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Abstract  

Polyglutamine diseases are a collection of nine CAG trinucleotide expansion disorders, 

presenting with a spectrum of neurological and clinical phenotypes. Recent human, mouse 

and cell studies of Huntington’s disease (HD) have highlighted the role of DNA repair genes 

in somatic expansion of the CAG repeat region, modifying disease pathogenesis. Incomplete 

splicing of the HTT gene has also been shown to occur in humans, with the resulting exon 1 

fragment most probably contributing to the HD phenotype. In the spinocerebellar ataxias 

(SCAs), studies have converged on transcriptional dysregulation of ion channels as a key 

disease modifier. In addition, advances have been made in understanding how increased 

levels of toxic, polyglutamine-expanded proteins can arise in the SCAs through post-

transcriptional and -translational modifications and autophagic mechanisms. Recent studies 

in spinal and bulbar muscular atrophy (SBMA) implicate similar pathogenic pathways to the 

more common polyglutamine diseases, highlighting autophagy stimulation as a potential 

therapeutic target. Finally, the therapeutic use of antisense oligonucleotides in several 

polyglutamine diseases has shown preclinical benefits and serve as potential future therapies 

in humans.   
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Introduction 

Polyglutamine diseases are a collection of nine monogenic neurodegenerative conditions with 

similar aetiologies. In the disease-affected gene, expansion of a CAG trinucleotide repeat 

region translates into a long stretch of glutamine (Q) residues in the associated protein, 

initiating downstream phenotypes such as enhanced DNA damage, intracellular aggresomes, 

plus transcriptional and proteasomal dysregulation. These disorders demonstrate a CAG 

repeat length-dependent effect on age at onset (AAO), with longer CAG repeat tracts being 

associated with earlier disease manifestation. Expansion of the CAG repeat throughout an 

individual’s lifetime (somatic expansion; Table 1) and between generations (germline meiotic 

expansion) also occurs in many of these diseases. However, certain pathological phenotypes 

are disease-specific, likely reflecting the expression profile of the gene of interest or the 

interactome of the cognate protein.  

 

This review will encompass recent advances in our understanding of polyglutamine diseases. 

Significant progress has been made in the DNA repair field and mechanisms have emerged 

among downstream processes such as post-transcriptional splicing and ion channel 

dysregulation. Recent therapeutic efforts, specifically the use of antisense oligonucleotides 

(ASOs), will be briefly discussed.
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Huntington’s disease 

Huntington’s disease (HD) is caused by CAG repeat expansion in exon 1 of the HTT gene, 

clinically characterised by progressive chorea, cognitive and behavioural symptoms [1]. 

Recent work has highlighted genetic modifiers of HD pathogenesis, primarily in DNA repair, 

and the role of incomplete HTT splicing. 

 

Genetics modifiers of Huntington's disease 

The CAG repeat region in HTT is typically 3’ capped with a CAA-CAG motif, encoding 2 

additional glutamine residues. Rare variants of this 3’ motif were identified by ultra-deep 

sequencing of HTT exon 1 DNA from the blood of TRACK-HD and ENROLL-HD cohorts [2]. 

Loss of the CAA interruption (LOI) was associated with AAO ~10 years earlier than predicted 

by polyglutamine length, whereas duplication of the motif was associated with a ~3-year delay. 

These findings were replicated within reduced penetrance samples (36-39 CAGs): LOI was 

linked with ~25 years earlier AAO [3]. Interestingly, 84.6% of those with extremely early onset 

possessed the LOI variant, suggesting this is an important prognosis differentiator within the 

reduced penetrance population. The LOI variant was associated with higher somatic 

expansion [3], which itself was associated with worse clinical outcomes such as earlier onset 

and faster progression [2]. Therefore, somatic expansion, modified by pure CAG repeat 

length, appears a significant driver of HD pathogenesis. 

 

Several HTT loci were simultaneously identified in a genome-wide association study (GWAS) 

which, upon investigation, identified the LOI and duplication variants [4]. Encompassing over 

9000 HD patients, the GWAS corroborated previous HD AAO modifier signals and identified 

several DNA repair genes, including FAN1, MSH3, MLH1, LIG1, PMS1 and PMS2 - many of 

which are active in mismatch repair (MMR; Figure 1). The most prominent single-nucleotide 

polymorphism (SNP) within FAN1 (rs150393409) tagged the onset-hastening 15AM1 

haplotype, predicted by SIFT to be deleterious. Conversely, an imputed transcription-wide 

association study (TWAS) using the GTEx database associated the onset-delaying haplotype 

15AM2 with increased FAN1 expression in cortex. The onset-hastening 5AM1 haplotype was 

similarly associated with cis-eQTLs for increased MSH3 expression in blood, which correlated 

with increased somatic expansion. These data indicate that MSH3 hastens HD pathology, 

whereas FAN1 is protective. 
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The pathological role of MSH3 had been previously indicated in HD: a locus spanning MSH3, 

DHFR and MTRNR2L was associated with a novel HD progression score in the TRACK-HD 

cohort [5]. The leading SNP (rs557874766) within MSH3 was later revealed to be an alignment 

artefact, arising from a variant in the highly polymorphic 9 base-pair tandem repeat region of 

exon 1 [6]. This variant, termed ‘3a’, was associated with delayed AAO, slower HD progression 

and slower somatic expansion. MLH1, an MSH3-interactor, was also reinforced as a HD-

modifier by a dichotomous GWAS analysis (20% phenotypic extremes), associating a minor 

allele of MLH1 with 0.7 years delayed AAO [7]. 

 

Similar to MSH3 and MLH1, the HD-modifying effects of FAN1 are believed to operate via 

somatic expansion [8]. FAN1-/- U2OS osteosarcoma cells complemented with a 118 CAG exon 

1 construct demonstrate faster expansion, in addition to 109Q induced pluripotent stem cells 

(iPSCs) and medium spiny neurons (MSNs) with shRNA-mediated FAN1 knockdown [9]. In 

agreement, another study identified 8 individuals with delayed onset who had 3 copies of the 

FAN1 gene and showed that onset-hastening coding SNPs, R507H (rs150393409) and 

R377W (rs151322829), have reduced DNA-binding [10]. Although the mechanism by which 

FAN1 stabilises the CAG repeat is unknown, it appears to be mediated by MLH1. HdhQ111/+ 

mice lacking FAN1 exhibit significantly increased expansion in the striatum and liver at 5 

months of age, noticeable in the latter tissue by 2.5 months [11]. However, no expansion is 

evident by 3 months when MLH1 is knocked out. Thus, although FAN1 is believed to work via 

the canonical nuclease activity, it requires a functional FAN1-MLH1 genetic interaction. 

 

Incomplete splicing of HTT 

Generation of a toxic HTT exon 1 fragment by incomplete splicing (Figure 2) has previously 

been observed in all HD knock-in mouse models, however, Neueder et al. [12] provided the 

first evidence that this occurs in HD patients. The authors designed a novel qPCR assay for 

measuring truncated HTT transcripts. Higher expression of the exon 1 variant was observed 

in fibroblasts from juvenile HD patients (JHD; 60-70+ CAG), compared to those with adult-

onset HD, indicating that incomplete splicing is dependent on CAG repeat length. In support 

of this, higher expression of the exon 1 transcript was found in the sensory motor cortex and 

hippocampus of JHD post-mortem tissue, with only minor increases seen in adult-onset HD 

samples, compared to controls. Subsequently, a human cell-based minigene system was 

developed to investigate the requirement of HTT intronic sequences for incomplete splicing 

[13]. The presence of a 5’ 1.3kb region of intron 1 including transcription regulatory elements 
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was shown to greatly enhance production of the exon 1 transcript, which was CAG repeat 

length-dependent. Together, these data support the hypothesis that somatic expansion would 

exacerbate production of the toxic exon 1 fragment. 

 

The authors also examined the effect of polyglutamine length on transcription rate by 

performing ChIP against phospho-Pol-II (polymerase II), and measuring occupancy along the 

HTT transcript in constructs with 7 or 100 CAG repeats [13]. Constructs with 100 CAG repeats 

had a slower rate of transcription which, when slowed further by tethering dCas9 at this locus, 

showed an increase in incomplete splicing. Slower transcription potentially allows 

polyadenylation (polyA) factors more time to recognise cryptic polyA sites, leading to more 

incomplete splicing in the presence of longer CAG repeats. The pathological importance of 

the exon 1 fragment was later illustrated by creating, via CRISPR, heterozygous HD (140Q) 

mice encoding truncated HTT protein (96 or 571 amino acids) [14]. Both genotypes, in addition 

to those expressing full-length HTT, exhibited similar pathology, including maturation of the 

exon 1 HTT mRNA, striatal aggregation of a ~50kDa HTT fragment (equivalent to exon 1), 

motor deficits at 7-9 months and transcriptional dysregulation. Therefore, despite expressing 

different HTT fragments, the commonality of the exon 1 protein likely dictated pathology.  
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Spinocerebellar ataxias 

Collectively, the prevalence of the spinocerebellar ataxias (SCAs) is estimated to be ~2.7 per 

100,000 but varies by disease, geographic region and ethnicity [15]. The polyglutamine SCAs 

are dominantly inherited and share the clinical ataxic phenotype, arising from progressive 

cerebellar degeneration (Table 1). Recently, pathogenic mechanisms have been established 

encompassing aspects of DNA repair, ion channel dysfunction and dysregulated proteostasis.  

 

DNA repair and somatic expansion 

Aside from SCA6, somatic expansion has been observed in all polyglutamine SCAs [16]. 

Quantification of CAG instability in post-mortem tissue of HD patients and an individual with 

SCA1 uncovered similar patterns of HTT and ATXN1 expansion, respectively, within the brain 

[17]. Disease locus-independent trans factors may thus drive the regional rate of CAG 

expansion. Interestingly, SNPs in FAN1 and PMS2 have been associated with AAO in the 

polyglutamine SCAs [18]. These DNA repair genes are known modifiers of HD [4] and of 

somatic expansion [2,8,9,11,19], suggesting that the trans factors which govern CAG 

instability are likely involved in the DNA repair network.  

 

Importantly, the tissue-specific patterns of CAG expansion do not always predict pathology. 

High instability was observed in the cortex and caudate, which demonstrate vulnerability in 

HD but are relatively unaffected in SCA1 [17]. Hence, particular cell-types appear to have 

unique pathogenic thresholds for different toxic species.  

 

Ion channels 

Perturbed Purkinje neuron excitability has emerged as a shared pathogenic mechanism 

across the polyglutamine SCAs [20]. Recent work converges on dysregulation of ion channel 

transcripts as the initiator of this process. 

 

Gene expression analyses of cerebellar transcriptomes in SCA1 mice revealed a 

downregulation of Purkinje cell-enriched genes in ataxic mice [21]. ATXN1 was implicated as 

the main regulator, with an enrichment of Capicua transcriptional repressor (CIC) binding-

motifs in the upstream region of downregulated genes. The ATXN1–CIC complex has shown 

an essential role in the developing forebrain, whereby loss-of-function leads to a spectrum of 
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neuro-behavioural disorders [22]. However, loss of the ATXN1-CIC complex in the cerebellum 

does not cause ataxia or cerebellar toxicity. Instead, a gain-of-function of the complex upon 

ATXN1 polyglutamine expansion is critical for cerebellar pathology and motor deficits in 

ATXN1 (82Q) mice [23]. In the same mouse model, this complex was later shown to act by 

downregulating an ion channel module (including critical genes Kcnma1, Cacna1G and Itpr1), 

which correlated with the onset of Purkinje neuron hyperexcitability and neurodegeneration 

[24].  

 

Cacna1G and Itpr1 encode calcium channels or their subunits, which act as sources for a 

calcium-activated potassium channel (BK) encoded by Kcnma1. A recent study in SCA7 (92Q) 

mice showed synergistic dysregulation of BK channels and perturbed calcium homeostasis 

are required to drive irregular spiking of Purkinje neurons [25], and reduced cerebellar 

transcripts for the same genes described in SCA1 mice [24] were observed. Abnormal 

Purkinje neuron spiking is also present in mouse models of SCA2 [26], SCA3 [27] and SCA6 

[28], and is associated with motor onset, suggesting a shared pathogenic mechanism across 

multiple diseases. Additionally, protein kinase C and inositol triphosphate/calcium signalling 

have recently been implicated in polyglutamine SCA pathogenesis [29,30], further converging 

on alterations to intracellular ion dynamics as a disease modifier.  

 

Dysregulated proteostasis 

Increased levels of toxic, polyglutamine-expanded proteins in the SCAs have been shown to 

arise through altered post-transcriptional and -translational modifications or perturbed 

autophagy. 

 

For example, whilst ATXN1's regulation via its 3' untranslated region (UTR) has been 

extensively studied, recent findings implicate a role for its unusually long 5' UTR. This region, 

which undergoes alternative splicing, possesses up to 12 out-of-frame upstream AUGs 

(uAUGs) that impair translational efficiency [31]. Splicing activity variably affects ATXN1 

levels, and is altered in human SCA1 cerebellar tissue, with the impact on SCA1 pathology 

currently being examined. Additionally, an miRNA (miR760) binds a conserved site within this 

region, leading to RNA degradation and translational inhibition [32]. AAV-mediated 

overexpression of miR760 in the cerebellum of Atxn1154Q/2Q mice reduced ATXN1 levels and 

ameliorated motor phenotypes, demonstrating its effects are disease-mitigating.  
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ATXN1 levels can also be regulated post-translationally. Phosphorylation of serine 776 (S776) 

abnormally stabilises the protein and is crucial for SCA1 pathogenesis. Protein kinase A (PKA) 

was shown to regulate this in ATXN1 (82Q) mice, whereby a 30% reduction in PKA diminished 

S776 phosphorylation, decreased ATXN1 levels and delayed ataxic onset [33]. PAK1, another 

kinase, was also identified as a key modulator of ATXN1 levels by a forward genetic screen 

in Drosophila [34]. siRNA-mediated knockdown of PAK1 reduced ATXN1 levels in mammalian 

cells independently of S776 phosphorylation and inhibition of this pathway alongside S776 

phosphorylation demonstrated a stepwise decrease in ATXN1 levels [34]. 

 

However, therapeutics such as kinase inhibitors would reduce phosphorylation of both wild-

type (WT) and mutant ATXN1. In Atxn1154Q/2Q mice, preventing phosphorylation of the mutant 

allele by CRISPR-mediated site-directed mutagenesis of residue 776 (S776A) reduced 

ATXN1 protein expression in disease-affected regions, improved motor phenotype and 

extended lifespan [35]. Conversely, when homozygous S776A mutations were introduced, a 

reduced rescue effect was observed, suggesting that WT ATXN1 possesses neuroprotective 

properties. 

 

Altered autophagy also plays a role in SCA pathogenesis: for example, polyglutamine-

expanded ATXN2 results in abnormal autophagy, leading to increased STAU1 abundance in 

the cerebellum of ATXN2 (127Q) and BAC (72Q) mice and in SCA2 patient cells [36]. STAU1, 

an RNA-binding protein, colocalises with ATXN2 in stress-granule-like aggregates, 

sequestering SCA2-related transcripts [36]. This in turn promotes apoptosis through activation 

of the autophagy-inhibiting PERK-CHOP arm of the unfolded protein response (UPR) in SCA2 

fibroblasts, creating a pathogenic feed-forward mechanism [37]. Moreover, STAU1 

overabundance has been associated with hyperactive mTOR signalling - a master regulator 

of autophagy - in patient fibroblasts in HD, SCA2 and several other neurodegenerative 

diseases, which is normalised by silencing STAU1 in SCA2 cell models [38]. 

  



10 

 

Spinal and bulbar muscular atrophy 

Spinal and bulbar muscular atrophy (SBMA) is a recessive, X-linked disorder, with its 

causative CAG repeat expansion occurring in the androgen receptor (AR) gene (Table 1). 

SBMA usually only affects males, as the mutant protein binds to its natural ligand testosterone 

to trigger disease onset [39]. Similar to other polyglutamine diseases, transcriptional 

dysregulation and perturbed proteostasis contributes to neuronal dysfunction. 

 

AR encodes a ligand-dependent transcription factor, with polyglutamine length correlating with 

transcription rate - recently suggested to be due to increased helicity [40]. Transcriptional 

dysregulation can occur through AR-mediated histone modifications, with epigenetic 

dysregulation of metabolic genes contributing to reduced mitochondrial ATP production in 

SBMA patient iPSC-derived motor neurons (iMNs) [41]. Transcriptomic analysis of cultured 

embryonic motor neurons from AR (100Q) mice implicated biological pathways including p53 

and Wnt signaling, mitochondrial depolarisation and DNA repair [42]. The authors showed a 

key dysregulated transcript, Chmp7, was altered in the spinal cord and muscle of these mice 

in vivo prior to symptom onset, and in SBMA patient iMN precursors, suggesting it may play 

a causal role in SBMA. Chmp7 encodes a component of the ESCRT-III complex, involved in 

autophagic flux and the endosome-lysosome system. Indeed, stimulation of autophagy via 

trehalose administration increases clearance of mutant AR and reverses aggregation in SBMA 

patient iMNs [43].  
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Antisense oligonucleotides (ASO) 

Therapeutics for polyglutamine diseases have recently converged on the potential of 

antisense oligonucleotides (ASO), degrading the cognate RNA of the disease-causing gene 

prior to translation (Figure 3). A recent phase 1-2a clinical trial by Ionis Pharmaceuticals 

carried out intrathecal administration of a pan-HTT-lowering ASO (HTTRX, later termed 

Tominersen by Roche) at 4-week intervals, which showed a dose-dependent reduction in 

mutant HTT in cerebrospinal fluid (CSF)  with no serious side-effects [44]. Unfortunately, the 

phase 3 Generation HD1 study was later halted in March 2021 [45], although this was not due 

to any new safety concerns. Further work is needed to understand why the trial was halted 

and whether this is due to ongoing safety issues, lack of efficacy, or both and the possible 

mechanistic reasons for this. Learnings from this large phase 3 trial will be important for future 

ASO trials in HD and the other polyglutamine diseases. Alternatively, ASOs targeting HD-

modifiers in the DNA repair pathway (e.g. MSH3) could alter disease pathogenesis by 

repressing somatic expansion and are currently in development for HD and SCAs. Preclinical 

ASO studies have also shown promise in SCA1 [46], SCA2 [47,48], SCA3 [27,49-51] and 

SCA7 [52]. For instance, intracerebroventricular injection of an ATXN2 ASO in ATXN2 (127Q) 

or BAC (72Q) mice reduced cerebellar ATXN2 transcript and protein, rescued motor deficits 

and almost completely restored normal Purkinje cell firing frequency [48]. Collectively, these 

studies confirm the tolerability of ASOs short-term in humans, with several phenotypic benefits 

seen in preclinical models. 
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Conclusion 

Emerging data from the family of polyglutamine diseases have uncovered key pathogenic 

mechanisms, such as the role of DNA repair in somatic expansion in HD and dysregulation of 

ion channels in the SCAs. These offer new avenues for therapeutics, which may prove as 

promising as the potential use of ASOs. 
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Figure Legends and Table Captions  

Figure 1: Role of MMR genes and FAN1 in somatic expansion. (1) Strand slippage within 

long segments of CAG repeat tract forms extrahelical extrusions (‘loop-outs’), which are 

recognised directly by the MutSβ complex (MSH2-MSH3) (2) MutSβ recruits a MutL complex 

(MutLα; MLH1-PMS2 or MutLγ; MLH1-MLH3), activating its endonuclease function. MutLβ 

(MLH1-PMS1) has also been implicated in the process (not shown), although since lacking an 

endonuclease function its role is less clear. FAN1 stabilises the repeat through a currently 

unknown mechanism. It is hypothesised that either FAN1 sequesters MutL complexes, blocks 

access of MutSβ at the extrusion or directly repairs the extrusion itself. (3) The nicked strand 

is excised and resynthesized by a DNA polymerase. (4) DNA ligase 1 (LIG1) seals the DNA 

to complete repair, with the tract now containing more repeat units than in (1). Figure created 

using BioRender.com. 

Figure 2: Proposed mechanism of incomplete splicing at the HTT locus. Reduced rates 

of transcription by Polymerase-II (Pol-II) in the presence of longer CAG repeats leads to 

increased rates of incomplete splicing. The kinetics of transcription likely provide poly-

adenylation (polyA) factors more time to recognise cryptic polyA sites in intron 1, causing a 

truncated exon 1 fragment to be transcribed. Full-length HTT can also undergo proteolytic 

cleavage to form N-terminal fragments. Exon 1, and potentially other N-terminal fragments, 

start the aggregation process and are responsible for downstream toxicity and pathological 

phenotypes. Figure created using BioRender.com. 

Figure 3: Pathogenic mechanisms in polyglutamine diseases. DNA damage and 

erroneous repair of the repeat tract leads to somatic expansion. The expanded repeat tract is 

transcribed and translated into toxic polyglutamine-expanded protein. In HD, full-length HTT 

protein is produced, as well as toxic N-terminal fragments, which arise through incomplete 

splicing and proteolysis. These toxic proteins can enter the nucleus, where they form 

aggregates and cause dysregulated transcription. In the SCAs, this includes dysregulation of 

ion channel transcripts leading to altered membrane excitability in Purkinje neurons. 

Cytoplasmic aggregates also form, exacerbated by disease-related impairment of 

proteostasis, disrupting other downstream cellular process. *Alternative splicing also appears 

to occur in SCAs; however, the pathological importance of the splice variants is less defined. 

Figure created using BioRender.com. 

Table 1: Summary table of polyglutamine diseases. Table describing features of 

polyglutamine diseases including disease loci; normal and disease repeat length ranges at 

these loci; whether somatic expansion is observed and associated neuropathology and clinical 

phenotype. (CAT = cytosine-adenine-thionine repeat interruption). 

 


