can be used for a real-world clinical 

pplication. 
5 
.2. Data 

The experimental dataset used in our evaluation comprised 108 

airs of pre-operative T2-weighted MR and intraoperative TRUS 

mages from 76 patients which were acquired during the Smart- 

arget clinical trials ( Hamid et al., 2019 ). Before point-set gener- 

tion from the prostate contours, each of the MR and TRUS im- 

ges was resampled to an isotropic voxel size of 0 . 8 × 0 . 8 × 0 . 8

m 

3 . Prostate gland boundaries were segmented in the resampled 

R and TRUS images. Segmentations of the prostate gland in the 

R images were acquired as part of the SmartTarget clinical trial 

rotocols ( Hamid et al., 2019 ). Additionally, segmentations of the 

rostate gland in the TRUS images were manually edited based 

n automatically contoured prostate glands from the original TRUS 

lices ( Ghavami et al., 2018 ). 

Using segmented MR and TRUS images, the contours and vol- 

mes of each prostate gland were extracted to generate two 3D 

oint-sets – P T from the TRUS images and P S from the MR images 

using a grid-based sampling approach in which each voxel was 

onverted into a vector of its [ x, y, z ] T 3D Euclidean coordinates in 

he segmented image volume. When the points are displayed, this 

ives the appearance of a grid-like point-set. As such, each voxel’s 

ocation represented a single point in space in the generated point- 

et ( Fig. 2 ). 

.3. Network Implementation and Training 

The previously described FPT was implemented in TensorFlow 

 Abadi et al., 2015 ) and Keras ( Chollet, 2015 ). The FPT network ar-

hitecture used in all experiments uses a value of K = 1024 ; thus, 

xtracting a 1024-dimensional feature vector from each of the twin 

eight-sharing PointNets. In the point transformer module, L = 6 , 

nd U = { 1024 , 512 , 256 , 128 , 64 , 3 } . The set of activation func- 

ions, a , was defined such that the first five layers used the ReLU 

ctivation function ( Nair and Hinton, 2010 ), but the final layer used 

o activation function. 

All networks were trained for 20 0 0 epochs with the Adam op- 

imizer ( Kingma and Ba, 2015 ), a minibatch size of 8, and an ini-

ial learning rate of 1 × 10 −5 when training with the Chamfer Dis- 

ance Loss (“FPT-Chamfer”). When training with the GMM Loss, all 

yperparameters were identical to those used when training with 

he Chamfer Distance Loss, apart from a minibatch size of 2 (“FPT- 

MM”). Additionally, hyperparameters σ 2 and u in the GMM Loss 

ere set as 0 . 001 and 0 . 1 , respectively. Networks were trained on

n NVIDIA DGX-1 system using a single Tesla V100 GPU. 

During training, the points in P T and P S were permuted, scaled, 

nd resampled on-the-fly. The points were scaled, per-sample, be- 

ween [ −1 , 1 ] in each of the X , Y and Z directions. Both point- 

ets were then shuffled and randomly subsampled to the desired 

ardinality. P S was further transformed on-the-fly with scaling, ro- 

ation, and displacement. Rotation angles were randomly sampled 

rom [ −45 ◦, 45 ◦] about each of the X , Y and Z axes. Displacements 

ere randomly sampled from [ −1 , 1 ] in each of the X , Y and Z di- 

ections. 

.4. Gaussian Radial Basis Function Network 

To demonstrate the effectiveness of FPT, we compare to the 

se of a parametric transformation, similar to that proposed by 

u et al. (2021) . This network uses a Gaussian Radial Basis Function 

G-RBF) model to compute, and account for, the complex deforma- 

ion between the surfaces of the source and target point-sets. In 

ur implementation of the G-RBF network, the global feature ex- 

raction module developed for FPT is used, however; we replace 

ur point transformation module with a G-RBF module. This G-RBF 
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Fig. 2. Point-sets depicting (from left to right) the anterior, right, posterior, and left views of a prostate volume obtained from a segmented TRUS (top) and MR volume 

(bottom) for one pair of patient images. 
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odule determines the point displacements by predicting the con- 

rol points and spline coefficients. Subsequently, the input point- 

ets are registered by non-rigid transformation via computation of 

he displacement between source and target point clouds, provid- 

ng the transformed source points as 

˜  ′ s = f θGRBF 
( ̃  p s ) = αk s + ̃  p s (8) 

here k s = [ k 1 s , k 
2 
s , . . . , k 

N c 
s ] T is the N c × 1 Gaussian kernel vec- 

or k c s ( p c , ˜ p s ) = exp ( −‖ p c −˜ p s ‖ 2 
2 σ 2 ) ( Fornefett et al., 2001 ), computed

or each point ˜ p s , with respect to a set of control points p c , c =
 , 2 , . . . , N c . The N c control points p c and the 3 × N c spline coeffi- 

ients α are directly predicted by the G-RBF point transformation 

etwork. In this work, the G-RBF uses N c = 27 control points and 

 kernel parameter σ = 1 , unless otherwise indicated. The G-RBF 

etwork was trained with the same amount of training data, the 

ame data augmentation methods, and the same loss functions as 

he FPT. 

Two variants of the proposed G-RBF network were compared, 

ach with different loss functions used in training: First, using the 

hamfer Distance Loss (“G-RBF-Chamfer”), and secondly, using the 

“G-RBF-GMM”), both as previously described in Section 2.2.1 . An 

llustration of the G-RBF network, including the G-RBF point trans- 

ormation module is presented in Fig. 3 . 

.5. Comparison with G-RBF and Classical Methods 

In addition to the previously described G-RBF networks, the 

PT was compared to two example pairwise iterative methods for 

oint-set registration: the widely used rigid ICP algorithm and the 

on-rigid CPD algorithm. In our experiments, the ICP algorithm 

as permitted to complete up to 25 iterations. All other param- 

ters and initializations were performed as described by Besl and 

cKay ( Besl and McKay, 1992 ). For the CPD algorithm, we set 

 = 0, where the value of w ( 0 ≤ w ≤ 1) indicates the assumed

mount of noise present in the point-set and permitted the al- 

orithms to complete up to 250 iterations. All other parameters 

ere set to the default values described by Myronenko and Song 

 Myronenko and Song, 2010 ). 

A series of experiments were performed to demonstrate the 

PT’s performance compared to the G-RBF networks (G-RBF- 

hamfer and G-RBF-GMM), ICP, and CPD for registration of MR to 

RUS data. In these experiments, we utilized the dataset described 

bove, which comprises 108 pairs of MR and TRUS images. These 

ata were split into a training and testing set, wherein 70% of the 

ata (75 MR-TRUS pairs) were reserved for training, and 30% of 

he data (33 MR-TRUS pairs) were reserved for testing. Any patient 

ho had multiple series of imaging was assigned to the training 
6 
et to ensure that images from a single patient were not included 

n both the training and the test set. We did not use a hold-out 

et to prevent bias by an exhaustive hyperparameter search when 

reating and training FPT to demonstrate the ability of its data- 

riven architecture compared to other methods. It should be noted 

hat this two-way split experiment may systematically underesti- 

ate the registration performance of the G-RBF network and other 

ethods which rely on extensive hyper-parameter tuning. 

.5.1. MR to TRUS Registration 

We evaluated FPT’s non-rigid registration performance when 

ligning complete volumetric MR and TRUS point-sets, similar to 

he first scenario presented in Section 2.2 . Performance in this reg- 

stration problem was tested by varying the size of { p s } and { ̃  p s } .
oth the FPT and our G-RBF network were trained using both loss 

unctions, using 1024, 2048, 4096, or 8192 points in { p s } . Owing 

o the cardinality invariance of the FPT and G-RBF network archi- 

ectures, each of these trained networks was then used to predict 

egistrations with 1024, 2048, 4096, or 8192 points in { ̃  p s } to test 

he sensitivity to different sampling rates between network inputs 

uring training and at inference. The ICP and CPD algorithms do 

ot require training and were evaluated on the computed registra- 

ions they produced with 1024, 2048, 4096, or 8192 input points. 

.5.2. MR to Partial TRUS Registration 

Additionally, we evaluated FPT’s non-rigid registration perfor- 

ance when aligning complete volumetric MR point-sets to par- 

ial volumetric TRUS point-sets, similar to the second scenario pre- 

ented in Section 2.2 . This experiment was designed to reflect 

hree clinical scenarios in which only point-data defining part of 

he prostate surface are available due to a small number of 2D 

RUS images being acquired, each representing a different slice 

hrough the organ. For each of these scenarios, surface points from 

nly two or three segmented ultrasound slices were used as inputs 

o the registration algorithms. 

Examples of each prostate TRUS imaging scenario investigated 

re illustrated in Fig. 4 . The first scenario represents the case 

here three evenly distributed 2D TRUS slices are obtained. The 

econd scenario represents the case where two or three TRUS 

lices are obtained, but the slices are biased to one lateral direc- 

ion. The third scenario represents the case where only two TRUS 

lices are obtained which provide poor coverage of the prostate 

land, with the slices skewed to the left or right side. 

To quantitatively describe and validate the differences between 

ach scenario, we used two metrics: slice centroid distance and 

lice span. Slice centroid distance was defined as follows: 

lice Centroid Distance = ‖ c p − c s ‖ 2 (9) 
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Fig. 3. Schematic representation of the G-RBF network design for non-rigid point-set registration. Similarly to FPT, the global feature extraction module takes a target and 

source point-set and applies shared input and feature transformations to both, creating a global feature vector. The G-RBF point transformation module applies a non-rigid 

transformation using the predicted control points and spline coefficients, as in Eq. (8) , to obtain the transformed point-set. MLP stands for multi-layer perceptron. G-RBF 

stands for Gaussian Radial Basis Function. 

Fig. 4. Illustration of possible TRUS images acquired from the TRUS transducer. Images are captured in the sagittal plane (left) and are shown with other image slices that 

may be acquired in each of the three scenarios, from an axial view (right). 
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here c p is the geometric center of the TRUS prostate point-set, 

nd c s is the geometric center of the point-set comprising all the 

elected TRUS image slices. Additionally, slice span was defined as 

ollows: 

lice Span = 

√ 

1 

n 

n ∑ 

i =1 

‖ c p − c i s ‖ 

2 
2 

(10) 

here the set { c i s | i = 1 , . . . , n } describes the centroid points

omprising the individual selected TRUS image slices from n slices. 

hese metrics are illustrated in Fig. 5 and expected and computed 

alues for the metrics which quantitatively describe the distribu- 

ion of points and individual frames in each scenario are given in 

able 1 . 

In the first set of experiments, we observe that changing the 

oint sampling rates in training and at inference does not af- 

ect our selected registration metrics (see Section 3.5 ). Therefore, 
7 
n this second set of experiments, we only train instances of 

PT-Chamfer and G-RBF-Chamfer with input point-sets containing 

096 points in each of the three TRUS scenarios. An input size of 

096 points was selected empirically as the previous experiment 

emonstrated no clear difference in registration quality when vary- 

ng input point-set sizes. The Chamfer Distance Loss was selected 

s it reduced training time and produced superior results for reg- 

stration error when compared to FPT networks trained with the 

MM Loss in the previous experiment. For additional comparison, 

he ICP and CPD algorithms were also evaluated in these three pre- 

iously described scenarios with input point-sets containing 4096 

oints. 

.6. Evaluation of Registration Methods 

The accuracy of the prostate surface point registrations was 

uantified using the Chamfer distance, the Hausdorff distance, and 
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Table 1 

Qualitative metrics which describe the three clinical scenarios. Values: Mean ± Std. 

Slice Centroid Distance (mm) Slice Span (mm) 

Expected Actual Expected Actual 

Scenario 1 Lowest 4.07 ± 0.94 Highest 10.40 ± 1.28 

Scenario 2 Between Scn. 1 & Scn. 3 4.78 ± 1.43 Between Scn. 1 & Scn. 3 8.45 ± 1.31 

Scenario 3 Highest 10.6 ± 2.63 Lowest 4.74 ± 1.05 

Fig. 5. Illustration of the Slice Centroid Distance (left) and Slice Span (right) in two 

simulated instances of the possible scenarios. The green point indicates the centroid 

of the points in the selected image slices, and the blue point indicates the centroid 

of the entire prostate volume. 
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 target registration error (TRE), calculated as the distance between 

oints defining the 3D locations of corresponding, manually iden- 

ified anatomical landmarks in the TRUS and MR images ( Hu et al., 

018 ; Ghavami et al., 2019 ). The Chamfer distance was used as the

oss function for some of the experiments, and therefore indicates 

he network generalisation to independent test data. Together with 

he Hausdorff distance, the registration accuracy on the point-set- 

epresented individual prostate glands can be measured. The TRE 

s defined as the root-mean-square of each of the distances com- 

uted between the geometric centroids of the registered pairs of 

ource and target landmarks for each patient. The landmarks in 

ur dataset comprised 309 pairs of points, including points defin- 

ng the apex and base of the prostate, and various patient-specific 

andmarks including zonal structure boundaries, water-filled cysts, 

nd calcifications ( Hamid et al., 2019 ). It should be noted that the

verall spatial distribution of these landmarks may be represen- 

ative of the full TRE distribution in this application ( Hu et al., 

008 ; Hahn et al., 2010 ; Karnik et al., 2010 ; Hu et al., 2011 ;

einrich et al., 2012 ; Hu et al., 2012 ; Mitra et al, 2012a ; Mitra et al.,

012b ; De Silva et al., 2013 ; Sun et al., 2014 ; Fedorov et al., 2015 ;

u et al., 2015 ; Sun et al., 2015 ; Yang et al., 2015 ; Zettinig et al.,

015 ; Wang et al., 2016 Onofrey et al., 2017 ; Hu et al., 2018 ;

un et al., 2018 ; Yan et al., 2018 ; Sultana et al., 2019 ; Xu et al.,

020 ; Fu et al., 2021 ; Hu et al., 2021 ), but landmark-based TREs

evertheless provide a useful estimate of the errors associated 

ith localising tumours within the prostate. The computational 

ime was also recorded for each registration experiment. 

. Results 

.1. MR to TRUS Registration 

Table 2 shows the mean and standard deviation for Cham- 

er distance, Hausdorff distance and TRE for each of the different 

ethods and input point-set sizes. Across all variants and exper- 

ments in MR to TRUS registration, FPT-Chamfer achieves a mean 
8 
RE of 4.71 mm, compared to 5.16 mm for FPT-GMM, 5.29 mm for 

-RBF-Chamfer, 5.25 mm for G-RBF-GMM, 6.02 mm for ICP, and 

.08 mm for CPD. Without any form of alignment on the dataset, 

e observe a TRE of 25.43 mm. FPT-Chamfer gives the lowest av- 

rage Chamfer distance and TRE in nearly all instances, while CPD 

ives the lowest average for Hausdorff distance. The prostate con- 

ours from a sample slice in the transverse plane from resulting 

egistrations of three cases with each of the learning-based and it- 

rative methods are shown in Fig. 6 . 

For our FPT-Chamfer and FPT-GMM implementations, between 

4 and 50 registrations may be performed per second, depend- 

ng on the size of the input point-set at inference. These regis- 

ration times are nearly identical to those achieved with the G- 

BF network (G-RBF-Chamfer and G-RBF-GMM), approximately 5-8 

imes faster than those observed with ICP, and approximately 200- 

0 0 0 times faster than those observed with CPD. Table 3 shows 

he mean and standard deviation of the registration times for the 

ifferent methods. 

To assess if the changes in Chamfer Distance and Hausdorff Dis- 

ance when using different numbers of points at inference is re- 

ated to the size and inherent point density of { ̃  p s } , we also report

he results of MR to TRUS registrations performed on a grouped se- 

ies of random subsamples without replacement. By creating mul- 

iple unique and non-intersecting subsets of points for each MR 

nd TRUS prostate volume, we can group each of the predicted reg- 

strations from these subsets. This was performed at four different 

hresholds for the size of { ̃  p s } ; we performed eight registrations of 

ight subsets of 1024 points, four registrations on four subsets of 

048 points, two registrations on two subsets of 4096 points, and 

ne registration on the original 8192 points. 

We summarize the results of these registrations by presenting 

he mean and standard deviation of Chamfer distance, Hausdorff

istance, and TRE at the four different thresholds in Table 4 . We 

bserve that grouping registrations with different point sampling 

ates at inference does not appear to affect Chamfer distance or 

ausdorff distance. This demonstrates that differences in Chamfer 

istance and Hausdorff Distance in our prior experiments may be 

ue to point-set density; where a less dense point-set produces 

 higher value for the same metrics. We conclude that, with suf- 

cient points sampled in each set, the obtained TRE became less 

ensitive to the tested different sampling strategies and increase of 

he sampling density, a practically desirable property of the pro- 

osed method. While there are small variations in the average re- 

orted TRE for the grouped registrations, FPT-Chamfer still pro- 

uces the lowest overall average TRE in the registrations performed 

t each threshold for the size of { ̃  p s } . 

.2. MR to Partial TRUS Registration 

Table 5 shows the mean and standard deviation for Cham- 

er distance, Hausdorff distance and TRE for each of the differ- 

nt methods in each different clinical scenario. Across all methods 

nd scenarios in the MR to partial TRUS registration, FPT-Chamfer 

chieves the lowest average Chamfer distance, Hausdorff distance 

nd TRE in all instances. Among the deep learning-based meth- 

ds, average Chamfer distance, Hausdorff distance, and TRE are 
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Table 2 

Chamfer distance, Hausdorff distance, and TRE for each method used and at each point-set size in the first MR-TRUS 

registration experiment. Values: Mean ± Std. The lowest mean value in each section is bolded. Significant differences with 

respect to FPT-Chamfer are denoted with an asterisk ( ∗), based on two-tailed paired t-tests at α = 0.05. 

Number of Points in { ̃ p s } Method Chamfer Distance (mm) Hausdorff Distance (mm) TRE (mm) 

8192 FPT-Chamfer 1.10 ± 0.17 6.18 ± 1.36 4.75 ± 1.45 

FPT-GMM 1.14 ± 0.18 6.65 ± 1.53 ∗ 5.49 ± 1.68 ∗

G-RBF-Chamfer 1.15 ± 0.17 7.20 ± 1.43 ∗ 5.50 ± 1.61 ∗

G-RBF-GMM 1.17 ± 0.16 ∗ 7.70 ± 2.00 ∗ 4.87 ± 1.33 

ICP 1.29 ± 0.19 ∗ 8.48 ± 1.79 ∗ 5.94 ± 1.68 ∗

CPD 1.25 ± 0.19 ∗ 6.12 ± 1.32 5.12 ± 1.35 

4096 FPT-Chamfer 1.38 ± 0.19 6.27 ± 1.41 4.69 ± 1.41 

FPT-GMM 1.41 ± 0.20 6.66 ± 1.36 ∗ 5.34 ± 1.50 ∗

G-RBF-Chamfer 1.42 ± 0.19 7.30 ± 1.48 ∗ 4.92 ± 1.34 

G-RBF-GMM 1.45 ± 0.21 ∗ 7.83 ± 1.66 ∗ 5.19 ± 1.46 ∗

ICP 1.53 ± 0.22 ∗ 8.58 ± 1.86 ∗ 6.03 ± 1.62 ∗

CPD 1.44 ± 0.20 5.98 ± 1.34 4.99 ± 1.39 

2048 FPT-Chamfer 1.72 ± 0.21 6.46 ± 1.20 4.55 ± 1.34 

FPT-GMM 1.75 ± 0.23 6.81 ± 1.32 4.70 ± 1.52 

G-RBF-Chamfer 1.77 ± 0.23 ∗ 7.50 ± 1.56 ∗ 5.42 ± 1.75 ∗

G-RBF-GMM 1.80 ± 0.24 ∗ 7.94 ± 1.78 ∗ 5.52 ± 1.40 ∗

ICP 1.89 ± 0.23 ∗ 8.63 ± 1.84 ∗ 6.09 ± 1.53 ∗

CPD 1.73 ± 0.22 6.07 ± 1.13 ∗ 4.98 ± 1.42 ∗

1024 FPT-Chamfer 2.16 ± 0.29 6.73 ± 1.22 4.83 ± 1.42 

FPT-GMM 2.19 ± 0.29 ∗ 7.10 ± 1.30 5.09 ± 1.40 

G-RBF-Chamfer 2.20 ± 0.30 ∗ 7.82 ± 1.56 ∗ 5.34 ± 1.64 ∗

G-RBF-GMM 2.24 ± 0.30 ∗ 8.16 ± 1.79 ∗ 5.40 ± 1.89 ∗

ICP 2.34 ± 0.33 ∗ 9.17 ± 2.03 ∗ 6.01 ± 1.79 ∗

CPD 2.10 ± 0.25 ∗ 6.49 ± 1.42 5.21 ± 1.34 ∗

Table 3 

Time to compute a single registration at a given point-set size for FPT, G-RBF, ICP and 

CPD. Values: Mean ± Std. 

Number of Points in { ̃ p s } 
Method 1024 2048 4096 8192 

FPT 0.02s ± 0.00 0.02s ± 0.01 0.04s ± 0.01 0.07s ± 0.01 

G-RBF 0.02s ± 0.00 0.02s ± 0.01 0.04s ± 0.01 0.07s ± 0.01 

ICP 0.10s ± 0.01 0.15s ± 0.02 0.31s ± 0.02 0.45s ± 0.02 

CPD 4.17s ± 1.04 17.89s ± 3.15 85.58s ± 10.52 357.73s ± 25.74 

Fig. 6. Example image slices illustrating registration results from three different cases, shown in the transverse plane. Each image shows the original TRUS image with 

the transformed source (MR) contours (red) superimposed on to the target (TRUS) contours (green). Columns indicate registrations from each method; from left to right: 

FPT-Chamfer, FPT-GMM, G-RBF-Chamfer, G-RBF-GMM, ICP, and CPD. 
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d

imilar to those in the first series of experiments where complete 

ata were available and { ̃  p s } contained 4096 points. ICP and CPD 

emonstrate lower average performance in all metrics relative to 

heir results in the previous experiment. Most saliently, Chamfer 

istance and Hausdorff distance for CPD are 1.5-6 times higher on 

verage than in the previous experiment, and computed values of 
9 
RE nearly double on average. Based on two-tailed paired t-tests 

t α = 0.05, the differences in Hausdorff Distance and TRE across 

ll three scenarios between FPT-Chamfer and G-RBF-Chamfer, FPT- 

hamfer and ICP, and FPT-Chamfer and CPD are statistically sig- 

ificant ( p < 0.005, p < 0.005, and p < 0.001, respectively). The 

ifferences in Chamfer Distance across all three scenarios between 
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Table 4 

Chamfer distance, Hausdorff distance, and TRE for each method used and at each grouped registration threshold. Values: Mean ± Std. 

Number of Points in { ̃ p s } Grouped Registrations Method Chamfer Distance (mm) Hausdorff Distance (mm) TRE (mm) 

8192 1 FPT-Chamfer 1.10 ± 0.17 6.03 ± 1.35 4.80 ± 1.28 

FPT-GMM 1.16 ± 0.18 6.82 ± 1.49 5.33 ± 1.70 

G-RBF-Chamfer 1.15 ± 0.18 7.33 ± 1.43 5.43 ± 1.73 

G-RBF-GMM 1.18 ± 0.17 7.88 ± 1.99 5.58 ± 1.40 

4096 2 FPT-Chamfer 1.10 ± 0.17 6.20 ± 1.34 4.74 ± 1.25 

FPT-GMM 1.12 ± 0.16 6.60 ± 1.47 5.37 ± 1.68 

G-RBF-Chamfer 1.14 ± 0.16 7.21 ± 1.45 5.21 ± 1.76 

G-RBF-GMM 1.17 ± 0.19 7.76 ± 2.04 5.12 ± 1.58 

2048 4 FPT-Chamfer 1.10 ± 0.16 6.37 ± 1.36 4.67 ± 1.22 

FPT-GMM 1.12 ± 0.17 6.30 ± 1.48 4.94 ± 1.59 

G-RBF-Chamfer 1.13 ± 0.19 7.07 ± 1.46 5.28 ± 1.69 

G-RBF-GMM 1.16 ± 0.18 7.57 ± 2.01 5.35 ± 1.68 

1024 8 FPT-Chamfer 1.09 ± 0.17 6.00 ± 1.33 4.79 ± 1.27 

FPT-GMM 1.11 ± 0.18 6.31 ± 1.50 5.23 ± 1.57 

G-RBF-Chamfer 1.15 ± 0.19 7.23 ± 1.39 5.18 ± 1.62 

G-RBF-GMM 1.16 ± 0.18 7.55 ± 1.96 5.21 ± 1.56 

Table 5 

Chamfer distance, Hausdorff distance, and TRE for each method used in the partial MR-TRUS registration exper- 

iment. All point-sets are of size 4096. Values: Mean ± Std. The lowest mean value in each section is bolded. 

Significant differences with respect to FPT-Chamfer are denoted with an asterisk ( ∗), based on two-tailed paired 

t-tests at α = 0.05. 

Scenario Method Chamfer Distance (mm) Hausdorff Distance (mm) TRE (mm) 

Scenario 1 FPT-Chamfer 1.40 ± 0.20 6.38 ± 1.48 4.88 ± 1.56 

G-RBF-Chamfer 1.45 ± 0.20 7.38 ± 1.68 ∗ 5.39 ± 1.79 ∗

ICP 1.93 ± 0.41 ∗ 9.07 ± 1.95 ∗ 6.54 ± 2.19 ∗

CPD 2.25 ± 0.42 ∗ 15.74 ± 4.29 ∗ 9.35 ± 3.04 ∗

Scenario 2 FPT-Chamfer 1.41 ± 0.21 6.36 ± 1.70 4.81 ± 1.75 

G-RBF-Chamfer 1.46 ± 0.22 7.68 ± 1.73 ∗ 5.27 ± 1.95 ∗

ICP 1.94 ± 0.43 ∗ 9.28 ± 2.24 ∗ 6.48 ± 2.24 ∗

CPD 3.32 ± 0.72 ∗ 21.38 ± 6.28 ∗ 9.69 ± 3.36 ∗

Scenario 3 FPT-Chamfer 1.42 ± 0.21 6.62 ± 1.90 4.76 ± 1.71 

G-RBF-Chamfer 1.45 ± 0.23 7.71 ± 2.11 ∗ 5.55 ± 2.38 ∗

ICP 1.94 ± 0.62 ∗ 9.12 ± 2.59 ∗ 7.04 ± 2.33 ∗

CPD 6.58 ± 1.03 ∗ 36.78 ± 7.27 ∗ 10.30 ± 3.74 ∗
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PT-Chamfer and ICP, and FPT-Chamfer and CPD are also statisti- 

ally significant ( p < 0.005, and p < 0.001, respectively). 3D visu- 

lizations of the prostate shapes before and after registration with 

ariants of FPT for three different cases are given in Fig. 7 . The

rostate contours from a sample slice in the transverse plane from 

esulting registrations of three cases with each of the scenarios for 

PT-Chamfer are shown in Fig. 8 . A box plot of the TREs at compar-

ng FPT-Chamfer, G-RBF-Chamfer, ICP, and CPD at the patient level 

or MR to TRUS and MR to partial TRUS registrations in all three 

cenarios is given in Fig. 9 . 

. Discussion 

In this work, we proposed a deep learning-based approach for 

oint-set registration, called FPT, and apply it to an example mul- 

imodal image registration problem, namely that of prostate MR- 

RUS registration. Unlike intensity-based methods, wherein sim- 

larity metrics are often utilized, the FPT leverages the geomet- 

ic and spatial information from point-sets to drive the learning, 

nd subsequent registration process. While the effectiveness of our 

ork relies on the extraction of features from the imaging data, 

he point-sets required may be generated efficiently and automat- 

cally via accurate image segmentations obtained from emerging 

eep learning methods ( Ghavami et al., 2018 ; Fu et al., 2021 ). For

RUS-MRI registration, only a few 2D US images may need to be 

egmented to produce a sufficient number of input points for reg- 

stration using the aforementioned grid-based sampling approach 
10 
escribed in this work. Furthermore, using FPT-Chamfer, TREs are 

ower or comparable to all other methods, with a mean TRE in 

he first and second experiments of 4.71 mm and 4.81 mm, re- 

pectively. As illustrated in Table 5 , FPT-Chamfer significantly out- 

erforms other methods in the partial registration, in all metrics, 

xcept for G-RBF-Chamfer, with a two-way Chamfer Distance loss 

 Eq. 6 ), when evaluating also using Chamfer Distance. Other inde- 

endent metrics, including Hausdorff Distance and TRE, have all 

upported the superior generalisation ability from FPT, with statis- 

ical significance. 

We refer to our previous work for a comprehensive report of 

he quantitative results using full data sets, i.e., full 3D segmenta- 

ion of the prostate in training with complete volumetric TRUS vol- 

me available at inference ( Hu et al., 2018 ; Ghavami et al., 2019 ).

n these works, the reported TREs were in general lower, between 

.0 and 3.6 mm, with a significant variance that led to a TRE of 6.1

m with one of the reported G-RBF networks ( Hu et al., 2018 ). As

uch, the displacements learned from point-set features in prostate 

land segmentations may reduce variance in registration error, al- 

hough additional validation is needed to draw further conclusions. 

Though there is a measurable difference in the mean TRE, 

hamfer distance, and Hausdorff distances obtained between the 

ull volumetric registrations and partial registrations for FPT- 

hamfer, it is notable that these variations provide little qualita- 

ive difference, as seen in Figs. 7 and 8 ; only sub-millimetre dif- 

erences in quantitative performance were observed between each 

f the three clinical scenarios. This highly comparable performance 
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Fig. 7. MR-TRUS prostate glands showing the overlap of the transformed source (MR) and target (TRUS) point-sets. The green shape illustrates the target point-set, while the 

red shape illustrates the transformed source point-set. The first column shows the source and target after center-alignment. The remaining columns show registrations from 

various methods; from left to right: FPT-Chamfer, FPT-Chamfer trained with Scenario 1 image slices, FPT-Chamfer trained with Scenario 2 image slices, and FPT-Chamfer 

trained with Scenario 3 image slices. 

Fig. 8. Example image slices illustrating registration results from three different cases, shown in the transverse plane. Each image shows the original TRUS image with the 

transformed source (MR) contours (red) superimposed on to the target (TRUS) contours (green). Columns indicate registrations from FPT-Chamfer for registrations with; from 

left to right; full volumes, Scenario 1, Scenario 2, and Scenario 3. 
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emonstrates FPT’s flexibility and generalizability between differ- 

nt input data and illustrates that the network can adapt to mul- 

iple varied distributions and availabilities of input data and still 

earn to predict a desirable registration. 

Intensity-based methods for multimodal image registration are 

lso able to utilize information from the entire prostate gland, typ- 

cally providing a qualitatively and quantitatively good intrapro- 

tatic deformation. To emulate this, we utilize volumetric point- 

ets which allows the network to learn intraprostatic deformation 

nstead of relying on surface-driven deformations to interpolate in- 
11 
raprostatic deformation, which may result in unlikely interior de- 

ormations. 

Recently, intensity-based deep learning methods have achieved 

eported TREs below 5 mm for the MRI-TRUS registration appli- 

ation explored in this paper ( Hu et al., 2018 ; Sun et al., 2018 ;

an et al., 2018 ; Sultana et al., 2019 ;). The TREs for this applica-

ion estimated in this work fall within the expected range found 

n the literature, however, it is difficult to make direct compar- 

sons between our results and other methods due to variations in 

he quality of data (for example, due to different clinical setups, 
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Fig. 9. Boxplots of the root-mean-square TRE per patient for the MR to TRUS and MR to partial TRUS registrations obtained from FPT-Chamfer, G-RBF-Chamfer, ICP, and CPD 

with 4096 points. 
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mage acquisition protocols, and user experience) and validation 

ethods. In particular, the number and spatial distribution of land- 

arks used to estimate a TRE is likely to have a significant impact 

n the numerical error. In our dataset, the landmarks used to cal- 

ulate TRE, such as are the apex and base of the prostate, are lo- 

ated on the surface or towards the periphery of the prostate gland 

unlike the urethra, for instance). Furthermore, the aforementioned 

orks do not consider the practical scenario of primary interest in 

his work, where only partial data are available due to a limited 

umber of image slices. An important finding of this study is the 

inimal impact of using partial point data on accuracy when us- 

ng the FPT method compared to other methods tested. Without 

xtensive validation, It is unclear if the performance of intensity- 

ased methods and/or other forms of representations, such as bi- 

ary masks, would also be minimally impacted by this reduction 

f data. As such, the practical effects of partial data when applied 

o existing registration methods and frameworks merit a thorough 

alidation and assessment but are considered out the scope of this 

ork given the inherent challenges associated with successfully 

odifying these methods to represent and accurately register par- 

ial data. These results demonstrate that the FPT can learn descrip- 

ive, data-driven features directly from partial data without com- 

romising registration accuracy. Unlike conventional image-based 
12 
egistration methods, these features enable efficient computation 

f a set of accurate displacements without cost-prohibitive hard- 

are and rapidly enough to be suitable for real-time applications. 

An important direction to further this work is to test the 

eature-based methods’ ability to develop modality-, protocol-, and 

canner-independent registration methods, owing to their non- 

eliance on the direct imaging data; a wider patient population, 

oming from multiple centers and with different acquisition proto- 

ols wherein there may be increased data heterogeneity is of value 

n future validation of our presented methods. 

Given its robust, generalizable, and rapid point-set registration 

pproach, there is potential that FPT will be of use in various other 

pplications. Beyond MR-TRUS registration, FPT may be of use as 

n alternative to classical methods for general feature-based, non- 

igid registration applications where point-sets may be reliably ex- 

racted. 

. Conclusion 

We have introduced FPT, a novel approach to point-set regis- 

ration using deep neural networks which learns the displacement 

eld required to produce individual point displacements. Through 

valuation in a challenging real-world multimodal image registra- 
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ion task with MR and TRUS images, FPT was found to be robust 

o the partial availability of data. Furthermore, this work demon- 

trates that partially available data, generated from automatically 

egmented MR and TRUS images, may be used to enable contin- 

al real-time MR-TRUS image registration during prostate biop- 

ies. Such an architecture is of interest in other medical imaging 

roblems where training data is limited or only partially available, 

s FPT may permit rapid registration of point-sets extracted from 

ther types of imaging modalities as well. As a method for point- 

et registration which non-iteratively performs non-rigid registra- 

ion without the need to establish point correspondence, we be- 

ieve that FPT represents significant progress towards a gener- 

lly applicable method for learning-based non-rigid registration in 

edical imaging. 
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