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 B S T R A C T 

e study the morphology of convergence maps by perturbatively reconstructing their Minkowski functionals (MFs). We present
 systematic study using a set of three generalized skew spectra as a function of source redshift and smoothing angular scale.
hese spectra denote the leading-order corrections to the Gaussian MFs in the quasi-linear re gime. The y can also be used as

ndependent statistics to probe the bispectrum. Using an approach based on pseudo- S � s, we sho w ho w these spectra will allow
he reconstruction of MFs in the presence of an arbitrary mask and inhomogeneous noise in an unbiased way. Our theoretical
redictions are based on a recently introduced fitting function to the bispectrum. We compare our results against state-of-the-art
umerical simulations and find an excellent agreement. The reconstruction can be carried out in a controlled manner as a function
f angular harmonics � and source redshift z s , which allows for a greater handle on any possible sources of non-Gaussianity.
ur method has the advantage of estimating the topology of convergence maps directly using shear data. We also study weak

ensing convergence maps inferred from cosmic microwave background observations, and we find that, though less significant
t low redshift, the post-Born corrections play an important role in any modelling of the non-Gaussianity of convergence maps
t higher redshift. We also study the cross-correlations of estimates from different tomographic bins. 

ey words: cosmology – methods: analytical, statistical, numerical – weak lensing. 

 I N T RO D U C T I O N  

he recently completed cosmic microwave background (CMB) experiments such as the Planck Surveyors 1 (Planck Collaboration XVI, 2014 ;
lanck Collaboration VI, 2020b ) have provided us a standard model of cosmology. Ho we ver, many of the outstanding questions including, e.g.
ut not limited to, the nature of dark matter (DM) and dark energy as well as possible modification of general relativity (GR) on cosmological
cales (Joyce et al. 2015 ; Clifton et al. 2016 ) or the exact nature of neutrino mass hierarchy (Lesgourgues & Pastor 2016 ) still remain unclear.
he significant increase in precision achieved by stage-IV CMB and large-scale structure (LSS) surv e ys will allow us to answer some of these
uestions. It is expected that the ongoing weak lensing surv e ys [Canada–France–Ha waii Telescope 2 , Dark Energy Surv e ys 3 (Abbott et al.
016 ), Dark Energy Spectroscopic Instruments, 4 Prime Focus Spectrograph, 5 and Kilo-De gree Surv e y (K uijken et al. 2015 )] and stage-IV
SS surv e ys [ Euclid 6 (Laureijis et al. 2011 ), Rubin Observatory 7 (Tyson et al. 2003 ), and Roman Space Telescope (National Research Council
010 )] will provide answers to many of the questions that cosmology is facing. 

Weak lensing is responsible for the minute shearing, and magnification in the images of the distant galaxies by the intervening LSS
llows us to extract information about clustering of the intervening mass distribution in the Universe (Bartelmann & Schneider 2001 ; Munshi
t al. 2008 ; Kilbinger 2015 ; Mandelbaum 2018 ). Weak lensing also leaves its imprints on the observed CMB sky. The weak lensing surveys
re complementary to the galaxy surv e ys such as Baryon Oscillation Spectroscopic Surv e y 8 (Eisenstein et al. 2015 ), Extended Baryon
scillation Spectroscopic Surv e y (eBOSS Collaboration 2021 ), or WiggleZ 

9 (Abbott et al. 2016 ) as the y pro vide an unbiased picture of
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he underlying DM distribution, whereas the galaxies and other tracers can only provide a biased picture (Desjacques, Jeong & Schmidt
018 ). 

Ho we ver, weak lensing observ ations are sensiti ve to small scales where clustering is non-linear and non-Gaussian (Bernardeau et al.
002 ). Indeed, the statistical estimates of cosmological parameters based on power spectrum analysis are typically degenerate in cosmological
arameter, e.g. σ 8 and �M 

. External data sets, e.g. CMB as well as tomographic or three-dimensional (3D; Castro, Heavens & Kitching 2005 )
nformation, are typically used to lift the de generac y. Ho we ver, an alternati ve procedure would be to use high-order statistics of observables
hat probe the non-linear re gime (Munshi, Heav ens & Coles 2011 ; Munshi et al. 2011a , 2015 ). Even in the absence of any primordial
on-Gaussianity, the gravitational clustering induces mode coupling that results in a secondary non-Gaussianity which is more pronounced
t the smaller scales where weak lensing surv e ys are sensitive. Thus, a considerable amount of effort has been invested in understanding the
ravity-induced secondary non-Gaussianity from weak lensing surv e ys. These statistics include the lower order cumulants (Munshi & Jain
001 ) and their correlators (Munshi 2000 ): the multispectra including the skew spectrum (Munshi & Heavens 2010 ) and kurtosis spectra
Munshi et al. 2011b ) as well as the entire Probability Distribution Function (Munshi & Jain 2000 ) and the statistics of hot and cold spots.
he future surv e ys such as the Euclid surv e y will be particularly interesting in this regard. With its large fraction of sky coverage, it will be
ble to detect the gravity-induced non-Gaussianity with a very high signal-to-noise (S/N). It is also worth mentioning here that, in addition
o breaking the de generac y in cosmological parameters, the higher order statistics is also important in understanding the covariance of lower
rder estimators (Barber, Munshi & Valageas 2004 ; Munshi, Valageas & Barber 2004 ; Valageas, Munshi & Barber 2005 ; Valageas, Barber &
unshi 2010 ). 

Topological estimators such as the Minkowski functionals (MFs) are also important diagnostics in this direction as they carry information
t all orders. The MFs have been e xtensiv ely dev eloped as a statistical tool in a cosmological setting for both two-dimensional (2D; projected)
nd 3D (redshift) surv e ys. The MFs hav e analytically known results for a Gaussian random field, making them suitable for studies of non-
aussianity. Examples of such studies include CMB data (Schmalzing & G ́orski 1998 ; No viko v, Schmalzing & Mukhanov 2000 ; Hikage et al.
008 ; Natoli et al. 2010 ; Ducout et al. 2013 ; Planck Collaboration 2016b ; Planck Collaboration IX, 2020a ), LSS (Gott, Mellot & Dickinson
986 ; Coles 1988 ; Gott et al. 1989 , 1992 ; Melott 1990 ; Moore et al. 1992 ; Canavezes et al. 1998 ; Schmalzing & Diaferio 2000 ; Kerscher
t al. 2001 ; Hikage et al. 2002 , 2008 Park et al. 2005 ; Hikage, Komatsu & Mastubara 2006 ), weak lensing (Matsubara & Jain 2001 ; Sato
t al. 2001 ; Taruya et al. 2002 ; Munshi et al. 2011d ), Sun yaev–Zel’do vich maps (Munshi et al. 2011c ), 21cm (Gleser et al. 2006 ), and N -body
imulations (Schmalzing & Diaferio 2000 ; Kerscher et al. 2001 ). Note that this is an incomplete list of references and we have selected a
ample of representative papers from the literature. The MFs are spatially defined topological statistics and, by definition, contain statistical
nformation of all orders. This makes them complementary to the polyspectra methods that are defined in Fourier space. It is also possible
hat the two approaches will be sensitive to different aspects of non-Gaussianity and systematic effects, although in the weakly non-Gaussian
imit it has been shown that the MFs reduce to a weighted probe of the bispectrum (Hikage et al. 2006 ). In addition to providing cosmological
nformation, MFs can also be useful diagnostics of any unknown systematics as well as baryonic contamination which are expected to affect
eak lensing observables (Herenois-Deraps et al. 2016 ). 

This paper is organized as follows: The MFs are reviewed in Section 2. Our notations for the weak lensing statistics in projection are
escribed in Section 3. The generalized skew spectra are expressed in terms of the bispectrum in Section 4. The fitting function we use for
ur reconstruction is described in Section 5. A very brief description of the simulations is provided in Section 6. We discuss the results in
ection 7. The conclusions are presented in Section 8. 

 MIN KOW SKI  FUNCTIONA LS  

he MFs are related to Hadwiger’s theorem (Hadwiger 1959 ) in integral geometry framework which asserts that a set of d + 1 functionals can
rovide all necessary morphological information of a random field in d -dimensional space. These functionals are a unique set of morphological
stimators that are motion invariant and obey properties such as convex continuity as well as additivity . These properties are important for
omputing morphological estimators from a pixelized map. The MFs are defined o v er an excursion set � for a given threshold ν and are
xpressed in terms of weighted curvature integrals. 

In 2D, the three MFs are defined and can be expressed using the following notations of Hikage et al. ( 2008 ): 

V 0 ( ν) = 

∫ 

� 

d a; V 1 ( ν) = 

1 

4 

∫ 

∂� 

d l; V 2 ( ν) = 

1 

2 π

∫ 

∂� 

K d l. (1) 

ollowing the standard notation in cosmological literature, we use da and dl to denote the surface area and line elements for an excursion set
 and its boundary ∂�, respectively, that crosses a threshold. The MFs V k ( ν) correspond to the area of the excursion set �, the length of its

oundary ∂� as well as the integral of curvature K along its boundary which is also related to the genus g and hence the Euler characteristics
. 

The MFs can be employed to quantify deviations from Gaussianity. At leading order, the MFs can be constructed completely from the
nowledge of the bispectrum alone. 

The behaviour of the MFs for a random Gaussian field is well known and is given by Tomita’s formula (Tomita 1986 ). The MFs are
enoted by V k ( ν)( k = 0, 1, and 2) for a threshold ν = κ/ σ 0 , where σ 2 = 〈 κ2 〉 can be decomposed into two different contributions, namely,
0 
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aussian V 

G 
k ( ν) and perturbative non-Gaussian contribution δV k ( ν): 

V k ( ν) = V 

G 
k ( ν) + δV k ( ν) . (2) 

e are primarily interested in the gravity-induced non-Gaussian contribution, i.e. δV k ( ν) (Hikage et al. 2008 ), 

V 

G 
k ( ν) = A exp 

(
−ν2 

2 

)
H k−1 ( ν); (3) 

δV k ( ν) = A exp 

(
−ν2 

2 

) [ 
δV 

(2) 
k ( ν) σ0 + δV 

(3) 
k ( ν) σ 2 

0 + δV 

(4) 
k ( ν) σ 3 

0 + · · ·
] 
, (4) 

here H k ( ν) is the Hermite polynomials. Following the notations introduced in Hikage et al. ( 2008 ), we have separated out a normalization
actor A in these expressions which is given by the generalized variance parameter σ 2 

0 and σ 2 
1 : 

A = 

1 

(2 π ) ( k+ 1) / 2 

ω 2 

ω 2 −k ω k 

(
σ1 √ 

2 σ0 

)k 

. (5) 

ere, ω k = π k /2 / �( k /2 + 1) is the volume of a k -dimensional unit ball. For projected weak lensing convergence maps in 2D, we only need
 0 = 1, ω 1 = 2, and ω 2 = π . The coefficient depends only on the power spectrum of the perturbation through σ 0 and σ 1 . These quantities are
efined through the following expression: 

σ 2 
j = 

1 

2 π

∑ 

� 

[ � ( � + 1)] j (2 l + 1) C � W 

2 
� . (6) 

ere, C � is the angular power spectrum of the underlying field and W � is the window function used to smooth a map. A more through discussion
ill be presented in the following section for κ maps. At the level of the bispectrum, the perturbative corrections are determined by three
eneralized skewness paramters S ( k ) (Hikage et al. 2008 ): 

δV 

(2) 
k ( ν) = 

[{
1 

6 
S (0) H k+ 2 ( ν) + 

k 

3 
S (1) H k ( ν) + 

k( k − 1) 

6 
S (2) H k−2 ( ν) 

}]
. (7) 

he skewness parameters can also be expressed as (Munshi et al. 2011d ): 

S (0) = 

〈 κ3 〉 
σ 2 

0 

; S (1) = 

〈 κ2 ∇ 

2 κ〉 
σ 2 

0 σ
2 
1 

; S (2) ≡ 〈|∇ κ| 2 ∇ 

2 κ〉 
σ 2 

1 

. (8) 

ere, S (0) is the ordinary skewness parameter, whereas S (1) and S (2) are its higher order generalizations. At next order, a set of four kurtosis
arameters can be used to express the next-order correlations (Munshi et al. 2011d ). The primary moti v ation of this article is to reconstruct
hese generalized skewness parameters using spectra associated with them, which allows us to estimate them from surv e ys in the presence of
omplicated mask and noise. We will borrow the analytical tools developed in Munshi et al. ( 2011d ). 

 W E A K  LEN SING  POWER  SPECTRUM  A N D  BISPECTRU M  

he weak lensing convergence denoted as κ can be expressed in terms of a line-of-sight (los) integration of 3D density contrast δ: 

κ( θ , r s ) = 

∫ r s 

o 

d r ω( r, r s ) δ( θ, r); ω( r, r s ) = 

3 

2 a 

H 

2 
0 

c 2 
�M 

d A ( r − r s ) 

d A ( r) d A ( r s ) 
. (9) 

n our notation, r = | r | denotes the comoving radial distance to the source and θ denotes the angular position on the sky. The background
osmology is specified in terms of �M 

which denotes the cosmological matter density parameter (that describes the total matter density in
nits of the critical density), and H 0 which denotes the Hubble constant; c is the speed of light and a = 1/(1 + z) denotes the scale factor at
 redshift z. The comoving angular diameter distance at a comoving radial distance r is represented as d A ( r ). The source plane is assumed to
e at a redshift z s , or equi v alently at comoving radial distance r s . To simplify the analysis, we will ignore source distribution and photometric
edshift errors. We will focus on the morphological estimators as a function of z s . 

For the smoothed convergence κ , the mean is 0, 〈 κ( θ) 〉 = 0, and using a spherical harmonic decomposition of κ( θ ), using spherical
armonics Y �m 

( θ) as the basis functions, κ( θ) = 

∑ 

�m 

κ�m 

Y �m 

( θ), we can define its angular power spectrum C l in terms of the harmonic
oefficients κ� m 〈 κ�m 

κ∗
� ′ m 

′ 〉 = C � δ�� ′ δmm 

′ , which is a sufficient statistical characterization of a Gaussian field. 

C � = 

∫ r s 

0 
d r 

w 

2 ( r, r s ) 

d 2 A ( r) 
P 

(
� 

d A ( r) 
; r 

)
. (10) 

he convergence bispectrum B can likewise be expressed using the following los integration of the bispectrum of the density contrast δ denoted
s B δ (see Munshi et al. 2008 ): 

〈 κ� 1 m 1 κ� 2 m 2 κ� 3 m 3 〉 c ≡ B � 1 � 2 � 3 

( 

� 1 � 2 � 3 

m 1 m 2 m 3 

) 

. (11) 

he matrix abo v e represents a Wigner 3 j -symbol and the angular brackets here represent ensemble averaging. This particular form is employed
s it preserves the rotational invariance of the three-point correlation function. 
MNRAS 507, 1421–1433 (2021) 
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The Wigner 3 j -symbol is non-zero only when the triplets ( � 1 , � 2 , and � 3 ) satisfy the triangularity condition | � 1 − � 2 | ≤ � 3 ≤ � 1 + � 2

s well as the condition that the sum � 1 + � 2 + � 3 is even. This ensures the parity invariance of the bispectrum and neglects the presence of
ny parity violating physics. This selection rule is imposed by the invariance of the field under spatial inversion. Indeed, the parity violating
ontributions at the level of the bispectrum can be obtained by including both the (so-called) Electric (E) and Magnetic (B) modes (Munshi
t al. 2011a ). This can be used to detect any possible parity violating physics as well as other systematic effects. 

The convergence bispectrum B is expressed in terms of the bispectrum for the density contrast: B : 

B � 1 � 2 � 3 = I � 1 � 2 � 3 

∫ r s 

0 
d r 

w 

3 ( r, r s ) 

d 4 A ( r) 
B 

(
� 1 

d A ( r) 
, 

� 2 

d A ( r) 
, 

� 3 

d A ( r) 
; r 

)
; (12) 

I � 1 � 2 � 3 = 

√ 

(2 � 1 + 1)(2 � 2 + 1)(2 � 3 + 1) 

4 π

( 

� 1 � 2 � 3 

0 0 0 

) 

. (13) 

he cross-spectrum C αβ

� and mixed bispectrum B 

αβ

� 1 � 2 � 3 
involving two topographic bins α and β have the following form: 

C αβ

� = 

∫ r min 

0 
d r 

ω α( r ) ω β ( r ) 

d 2 A ( r) 
P 

(
l 

d A ( r) 
; r 

)
; (14a) 

B 

αβ

� 1 � 2 � 3 
= I � 1 � 2 � 3 

∫ r min 

0 
d r 

ω 

1 
α( r ) ω 

2 
β ( r ) 

d 4 A ( r) 
B 

(
� 1 

d A ( r) 
, 

� 2 

d A ( r) , 
, 

� 3 

d A ( r) 
; r 

)
; r min = min ( r α, r β ); (14b) 

w i ( r ) : = 

3 �M 

2 

H 

2 
0 

c 2 
a −1 d A ( r ) d A ( r si − r ) 

d A ( r si ) 
; i ∈ { α, β} . (14c) 

Using these expressions (derived using Limber approximation), we will next construct the generalized skew spectra that are useful in
onstructing the MFs. 

 GENER A LIZED  SKEW  SPECTRA  

ndividual triplets of harmonics ( � 1 , � 2 , and � 3 ) define a triangle in the harmonic domain and specify a bispectral mode. The skew spectra
efined below are summed o v er all possible configurations of the bispectrum by keeping one side of the triangle fix ed. F ollowing Munshi et al.
 2011d ), we introduce the generalized skew spectra S ( i) � : 

S 
(0) 
� = 

1 

12 πσ 4 
0 

1 

2 � + 1 

∑ 

m 

Real 
{[

κ2 
]
�m 

[ κ] ∗�m 

} = 

1 

12 πσ 4 
0 

∑ 

� 1 � 2 

B �� 1 � 2 J �� 1 � 2 W � W � 1 W � 2 ; (15a) 

S 
(1) 
� = 

1 

16 πσ 2 
0 σ

2 
1 

1 

2 � + 1 

∑ 

m 

Real { [ κ2 ] �m 

∇ 

2 [ κ] ∗�m 

} = 

1 

16 πσ 2 
0 σ

2 
1 

� ( � + 1) 
∑ 

� i 

B �� 1 � 2 J �� 1 � 2 W � W � 1 W � 2 ; (15b) 

S 
(2) 
� = 

1 

8 πσ 4 
1 

1 

2 � + 1 

∑ 

m 

Real { [ ∇ κ · ∇ κ] �m 

[ κ2 ] ∗�m 

} 

= 

1 

8 πσ 4 
1 

∑ 

� i 

[ 
[ � ( � + 1) + � 1 ( � 1 + 1) − � 2 ( � 2 + 1)] � 2 ( � 2 + 1) 

] 
B �� 1 � 2 J �� 1 � 2 W � W � 1 W � 2 . (15c) 

e have introduced the following notations above: 

J � 1 � 2 � 3 ≡
I � 1 � 2 � 3 

2 � 3 + 1 
= 

√ 

(2 � 1 + 1)(2 � 2 + 1) 

(2 � 3 + 1)4 π

( 

� 1 � 2 � 3 

0 0 0 

) 

; (15d) 

W � = exp 

[
−� ( � + 1) 

θ2 
s 

8 ln 2 

]
. (15e) 

We will study these spectra using numerical simulations and test them against theoretical predictions that rely on a fitting function-based
pproach. We will use a Gaussian window function W � in our study but the expressions are valid for arbitrary window function, including the
op-hat or compensated window (filter) functions. The one-point skewness parameters S ( i ) can be reco v ered from their respective skew spectra,
hich were used in equation (8): 

S ( i ) = 

1 

4 π

∑ 

l 

(2 � + 1) S ( i ) � . (16) 

xpressions for the skew spectra in equations (15a–15c) can also be generalized to include cases where instead of individual bins two different
ins are cross-correlated. 

S 
(0) αβ

� = 

1 

2 � + 1 

∑ 

m 

Real { [ κ2 
α] �m 

[ κβ ] ∗�m 

} = 

1 

12 πσ 4 
0 

∑ 

� 1 � 2 

B 

αβ

�� 1 � 2 
J �� 1 � 2 W � W � 1 W � 2 . (17) 

imilar expressions can be obtained for the other skew spectra by replacing B �� 1 � 2 by B 

αβ

�� 1 � 2 
in equations (15b–15c). The mixed bispectra B 

αβ

�� 1 � 2 

s defined in equation (14b). Notice that by construction S ( i) αβ

� �= S 
( i) βα

� as B 

αβ

�� � �= B 

βα

�� � . 
1 2 1 2 
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Although we have adopted an harmonic approach, equi v alent information about the non-Gaussianity can also be obtained by studying
he corresponding collapsed three-point correlation functions. This approach will be more efficient for surv e ys with smaller sky coverage and
n the presence of a non-trivial mask: 

S 
(0) αβ

12 ( θ) = 〈 κ2 
α( θ1 ) κβ ( θ2 ) 〉 ; S 

(1) αβ

12 ( θ) = 〈 κ2 
α( θ1 ) ∇ 

2 κβ ( θ2 ) 〉 ; S 
(2) αβ

12 ( θ) = 〈∇ 

2 κα( θ1 )[ ∇κβ ( θ2 ) · ∇κβ ( θ2 )] 〉 ; (18) 

ue to the isotropy and homogeneity of the background Universe, these correlation functions are only a function of the separation angle
= | θ1 − θ2 | . These two-point correlations can be constructed by cross-correlating derived maps from different topographic bins κ2 

α( θ),
 

2 κα( θ ), and ∇κα( θ ) · ∇κα( θ). In terms of the skew spectra, these correlation functions can be expressed as 

S 
( i ) αβ

12 ( θ ) = 

1 

4 π

∑ 

� 

(2 � + 1) P � ( cos θ) S ( i ) � ; i ∈ { 0 , 1 , 2 } . (19) 

ere, P � denotes the Legendre polynomial of order � . 
So far, we have assumed a full sky coverage for the estimation of the generalized ske w spectra. Ho we ver, most surveys will have a partial

k y co v erage. The pseudo-skew spectrum (PSL) technique presented in Munshi et al. ( 2020a ) is also valid for the generalized skew spectra.
n unbiased all-sky estimate ˆ S � can be constructed from the masked skew spectra ˜ S � using the expression below: 

˜ S 
( i ) 
� = M �� ′ S 

( i ) 
� ′ ; ˆ S 

( i ) 
� = M 

−1 
�� ′ 

˜ S 
( i ) 
� ′ ; (20a) 

〈 ̂  S 
( i ) 
� 〉 = S 

( i ) 
� , (20b) 

here the mode-coupling (mixing) matrix is given by 

M �� ′ = (2 � ′ + 1) 
∑ 

� ′′ 

( 

� � ′ � ′′ 

0 0 0 

) 2 
(2 � ′′ + 1) 

4 π
| w 

2 
� ′′ | . (21) 

ere, we have introduced the power spectrum of the mask w ( θ ), i.e. w � = 1/(2 � + 1) 
∑ 

m | w � m | 2 , constructed from the harmonic coefficient
 � m and its complex conjugate w 

∗
�m 

(see Munshi et al. 2020a , for more detailed discussion). Notice that a (inhomogeneous) Gaussian noise
oes not contribute to the generalized skew spectra though it will increase the scatter. This PSL method will be essential for constructing MFs
f weak lensing κ maps in the presence of a mask with a non-trivial topology. For a small sky coverage, the matrix M �� ′ may not be invertible
nd a binning may be necessary. 

 FITTING  F U N C T I O N  F O R  BISPECTRU M  

n second-order Eulerian perturbation theory, the matter bispectrum B ( k 1 , k 2 , and k 3 ) that encodes mode coupling of the 3D density contrast
n the Fourier domain can be expressed as (Bernardeau et al. 2002 ) 

B( k 1 , k 2 , k 3 ) = 2 F 2 ( k 1 , k 2 ) P lin ( k 1 ) P lin ( k 2 ) + cyc . perm . . (22a) 

ere, F 2 is the kernel that encapsulates the second-order mode–mode coupling and P lin ( k ) denotes the linear power spectrum of the density
ontrast δ. In a fitting function approach, the analytical form of the kernel F 2 is generalized from the quasi-linear regime to non-linear regime
y introducing three independent coefficients a ( n e , k ), b ( n e , k ), and c ( n e , k ) that are determined using numerical simulations. 

F 2 ( k 1 , k 2 ) = 

5 

7 
a ( n e , k) a ( n e , k) + 

1 

2 

(
k 1 · k 2 

k 2 2 

+ 

k 1 · k 2 

k 2 1 

)
b ( n e , k) b ( n e , k) + 

2 

7 

(
k 1 · k 2 

k 1 k 2 

)2 

c ( n e , k) c ( n e , k) . (22b) 

Here, n e is local logarithmic slope of the power spectrum at 3D wavenumber k . In the quasi-linear regime, these coefficients approach
nity, i.e. a = b = c = 1. In the highly non-linear regime, if we set a �= 0 and b = c = 0, we reco v er the hierarchal form for the matter
ispectrum. The idea of a fitting function was initially proposed by Scoccimarro & Frieman ( 1999 ). It interpolates between the perturbative
nd non-linear regimes. It has a limited validity range of k < 3 h Mpc −1 and z ≈ 0 −1. The functional form of this fitting function was later
mpro v ed by Gil-Marin et al. ( 2012 ) with a rather limited validity range of k < 0.4 h Mpc −1 and z ≈ 1.5. The impro v ement was achieved by
ntroducing additional free parameters which are extracted from numerical simulations. The inaccuracy of this fitting function was pointed out
y Munshi et al. ( 2020b ). An even more accurate fitting function was recently proposed by Takahashi et al. ( 2017 ). This new fitting function
as a validity range of k < 10 h Mpc −1 and z ≈ 1 −3. Its higher accuracy is important for a very accurate theoretical prediction of secondary
on-Gaussianity across the range of wavelength and redshift that will be useful for stage-IV LSS experiments including Euclid . This function
as already been used by Munshi et al. ( 2020a ). In our study, we will use it to compute the theoretical predictions for our morphological
stimators. 

For modelling of skew spectrum related to secondary non-Gaussianity, using halo model (HM) as well as primordial non-Gaussianity,
ee Munshi et al. ( 2011d ). 
MNRAS 507, 1421–1433 (2021) 
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Figure 1. From left to right, different panels depict the skew spectra S 0 � , S 
(1) 
� , and S (1) 

� , respectively, as a function of � . The data points with error bars in each 
panel are the bin-averaged values of the respective skew spectra estimated from simulations. Different curves in each panel correspond to different smoothing 
angular scales. These generalized skew spectra are defined in equations (15a–15c). In each panel, three different smoothing angular scales θ s = 2, 5, and 
10 arcmin (from top to bottom) are shown. The source redshift is fixed at z s = 0.5. A Gaussian smoothing window was used. See the text for more details. 
The bottom subpanels for each panel show the deviation � l of simulations S sim 

� from theoretical prediction S th � in units of standard deviation σ� computed for 
individual beans, i.e. � � = ( S th � − S sim 

� ) /σ� . No noise or mask was used. For S 2 � , the absolute value | S 2 � | is shown in the third panel; the dip feature in this case 
signifies a zero crossing. 
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 SIMULATION S  

n our numerical investigations, we use the all-sky weak lensing maps described in Takahashi et al. ( 2017 ). 10 These maps were generated using
ay tracing through N -body simulations using multiple lens planes and to generate convergence κ as well as shear γ maps. They do not employ
he Born approximation. The post-Born corrections are known to play an important role at higher redshifts especially for CMB lensing. The
ource redshifts used were in the range z s = 0.05 −5.30 at an interval of �z s = 0.05. We have used the maps corresponding to source redshifts
f z s = 0.5, 1.0, 1.5, and 2.0 in our study. For generating lensed CMB maps, numerical simulations were replaced by Gaussian realizations of
ensity fluctuations in the redshift range z s = 7.1 −1100.0. The perturbations were generated using a linear matter power spectrum. These maps
ere generated using different resolution in HEALPix 11 format (Gorski et al. 2016 ) using an equal area pixelization scheme. The number of
ixels scales as N pix = 12 N 

2 
side with the resolution parameter N side . We will be using maps generated at a resolution N side = 4096 and used

aps at a higher resolution for various sanity checks. In our study, we will be restricting us to � ≤ � max with � max = 2000. Ho we ver, the � max is
ept flexible in our analytical formalism and can be used to filter out any astrophysical complexities related to baryonic feedback (Weiss et al.
019 ). 

The cosmological parameters used are �CDM 

= 0.233, �b = 0.046, �M 

= �CDM 

+ �b , �λ = 1 − �M 

, and h = 0.7, where CDM denotes
old dark matter. For the amplitude of density fluctuation, σ 8 = 0.82, and the spectral index n s = 0.97 is used. These maps were recently used
o analyse the bispectrum in the context of CMB lensing (Namikawa et al. 2019 ) as well in studies of lensing-induced bispectrum at a low
edshift (Munshi et al. 2020a , b ). 

 RESU LTS  A N D  DISCUSSION  

n this section, we will summarize the main results presented in this paper along with their implications. 

(i) Ske w spectr a for individual tomogr aphic bins at a low redshift: In Figs 1 –4 , the generalized skew spectra S (0) 
� , S (1) 

� , and S (2) 
� (from left

o right) are being plotted as a function of � . These figures correspond to different source redshifts z s = 0.5, 1.0, 1.5, and 2.0, respectively.
he various line styles in each panel correspond to different smoothing angular scales. We use a Gaussian window in our study. From top to
ottom, different curves represent full width at half-maximum of θ s = 2.0, 5.0, and 10.0 arcmin, respectively. We use the noise free simulations
escribed in Section 6. We have used equations (15a–15c) to e v aluate the theoretical expectations for S (0) 

� , S (1) 
� , and S (2) 

� along with the fitting
unction by Takahashi et al. ( 2017 ) discussed in Section 5. We have used theoretical predictions with and without the post-Born approximation
ut we find that inclusion of such corrections makes no significant impact on theoretical predictions. Over the entire range of smoothing angular
cales θ s and angular harmonics � studied, we have not found any significant departure from theoretical predictions. We have used N side =
096 in our study. The skew spectra are sensitive to the � max . We have included all modes up to � max = 2000 in our calculation in our theoretical
redictions. To be consistent, we have also filtered all modes higher than � max while processing the numerical simulations. We have also tested
he impact of retaining the lower harmonics in our numerical e v aluation by filtering out these modes from the maps as well as keeping them
0 http:// cosmo.phys.hirosaki-u.ac.jp/ takahasi/allsky r aytr acing/
1 https:// healpix.jpl.nasa.gov/ 
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Figure 2. Same as Fig. 1 , but for z s = 1.0. 

Figure 3. Same as Fig. 1 , but for z s = 1.5. 

Figure 4. Same as Fig. 1 , but for z s = 2.0. 
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n while computing the skew- S � s. We did not find any statistically significant difference in our final results. The flexibility and simplicity with
hich the skew spectra can be evaluated give a very efficient method to study the spectra in a mode-by-mode manner, thus providing a greater
andle on dealing with any possible systematics. Notice that the perturbative reconstruction of the MFs requires the expansion parameter σ 0 

ntroduced in equation (4) to be small for the series to be convergent, but the three skew spectra can also be used as independent estimators of
on-Gaussianity and a method of ef fecti ve data compression in their own right. This makes them attracti ve e ven when the series in equation (7)
s divergent at smaller angular scales. The convergence of the series expansion and its implications were considered in Petri et al. ( 2013 ) to
ome extent. Ho we ver, a detailed study is needed for a realistic assessment as a function of various survey parameters. 
MNRAS 507, 1421–1433 (2021) 
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Figure 5. The generalized skew spectra for κ maps are shown for z s = 1100. From left to right, we show results for the skew spectra S (0) 
� , S (1) 

� , and S (2) 
� as a 

function of � . These generalized skew spectra are defined in equations (15a–15c). The κ maps are inferred from CMB temperature maps. The dot–dashed and 
dashed lines represent the theoretical predictions based on Born and post-Born approximations, respectively. The importance of post-Born approximation is 
more pronounced at higher redshift. The smoothing angular scale is fixed at θ s = 2 arcmin. Results are obtained using one all-sky map. No noise was included. 
An all sky coverage was assumed. The error bars were computed using the scatter within the bin fixed at δ� = 100. 

Figure 6. Same as Fig. 5 , but for θ s = 5.0 arcmin. 

Figure 7. Same as Fig. 5 , but for θ s = 10.0 arcmin. 
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Figure 8. We have chosen two redshift bins z 1 = 1.0 and z 2 = 2.0. From left to right, we show results for the skew spectra S (0) 
� , S (1) 

� , and S (2) 
� as a function of � . 

The smooth curves represent theoretical predictions, whereas data points represent estimates from the simulations. These generalized skew spectra are defined 
in equations (15a–15c). In each panel, we show 〈 κ2 

1 κ2 〉 [in our notation, κ1 = κ( z 1 )) and κ2 = κ( z 2 )] and 〈 κ2 
1 κ2 〉 for two different smoothing angular scales θ s = 

10 arcmin. One single all-sky map was used to construct the skew spectra. No noise was included in our study. 

Figure 9. Same as Fig. 8 but the skew spectra associated with 〈 κ1 κ
2 
2 〉 are being plotted. 
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(ii) Ske w spectr a from CMB maps: In Figs 5 –7 , the generalized spectra S (0) (left-hand panel), S (1) (middle panel), and S (2) (right-hand panel)
re plotted for redshift z s = 1100.0. The convergence maps are inferred from CMB observ ations. The v ariance or skew spectra increases
ith redshift or the depth of the surv e y. To reduce the scatter in our estimates, we have used binning with a bin size � � = 100. While

n Fig. 5 the smoothing angular scale is sized at θ s = 2 arcmin, in Figs 6 and 7 this angular scale is fix ed, respectiv ely, at θ s = 5 and
0 arcmin. The dot–dashed lines correspond to Born approximation. The dot–dashed lines in each panel include the post-Born corrections.
he important difference of the CMB skew spectra with the ones at lower redshifts is the significance of post-Born correction in modelling of
on-Gaussianity. The post-Born correction is non-linear and it is known to generate a non-negligible bispectrum of the convergence (Marozzi
t al. 2016 ; Pratten & Lewis 2016 ). Our study confirms that the post-Born contributions to the bispectrum can significantly change the shape
redicted for the skew spectrum from the LSS non-linearities alone. This is more obvious in the right-hand panels where the generalized skew
pectrum S 

(2) 
� changes a signature from positive at lower � to ne gativ e at higher � . 

(iii) Skew spectrum from cross-correlating two different tomographic bins: In addition to studying the skew spectra from individual
omographic bins, we have also cross-correlated different bins to construct the skew spectra. Indeed, the link to morphology no longer exists
ut this gives us a clue about how these estimators are correlated. It can also be argued, irrespective of morphological connection, that these
stimators provide a tool for data compression that is simple to implement. 
n Figs 8 and 9 , we show the cross-skew spectra of two tomographic bins, z s = 1.0 and 2.0. We hav e fix ed θ s = 10 arcmin in each of these
lots. The error bars are computed using the fluctuations within a bin. The bin size is � � = 100. In each case, we find that the analytical
nd numerical predictions agree within 2 σ in the cosmic variance limited case. In Figs 10 and 11 , we plot the skew spectra constructed
rom κ maps inferred from CMB observations at z s = 1100 (denoted as κLSS ) and cross-correlated against convergence map at z s = 1.0
denoted as κ1 ). 
MNRAS 507, 1421–1433 (2021) 
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Figure 10. Same as Fig. 8 but for z 1 = 1100 and z 2 = 1.0. For z s = 1100, the κ is being inferred from CMB observations. 

Figure 11. Same as Fig. 10 but for z 1 = 1.0 and z 2 = 1100.0. 

Figure 12. We show the three skew spectra for a Euclid -like surv e y . In our study , we use a ‘pseudo Euclid ’’ mask. All pix els lying within 22 de g of either the 
galactic or ecliptic planes are discarded while constructing the mask, which leaves 14 490 deg 2 of the sky-making fraction of the sk y co v ered f sky ≈ 0.35 (see 
Munshi et al. 2020 , for more detailed discussion). The source plane is fixed at z s = 1.0. In each panel, the upper curves correspond to the all-sky S � estimates 
and the lower curves correspond to the pseudo- ̂  S � s (see equation 20b). One realization of the all-sky maps was considered. To simulate noise, we have included 
a source density ( n s ) of 30 arcmin −2 . With Euclid -type noise, the error bars are nearly identical to what was presented in Fig. 2 . To amplify the effect of noise, 
we have artificially increased the noise by a factor of 2. 
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(iv) Euclid-lik e mask, noise , and sk ew spectrum: In Fig. 12 , we show the three sk ew spectra for a Euclid -lik e surv e y. We use a ‘pseudo
uclid ’’ mask. To construct this mask, all pixels lying within 22 deg of either the galactic or ecliptic planes are discarded. Such a mask leaves
4 490 deg 2 of the sky making, i.e. a fraction of the sky covered f sky ≈ 0.35 (see Munshi et al. 2020 , for more detailed discussion). We use maps
ith source plane fixed at z s = 1.0. In each panel, the upper curves correspond to the all-sky S � estimates and the lower curves correspond to

he pseudo- ̂  S � s (see equation 20b). To compute the scatter, one realization of the map was considered. To simulate noise, we have included
 source density ( n s ) of 30 arcmin −2 . Ho we ver, we found that the Euclid -type noise does not produce any significant effect on the scatter. To
ncrease the effect of noise, we have artificially increased the level of noise by a factor of 2. 

In Fig. 10 , we plot the skew spectra related to 〈 κ2 
LSS κ1 〉 and in Fig. 11 the skew spectra corresponding to 〈 κLSS κ

2 
1 〉 are being plotted.

ompared to the low- z cases, the theoretical predictions for 〈 κ1 κ
2 
LSS 〉 are found to significantly o v erestimate the simulation results. This is true

o a lesser extent for 〈 κ2 
1 κLSS 〉 . This may be related to the fact that the simulation using a Gaussian realization at higher redshifts ( z s > 7.1)

ay lead to the suppression of non-Gaussianity. The descrepancy becomes, ho we ver, not so significant when compared with the scatter within
he beam. 

 C O N C L U S I O N S  A N D  F U T U R E  PROSPECTS  

he high S/N of the skew spectra and the flexibility with which they can be implemented are rather encouraging. The accuracy of the fitting
unction in reproducing the numerical simulations opens up several possible avenues of research. 

.1 Perturbati v e contributions from trispectrum 

eyond the leading-order non-Gaussian corrections, which come from bispectrum, the four generalized kurtosis parameters, K 

(0) , K 

(1) , K 

(2) ,
nd K 

(3) , play an important role in perturbative reconstruction of the morphology of a non-Gaussian field. These are the contributions denoted
s δV 

(3) 
k in equation (4). These kurtosis parameters were generalized to kurtosis spectra in a manner similar to the generalization of the

kewness parameters to the skew spectrum (Munshi et al. 2016 ). The kurtosis spectra were used in the context of CMB studies and sources
f non-Gaussianity studied include the primordial non-Gaussianity as well as lensing-induced non-Gaussianity. Extension of our results to
ncorporate higher order terms in the context of weak lensing studies for gravity-induced non-Gaussianity will require an analytical model of
he trispectrum. The analytical expression for the perturbative trispectrum is more involved and will require a dedicated study. Various other
ptions to include the validity domain of the perturbativ e e xpression include ef fecti ve field theoretic or HM-based approaches. We plan to
xtend our results in future in these directions. 

.2 Study of morphology from shear maps 

n our study, we have extracted the generalized skew spectra directly from convergence maps. This requires an intermediate step of map making
rom shear maps. Ho we ver, our method can also be generalized to directly deal with shear maps by implementing an E / B decomposition of shear
aps. The PSL approach can be generalized to deal with such a decomposition and deal with arbitrary mask. This will be useful in bypassing

he map-making process needed for generating convergence maps. This will also be important dealing directly with spurious magnetic or B
ode generated due to unknown systematics. For a survey with small sky coverage, E / B decomposition may not be straightforward and one

ption would be to work in the real space with the correlation functions of shear. This can be achieved by a generalization of equation (18) for
hear. 

.3 Likelihood analysis and covariance matrix 

ny cosmological parameter inference using MFs would require a detailed characterization of covariance matrix of the skew spectra. The
alculation of covariance matrices was presented in Munshi et al. ( 2011d ) using a simplistic approach that is valid in the noise-dominated
egime, i.e. in the limit of vanishing non-Gaussianity. This is achieved by ignoring the contributions from all higher order non-Gaussianity.

hile such approximate treatment may be enough to deal with present generation of surv e ys, stage-IV observation including the Euclid will
ap the sky with higher S/N and a more accurate modelling is thus required. A full analysis is beyond the scope of this paper. The accuracy of

uch an approximation will depend on the size and depth of the surv e y, smoothing angular scale, and the noise characteristics of rhe surv e y. A
ormal analysis will be presented as a separate paper. 

.4 Intrinsic allignment 

he intrinsic allignment (IA) remains a major contamination to the gravity-induced secondary non-Gaussianity. Analytical modelling of IA is
hallenging though quite a few physically moti v ated models can capture certain aspects of the non-Gaussianity induced by IA (Vlah, Chisari &
chmidt 2020 ). Typically at the level of bispectrum, IA is expected to contribute at 10 per cent of the gravity-induced non-Gaussianity. Using

he skew spectra introduced here, it will be possible to compute the corrections to the morphological change induced by IA. In addition,
ptimal weights combined with a match filtering approach can in effect may lead to separation of the two sources. 
MNRAS 507, 1421–1433 (2021) 
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.5 Betti number and other topological estimators 

he MFs were recently generalized in a series of paper to tensorial Minkowski functionals (TMF) in 2D and 3D as well as in redshift space
Appelby et al. 2018 ; Chinangbam et al. 2017 ). The results presented here will be extended to the case of TMF for a 3D convergence map in
uture. Other estimators related to the morphology of cosmological fields have recently attracted attention, such as the Betti numbers (Pranav
t al. 2019 ). Reconstruction techniques used here can be useful in these contexts. 

.6 Optimality and flexibility of implementation 

e have not included optimal weighting in our estimator as the S/N is very high for low source redshift studies. This is not completely true for
he studies involving κ maps. Various methods can be used to impro v e the S/N including a Wiener or ‘Wiener-like’ filtering of κ maps (Ducout
t al. 2013 ). Alternati vely, follo wing Munshi & Heavens ( 2010 ), the generalized skew spectra can include optimal weights that inherit a match
ltering approach. Ho we ver, there is a price to pay as the direct links to morphology will be lost and the estimators will have less flexibility in
ealing with partial sky coverage as the PSL developed in our study will not be valid. 

.7 Beyond λCDM matter scenarios 

hough we have only discussed the gravity-induced secondary non-Gaussianity as a possible source of non-Gaussianity, many other sources
f non-Gaussianities can also be included in our framework, e.g. primordial non-Gaussianity or non-Gaussianity induced by active source of
erturbations or topological defects can also be studied using their impact on the morphology of conv ergence maps. Man y modified gravity
heories predict a different form of bispectrum compared to GM and their impact on morphology can be studied using the formalism developed
ere (Munshi & McEwen 2020 ). 
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