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Graphene’s intrinsically corrugated and wrinkled topology fundamentally influences its electronic, mechani-
cal, and chemical properties. Experimental techniques allow the manipulation of pristine graphene and the
controlled production of defects which allows to control the atomic out-of-plane fluctuations and, thus, tune
graphene’s properties. Here, we perform large scale machine learning-driven molecular dynamics simulations
to understand the impact of defects on the structure of graphene. We find that defects cause significantly
higher corrugation leading to a strongly wrinkled surface. The magnitude of this structural transformation
strongly depends on the defect concentration and specific type of defect. Analysing the atomic neighborhood
of the defects reveals that the extent of these morphological changes depends on the preferred geometrical
orientation and the interactions between defects. While our work highlights that defects can strongly af-
fect graphene’s morphology, it also emphasises the differences between distinct types by linking the global
structure to the local environment of the defects.
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Graphene’s remarkable properties strongly depend
on its morphology with many physical phenomena
arising as a consequence of its intrinsic ripples1 and
corrugation2–10 or by the presence of defects.11–25 For
instance, introducing eight-membered-ring defects can
enhance graphene’s ion permeability.26–28 This makes
graphene an ideal candidate for nanoengineering where
material properties are tuned by modifying the atomic
morphology.29,30 To this end, a plethora of experimental
techniques has emerged ranging from the atomically
precise insertion of defects via electron beam30–38 or ion
bombardment31,39–42 to chemical etching with KOH43,44

and the regulation of rippling patterns by inducing
strain.45 More recent approaches like laser-assisted
chemical vapour deposition46 or high temperature
quenching47 go one step further by incorporating the
desired morphology a priori in the growth process.

The diversity of methods available to manipulate
graphene’s atomic structure highlights the potential
of morphologically-modified graphene which is also
reflected by the variety of exciting applications. In
particular, our interest has been piqued by reports
on the tuned capability of graphene in the fields of
hydrogen storage,48,49 catalysis,50 and ultrahigh and fast
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adsorption of organic pollutants.44,51 Introducing defects
can significantly increase graphene’s number of active
sites due to both the reactive character of the defects
itself21,44,50 and the induced conformational transfor-
mation to a highly corrugated surface where wrinkles
possess a high chemical activity.6,52,53 The rippled and
curled shape, moreover, ensures that the created active
sites are accessible for adsorbates or chemical dopants50

by expanding the surface area and preventing graphene
sheets from stacking together.44,49 It was also suggested,
that the adsorption affinity of molecules is directly linked
to the corrugation profile44,53,54 indicating the opportu-
nity for the selective removal of organic pollutants.

The impact of defects on graphene’s structure is
at the very heart of the applications described above
raising the question of distinct deformation mecha-
nisms. It is well known that even small deviations
from a pristine hexagonal lattice, such as isolated
pentagons or heptagons, can lead to a corrugated
surface.55–60 These induced morphological changes have
been investigated for a variety of defects in graphene
including dislocations (pentagon-heptagon dipoles),61–63

vacancies,64,65 topological defects,66,67 adatoms,68 and
grain boundaries.69–71 Several of these experimental62,72

and computational63,65,66,69 studies report a long-
ranging interaction between defects which manifests
itself in an out-of-plane buckling of the surface. These
deformations are dictated by the type and arrangement
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FIG. 1. Schematic illustration of graphene and the dif-
ferent defect types investigated in this letter and expected
morphology in the limit of low defect concentrations. The
atoms forming the defect are highlighted in orange and blue
for divacancy and Stone-Wales defects, respectively.

of defects which has lead to fascinating work aiming
to predict the unique arrangement of defects required
to obtain a desired three-dimensional structure.73–75

Notwithstanding the value of these studies, fundamental
questions such as whether the magnitude of the induced
corrugation varies between distinct types of defects
or how the morphology changes for a highly defective
system have yet to be systematically addressed. In fact,
exploring the dependence of graphene’s surface rough-
ness on both the nature and number of defects present
and revealing the specific mechanisms responsible for
the structural transformation are of both theoretical
and practical interest. In particular, it may contribute
to a better understanding of the puzzling experiments
reporting an enhancement of graphene’s stiffness76 and
a vanishing thermal expansion coefficient77 with an
increasing vacancy concentration. Knowing the impact
of defects on graphene’s morphology a priori, would be
a powerful tool to further tailor graphene’s properties
and, thus, accelerate the design and manufacture of
graphene-based nanomaterials.

In this work, we investigate graphene’s structural
response to two common point defects,22,78,79 namely
divacancies and Stone-Wales80 defects both visualised
in figure 1. Stone-Wales defects represent the simplest
example of a topological defect where a C-C bond
rotation transforms four hexagons into two pentagons
and heptagons. Conversely, divacancies are formed by
the loss of two adjacent carbon atoms. Graphene’s
sp2 network remains intact, however, by undergoing a
reconstruction and the formation of one 8-membered and
two 5-membered rings.34,81 It is worth noting, however,
that additional bond rotations can further transform the
divacancy into more complex geometries comprising a
rich variety of geometrical shapes including pentagons,
hexagons, and heptagons32 (see also supporting infor-
mation).

We employ molecular dynamics (MD) simulations
to explore the defect-induced alteration of graphene’s
structure. As the spatial extension of graphene’s
ripples1,82 and long-range nature of the defect-defect
interactions62,65,66,72 make simulation studies with ab
initio methods prohibitively expensive, classical force
fields such as the long-range carbon order potential
(LCBOP),83 the reactive empirical bond order (REBO
II) potential,84 or the environment dependent inter-
atomic potential (EDIP),85 represent a computationally
efficient alternative. In this work, however, we use the
recently developed machine learning-based Gaussian
approximation potential for carbon (GAP-20)86 which
has been carefully validated against experimental mea-
surements and quantum mechanical calculations. Being
trained on a database of ab initio structures comprising
configurations ranging from pristine graphene to amor-
phous carbon, GAP-20 reliably describes the phonon
spectrum of graphene as well as the defects’ energetic
and structural characteristics. By using GAP-20, our
work represents the first systematic investigation of the
interplay between defects and graphene’s morphology
based on large scale simulations approaching quantum
mechanical accuracy. For a detailed description of
GAP-20 including the selection of training data, chosen
hyperparameters as well as a comprehensive bench-
marking and comparison to other classical force fields
the reader is referred to the original reference86 while
an extensive derivation of the theory behind the GAP
framework can be found elsewhere..87,88 In addition, in
the supporting information we show that the GAP-20
accurately reproduces its ab initio reference for highly
defective and corrugated graphene.

For both defect types, we perform simulations at room
temperature for a varying concentrations ranging from
≈ 0.03% for an isolated defect to 3% representing a highly
defective system where the distance between defects re-
duces to ≈ 1 nm.

As the equilibrium concentration of the defects stud-
ied is negligible at room temperature due to their high
formation energies,22,79 the high concentrations investi-
gated here can be in principle achieved by intentionally
introducing defects through a variety of experimental
methods described above. While divacancies are easily
created, the controlled preparation of graphene samples
comprising a large number of Stone-Wales defects
remains experimentally challenging due to their short
lifetime under electron beam irradiation.32,33,89 From a
theoretical point of view, however, Stone-Wales defects,
being the fundamental example of topological disorder,
represent a suitable reference to gain valuable insight
into the type-dependent impact of defects on graphene’s
corrugation. Further, both Stone-Wales defects and
divacancies do not, in contrast to adatoms,90 migrate
at room temperature preventing the coalescence or
annihilation of defects and, thus, make the comparison
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between the two types straightforward.

We find that the defective systems indeed exhibit
a highly crumpled surface, the dimensions of which
significantly exceed the expected out-of-plane deviations
in pristine graphene, particularly at defect concentra-
tions > 0.5%. On a quantitative level, however, the
impact of Stone-Wales and divacancy defects differs
considerably with the latter leading to roughly two times
higher corrugation at the same defect concentration.
In order to understand this striking result, we examine
the local environments of the defects introduced. Our
analysis reveals that the magnitude of the distinct
morphological change is an inherent feature of the defect
which is determined by its geometry and the extent of
defect-defect coupling.

The MD simulations were performed in LAMMPS91 at
a temperature of 300 K and zero stress on free-standing
graphene sheets comprising between 6984 and 7200
carbon atoms equivalent to the system size used in our
previous work.82 The precise number of atoms depends
on the number of defects. In analogy to previous
work,17 we define the defect concentration as the ratio of
removed (2 per divacancy) or rotated (2 per Stone-Wales
defect) atoms to the total number of atoms in a pristine
graphene sheet. The defects were randomly distributed
on the graphene sheet while satisfying a minimum
distance criterion of 10 Å between defect centers. Each
simulation was started from a perfectly flat surface
and any reconstruction of vacancy defects happened
naturally in the simulation and was not enforced by
the initial configuration. To account for the impact of
varying orientation and distance between defects, three
simulations with different initial defect distributions
were conducted for each type and concentration. All
systems were equilibrated for 20 ps before statistics
were collected for 150 ps for the defective systems.
As pristine graphene serves as a reference system in
our study, it is simulated for 1 ns to ensure a small
statistical uncertainty and prevent error propagation
when properties of defective systems are related to the
pristine case. In the supporting information, we show
that the properties investigated in this work can be
obtained with these simulation times showing an error
below 10 % with respect to tenfold longer trajectories.
The entire post-processing analysis was done in Python
using features from the ASE,92 MDAnalysis,93,94 and
OVITO95 software packages.

We start our investigation by analysing the structure
of a graphene sheet in the absence and presence of de-
fects. Here, we use the standard deviation of the atomic
heights distribution sampled over all atoms and frames
as a representative measure to quantify the morphology
of the different systems. Rather than reporting absolute
values, however, we express the height fluctuations of any
system relative to those observed for pristine graphene

and denote this ratio as the corrugation amplification
factor (CAF, see also supporting information). While
the atomic out-of-plane displacements intrinsically scale
with the system’s dimensions,96–98 the CAF represents
an intuitive and invariant property to assess whether
certain defects have an enhancing or diminishing impact
on graphene’s corrugation.

In figure 2, we show the CAF as a function of the
defect concentration for the two distinct types of struc-
tural defects. The CAF values differ significantly across
the individual defect types and concentrations, ranging
from approximately 1 (no morphological alteration
with respect to pristine graphene) to 5 (substantial
topological change). While the different simulations at
equal concentrations of the same type yield remarkably
similar results, it is noteworthy that scattering beyond
the range of statistical errors of the measured CAFs
is inevitable due to different initial defect distribu-
tions, particularly at high concentrations. The exact
orientation and arrangement of defects can fundamen-
tally affect graphene’s properties18,73 and also have been
shown to determine which buckling modes are induced.62

Graphene comprising Stone-Wales defects or divacan-
cies shows CAF values well above 1 even at relatively
low concentrations of ≈ 0.2%, demonstrating their
capability to increase the amplitude of the atomic height
fluctuations. For both defect types, we initially observe
a strong increase of the CAF before reaching a plateau
at high concentrations > 1.5%. At 3%, the highest con-
centration investigated, graphene’s morphology differs
fundamentally from the pristine condition by possessing
an almost three-times and five-times more corrugated
surface for Stone-Wales defects and divacancies, re-
spectively. This strong dependence on the defect type
and concentration is also reflected by the discrepancy
of CAF values observed for differently reconstructed
divacancies (see supporting information) indicating a
high sensitivity of graphene’s morphology with respect
to small perturbations such as individual bond rotations.
To visualise the dimension of the extreme structural
transformations, snapshots from the simulations at a
concentration of 1% are shown for both defect types
and compared to pristine graphene on the right panel of
figure 2. The defective graphene sheets show significant
out-of-plane buckling differing fundamentally from the
pristine system. Interestingly, the magnitude of this
defect-induced corrugation is very similar to that of
pristine graphene under compressive strain showing a
CAF of ≈ 6 at a strain rate of −2% (see supporting
information and references82,99).

The distinct trends observed in graphene’s structural
behaviour call for a detailed analysis of the atomic
structure in the defects’ vicinity to further under-
stand the origin and mechanisms of the morphological
transformations. To this end, we compute the average
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FIG. 2. Morphological transformation of graphene in the presence of different types of defects. The left panel depicts the
dependence of the CAF on defect type and concentration. The CAF is a ratio of the corrugation of each defective system to
pristine graphene and the values reported correspond to the simulation averages over all atoms and frames. The error bars
represent the related statistical error obtained via block averaging. The dashed lines are intended as guides to the eye. On
the right hand side, we show snapshots from the trajectories at 1% concentration for the two types of defect and for pristine
graphene. The atoms are coloured according to their out-of-plane position relative to the center of mass of the graphene sheet
and the defective atoms are highlighted in black.

inclination and Gaussian curvature of the defects’ local
environments as shown in the left panel of figure 3.
Here, we describe these geometrical quantities based
on an analytical height function fh(x, y) which is
individually fitted to the atomic positions defining the
local environment of each defect in the system. Having
ensured an accurate description of the atomic landscape,
first and second order spatial derivatives of fh(x, y) are
computed along previously defined characteristic direc-
tions resembling the defect type’s unique symmetry. The
inclination and Gaussian curvature are then computed
as the norm of the gradient and the determinant of the
Hessian at the defect center, respectively.

To provide a baseline and get a grasp of the expected
magnitudes, we evaluate both parameters on pristine
graphene where three adjacent hexagons are employed as
a defect proxy , as illustrated in the lower right panel of
figure 3. As anticipated, local environments exclusively
comprising hexagons show zero Gaussian curvature
and the presence of wrinkles and ripples in pristine
graphene can be attributed entirely to local tilting
which we quantify here to be ≈ 0.066. Note that this
non-zero inclination by no means contradicts the general
requirement imposed by periodic boundary conditions
of a flat surface on average where negative and positive
atomic out-of-plane displacements balance each other
out. Rather, it originates from strictly positive values of
the geometric measure being based on the norm of the
local height gradients and its magnitude is related to
the overall surface roughness and corrugation.

While Stone-Wales defects show zero local Gaussian
curvature, they exhibit a roughly four to five times larger
tilt than unperturbed hexagons in pristine graphene.
The high value of ≈ 0.270 for the isolated defect
highlights that the strong inclination is an intrinsic
feature of the Stone-Wales defect. It was shown by
ab initio calculations100 that it is energetically most
favourable for the atoms forming the pentagons to move
in opposite directions imposing a sine-like wave centered
at the defect core. We observe the same trend for
concentrations < 0.25 % where the total inclination can
be almost exclusively attributed to the height gradient
along the pentagon axis (see supporting information)
as visualised in the center right panel of figure 3. A
high defect concentration has a positive but rather
small effect on the local inclination showing a maximum
increase of < 20% reaching a plateau for concentrations
> 1.5 %.

With an inclination and Gaussian curvature ranging
from ≈ 0.086 to ≈ 0.33 and from ≈ −0.001 to ≈ −0.012,
respectively, divacancies show a concentration depen-
dence for both geometrical parameters. Based on the
definition of the Gaussian curvature, negative values
correspond to bending in opposing directions along
orthogonal axes corresponding to a pringle57 shape
(hyperbolic paraboloid) as illustrated in figure 3. This
curved shape is characteristic for divacancies and agrees
well with the minimum energy configurations found with
a classical potential101 and density functional theory.65
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FIG. 3. Analysis of the geometrical properties of the defects’ local environments. The left half of the figures shows the
results for the local inclination (top) and Gaussian curvature (bottom) for all defect types as a function of concentration. For
each property, the reported values correspond to averages over all defects and frames and the error bars represent the related
statistical error obtained via block averaging. The solid lines correspond to the reference value obtained for pristine graphene
and the dashed lines are intended as guides to the eye. On the right side, we show close-ups of simulation snapshots depicting
the different systems: divacancies (orange), Stone-Wales defects (blue), and pristine graphene (grey). In each snapshot the
atoms of the local environment of a defect are highlighted by thicker bonds and the colour of the respective defect type. The
coloured surfaces correspond to the fitted function fh(x, y) for the respective defect which are coloured according to their local
height relative to the center of mass of the defective atoms.

In contrast to Stone-Wales defects, however, we find a
significant enhancement of both geometrical parameters
by increasing the concentration leading to a roughly
four and tenfold higher inclination and curvature,
respectively, indicating strong defect-defect coupling.

Our analysis of the local environments reveals the
origin behind the distinct morphological alterations for
both defect types. The defects act as corrugation seeds
and impose a distinct shift in the height distributions
of the adjacent atoms to comply with the induced
tilt and curvature, respectively. For dilute and very
low concentrations, this phenomenon is mainly of
local nature showing a decaying effect with increasing
distance from the defect center resulting in a global
morphology similar to that of pristine graphene. In
the abundance of defects, conversely, the perturbations
induced by individual seeds will superimpose and

interfere with each other preventing the overall atomic
height distribution from approaching the pristine limit.
This effect can be enhanced if the defects strongly inter-
act with each other as is shown in the case of divacancies.

Finally, as this is the first simulation study scanning
the morphological impact of different point defects
at varying concentrations and room temperature, a
direct comparison to previous work is difficult. While
a complete benchmarking of other potentials is beyond
the scope of this work, we analysed trajectories obtained
from MD simulations performed at defect concentration
of 1 % based on the commonly employed LCBOP and
REBO II force fields. Overall, the CAFs obtained with
these potentials agree qualitatively with our findings.
However, we note that both force fields overestimate the
energy barrier associated with the reconstruction of the
divacancy, requiring the simulation to be initialised with
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reconstructed defects to obtain a corrugated morphology
(see supporting information). Thus, simply using these
potentials without prior knowledge of the influence
defects have on the corrugation is unlikely to have
revealed the insights obtained here.

In conclusion, we have reported a machine learning-
based molecular dynamics study investigating the impact
of Stone-Wales and divacancy defects at varying con-
centrations and room temperature on the morphological
behaviour of graphene. In accordance with theory and
chemical intuition, we find that defects can significantly
enhance the system’s corrugation even at low concen-
trations with the magnitude of the influence depending
considerably on the nature of the defect. To further un-
derstand the mechanisms behind these trends, we com-
pared the defects’ local structure revealing an intrinsic
tilt and curvature for Stone-Wales and divacancy defects,
respectively, whereby the latter is strongly enhanced by
defect-defect coupling. Our results underline the strong
interplay between defects and graphene’s corrugation in-
dicating that the surprising mechanical properties76,77

of defective graphene might be related to the substan-
tially more wrinkled surface. Looking forward, in this
work we exclusively focused on the structural alteration
of free-standing graphene in the presence of defects of the
same type. However, it will be relevant to investigate
the coupling between different types of defects as well
as the impact of substrate-induced strain on graphene’s
corrugation in future work. Likewise, it will be inter-
esting to explore the impact of defects on the dynam-
ics of the graphene ripples which have been shown to
couple and dominate the motion of a water droplet on
strained graphene.102 By linking the global morphology
in graphene to the fundamental nature of each defect
type, our work represents a starting point to answer-
ing these questions and paves the way for precise nano-
engineering of graphene in various applications ranging
from the removal of organic pollutants44,51 to lithium ion
batteries.103
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100J. Ma, D. Alfè, A. Michaelides, and E. Wang, Physical Review
B - Condensed Matter and Materials Physics 80, 033407 (2009).

101J. M. Leyssale and G. L. Vignoles, Journal of Physical Chem-
istry C 118, 8200 (2014).

102M. Ma, G. Tocci, A. Michaelides, and G. Aeppli, Nature Ma-
terials 15, 66 (2016).

103D. Odkhuu, D. H. Jung, H. Lee, S. S. Han, S. H. Choi, R. S.
Ruoff, and N. Park, Carbon 66, 39 (2014).

http://dx.doi.org/10.1021/acs.jpcc.0c05831
http://dx.doi.org/10.1103/PhysRevB.68.024107
http://dx.doi.org/10.1103/PhysRevB.68.024107
http://dx.doi.org/10.1063/1.481208
http://dx.doi.org/10.1063/1.481208
http://dx.doi.org/10.1103/PhysRevB.63.035401
http://dx.doi.org/10.1103/PhysRevB.63.035401
http://dx.doi.org/ 10.1063/5.0005084
http://dx.doi.org/ 10.1063/5.0005084
http://dx.doi.org/10.1103/PhysRevLett.104.136403
http://dx.doi.org/10.1103/PhysRevLett.104.136403
http://dx.doi.org/10.1002/qua.24927
http://dx.doi.org/10.1002/qua.24927
http://dx.doi.org/ 10.1021/nl801386m
http://dx.doi.org/10.1088/1367-2630/12/11/113021
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/ 10.1088/1361-648X/aa680e
http://dx.doi.org/ 10.1088/1361-648X/aa680e
http://dx.doi.org/10.1002/jcc
http://dx.doi.org/ 10.25080/majora-629e541a-00e
http://dx.doi.org/ 10.25080/majora-629e541a-00e
http://dx.doi.org/10.1051/jphys:019870048070108500
http://dx.doi.org/10.1051/jphys:019870048070108500
http://dx.doi.org/10.1103/PhysRevLett.69.1209
http://dx.doi.org/10.1103/PhysRevLett.69.1209
http://dx.doi.org/10.1103/PhysRevB.97.054303
http://dx.doi.org/10.1103/PhysRevB.97.054303
http://dx.doi.org/ 10.1103/PhysRevB.80.033407
http://dx.doi.org/ 10.1103/PhysRevB.80.033407
http://dx.doi.org/10.1021/jp501028n
http://dx.doi.org/10.1021/jp501028n
http://dx.doi.org/ 10.1038/nmat4449
http://dx.doi.org/ 10.1038/nmat4449
http://dx.doi.org/10.1016/j.carbon.2013.08.033


Supporting Information for: Defect-Dependent

Corrugation in Graphene

Fabian L. Thiemann1,2,3,4, Patrick Rowe1,2,3, Andrea Zen5,6,2, Erich
A. Müller4, and Angelos Michaelides3,1,2

1Department of Physics and Astronomy, University College
London, Gower Street, London, WC1E 6BT, United Kingdom

2Thomas Young Centre and London Centre for Nanotechnology,
University College London, Gower Street, London, WC1E 6BT,

United Kingdom
3Yusuf Hamied Department of Chemistry, University of

Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom

4Department of Chemical Engineering, Imperial College London,
South Kensington Campus, London SW7 2AZ, United Kingdom

5Dipartimento di Fisica Ettore Pancini, Università di Napoli
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1 Details of the molecular dynamics simulations

In our classical molecular dynamics (MD) simulations, the system size varied

dependent on defect concentration between 6984 and 7200 atoms. We employed

monoclinic simulation cells where the length of the inplane lattice vectors was

≈ 14.6 nm. Periodic boundary conditions were applied in all three directions.

We prevented the graphene sheet from interacting with its periodic images in

the direction normal to the surface by adding 4 nm of vacuum which is way

beyond the cutoff of the GAP-20 [1] (1 nm). In case of the defective systems,

the defects were randomly distributed on the sheet while satisfying a minimum

distance criterion of 1 nm between the defect centers. Similarly, the orientation

of each defect was assigned randomly.

A timestep of 1 fs was used and all simulations were performed at 300 K and

zero strain in the isobaric-isothermal ensemble (NPT). To ensure target tem-

perature and stress, we employed a Nosé-Hoover chain thermostat and baro-

stat. Notably, the barostat was only applied to the in-plane dimensions which

were also coupled to each other to guarantee graphene remains of hexagonal

nature. We equilibrated each system for 20 ps before collecting statistics for

at least 150 ps. In this supplementary material, we show that this relatively

short production time is sufficient to accurately sample the properties presented

in the manuscript. All molecular dynamics (MD) simulations reported in the

manuscript were performed in LAMMPS [2].

2 Definition of the corrugation amplification fac-

tor

In the manuscript, we introduced the corrugation amplification factor (CAF) to

quantify the impact of defects on the structure of graphene. Here, we provide

S3



a detailed explanation of how this measure is computed. As explained in the

manuscript, the CAF represents the ratio of the standard deviation of the atomic

heights distribution between defective and pristine graphene. Therefore, we

start by defining the atomic height hi,j as the out-of-plane displacement (in

z-direction) of an atom i at simulation frame j from the center of geometry

(equivalent to center of mass for graphene) of the system,

hi,j = zi,j −
Natoms∑

i

zi,j , (1)

where zi,j represents the z-coordinate of atom i at frame j and Natoms corre-

sponds to the total number of atoms. We compute hi,j for all atoms in the

system and for all frames Nframes of the trajectory and determine the standard

deviation sh of this atomic height distribution

sh =

√√√√ 1

NframesNatoms

Nframes∑
j

Natoms∑
i

(
hi,j − h̄

)2
, (2)

where h̄ is the mean atomic height given by

h̄ =
1

NframesNatoms

Nframes∑
j

Natoms∑
i

hi,j . (3)

The standard deviation sh represents a quantitative measure of the corrugation

of the system where large values correspond to a highly corrugated graphene

sheet. In order evaluate the impact of defects on graphene’s structure, we use the

CAF which expresses sh of a defective system relative to the standard deviation

measured for pristine graphene

CAF =
sdefectiveh

spristineh

. (4)
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3 Analysis of the defects’ local environments

To understand the distinct corrugation induced by different defect types we com-

puted the inclination and Gaussian curvature of the defects’ local environments

and compared them to the representative values in pristine graphene. Here, we

provide a comprehensive summary of this approach. At first, we identified all

atoms within a distance of 4.5 Å, corresponding to the cutoff of the many-body

SOAP descriptor used by the GAP-20 [1], from the center of mass of a defect.

For pristine graphene, the artificial defect centers were randomly assigned to

individual carbon atoms obeying the minimum distance criterion described in

the previous section. The selected atoms form the local environments of a defect

varying in number between 22 and 25 dependent on the defect type as illustrated

in figure S1.

Next, we computed the orientation of each defect with respect to a previously

defined reference indicated in figure S1. For Stone-Wales and divacancy defects,

the x-axis was assigned along the axis connecting the 5-membered rings whereas

the y-axis was parallel to the heptagons and octagon, respectively. For the pris-

tine case where three hexagons form an artificial defect, the local y-axis was

assigned to point from the defect center towards the two hexagons in the global

y-direction.

Having defined the local environments and their respective orientation for all

defects in the system, we looped through the trajectories to compute the geo-

metrical parameters in the following manner: For every defect in each frame, we

expressed the coordinates of the atoms forming the local environment relative

to the center of mass of the defect. To enable a comparison between defects of

different orientation, we rotated the local coordinates around the local z-axis at

the defect center to arrange all of them in the same reference orientation shown
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Figure S1: Overview of the local environments for the different defect types.
The N -membered rings forming the defects are highlighted in greyish blue.
Atoms assigned to a defect are coloured in red while all other atoms are illus-
trated in light grey. The reference orientation for each defect type are indicated
by the local coordinate system anchored at the defect center.

in figure S1. Then, a two-dimensional second-order equation,

fh(x, y) = a + bx + cy + dxy + ex2 + fy2 , (5)

was fitted to the relative heights of the translated and rotated atom coordinates.

If the quality of the fit was sufficiently accurate, i.e. the R2 score was above

0.9, first and second derivatives of the analytical function at the defect’s center

of mass, corresponding to (0,0) in the local coordinate system, were computed.

Notably, almost all fits (> 99.9 %) satisfied our accuracy criterion suggesting

that a second-order equation can adequately describe the local environments.

Based on the definition of fh(x, y), the gradient ∇fh and Hessian H at (0,0) are

readily obtained:

∇fh(0, 0) =

∂fh(x,y)
∂x |x=y=0

∂fh(x,y)
∂y |x=y=0

 =

b
c

 (6)

H(0, 0) =

∂2fh(x,y)
∂x2 |x=y=0

∂2fh(x,y)
∂x∂y |x=y=0

∂2fh(x,y)
∂y∂x |x=y=0

∂2fh(x,y)
∂y2 |x=y=0

 =

2e d

d 2f

 . (7)
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As last step, we computed the norm of the gradient, ∇fh(0, 0), and the de-

terminant of the Hessian, H(0, 0), to obtain the local inclination and Gaus-

sian curvature, respectively. The entire post-processing analysis was done in

Python employing commonly used packages such ASE [3], MDAnalysis [4, 5],

and OVITO[6].

4 Validation of the GAP-20 for high defect con-

centrations

While a comprehensive benchmarking of the GAP-20 [1] and a detailed compar-

ison to other established force fields can be found in the original reference, here

we report the performance of the potential for highly defective and corrugated

graphene with respect to its density functional theory (DFT) reference. To this

end, we computed the deviation in the atomic forces between DFT and GAP

for a set of reference configurations. These structures were taken from 6 MD

simulations based on the GAP-20 of defective graphene with up to 200 atoms

comprising between one and three defects (corresponding to defect concentra-

tions of 1 % and 3 %, respectively) of either Stone-Wales or divacancy character.

All MD simulations were performed using the same settings as reported above.

For the DFT calculations we used the identical code and setup employed for the

generation of the training data for the GAP-20 [1]. Overall, we randomly se-

lected 20 frames from each trajectory to obtain a test set of 120 configurations.

In figure S2 we show the correlation of the forces subdivided into the differ-

ent types and number of defects. Generally, we find smaller root mean square

error (RMSE) for systems comprising Stone-Wales defects rather than diva-

cancies. Moreover, the RMSE increases for both types when more defects are

added reaching its maximum for the system with three divacancy defects at
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Figure S2: Correlation between the atomic forces predicted by GAP-20 and its
DFT reference for a variety of systems. Systems comprising divacancy defects
are shown in the left column of plots while the right column is dedicated to
Stone-Wales defects. The number of defects increases from 1 at the top panel
to 3 at the bottom panel. The inset in each plots pictures a snapshot of a
representative configuration in the test set of the respective system. The root
mean square error (RMSE) is shown at the top of each plot.
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≈ 113 meV/Å. These observations indicate that systems comprising a high cor-

rugation are more challenging to describe for the GAP-20 than those exhibiting

an almost flat and smooth topology. It is noteworthy, however, that the mag-

nitude of the force error for all systems is relatively small and comparable to

the RMSE found for the recently developed GAP for hexagonal boron nitride

in our previous work [7]. This suggests that the GAP-20 is able to provide an

accurate description also in the presence of high corrugation.

5 Convergence with respect to simulation time

The wide range of defect concentrations covered by this work and the relative

high computational cost associated with the GAP-20 [1] impose a limit to the

length of each simulation for the system sizes studied here. Therefore, most

results presented in the manuscript are based on trajectories of a production

length of 150 ps. In this section, we show that our results based on short simu-

lation time agree well with those obtained from a significantly longer trajectory.

To this end, we analyse the dependence of the structural properties reported in

the manuscript, i.e. the standard deviation of the atomic height distribution as

well as the local geometrical parameters, on the simulation time. By showing

the standard deviation of the atomic height distribution rather than the corru-

gation amplification factor (CAF), we are able to also analyse the convergence

for the pristine sheet. For both defect types, this analysis is carried out at a

defect concentration of ≈ 0.06 % (corresponding to two defects) and 1 % where

we elongated individual trajectories.

A summary of this convergence analysis is shown in figure S3. For all prop-

erties, the qualitative difference between the pristine and the highly defective

systems is apparent irrespective of the simulation time. In general, the proper-

ties of the less defective systems converge way quicker than the equivalent for

S9



Figure S3: Analysis of the convergence of structural properties with respect
to sampling time. The properties investigated include the standard deviation
of the atomic height distribution (left), the local inclination (center), and the
local Gaussian curvature (right) of the local environments around defects. The
markers represent the computed properties where the filled and the lines serve
as guide to the eye. For the defective systems, the filled symbols correspond
to a defect concentration of 1 % while the empty ones illustrate properties for
systems comprising two defects only. The statistical error visualised by the error
bars was computed based on block averages using 20 blocks.

the higher defect concentration. We therefore focus on the high defect concen-

tration in our discussion and compare the distinct trends in the dependence of

the simulation time for the different systems. For graphene comprising Stone-

Wales defects, the geometrical parameters converge rapidly while the standard

deviation of the atomic heights takes considerably longer although the results

obtained based on a shorter sampling time are within the statistical error of the

longest simulation time of 1.5 ns. Divacancy systems show a slow convergence

for all structural properties analysed agreeing, however, within 8 % with results

obtained from longer simulation times. Pristine graphene converges rapidly for

the geometrical parameters describing the local environments, while a longer

simulation times are required to achieve convergence for the standard deviation

of the atomic height distribution. Based on these findings, we conclude that

our results are sufficiently converged within 150 ps to allow for a qualitative

comparison between the different systems.
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6 Convergence with respect to system size

Similar to the constrains on the accessible simulation times, the high computa-

tional cost associated with the GAP-20 also restrict the system sizes feasible for

a scan of different defect types at varying concentrations. In this work, we chose

a system size corresponding to 7200 atoms for the pristine graphene sheet equiv-

alent to our previous work on strain-induced rippling in two-dimensional mate-

rials [7]. It is worth noting, however, that the height fluctuations in graphene

scale with the spatial dimensions of the system [8–10]. Here, we analyse the

dependence of the CAF on the system size by performing MD simulations on

systems comprising 1800 and 5000 atoms, respectively. We use the identical

setup and simulation times as described in the manuscript, namely 150 ps and

1 ns for defective and pristine systems, respectively. However, we restrict our

analysis of the size dependence of the CAF to a defect concentration of 1% for

both defect types. For each size, we conducted three independent simulations

varying the spatial arrangement of the defects.

Figure S4: Analysis of the convergence of CAF with respect to system size.
The markers represent the computed properties and the lines serve as guide to
the eye. The statistical error visualised by the error bars was computed based
on block averages using 20 blocks.

S11



In figure S4 we show the CAF as function of the number of atoms of the re-

spective pristine systems. Although divacancies and Stone-Wales defects show

opposite trends for the CAF with increasing system size, this dependence on the

number of atoms is fairly small. In fact, the magnitude of the variation of the

CAF with system size is smaller than the range of values observed for different

spatial arrangements of defects on the graphene sheet.

7 Impact of defect arrangement on results

It has been shown that the arrangement and orientation of defects has a high

impact on the corrugation of graphene [11–13]. In the manuscript, we therefore

report the structural properties based on three different defect distributions for

each defect type at every concentration. Here, we show that this is a sufficiently

large number to estimate the scattering width of our results due to different

defect arrangements on the graphene sheet.

For both defect types, we extended our set of defect distributions from three to

five for three different concentrations to also account for a varying effect based

on the number of defects present. These systems include a low (≈ 0.06 %),

high (1 %), and very high (3 %) defect concentration. Similar to the conver-

gence analysis with respect to the simulation time, we computed all structural

properties reported in the manuscript and summarised the results in figure S5.

Irrespective of the defect type, property, and concentration, we find that the

additionally performed simulations fall within the range of values reported in

the manuscript. Therefore, we conclude that performing simulations with three

different defect distributions is sufficient to make general statements about the

distinct impact of different defect types.
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Figure S5: Impact of different defect distributions on graphene’s structural
properties investigated in this work for both defect types. Results presented
in the manuscript are visualised by single-coloured bars while the additionally
performed simulations are illustrated by hatched bars. The statistical error
visualised by the error bars was computed based on block averages using 20
blocks. For all systems comprising Stone-Wales defects the Gaussian curvature
is approximately zero.
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8 Dependence of the lattice parameter on the

defect concentration

As we perform our MD simulations with a varying box size, it is interesting to

compare the impact of the increasing defect concentration on the lattice param-

eter of graphene. For all simulations reported in the manuscript, we computed

the average lattice parameter and show their values relative to pristine graphene

(apristine = 2.462 Å) in figure S6. As expected, the lattice parameter decreases

with increasing defect concentration due to the significantly higher out-of-plane

deviations. While there is some scattering between different defect distribu-

tions for the divacancies, the two types compared are clearly distinguishable as

predicted by their distinct CAFs. For the highest concentrations investigated

(3 %), systems comprising Stone-Wales defects and divacancies show a lattice

parameter reduced by ≈ 2 % and ≈ 5 %, respectively.

Figure S6: Lattice parameter of defective graphene expressed relative to pristine
graphene as function of the defect concentration. The statistical error visualised
by the error bars was computed based on block averages using 20 blocks.
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9 Comparison between reconstructed divacan-

cies

In the manuscript, we compare the morphological impact of Stone-Wales de-

fects and divacancies, where the latter comprises one 8-membered and two 5-

membered rings. In this section of the supplementary material, we, thus, refer

to this defect as V2 (5-8-5). However, experiments [14] confirm the existence

of two additional states of reconstructed divacancies which can arise from V2

(5-8-5) through the additional rotation of one and two C-C bonds, respectively.

While one of these Stone-Wales-like transformations leads to the formation of

3 pentagons and 3 heptagons, termed V2 (555-777), two bond rotations create

four 5-membered, one 6-membered, and four 7-membered rings to which we re-

fer as V2 (5555-6-7777). All of these defects are illustrated in figure S7 where

the different geometrical shapes are also highlighted.

Here, we compare the morphological impact between these different types of

divacancies. To this end, we performed additional MD simulations of graphene

comprising V2 (555-777) and V2 (5555-6-7777) defects and compute the CAF.

Rather than scanning the entire concentration range, however, we restrict our-

selves to the concentrations of 0.5, 1.0. 2.0, and 3.0% for each of which we

Figure S7: Overview of different states of reconstructed divacancies. For each
defect, the differently sized carbon rings are coloured and labeled according to
the number of members. In the left and center panels, the red arrows highlight
the C-C bonds which are rotated to transform the V2 (5-8-5) to the V2 (555-777)
and the V2 (555-777) to the V2 (5555-6-7777), respectively.
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perform three independent simulations per type varying in the spatial arrange-

ment of the defects. While we use the identical simulation setup described

above, due to the larger size of these defects we increased the minimum dis-

tance between them to 14Å and 17Å for V2 (555-777) and V2 (5555-6-7777)

defects, respectively. In contrast to V2 (5-8-5) and Stone-Wales defects where 2

atoms per defect are modified (removed or rotated, respectively), V2 (555-777)

and V2 (5555-6-7777) defects involve the topological variation of 4 and 6 atoms,

respectively, due to the additionally induced bond rotations. Therefore, fewer

of these defects are required to achieve a respective defect concentration.

In figure S8 we report the CAF for all three divacancy defects as a function of

the defect concentration. As expected, all divacancy defects lead to an enhanced

corrugation of graphene. However, our simulations show that additional bond

rotations have a strong impact on the magnitude of the corrugation enhance-

ment. While V2 (5-8-5) defects can induce an up to five times more wrinkled sur-

face at the concentrations investigated, for V2 (555-777) and V2 (5555-6-7777)

defects we observed a maximum CAF of approximately 2 and 2.75, respectively.

Figure S8: Comparison of the morphological impact of different divacancy
defects. The error bars represent the related statistical error obtained via block
averaging. The dashed lines are intended as guides to the eye.
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This indicates that the impact on graphene’s corrugation of the latter two types

is rather similar to that one of Stone-Wales defects highlighting the high sen-

sitivity of graphene’s morphology with respect to small perturbations such as

individual bond rotations.

10 Comparison to graphene under compressive

strain

While the focus of this study is the morphological alteration of graphene in the

presence of defects, strain represents an alternative approach to increase the

system’s corrugation [7, 15]. Here, we report the CAF for pristine graphene

as a function of strain and compare the corrugation to the defective systems

reported in the manuscript. Rather than performing additional simulations, we

make use of the trajectories from our previous work [7] where we studied the

impact of strain on the amplitude of ripples in graphene and hexagonal boron

nitride. This is feasible given the very similar setup including identical number

of atoms, temperature and thermostat used in both studies. It is worth point-

ing out, however, that the simulations in our previous work were performed

in the NVT ensemble at each state point (at each strain rate) and were based

on the predecessor of the GAP-20, the graphene GAP [16]. While the choice

of a constant volume is inevitable for a strain-based study, we also expect a

fair comparison between the different potential energy surfaces given that both

potentials were trained on the same functional and partially the same set of

configurations [1, 16].

We show the dependence of the CAF on strain in figure S9. As expected the sur-

face becomes more corrugated when the system is compressed (negative strain),

while positive strain flattens the sheet resulting in a CAF < 1. Under a strong
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Figure S9: CAF as a function of strain for pristine graphene based on trajecto-
ries from reference [7]. Negative and positive strain correspond to compression
and tension, respectively. The statistical error visualised by the error bars was
computed based on block averages using 20 blocks.

compression of 2 %, the CAF can become as large as ≈ 6 exceeding all the val-

ues reported in the manuscript. It is also interesting to note the strong increase

of the CAF for low negative strains indicating a high sensitivity of the sheet

corrugation to the strain rate.

11 Decomposition of the local inclination

In the manuscript, we characterised the local environments around the defects

by means of the local inclination and Gaussian curvature. To get a deeper in-

sight into the preferred configurations of the defects, we can decompose the local

inclination into the contributions along the characteristic directions of each de-

fect type described above. Rather than computing the norm of the gradient of

the fitted analytical function fh(x, y) at the origin of the local coordinate sys-

tem, ‖∇fh(0, 0)‖, we analyse the absolute spatial derivatives, |∂fh(x,y)∂xi
|x=y=0|,

separately.

In figure S10, we show the absolute spatial derivatives in both directions for

S18



all systems investigated in the manuscript. As expected, the individual contri-

butions are essentially identical for pristine graphene indicating the lack of a

preferential tilt direction for perfect hexagons. Stone-Wales defects, conversely,

show a more complex behaviour which also varies with increasing concentra-

tion. For an isolated defect and low defect concentration < 0.25 %, the height

gradient mainly appears along the pentagon axis reaching values of ≈ 0.270

while the slope along the heptagon axis (y-direction, see figure S1) remains for

most defect arrangements < 0.1. This agrees with ab initio calculations [17]

showing that the energetically most favourable configuration for a Stone-Wales

defect is achieved by displacing the atoms of the pentagon in opposite direc-

tions. In case of higher defect concentrations, the gradient along the pentagon

axis remains essentially constant through the entire concentration. However,

we observe an increase along the heptagon axis plateauing in values of ≈ 0.15

for concentrations > 1.5 %. These findings suggest that the coupling between

multiple Stone-Wales defects is mediated through an increase of the gradient

Figure S10: Decomposition of the local inclination into its contributions along
the local x (left) and y-directions (right). The statistical error visualised by the
error bars was computed based on block averages using 20 blocks.
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along the heptagon axis rather than enhancing the existing tilt along the pen-

tagons. Finally, divacancies show a slightly higher gradient along the pentagon

axis relative to the octagon axis. This observation is persistent throughout the

entire concentration range investigated in this work.

12 Comparison to established force fields

To compare our findings obtained with the GAP-20 [1] with the predictions

based on established force fields, we conducted additional MD simulations with

two commonly used interatomic potentials, namely the long-range carbon order

potential (LCBOP) [18] and the reactive empirical bond order (REBO II) po-

tential [19]. In particular, we are interested in the predicted morphology profiles

and the related corrugation of the graphene sheet in the abundance of defects.

Therefore, we focus our comparison on the CAF at a defect concentration of

1%. For both defect types, we initialise the simulations from the same defect

distribution as one of our GAP-based simulations reported in the manuscript.

To achieve a fair comparison, the same production lengths were employed as

reported in the manuscript, i.e. 150 ps and 1 ns for defective and pristine

graphene, respectively.

The results of this comparison are summarised in figure S11. While the CAF

predicted for system comprising Stone-Wales defects agree well between the dif-

ferent force fields, large deviations are observed in the presence of divacancies.

In contrast to the GAP-driven simulations, we do not find a significant corru-

gation enhancement and the systems morphology resembles that one of pristine

graphene. The origin of this deviation lies in the natural reconstruction of the

divacancy defect into two 5-membered and an 8-membered ring as observed in

the GAP-based trajectories which is not predicted by both established models.

Consequently, the divacancy defects merely behave like holes in the surface and

S20



Figure S11: Comparison of the CAF for both defect types at 1 % defect concen-
tration for different interatomic potentials. The hatched bars for the simulations
based on REBO II and LCBOP were initialised with reconstructed divacancies.
The statistical error visualised by the error bars was computed based on block
averages using 20 blocks.

cannot induce corrugation in the way described by the GAP-20. This is pre-

sumably caused by the potentials’ short cutoffs, 2 Å and 2.2 Å for REBO II

and the short-range part of LCBOP, leading to an overestimated energy barrier

associated with the reconstruction. Indeed, starting the simulation from a sheet

comprising divacancy defects in their reconstructed configuration (hatched bars

in figure S11) results in morphology profiles which can be even more corrugated

than predicted by the GAP-20.
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