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Abstract: Dissipative accounts of structure formation show that the self-organisation of complex
structures is thermodynamically favoured, whenever these structures dissipate free energy that
could not be accessed otherwise. These structures therefore open transition channels for the state
of the universe to move from a frustrated, metastable state to another metastable state of higher
entropy. However, these accounts apply as well to relatively simple, dissipative systems, such as
convection cells, hurricanes, candle flames, lightning strikes, or mechanical cracks, as they do to
complex biological systems. Conversely, interesting computational properties—that characterize
complex biological systems, such as efficient, predictive representations of environmental dynamics—
can be linked to the thermodynamic efficiency of underlying physical processes. However, the
potential mechanisms that underwrite the selection of dissipative structures with thermodynamically
efficient subprocesses is not completely understood. We address these mechanisms by explaining how
bifurcation-based, work-harvesting processes—required to sustain complex dissipative structures—
might be driven towards thermodynamic efficiency. We first demonstrate a simple mechanism that
leads to self-selection of efficient dissipative structures in a stochastic chemical reaction network,
when the dissipated driving chemical potential difference is decreased. We then discuss how such a
drive can emerge naturally in a hierarchy of self-similar dissipative structures, each feeding on the
dissipative structures of a previous level, when moving away from the initial, driving disequilibrium.

Keywords: stochastic thermodynamics; dissipative structures; thermodynamic efficiency; chemical
reaction networks

1. Introduction

We start by briefly reviewing the role of dissipation in self-organisation on one hand,
and the role of thermodynamic efficiency in the emergence of interesting computational
properties—a hallmark of biological systems—on the other. We end by highlighting a
small explanatory gap, namely how self-organising dissipative processes might be driven
towards thermodynamic efficiency. We will then outline—through a heuristic argument
substantiated by simulations of a stochastic chemical reaction network—a simple mecha-
nism that pressures certain dissipative structures to become thermodynamically efficient.

Contrary to the—still widely held—belief that life is a struggle against the second
law of thermodynamics, recent advances in nonequilibrium thermodynamics successfully
recast biological systems as a subclass of dissipative structures. The formation of such
dissipative structures is statistically favoured by (generalizations of) the second law of
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thermodynamics, because their existence enables the dissipation of reservoirs of free en-
ergy, which could not be accessed otherwise. Therefore, their formation facilitates the
irreversible relaxation of the associated disequilibria [1–5]. In other words, dissipative
structures constitute channels in the universe’s highly structured state space, which enable
transitions from one frustrated, metastable state to another metastable state of higher
entropy [6]. This line of thinking dates back at least to the work of Lotka, who tried to
relate natural selection to a physical principle of maximum energy transformation [7,8].
Dissipative structure formation has been well understood for many systems in the near-
equilibrium, linear-response regime, due to the work of Prigogine and colleagues in the
1960s and 1970s [9], leading to the notion of biological systems as a class of self-organising
free energy-conversion engines [10]. However, it took several decades until thermody-
namic equalities were derived that hold for small systems arbitrarily far from equilibrium.
These equalities take the form of fluctuation theorems, which relate the entropy produced
by a microscopic forward trajectory with the probability ratio of observing the forward,
versus the time-reversed backward trajectory [11,12]. These fluctuation theorems gener-
alized the relationship between entropy increase and irreversibility from the regime of
macroscopic, closed systems at equilibrium—i.e., the second law of thermodynamics—to
microscopic, open systems arbitrarily far from equilibrium. For introductory surveys of the
resulting field of stochastic thermodynamics see, for example, [13,14], for a comprehensive
review see [15]. Recently, dissipative self-organisation of macroscopic structures far from
equilibrium was formalized through a macroscopic coarse-graining of such a microscopic
fluctuation theorem [16]. This work relates the finite-time transition probabilities from
one macroscopic state to two possible outcome states not only to the energy of the final
states—via an equilibrium-like Boltzmann-term—and the kinetic barriers separating the
initial from the potential finite states, but crucially also to the amount of dissipated heat
during the transitions. Thus, energy levels and kinetic accessibility of potential final states
being equal, outcome states with a higher dissipative history are favoured, leading to the
coining of the term dissipative adaptation for such a selection process [16].

Taken together, this line of research provides a powerful account of how highly
ordered nonequilibrium systems can emerge from basic thermodynamic principles, namely
fluctuation theorems in stochastic thermodynamics and their special limiting case, the
second law of thermodynamics (combined with an initial state of low entropy and a highly
structured state space). However, in principle these accounts apply as well to relatively
simple, dissipative systems, such as convection cells, hurricanes, candle flames, lightning
strikes, or mechanical cracks, as they do to complex biological systems.

One important difference between life and non-life is the role of information processing
in the ongoing physical processes [17–19]. Although simple dissipative systems, such as
convection cells, are governed by thermodynamic constraints and fluxes flowing through
them, living systems contain large amounts of information (e.g., stored in a cell’s DNA
and epigenome), which—in stark contrast to simpler systems—govern and structure the
thermodynamic fluxes through them. What kind of drives or pressures could facilitate the
transition from a simple thermodynamic to an information-governed regime in dissipative
systems? Two lines of work show that thermodynamic efficiency might play a role in this
transition: In stochastic thermodynamics, the dissipated heat in a thermodynamic system,
which is driven by a time-varying potential, upper bounds the system’s non-predictive
information about the time-dependent drive [20]. Thus, to minimize the dissipated heat
during the work extraction process, the system must develop an efficient, predictive
representation of the driving environmental dynamics. From the requisite predictive
dynamics, which can be linked to an information bottleneck [21], agent-like features, such
as action policies that balance exploration and exploitation [22], and curiosity driven
reinforcement-learning [23] can be derived (c.f., [24] for a synthesis). In computational
neuroscience, adding energetic costs to the objective function minimized by simulated
neural networks leads to the emergence of computational properties such as distributed
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neural codes, sparsity of representations, stochasticity, and the heterogeneity of neural
populations [25–32] (c.f., [33] for a review).

It is still not fully understood, under which constraints thermodynamically efficient
processes emerge during dissipative self-organisation. This work attempts to address this
explanatory gap.

The results in this work are based on simulations and analyses of the dynamics and
thermodynamics of stochastic chemical reaction networks. The application of stochastic
thermodynamics to chemical reaction networks is a relatively young [34–37], and active
field of research [38]. Recent works covered advances in energy-efficient dissipative chemi-
cal synthesis [39], and provided important extensions from homogeneous mixtures, ideal,
and elementary chemical reactions, to spatially extended reaction-diffusion systems [40,41],
non-ideal [42], and non-elementary chemical reaction networks [43]. Furthermore, ther-
modynamically consistent coarse-graining rules for chemical reaction networks were
derived only recently [44]. These results might carry special importance for understanding
large, hierarchical, and complex biochemical networks. Yet, in this work we call only on
results concerning the nonequilibrium thermodynamics of spatially homogeneous mix-
tures, and ideal, elementary reactions in deterministic and stochastic chemical reaction
networks [45,46].

The underlying idea is that in certain emergent, self-similar hierarchies of dissipative
structures within a stochastic chemical reaction network, namely those without concen-
tration processes, the available chemical driving potential decreases at each subsequent
layer in the hierarchy, while the minimum work-rate required to sustain a new layer of
dissipative structures might not. Thus, there might be a minimum viable efficiency of the
thermodynamic processes, which must harvest the work required to maintain the asso-
ciated dissipative structure from the conducted free energy fluxes. This pressure would
increase with increasing hierarchical distance of the dissipative structures from the initial,
driving disequilibrium.

To illustrate this, we construct chemical reaction networks, in which we explicitly
implement instances of our proposed mechanisms: We start by demonstrating a simple
mechanism that leads to a selection pressure on the thermodynamic efficiency of certain
dissipative steady states in a stochastic chemical reaction network. The idea behind our
simulations is simple: we construct a stochastic chemical reaction network, which may
dissipate a large reservoir of chemical free energy via the maintenance of any one of a set
of discrete, nonequilibrium steady states. Each of these nonequilibrium steady states is
associated with the same, positive, finite minimum work-rate required to maintain it, and
must maintain itself by harvesting the required work-rate from the conducted free energy
flux via a bifurcation mechanism. Crucially, by making the thermodynamic efficiency of
these work-harvesting processes different for each individual nonequilibrium steady state,
a decrease of the dissipated driving chemical potential difference leads to a direct selection
pressure on the nonequilibrium steady states. Indeed, only the corresponding bifurca-
tion processes which are sufficiently efficient can sustain their associated nonequilibrium
steady states.

We then discuss how this mechanism can lead to a selective pressure for thermo-
dynamic efficiency in higher levels of a particular hierarchy of self-similar dissipative
structures, based on the above network motif, where each dissipative structure is driven
by (or feeding on) a dissipative structure at a lower level, i.e., closer to an initial, driving
disequilibrium.

2. Materials and Methods

In this section, we explain the implementation details underlying our stochastic
chemical reaction networks simulations. All calculations and simulations presented in
this paper can be reproduced with code available at https://github.com/kaiu85/CRNs
(accessed on 26 August 2021).

https://github.com/kaiu85/CRNs
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2.1. Stochastic Chemical Reaction Network Simulations

Most of our numerical experiments involving stochastic chemical reaction networks
rest on sampling trajectories given a network architecture and initial network state. The
state of a chemical reaction network, consisting of m chemical species S1, . . . , Sm, is de-
scribed by the number n of molecules of each species S present in the reaction volume V.
This yields the state vector n = (n(S1), n(S2), . . . , n(Sm)). The probability pn(t) of
finding the network in the state n at a given time t evolves according to the chemical
master equation

dt pn = ∑
ρ

w−ρ

(
n + Sρ

)
pn+Sρ

− wρ(n)pn.

The sum is taken over individual forward reactions ρ, and −ρ denotes the correspond-
ing backward reaction. Sρ represents the change in molecule numbers associated with the
occurrence of the forward reaction ρ. Assuming elementary reactions and mass-action
stochastic kinetics, we can write the reaction rates as

wρ(n) = kρ
V

∏i Vνi
ρ

n!(
n− νρ

)
!
.

Here νρ =
(

ν1
ρ , ν2

ρ , . . . , νm
ρ

)
is the vector of stochiometric coefficients of the reaction ρ.

This definition ensures that the corresponding chemical reaction rate constants kρ are the
same as for the large volume limit considered in deterministic chemical kinetics [45,46].

To ensure that a closed stochastic chemical reaction network relaxes to a unique
equilibrium steady state, therefore connecting dynamics to thermodynamics, we assume
a local detailed balance relation between the rate constants of the forward and backward
reaction directions

ln
kρ

k−ρ
= −βµ0 · Sρ.

Here µ0 is the vector of standard-state chemical potentials, β = 1
kBT , kB denotes the

Boltzmann constant, and T denotes the temperature of a large heat bath, which is in contact
with the reaction network. A detailed discussion of the dynamics and thermodynamics of
stochastic chemical reaction networks can be found in [46].

For simplicity, we set the volume V = 1, the standard chemical potentials µ0 = 0 for
all species, corresponding to symmetric forward and backward rate constants kρ = k−ρ,
and use units of kBT = 1.

The assumption of an equal standard chemical potential µ0
S = µ0 = 0 for all species

S effectively makes the equilibrium chemical potential a monotonous function of the
species count n(S), and renders forward and backward reaction rate constants symmetric.
This assumption furnishes an intuitive understanding of the dynamics along individual
reactions as being driven by concentration gradients, i.e., by the tendency to relax towards a
homogeneous equilibrium state. This allows intuitions from other homogeneous relaxation
processes (e.g., heat diffusion in homogeneous media, water levels in pipeline systems)
to carry over, as it aligns the direction of the driving concentration gradient with the
direction of the driving chemical potential gradient. This assumption can easily be relaxed
by choosing individual values of µ0

S for each species. This will not affect our results
or discussion on the self-selection of stable nonequilibrium steady states based on the
efficiency of their work-harvesting processes, as long as one replaces “driving concentration
gradient” with “driving chemical potential gradient”.

To sample individual trajectories for a given chemical reaction network and initial
state, we implemented Gillespie’s stochastic simulation algorithm [47] based on Python 3
and PyTorch [48]. The latter allows us to use GPU-acceleration to parallelize over individual
processes and chemical reactions.
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2.2. Quantification of Minimum Work-Rate Required to Maintain Nonequilibrium Steady States

The minimum work-rate required to maintain a target nonequilibrium steady state
equals the system’s heat production rate in the instant, when the forcing maintaining the
nonequilibrium steady state is stopped, i.e., when the system is closed and just begins
to relax to equilibrium [49]. Therefore, we estimated the minimum work-rate required
to maintain a given nonequilibrium steady state with the following approach: We simu-
lated an ensemble of 105 stochastic trajectories at a target nonequilibrium steady state, by
initializing the trajectories close to that particular nonequilibrium steady state, and stabiliz-
ing that state by opening the chemical reaction network via corresponding chemostatted
species [46]—i.e., allowing for external nonequilibrium forces. We then closed the system,
by releasing the clamps from the chemostatted species, treating them as any other species
of the network henceforth. Therefore, the closed network immediately started to relax to
its equilibrium steady state. Recall that the heat rate dissipated just at the beginning of this
relaxation process equals the minimum work-rate required to maintain the corresponding
nonequilibrium steady state [49]. Thus, we simulated ten additional time steps (i.e., reac-
tion events) for each trajectory just after the system was closed. We used the time to ∆t and
free energy ∆g released by the occurring reaction event to calculate the instantaneous heat
dissipation rate via averaging the fraction ∆g

∆t = g(n(t10))−g(n(t0))
t10−t0

over trajectories. Here t0
is the time when the network was closed, t10 is the time of occurrence of the tenth reaction
event thereafter, g(n(t0)) is the initial Gibbs free energy just when the network was closed,
and g(n(t10)) is the Gibbs free energy of the closed network after the tenth reaction event.
We quantified the Gibbs free energy g of the individual, closed chemical reaction network
states using g(n) = kT ∑S ln(n(S)!), following [46]. The sum is taken over all chemical
species S, and n(S) is the number of molecules of chemical species S. This formula reflects
our choice of the same chemical standard potential of µ0 = 0 for all species.

2.3. Quantification of the Thermodynamic Efficiency of Bifurcation-Based Work-Harvesting
Processes

To quantify the average efficiency of different nonequilibrium steady states, we used
the deterministic rate equations for the corresponding, large chemical reaction network (i.e.,
in the limit n(S)→ ∞, V → ∞, n(S)

V = c(S) = const. for species counts n(S) and reaction
volume V), and calculated the fluxes and the thermodynamic forces along each forward-
backward pair of reactions, following [45]. This allowed us to calculate the heat dissipated
along each forward-backward reaction pair via

.
Qρ = −∆Gρ Jρ.

Here Jρ = J+ρ − J−ρ is the net flux, i.e., the difference between the fluxes J+ρ in the
forward and J−ρ in the backward reaction direction. The thermodynamic forces ∆Gρ are
calculated as the chemical potential difference along the forward direction via

∆Gρ = ∑
p∈products,ρ+

µp − ∑
e∈educts,ρ+

µe.

As before, we are using µ0 = 0 for all species, reducing the nonequilibrium chemical
potentials to µσ = RT ln Zσ

Zeq
σ

, where Zσ is the concentration of species σ, and Zeq
σ is the

corresponding equilibrium concentration.

3. Results

In the following sections, we first generalize the bistable Schlögl network [50] to
multiple, competing chemical species, leading to winner-take-all dynamics and multi-
stability. We then show that to maintain any of the high-concentration steady states, a
finite, minimum work-rate is required. In our simulations, this corresponds to a finite,
positive driving chemical potential difference, which—due to our choice of µ0 = 0 for the
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standard chemical potential of all chemical species—means just a finite, positive driving
concentration gradient.

Using this winner-take-all motif as a chemical switch, we then integrate it into a
larger network, where the dissipation of a concentration gradient is dependent on the
presence of a high-concentration steady state of the winner-take-all network. At the same
time, the winner-take-all network must harvest the work (or corresponding concentration
gradient) to sustain itself directly from the conducted free energy flux via a bifurcation
mechanism. By ensuring the efficiency of these bifurcation mechanisms differs for each of
the high-concentration states, we see that a reduction of the driving concentration gradient
leads to a strong selection pressure on the corresponding nonequilibrium steady states:
Only the states with bifurcation processes of sufficient thermodynamic efficiency can retain
their stability, when the driving concentration gradient is decreased.

In the discussion section, we will discuss how in a self-similar hierarchy of dissipative
systems such a pressure might develop spontaneously, due to a decrease of the available,
driving concentration gradient at each successive layer of dissipative structures.

3.1. Chemical Winner-Take-All Dynamics

The architecture of a chemical reaction network featuring winner-take-all dynam-
ics is shown in Figure 1a. It is a straightforward extension of the nonlinear chemical
reaction network introduced by Schlögl [50], which is the simplest bistable reaction net-
work. The network is driven out of equilibrium by a fixed concentration difference be-
tween two chemostatted species, Hi and Lo, with n(Hi) � n(Lo). We chose the equi-
librium potential µ0 = 0 for all species in our simulation, effectively rendering all re-
action channels symmetric. Thus, the closed chemical reaction network would relax to
an equilibrium distribution with equal counts neq for all species. To allow for nonlin-
ear behavior, we introduce three dynamic chemical species, X(1), X(2), and X(3), which
autocatalyze their own creation from the high-concentration species Hi. Furthermore,
to introduce inhibitory competition between the dynamic species, we introduce decay
reactions to the low-concentration species Lo for each dynamic species, which are catal-
ysed by the competing species. Using the reaction rate constants k1 = k2 = k3 = 10−6

and k4 = k5 = k6 = 10−3, and the fixed concentrations n(Hi) = 500 and n(Lo) = 5
the resulting network features four stable attractors: One symmetric, low-concentration
steady state, where n(X(1)) ≈ n(X(2)) ≈ n(X(3)) ≈ n(Lo), and three high-concentration
steady states of species X(1), namely n(X(1)) ≈ n(Hi), n(X(2)) ≈ n(X(3)) ≈ n(Lo), species
X(2), namely n(X(2)) ≈ n(Hi), n(X(3)) ≈ n(X(1)) ≈ n(Lo); and species X(3), namely
n(X(3)) ≈ n(Hi), n(X(1)) ≈ n(X(2)) ≈ n(Lo), as shown in Figure 1b.

Using the same reaction rate constants but decreasing the concentration difference to
n(Hi) = 100 and n(Lo) = 5, the high-concentration states lose their stability, and the only
remaining stable attractor is the symmetric low-concentration state, as shown in Figure 1c.
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Figure 1. Nonlinear chemical reaction network, featuring winner-take-all attractor dynamics. Crucially, all three high-
concentration nonequilibrium steady states are symmetric with respect to exchanging X(1), X(2), and X(3). Thus, the associated
minimum work-rate required (and the associated minimum driving concentration gradient n(Hi)− n(Lo) to maintain each
of these states is the same. (a) Layout of the chemical reaction network (b) Simulations of randomly initialized networks,
with driving species clamped at n(Hi) = 500, n(Lo) = 5. Given this forcing, high-concentration states of an individual
species X(1), X(2) or X(3), as well as a low-concentration state are stable attractors of the dynamics. (c) Simulations of
randomly initialized networks, with driving species clamped at n(Hi) = 100, n(Lo) = 5. Given this forcing, only the
low-concentration state constitutes an attractor of the dynamics.

3.2. Finite Minimum Work-Rate Required to Maintain High-Concentration States

To quantify the range of stability of high-concentration steady states, we run a series of
simulations initializing the network close to the high-concentration steady state of species
X(1), i.e., n(X(1)) = n(Hi), n(X(2)) = n(X(3)) = n(Lo), and simulating 105 processes
for 300,000 reaction steps. When the ensemble of trajectories has converged to a high-
concentration steady state, we save the network state and calculate the minimum work-rate
required to maintain the high-concentration steady state (c.f., methods section). As the
network architecture is completely symmetric with respect to permutations of X(1), X(2),
and X(3), the resulting minimum work-rate is the same also for high-concentration steady
states of species X(2) and X(3).

We also performed a series of simulations, initializing the network close to the low-
concentration steady state i.e., n(X(1)) = n(X(2)) = n(X(3)) = n(Lo), using the same proce-
dure and parameters. The resulting plot of the stability of the high- and low-concentration
steady states, and the associated minimum work-rate required is shown in Figure 2a,b.
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We see that below a critical concentration of the high-concentration species (and
therefore below a critical driving concentration difference) of ncrit(Hi) ≈ 310 the high-
concentration states lose their stability. Furthermore, we see that there is a positive, finite
minimum work-rate associated with this concentration gradient.

Thus, in summary, the stability of high-concentration steady states in our winner-
take-all chemical reaction network requires a positive, finite minimum work-rate (and
associated concentration gradient). Furthermore, by construction this work-rate is the same
for all high-concentration steady states.

3.3. Decreasing the Driving Chemical Potential Difference Leads to Self-Selection of
Nonequilibrium Steady States with High-Efficiency Bifurcation Processes

We now can construct the chemical reaction network evincing the selection mechanism
that we want to discuss in this paper: We use the same winner-take-all attractor motif;
however, we do not directly connect X(1), X(2), and X(3) to the clamped high-concentration
species Hi, but rather to a dynamic reservoir species Re, as shown in Figure 3a. Next, we
introduce three potential relaxation channels, allowing the conversion of a molecule of the
clamped, high-concentration species Hi to a molecule of the clamped low-concentration
species Lo via three possible intermediate species, B(1), B(2), and B(3). Crucially, we make
the synthesis of these intermediary species dependent on catalysis by two molecules of
X(1), X(2), or X(3), respectively, as shown in Figure 3b. Finally, we couple the maintenance
of the high-concentration winner-take-all attractor states to the conducted free energy flow,
via a bifurcation process, turning a molecule of B(1), B(2), or B(3) into a molecule of the
reservoir species Re. Again, we make these reactions depending on two molecules of
X(1), X(2), or X(3), respectively, as shown in Figure 3c.
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Figure 3. (a) Multi-stable winner-take-all network, featuring a single low- and three high-concentration nonequilibrium
steady states, given a sufficiently high-concentration of reservoir species Re; (b) Disequilibrium/Free energy reservoir given
by the concentration gradient n(Hi)− n(Lo), the dissipation of which is conditional on a high-concentration steady state
of the winner-take-all network, by means of the catalysed reaction channels from Hi to B(1), B(2), or B(3); (c) Bifurcation
mechanisms, coupling the dissipative channel to the maintenance of high-concentration states in the winner-take-all
network, via the conversion of B(1), B(2), or B(3) to the reservoir species Re.

We run a series of simulations for a wide range of concentration gradients, by vary-
ing the concentration of the high-concentration species n(Hi), while keeping n(Lo) = 5
constant. We use the same rate constants as before for the winner-take-all subnetwork,
namely k1 = k2 = k3 = 10−6 and k4 = k5 = k6 = 10−3. We set the other reaction rate
constants to k7 = k8 = k9 = 10−5 and k10 = k11 = k12 = 1.0. We couple the inter-
mediate species B(1), B(2), or B(3) to the reservoir species Re by different reaction rates,
k13 = 10−6, k14 = 3 · 10−7 and k15 = 10−7, which leads to different efficiencies of the
associated bifurcation process. We simulate 4000 processes, 1000 of which we initialize
close to each of the four potentially stable states of the winner-take-all subnetwork. Specifi-
cally, 1000 close to the low-concentration state, n(X(1)) = n(X(2)) = n(X(3)) = n(B(1)) =

n(B(2)) = n(B(3)) = n(Re) = n(Lo), 1000 close to the high-concentration state of species
X(1), n(X(1)) = n(B(1)) = n(Re) = n(Hi), n(X(2)) = n(X(3)) = n(B(2)) = n(B(3)) = n(Lo),
1000 close to the high-concentration state of species X(2), n(X(2)) = n(B(2)) = n(Re) =

n(Hi), n(X(3)) = n(X(1)) = n(B(3)) = n(B(1)) = n(Lo), and 1000 close to the high-
concentration state of species X(3), n(X(3)) = n(B(3)) = n(Re) = n(Hi), n(X(1)) =

n(X(2)) = n(B(1)) = n(B(2)) = n(Lo). We simulated 6,000,000 reaction steps for each
process and checked if it had converged to the corresponding steady state. For each exter-
nal forcing, we quantified the relative number of processes that converged to the steady
state, which they were initialized close to, as a proxy for this state’s stability. The result-
ing graphs are shown in Figure 4a. As expected, for a very strong driving concentration
gradient, all possible high-concentration states are stable (and the low-concentration state
actually loses its stability), in analogy to the Schlögl model [50]. However, as the driving
concentration gradient is decreased, more and more high-concentration states lose their
stability. The first state to lose its stability is the high-concentration state of species X(3),
which features the bifurcation (i.e., work-harvesting) process of lowest efficiency. When
decreasing the driving concentration gradient further, the next high-concentration state to
lose its stability is the high-concentration state of species X(2), featuring the bifurcation pro-
cess of second lowest efficiency. When we reduce the driving concentration gradient even
further, the high-concentration state of species X(1), featuring the most efficient bifurcation
process, also loses its stability.
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Figure 4. Increasing selection pressure on the efficiency of the work-harvesting processes maintaining the dissipative
nonequilibrium steady states with decreasing available chemical potential difference. (a) Relative stability of the low and
high-concentration steady states as function of n(Hi), where n(Lo) = 5 = const. (b) Efficiency η of the bifurcation processes
at the individual high-concentration nonequilibrium steady states of species X(1), X(2), and X(3) as function of c(Hi), where
c(Lo) = 5 = const. (c) Representative trajectories of a chemical reaction network initialized close to each high-concentration
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SX(3) : high-concentration state of species X(3), SLow: Low-concentration steady state.

The average thermodynamic efficiency of the bifurcation processes at the individ-
ual high-concentration steady states was computed using the deterministic limit of the
stochastic chemical reaction network, i.e., taking n(S)→ ∞, V → ∞, n(S)

V = c(S) = const.
Using the established theory of thermodynamics in deterministic, open chemical reaction
networks ([45]; c.f., Methods), we calculated the average total dissipated heat

.
Qtot in the

entire network, and the average heat
.

Qdiss dissipated along the direct decay pathways
from Hi via B(1), B(2), and B(3) to Lo at each high-concentration steady state. At steady
state, the total dissipated heat corresponds to the total chemical work put into the net-
work by the driving potential gradient (see for example [45,46]), thus we can calculate
.

Qtot −
.

Qdiss =
.

Wchem,tot −
.

Qdiss =
.

Wchem,WTA, which yields the chemical work, which is
bifurcated to maintain the high-concentration state of the winner-take-all module (or equiv-
alently, the chemical work required to pay the corresponding house-keeping heat). Now

we can calculate the associated efficiency via η =
.

Wchem,WTA.
Wchem,tot

. We plotted the corresponding

efficiencies for the high-concentration steady states in Figure 4b. In this particular setup, all
three processes are highly inefficient; however, the small absolute efficiency difference is
sufficient to create strong, specific selection pressures on the corresponding nonequilibrium
steady states when the driving concentration gradient is decreased.
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4. Discussion
4.1. A Simple Selection Mechanism for Thermodynamic Efficiency in Dissipative Nonequilibrium
Steady States of Chemical Reaction Networks

This work demonstrates a relatively simple mechanism, which leads to selective
pressure on the efficiency of bifurcation-based work-harvesting processes in dissipative
nonequilibrium steady states—following a decrease in the dissipated, driving disequilib-
rium. It rests on conditioning dissipative fluxes—along the driving concentration gradient
in an open chemical reaction network—on a high-concentration state in a winner-take-
all chemical reaction network. In turn, the winner-take-all network must harvest the
work required to maintain this state from the very free energy fluxes that it enables, via a
bifurcation mechanism.

Although it would be conceivable in principle that the dissipative structure was fueled
by a different energy source than the one whose dissipation it facilitated, recent work
showed that the molecular level free energy-conversion processes, which living systems
use to harvest the work to maintain their own structure, must rely on such turnstile-,
bifurcation- or escapement-like mechanisms [1,51]. Furthermore, the fact that at least
some of the associated molecular engines—such as the F1-ATPase [52]—work very close
to optimal efficiency, might be a hint that selection pressures towards thermodynamic
efficiency might have played a role in the development of these structures.

Furthermore, while we only discuss a very specific special case here, based on simpli-
fying assumptions such as symmetric reaction rate constants for forward and backward
reaction directions, the general premise—namely that dissipative structures require a posi-
tive, finite minimum work-rate to persist, and that they have to harvest this work directly
from the conducted dissipative free energy fluxes, therefore requiring a specific minimum
efficiency of the associated work-harvesting processes—should be applicable to a wider
class of dissipative structures.

4.2. Emergent Pressure towards Thermodynamic Efficiency in a Hierarchy of Dissipative
Structures

Although we manually decreased the driving concentration difference in our simu-
lations, one could easily imagine a similar pressure arising naturally, for example in an
emergent, self-similar hierarchy of dissipative structures, each feeding on—i.e., dissipating—
a lower level of dissipative structures (cf. [1,2]), in the following way:

The steady state concentration gradient n(Re)− n(Lo), which is required to sustain
the dissipative fluxes between Hi and Lo in our simulated network, constitutes a disequilib-
rium by itself. This disequilibrium can drive the emergence of another layer of dissipative
systems with a similar structure. For example, one could just add another winner-take-all
dissipation motif in a hierarchical fashion, as shown in Figure 5. Due to the construction
of our reaction network, the concentration gradient n(Re) − n(Lo) and the associated
chemical potential difference will be smaller than that of the initial, driving disequilib-
rium n(Hi)− n(Lo). Furthermore, assuming a similar architecture of the “higher order”
winner-take-all network, including the reaction rate constants, the minimum work-rate
required to maintain the corresponding nonequilibrium steady state will be similar to that
of the original dissipative structure. Thus, there is already a slight increase in the minimum
efficiency of the new bifurcation process required to harvest enough work to maintain the
additional layer of dissipative structures. Given a sufficiently complex chemical space,
one might imagine another layer of dissipative processes, feeding on the structure af-
forded by the second order winner-take-all network, e.g., in terms of the concentration
gradient n(Re′)− n(Lo), where n(Re′)− n(Lo) < n(Re)− n(Lo) < n(Hi)− n(Lo). Thus,
by iterating this argument over additional, self-similar layers of higher order dissipative
structures—each feeding on the structures afforded by the previous layer of dissipative
structures—an increasing pressure towards efficient bifurcation processes would develop
as one moved further away from the initial, driving disequilibrium in this dissipative hier-
archy. In this setting, a new layer of dissipative structure could only form if the associated
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work-harvesting bifurcation process were efficient enough to sustain it. As the available
driving concentration gradient would monotonically decrease with each new layer of
dissipative structures, but the minimum work required to sustain each successive layer
would not, one could expect to find highly efficient, close to optimal dissipative structures
in higher levels of this dissipative hierarchy—given a sufficiently complex chemical space
and enough time for the chemical network to discover these highly efficient nonequilibrium
steady states.
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Figure 5. (a) Schematic depiction of the chemical reaction network discussed in this paper. The nonlinear feedback between
the reservoir species Re and the intermediate species B in our simulation is mediated by the dynamics of the winner-take-all
module. (b) It is conceivable that a similar dissipative structure develops, which does not feed on the initial driving
concentration gradient n(Hi)− n(Lo), but on the structure realizing the dissipative process, in terms of the concentration
gradient n(Re)− n(Lo) between the reservoir species of the initial dissipative structure and the low-concentration species.
(c) This process could be iterated, by imagining a dissipative structure which now feeds on the reservoir species of the second
order dissipative structure. One immediately sees that the concentration gradient available to drive the next layer in such a
hierarchy of dissipative structures decreases the further one moves away from the initial driving concentration gradient.

In a more realistic setting, variations in the minimum work-rate, required to form a
new layer of dissipative structures, might lead to a non-monotonic relationship between the
distance of a layer of dissipative structure from the initial driving disequilibrium, and the
minimum efficiency required by the associated work-harvesting process to sustain this new
layer of dissipative structures. However, while the available driving chemical potential
difference will in general decrease with the hierarchical level of dissipative processes in the
absence of concentration processes (i.e., processes which can turn two or more molecules
of low chemical potential into a molecule of higher chemical potential), the minimum
work-rate required to maintain a new layer of dissipative structure does not have to: it
might decrease, stay constant, or increase. Thus, it does not seem too implausible that—in
many chemical systems—the required work-rate to sustain a new layer of dissipative
structure might come close to the maximum available free energy flux, therefore leading to
a correspondingly high minimum efficiency required by the associated work-harvesting
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process. However, there are many processes in biology, for which this argument does
not hold. Prominent counterexamples are food webs, in which plants concentrate the
free energy of low entropy photons, e.g., in terms of vegetable fats and carbohydrates.
These are then further concentrated by herbivores, e.g., in terms of animal fats and protein,
which provide carnivores with a source of highly concentrated chemical free energy (for a
discussion of adaptive dynamics and potential self-similarity in food webs, see [53]).

Although our work demonstrates self-selection of a subset of stable nonequilibrium
steady states—namely those associated with sufficiently efficient work-harvesting pro-
cesses to maintain themselves—we do not address the question of how probable different
trajectories leading towards these states might be. This is an interesting question as recent
work shows that the probability of arriving at a given nonequilibrium steady state is
dominated by the dissipative histories of the trajectories leading there [54,55], which in
general cannot not be related directly to the dissipation at the steady state itself. However,
we can recover a qualitative relationship between our results and the general notion of dis-
sipative adaptation from the following, heuristic argument: In real systems, the dissipated
concentration gradient would feed from a finite reservoir, i.e., disequilibrium, which must
be dissipated at some point to allow for the whole—initially highly frustrated—system to
relax to equilibrium. In our case, the relative probability of that reservoir being dissipated
without realizing one of the stable high-concentration nonequilibrium steady states is,
by construction, virtually zero. Using our simulation framework to quantify the relative
probabilities of reaching equilibrium via the available, self-selected nonequilibrium steady
states, might be an interesting avenue for future research.

5. Conclusions

Given the large and high-dimensional, yet highly structured (in the sense that not
every chemical reaction is allowed) nature of chemical space, leading to intriguing—and
only partly understood—structures and dynamics in the most complex chemical reaction
networks we know, namely those in biochemistry (e.g., [17,56,57]), it seems reasonable
to assume that similar dissipative hierarchies and associated pressures towards thermo-
dynamic efficiency might have emerged in biological systems. This may be the case, as
existing biogeochemical networks feature a universal scaling law, which is not a product of
the underlying chemical space alone [56]. The mechanisms considered in this work might
therefore constitute one of many drives leading to the transition of early biochemistry from
a thermodynamic- to an information-determined regime, which is considered a hallmark
of the living state [18,19].
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