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Abstract…….. 

The clinical success of immunotherapies demonstrates the importance of the 

immune system in tumour control, but the response rates remain low and many 

biological mechanisms underlying how these therapies work are still uncharacterised. 

In particular, the specificity of the anti-tumour immune response pre-existing in 

treatment-naive patients or induced by treatment remains poorly described. 

 

In this thesis, I explore how T cell receptor (TCR) sequencing data in multi-omics 

contexts can be utilised to identify features associated with antigen exposure in 

cancer patients. 

 

In treatment-naive non-small cell lung cancer (NSCLC) patients, multi-region TCR 

sequencing revealed a pattern of heterogeneity in the TCR repertoire resembling the 

heterogeneity observed in the mutational profile of these tumours and a range of 

clonotype frequency values associated with tumour specificity. A novel method was 

built in order to identify distinct TCR populations that spatially follow the pattern of 

the well-established clonal/subclonal mutational dichotomy. 

 

The impact of immune checkpoint blockade therapy on the TCR repertoire 

distribution was assessed in advanced renal cell carcinoma in the context of anti-

PD1 treatment. TCRs with frequency distribution characteristics similar to what was 

observed in NSCLC were maintained upon treatment and associated with clinical 

response. In addition, RNA-sequencing analysis identified a gene expression profile 

consistent with specific activation of T cells through TCR signalling. 

 

Finally, the same methodology was applied to bone marrow samples harvested from 

B cell acute lymphoblastic leukaemia (B-ALL) patients. A statistical framework was 

developed in order to efficiently distinguish leukaemic re-arrangements from the non-

leukaemic TCR repertoire of B-ALL patients. Subsequently, longitudinal analysis 

revealed TCR distributions that suggested the presence of cytotoxic T cells which 

was further characterised in matched single-cell RNA sequencing data. 
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Impact Statement 

The findings presented in this thesis highlight that immune repertoire data is a 

valuable resource for the identification of features associated with antigen exposure 

within the intratumoural TCR repertoire. This thesis further demonstrates that these 

features can be leveraged for the characterisation of the potentially tumour-reactive 

TCR repertoire and can be used as biomarkers of response to immunotherapy. The 

analyses conducted throughout the result chapters are straightforward to implement 

and capture insightful signals in three separate types of cancer: non-small cell lung 

cancer (NSCLC), clear cell renal cell carcinoma (ccRCC) and childhood B cell acute 

lymphoblastic leukaemia (B-ALL). Many of the methodologies developed were 

transferrable across these three cancers, even though their immunological 

microenvironments differ in many aspects, demonstrating that the bioinformatics 

framework developed throughout this thesis is of general application in the analysis 

of numerous types of immune repertoire data. 

 

In NSCLC, non-synonymous mutations in the cancer cells’ genome have been 

shown to give rise to immunogenic antigens, capable of triggering an anti-tumour 

immune response. The heterogeneity of the cancer genomic landscape is critical to 

the outcome of the immunotherapies currently being developed for lung cancer. 

Analyses performed in the TCR repertoire study of patients with NSCLC demonstrate 

that this genomic heterogeneity is mirrored in the intratumoural TCR repertoire. The 

findings suggest that TCR repertoire heterogeneity may be a critical feature in 

determining the outcome of immunotherapy, and may help design future more 

elaborate therapeutic strategies to overcome this heterogeneity. 

 

In ccRCC, the sources of antigenic stimuli remain elusive and the mutation-derived 

antigens described above for NSCLC do not correlate with longer survival or clinical 

response to immunotherapy. Whilst identifying such antigens remains a key 

challenge, the TCR repertoire analyses performed in the study of metastatic ccRCC 

patients treated with anti-PD-1 therapy suggest that tumour-specific T cells can be 

identified without knowing the antigenic source. TCRs identified by such analyses 

could form the basis of adoptive cellular therapy despite the limited description of the 

antigenic landscape in renal cancer. In addition, the findings demonstrate that 
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quantitative characterisation of TCR repertoire may provide a biomarker of response 

to checkpoint blockade in ccRCC. 

 

In childhood B-ALL, most of the immunotherapies that are currently being developed 

focus on targeting well-established cell-surface antigens, such as CD19, with 

engineered CAR T cells. Little is known about the endogenous immune response in 

this disease and how it could be leveraged by different therapeutic approaches. 

Analyses performed in the study of childhood B-ALL patients identify features of the 

TCR repertoire associated with reactivity similar to the ones captured in the NSCLC 

cohort and the ccRCC cohort. The findings suggest that cancer-reactive T cells are 

present and can be identified in the bone marrow of B-ALL patients, which potentially 

opens new immune-therapeutic paths leveraging checkpoint inhibitors, vaccines or 

TCR-based cell therapies for instance. 
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Chapter 1. Introduction 

1.1 Cancer immunosurveillance 

The idea that the immune system could provide protection against cancer was first 

proposed at the beginning of the 20th century (Ehrlich, 1908). Since then, the 

scientific community has been adding more layers to the complex relationship that 

exists between cancer and the immune system. One framework commonly used to 

describe this relationship consists of three main phases: Elimination, Equilibrium and 

Escape (Dunn, Old, & Schreiber, 2004a) (Figure 1.1). 

 
Figure 1.1 Cancer cells can be recognised and eliminated by immune cells 

Adapted from “Cancer Immunoediting” by BioRender.com (2021). Retrieved from 
https://biorender.com/biorender-templates. Adapted from Weaver & Murphy, 2016. 
Tumour cells can be recognised by a variety of immune cells including CD4 T cells, 
CD8 T cells, NK cells, γδ T cells and regulatory T cells. Some tumour cells can 
acquire the ability to escape the immune system and spread. 
 

1.1.1 Immune cells have the capacity to eliminate nascent tumours 

In the late 1950s, Frank MacFarlane Burnet and Lewis Thomas hypothesised that 

immune cells have the capacity to detect and eliminate tumour cells (Burnet, 1957; 

L. Thomas, 1959). A series of studies conducted in the late 90’s and early 2000’s 

(Dunn, Old, & Schreiber, 2004b) leveraged the exponential development, at the time, 

of monoclonal antibodies and genetically manipulated mouse models to validate this 

hypothesis and demonstrate that both the innate and the adaptive immune systems 

are required to provide protection against tumours. Most evidence supporting the 

existence of this process, called immunosurveillance and also referred to as the 
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elimination phase of immunoediting, and the three-phase model as a whole, is 

primarily based on mouse models. How this model translates to the human setting 

is still debatable. In particular, many of these experiments rely on mouse models in 

which tumours are induced by chemicals such as methylcholanthrene (MCA). These 

models involve induction of multiple mutations simultaneously in a way quite different 

from how we think human tumours develop (Wall & Shani, 2008). Caveats aside, the 

Elimination, Equilibrium and Escape model is extremely valuable to introduce several 

key concepts of immuno-oncology. 

 

The recombination activating gene (RAG) pathway is responsible for the proper 

maturation of lymphocyte populations. Mice lacking either the RAG-1 or the RAG-2 

gene are unable to generate functional αβ T cells, γδ T cells, natural killer (NK) T 

cells or B cells (Alt, Rathbun, Oltz, Taccioli, & Shinkai, 1992). RAG knock-out 

experiments constitute a pillar of immuno-oncology animal modelling and provided 

early evidence for the immunosurveillance process. In 2001, Shankaran et al. 

showed that mice lacking RAG-2 developed significantly more sarcomas than control 

animals following injection of MCA (Shankaran et al., 2001). 

 

In parallel, the same year, Smyth et al. published a study demonstrating that innate 

NK cells were also necessary to the immunosurveillance process, leveraging another 

fundamental technique: antibody-mediated depletion of a specific subset of cells. 

They first utilised a depleting anti-NK1.1 antibody to show that treated mice, hence 

lacking both NK cells and NK T cells, were developing more MCA-induced sarcomas 

than their untreated counterparts (Smyth, Crowe, & Godfrey, 2001). 

 

Additional studies conducted around that time further dissected the type of T cells 

required for efficient elimination of tumours (Gao et al., 2003; Girardi et al., 2003; 

Girardi et al., 2001; Hayakawa, Rovero, Forni, & Smyth, 2003; Smyth et al., 2000) 

and demonstrated that αβ T cells, γδ T cells and NK T cells were all individually 

essential to that process: animals lacking any of the three developed more cancer. 

 

Together, this experimental data was the demonstration that, in animal models, both 

the innate and the adaptive compartment of the immune system are essential to 

continuously detect and eliminate growing tumours. 
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1.1.2 Immunosurveillance in humans 

Equivalent evidence of immunosurveillance in humans is limited as the experimental 

strategies mentioned above are not applicable to human beings for obvious reasons. 

However, several indirect studies on the general population strongly make the case 

for the instrumental role of the adaptive and innate immune system in controlling 

nascent tumours (Finn, 2008). 

 

By definition, cytotoxic T cells are cells that recognise and kill infected cells or cancer 

cells (Weaver & Murphy, 2016). In 2000, Imai et al. demonstrated in a cohort of 3,625 

people followed for 11 years that subjects displaying a higher degree of cytotoxicity 

in blood derived CD8 T cells at the beginning of the study had a lower probability of 

developing a cancer of any type than individuals with lower levels of cytotoxic CD8 

T cells (Imai, Matsuyama, Miyake, Suga, & Nakachi, 2000). In 2007, Roithmaier et 

al. studied a cohort of patients who received a lung or heart transplant and were 

subjected to immunosuppression in order to reduce the chances of graft rejection. In 

these immunosuppressed individuals, the prevalence of different cancers (including 

leukaemia, lymphomas, head and neck cancers and lung cancers) was much higher 

than in the general population (Roithmaier et al., 2007). This observation was in line 

with what was observed in mice, suggesting that impaired immune systems were 

less efficient at eliminating tumours over time than “normal” immune systems. 

 

1.2 Equilibrium and Escape 

1.2.1 Equilibrium 

Although immune cells have the capacity to eliminate tumour cells, Elimination is 

undoubtedly failing in many instances which lead to the development of cancer in 

patients. In that regard, it is clear that Elimination is paired with Escape and it 

becomes natural to hypothesise that the Elimination-Escape system also comprises 

of a latent state: Equilibrium. 

 

In 2007, Koebel et al. built a murine model to study this concept further. They induced 

tumours in mice with low dose MCA to generate tumour masses in the animals’ skin 
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that remained at a stable volume up to 200 days post first MCA injection, hence 

effectively creating a stable state in which tumours are neither eliminated nor do they 

grow uncontrollably. At this point, they treated a first cohort with a monoclonal 

antibody depleting both CD4 and CD8 T cells and neutralising interferon γ (IFN-γ)	

when a second control was treated with a control antibody. Strikingly, doing so 

triggered Escape in 60% of treated animals, which developed progressive sarcomas, 

against none in the control group (Koebel et al., 2007). This model of dormancy of 

primary tumour lesions and triggerable Escape by immune depletion was replicated 

by Eyles et al. in 2010 and extended to recurrent metastatic lesions in a melanoma 

mouse model (Eyles et al., 2010). 

 

In humans, although it is not trivial to measure Equilibrium prior to diagnosis, its 

prevalence between primary and recurrent disease is routinely monitored in the 

clinical setting (Aguirre-Ghiso, 2007). Cancer patients can develop distant metastatic 

disease many years after the primary diagnosis. In many cases, disseminated or 

local tumour cells can still be detected over long periods of time after treatment. A 

proportion of cancer patients will relapse, often within five years of the primary 

disease but sometime up to 25 years later. Although a period of dormancy is 

apparent in these cases, the mechanism which triggers the progression of dormant 

lesions and breaks the equilibrium is still unclear. 

 

1.2.2 Tumour evolution and immune escape 

In the Equilibrium phase of the immune response to cancer, the action of cytotoxic T 

cells is essential in maintaining tumour masses to a stable volume (Koebel et al., 

2007), enabling a continuous infiltration of lymphocytes. From the cancer cell’s 

perspective, this is a very challenging context for survival which requires rapid 

adaptation in order to avoid Elimination (see Section 1.1.1). 

 

Tumours exploit the plasticity and heterogeneity of their genome in order to tune 

down their interaction with the immune system and survive through long periods of 

time, a process called immunoediting. There are many aspects to the interaction 
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between tumours cells and immune cells, which can all be targeted by the tumour 

(Figure 1.2) (Weaver & Murphy, 2016). 

 

 
Figure 1.2 Tumours can avoid immune recognition in a variety of ways 

Adapted from “The Tumour Microenvironment: Overview of Cancer-Associated 
Changes” and “Cold vs Hot Tumours” by BioRender.com (2021). Retrieved from 
https://biorender.com/biorender-templates. Adapted from Weaver & Murphy, 2016. 
Many aspects to the interaction between tumours cells and immune cells can be 
targeted by the tumour. 
 

As mentioned above, a critical feature of the Elimination phase and the Equilibrium 

phase is the T cells’ ability to recognise cancer cells. This process, which will be 

detailed and discussed further in Sections 1.3.1, 1.3.2 and 1.5.2, relies on the key 

interaction between the TCR on a T cell and the peptide-MHC complex on a cancer 

cell. Briefly, major histocompatibility complex (MHC) molecules are expressed on the 

surface of a cell and present peptides sampled from the cell’s internal proteome. T 

cells scan these peptides via the TCR. A healthy proteome will not trigger any 



Chapter 1 Introduction 

26 

 

response from the T cell. Conversely, in cancer cells, the internal proteome contains 

aberrant proteins translated from unstable genomic material which will result in 

foreign peptides, antigens by definition, being presented by MHC molecules and 

inducing an immune response. 

 

The first class of mechanisms that impair the cytotoxic action of T cells is the 

deterioration of the antigenic signal, which can happen in at least three well 

documented ways (Schreiber, Old, & Smyth, 2011): modification of antigenic 

landscape through Darwinian selection of cancer subclones, loss of MHC proteins 

and impairment of intracellular antigen presentation machinery. The latter will not be 

discussed further in this thesis. 

 

The plasticity tumour genomes enables the Darwinian selection of subclones with 

greater survival potential which modifies the antigenic landscape upon which the 

cancer-immune cycle (D. S. Chen & Mellman, 2013) is built. When and where the 

antigenic landscape is changing, the specificity of the current tumour-infiltrating 

lymphocytes (TILs) becomes irrelevant. If that process is dynamic enough, the 

tumour can continuously escape the specificity of newly infiltrated lymphocytes. In 

2019, Rosenthal et al. described and bioinformatically documented two ways by 

which such reshaping occurs. In a cohort of NSCLC patients, they show that 

neoantigens (a subtype of tumour specific antigens) can be erased at the DNA level 

through copy number loss and at the RNA level through selective downregulation of 

transcripts (Rosenthal et al., 2019). 

 

Starting 30 years ago, several studies demonstrated at the protein levels that human 

tumours are enriched for defects in MHC expression, either through direct loss 

(Algarra, Cabrera, & Garrido, 2000; Lopez-Nevot et al., 1989; Ohnmacht & 

Marincola, 2000) or loss of other components of the pathway (Kloor, von Knebel 

Doeberitz, & Gebert, 2005; Seliger, Maeurer, & Ferrone, 2000). More recently, it was 

bioinformatically shown that impairment of this mechanism was selected by cancer 

evolution and detected in the DNA of as much as 40% of NSCLC patients in the 

TRACERx cohort (McGranahan et al., 2017). 
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Another important phenomenon that falls under this first category is cancer immune 

tolerance (Lu & Finn, 2008). Unlike the mechanisms described above which rely 

solely on tumour cells, immune occurs in lymph nodes, where naïve T cells 

presented with cancer-specific antigens are activated (see Section 1.3.3). Immune 

tolerance can be induced by suboptimal cross-presentation of cancer-specific 

antigens by dendritic cells (DCs), which triggers apoptosis of T cells rather than 

activation and prevents the development of a cancer-specific T cell population. In 

addition, a significant proportion of the antigens produce by the tumour are similar to 

the endogenously expressed protein. Consequently, mutated peptides which are not 

distinct enough from the corresponding canonical peptides will be tolerised, similarly 

preventing the activation of cancer-specific T cells. 

 

The second class of escape mechanisms does not rely on tumour cell intrinsic 

features but instead on secretion or expression of molecules by tumour cells that 

influence the balance of the tumour microenvironment (TME). These molecules 

include signal transducer and activator of transcription 3 (STAT3), which impairs DC 

maturation, indoleamine-pyrrole 2,3-dioxygenase (IDO), which inhibits T cell 

responses, transforming growth factor beta (TGF-β) which recruits regulatory T cells 

or factors that recruit cells that over time will encapsulate the tumour and keep 

immune cells away (Weaver & Murphy, 2016). 

 

Throughout their development, tumours explore these strategies to survive and 

remain under control as long as the immune system is responsive enough. Cancer 

arises when a combination of these escape mechanisms eventually breaks the 

equilibrium. 

 

1.2.3 The tumour microenvironment at diagnosis 

The improvement of immune data acquisition and analysis has enabled to 

characterise the TME in many ways which can be broadly organised under three 

major high level categories (D. S. Chen & Mellman, 2017): immune-desert, immune-

excluded and immune-inflamed. The first two categories indicate that the immune 

response presents massive defects which makes it incomplete or virtually inexistent 
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at the time of immune Escape. These phenotypes are hard to reconcile with the 

immunoediting continuum and are currently failing to respond to immunotherapy. 

 

This thesis will focus on the third category which has been studied extensively for 

the past 10 years, following the exponential development of technologies such as 

fluorescence-activated cell sorting (FACS), immunohistochemistry (IHC), 

immunofluorescence (IF), mass spectrometry, RNA sequencing (RNA-Seq) and 

analytic tools dedicated to the analysis of the immune compartment of the TME. The 

main immune cell populations present in the TME of cancer patients are CD4 T cells, 

CD8 T cells, Regulatory T cells, NK cells, NKT cells, γδ T cells, DCs and 

macrophages (Whiteside, 2008). 

 

The past 30 years have only confirmed that T cells are absolutely central to the 

immune response to cancer and are the key actors of cytotoxicity against tumours. 

Their behaviour is highly influenced by all compartments of the TME and 

understanding the role of each of them is of critical importance. This thesis will focus 

on T cells and describe the anti-tumour immune response from their perspective. In 

2017, Chen & Mellman introduced the cancer immune set point concept which takes 

the view that the key players are cancer specific cytotoxic T cells which receive both 

stimulatory and inhibitory signals from the TME. This interaction can be represented 

by the following symbolic quantity (adapted from Chen & Mellman, 2017): 

 

𝑇𝐶𝑅())*+*,- ∙ 𝑇𝐶𝑅)/0120+3- ∙ 𝐹5,*6 −	 𝐹*+8*9 	  

 

Although this will be extensively detailed and discussed in Section 1.3, it should be 

mentioned here that the same TCR can be expressed by multiple T cells and that a 

given T cell normally expresses one TCR. In particular, the relative cellular 

prevalence of each intratumoural TCR is variable, with some TCRs shared by a few 

T cells only and some TCRs shared many T cells. 

 

At a given point in time, the above quantity symbolically measures the strength of 

the TCR signalling (sum of all MHC-peptide-TCR complexes multiplied by 

corresponding abundance of TCR clone) weighted by the differential between 
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stimulatory and inhibitory forces in the TME at that time. This model is significantly 

less complex than the reality of cell to cell interactions in the TME but attempts to 

capture the core of the signal. 

 

The following thought experiment helps to visualise the meaning of this quantity: if 

we could fix the TCR signalling component and change the values of 𝐹5,*6 and 𝐹*+8*9, 

that would correspond to a system where the intratumoural TCR repertoire and 

corresponding antigenic landscape do not change. In that scenario, increasing the 

𝐹5,*6/𝐹*+8*9 ratio would indeed intuitively strengthen the cytotoxic activity of T cells. 

Conversely, at a fixed influx of 𝐹5,*6 and 𝐹*+8*9, a greater number of specific T cell 

clones would similarly correspond to greater killing capabilities of tumour-infiltrating 

lymphocytes (TILs). 

 

This simplistic model is helpful to conceptualise how immunotherapies can act on 

the cytotoxic activities of intratumoural T cells, with adoptive cell therapy acting 

primarily on the left component and immune checkpoint blockage on the right 

component. In reality, the picture is much more complex, which will be discussed in 

Section 1.5. 

 

Whether one chooses to describe the immune response to cancer from this modern 

and abstract perspective or rely on more seminal experimental work like the RAG 

knock-out experiments performed in the early 2000s (see Section 1.1.1), the 

specificity of TILs, relying on the T cell receptor, stands out as the central pillar of 

anti-tumour cytotoxicity. 

 

The next section will introduce the concept of the TCR repertoire, explain how next-

generation sequencing (NGS) enabled its measurement and description and what is 

our current understanding of its importance in describing the immune response to 

cancer. 
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1.3 The T cell receptor repertoire 

1.3.1 Introduction 

The mechanisms of Elimination, Equilibrium and Escape described above rely on 

specific subsets of T cells, corresponding to advanced stages of differentiation within 

the broad spectrum of T cell phenotypes. This results from a cascade of events that 

transforms precursor T cells into tumour specific T cells. 

 

Briefly, precursor T cells (CD4/CD8 double-negative and lacking TCR expression) 

are generated from hematopoietic stem cells (HSCs) in the bone marrow before they 

migrate to the thymus where they commit to the T-cell lineage and where the TCR 

re-arrangement process is initiated (Weaver & Murphy, 2016). At this stage, the T-

cell lineage can be broadly split between αβ T cells,	γδ T cells and innate-like T cells. 

This thesis focuses on the former compartment, although the other two will be 

touched upon in Chapter 5. 

 

The αβ TCR is encoded by a set of homologous genes (V, D and J genes) and is 

assembled by somatic recombination into two membrane bound protein chains that 

both include three hypervariable loops called complementary-determining regions 

(CDR) 1,2 and 3 (Figure 1.3). The VDJ recombination process is able to generate 

an incredible amount of diversity, estimated at 1013 unique possible TCR re-

arrangement obtainable in a given individual (Miho et al., 2018). This diversity is 

predominantly captured by the α and β CDR3 sequences as they span across the 

junctional region of the TCR re-arrangement which contains insertions and deletions 

in addition to the germline DNA sequences (Attaf, Huseby, & Sewell, 2015; Weaver 

& Murphy, 2016). 
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Figure 1.3 TCR gene and protein structure  

Adapted from “T Cell Receptors (Alpha and Beta Chains)” by BioRender.com (2021). 
Retrieved from https://biorender.com/biorender-templates. Adapted from Attaf, 
Huseby and Sewell, 2015. CDR1 and CDR2 are entirely encoded in the germline V 
genes, whereas CDR3 lies at the junction between the rearranged V and J segments 
(TCR-α) and V, D and J segments (TCR-β). 
 
From this point onwards, unless stated otherwise, “TCR” and ”re-arrangement” will 

be used interchangeably to refer to the αβ TCR. 

1.3.2 TCR repertoire diversity in the thymus 

1013 unique TCRs could not possibly fit in the human body, which approximately 

contains 1011 T cells (Zarnitsyna, Evavold, Schoettle, Blattman, & Antia, 2013) but 

this is not the sole factor limiting the diversity of the TCR repertoire. Indeed, the 

number of unique TCRs in a given individual is currently estimated at 108-109 (Mora 

& Walczak, 2019). Although randomness is an important part of VDJ recombination, 

the list of all TCR present in an individual and their cellular prevalence also called 

TCR repertoire is driven by precise mechanisms and is far from being a uniform 

sample of 108-109 million out of 1013 (Attaf et al., 2015). 

 

In the thymus, the β chain is the first one to re-arrange, leading to an intermediate 

stage of thymocytes harbouring a pre-TCR that signals the re-arrangement of the α 

chain, together with CD4 and CD8 expression and proliferation. Even at this early 

stage of double positive T cells, the diversity of TCRs is restricted and diverts from 

pure randomness. In 2012, Li et al. demonstrated in a mouse model that the β TCR 
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repertoire of thymocytes is systematically biased towards preferential usage of 

certain V and J genes, which resulted in a significant inter-animal overlap of β TCRs 

(H. Li et al., 2012). Although the mechanisms underlying this bias are still mostly 

undescribed, they can be summarised by the “accessibility hypothesis”: the 

transcription machinery does not have equal access to all V and J segments (Ndifon 

et al., 2012). 

 

Once double–positive thymocytes express fully re-arranged αβ TCRs on their 

surface, they undergo a process called thymic selection that filters out 99% of 

thymocytes together with shaping the TCR repertoire further, in a deterministic 

manner. This process relies on the interaction between TCRs and self-peptides 

presented on MHC molecules by antigen-presenting cell, as mentioned in Section 

1.2.2. In the 1990s, several groups described that both the peptides themselves and 

the MHC molecules in which they fit impact the TCR repertoire obtained post 

selection in the thymus (Anderson, Partington, & Jenkinson, 1998; Ashton-Rickardt, 

Van Kaer, Schumacher, Ploegh, & Tonegawa, 1993; Bevan, 1997; Hogquist, Gavin, 

& Bevan, 1993; Messaoudi, Patiño, Dyall, LeMaoult, & Nikolich-Žugich, 2002; 

Nikolic-Zugic & Bevan, 1990). 

 

In summary, TCRs that do not bind or bind too weakly to self MHC-peptide 

complexes will be eliminated by neglect and TCRs that bind too strongly to such 

complexes will be eliminated by negative selection. Conversely, double positive 

thymocytes harbouring TCRs with intermediate binding affinity (not too weak, not to 

strong), are positively selected and differentiate into single positive mature CD4 and 

CD8 T cells. This binding affinity is determined both by the peptide being recognised 

and the MHC molecule that presents it as they both interact with the TCRs. MHC 

molecules are encoded by highly polymorphic genes, also called human leukocyte 

antigen (HLA) genes, and are organised in two major classes (I & II) that determine 

the type of T cells they can interact with. Indeed, the non-polymorphic part of the 

MHC class II protein binds to CD4 whereas the non-polymorphic part of the MHC 

class I protein binds to CD8. In parallel, the polymorphic part the MHC molecule, 

which differs between individuals, restricts the pool of peptides that can fit into the 

MHC cleft, hence restricting the corresponding pool of TCRs that will be able to bind 

to the resulting complex (Weaver & Murphy, 2016). 
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Together, these events in the thymus apply a harsh deterministic filter onto the 

potential list of all possible re-arrangements one individual can generate. 

Nonetheless, the resulting TCR repertoire remains highly diverse and optimised to 

recognise a broad spectrum of foreign peptides, which are encountered by naive T 

cells as they exit the thymus into the periphery. 

 

1.3.3 TCR repertoire diversity in the periphery 

When naive T cells exit the thymus, they encounter specific antigens in secondary 

lymphoid tissues, presented by dendritic cells in most cases. This encounter initiates 

activation, differentiation and proliferation (Weaver & Murphy, 2016). Several studies 

in animal models and human cohorts have demonstrated that such encounters skew 

the naive TCR repertoire towards expansion of antigen experienced clonotypes 

(Figure 1.4). As a result, TCR repertoire diversity is at its highest in the naive 

compartment and diminishes in more differentiated T cell phenotypes (Oakes et al., 

2017; Qi et al., 2014; Rudd, Venturi, Davenport, & Nikolich-Zugich, 2011). 
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Figure 1.4 Size and composition of the pre-selection, naive and antigen 
experienced repertoires 

Adapted from Attaf, Huseby and Sewell, 2015. Created with BioRender.com. TCR 
diversity is greatest in the pre-selection repertoire (grey). Positive and negative 
selection in the thymus purges the pre-selection repertoire of most specificities, 
creating a peripheral naive repertoire that is substantially less diverse (green). In the 
periphery, antigen exposure further narrows the repertoire over time leading to clonal 
expansion of antigen-specific populations (blue). 
 
Repertoire skewness is largely driven by the environment that challenges one’s 

immune system and defines the antigenic landscape that is presented to the TCR 

repertoire (Brodin et al., 2015). In 1994 Davey et al. demonstrated that monozygotic 

twins have almost identical repertoires at birth but drastically separate ones later in 

time (Davey, Meyer, & Bakke, 1994). TCR repertoires are also highly heterogeneous 

between tissues or conditions in a matched individual (Newell & Becht, 2018), which 

further illustrates that the cellular environment of T cells impacts the composition of 

the TCR repertoire. 

 

As different environments lead to different repertoires, one could hypothesise that 

similar environment would lead to similar repertoires. This hypothesis was 

investigated in the context of HLA-matched individuals, which limits the impact of the 
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genetic background on the TCR repertoire. In such context, shared V and J gene 

usage and even shared CDR3 sequences was observed across people infected with 

Epstein-Barr virus (EBV) (Miles et al., 2010), human immunodeficiency virus (HIV-1) 

(H. Chen et al., 2012) or T large granulocyte leukaemia patients (Clemente et al., 

2013). In addition, certain clonotypes have been observed as enriched and shared 

in the general population, agnostic of HLA haplotype, associated with T cell 

populations with reduced repertoire diversity such as mucosal associated invariant 

T (MAIT) cells or NK T cells (Attaf et al., 2015). 

 

Even if similar environments have been linked to similarities in the TCR repertoire, 

the picture appears to be much more complex. As an example, in 2007, Yu et al. 

presented a longitudinal case study of monozygotic twins infected with the same 

HIV-1 variant yielding to several concordant epitopes. Despite the exceptional 

matched setting, the corresponding TCR repertoires were distinct between 

individuals, indicating that preferential TCR expansion was not fully determined by 

antigenic stimulation (Yu, Lichterfeld, Williams, Martinez-Picado, & Walker, 2007). 

 

Together, these studies demonstrate that the TCR repertoire is rich, dynamic and 

complex and that although patterns can be predicted and observed in specific 

contexts, the rules that determine the shape of the TCR repertoire in health and 

disease remain incompletely characterised. In particular, the inherent stochasticity 

of the TCR re-arrangement process implies that not all features of a given repertoire 

can be attributed to specific events. However, the ability to distinguish between the 

random part and the deterministic part of the TCR repertoire is achievable, provided 

that the right tools are available and the right analyses are performed. 

1.4 Quantifying the TCR repertoire 

1.4.1 Introduction 

In the 1980s, the discovery of the first TCR specific DNA sequences (Yanagi et al., 

1984) was accompanied by the development of techniques to robustly and 

systematically derive metrics from the TCR repertoire which were primarily applied 

to study haematological malignancies like acute lymphoblastic leukaemia (Bertness, 

Kirsch, Hollis, Johnson, & Bunn, 1985; Korsmeyer et al., 1983). These techniques 
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involved southern blotting of known TCR genes, targeted with dedicated probes, and 

formed the basis of a technology that has since then enabled a much deeper and 

more complete description of the TCR repertoire (Mahe, Pugh, & Kamel-Reid, 2018). 

 

Later, different techniques such as flow cytometry and CDR3 spectratyping were 

developed and applied to the analysis of the TCR repertoire (Six et al., 2013), which 

started to depict important metrics such as TCR counts or CDR3 lengths distribution. 

Undoubtedly however, the advent of TCR repertoire analysis was enabled by the 

development of NGS sequencing, also known as high-throughput sequencing, and 

only within the last two decades did we start to scratch the surface of the immense 

amount of information that is hidden inside TCR repertoire data (Heather, Ismail, 

Oakes, & Chain, 2018). 

 

Today, most TCR repertoire data, including the data that will be discussed in this 

thesis, is obtained by high-throughput sequencing. Although all pipelines are not 

identical, they all include three major stages: library preparation and sequencing, 

low-level processing and high-level processing (Figure 1.5). 
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Figure 1.5 The main stages involved in the study of immune repertoires. 

Adapted from “Data Processing Flow Chart” by BioRender.com (2021). Retrieved 
from https://biorender.com/biorender-templates. Adapted from Heather et al., 2018. 
The main stages involved in the study of immune repertoires: library preparation 
and sequencing, low-level processing and high-level processing. 
 

The work presented in this thesis obviously relies on library preparation and 

sequencing steps together with low-level processing, but it primarily comprises of 

high-level processing. Indeed, all the library preparation and sequencing as well as 

most of the low-level processing of the data presented in this thesis were performed 

by colleagues, whilst the implementation of existing tools or development of novel 

high-level processing analyses discussed in Chapter 3, Chapter 4 and Chapter 5 are 

my own work. Although they will not be discussed further in the result chapters of the 

thesis, a brief description of the first two stages will be given in this section and 

specific technical details relating to each project can be found in Chapter 2. 
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1.4.2 Library preparation, sequencing and low-level processing 

Briefly, all TCR sequencing protocols start from either DNA or RNA. Following 

nucleic acid extraction, recombined TCR genes are amplified using multiplex 

polymerase chain reaction (PCR) with a set of primers specific to V and J genes. 

After amplification, sequencing is performed, most of the time through the Illumina 

platform (Bentley et al., 2008), which results in the generation of a .fasta (FASTA) or 

.fastq (FASTQ) file (Heather et al., 2018). 

 

After sequencing, several solutions exist to retrieve the list of TCR re-arrangements 

present in a sample and their corresponding abundance (number of reads) from the 

FASTQ files. This task often comprises of two steps: V, D and J gene assignment 

and CDR3 identification and translation. 

 

The gene assignment step requires a reference database listing V, D and J 

sequences to be looked for in the FASTQ file. The most widely used one is the 

IMGT/GENE-DB database, which contains annotations for V, D and J genes across 

several species (Giudicelli, Chaume, & Lefranc, 2005). Mapping reads to a specific 

annotated V, D or J transcript is a well described task that generated several 

solutions over the past decade, which vary in efficacy but all perform well (Heather 

et al., 2018). Once V, D and J genes are identified, reconstructing the CDR3 region 

is a fairly trivial task consisting in identifying where it starts and whether the translated 

amino acid sequence is productive (in frame with respect to the start of the V gene 

leader sequence and not containing premature stop codon) or not. 

1.4.3 High-level processing 

Low-level processing usually outputs one file per sample, which can vary in format 

but is systematically organised as a list of TCR re-arrangements and matched count 

values, which can be aggregated at different levels (gene level, nucleotide level, 

amino acid level). Such files contain thousands to millions of different re-

arrangements (Gerlinger et al., 2013), which are mostly distinct between individuals 

and often distinct between different samples of the same individual. As mentioned in 

Section 1.4.1, high-level processing or the mining of this rich and complex data has 

seen significant improvement in the recent years but, although some groups have 
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attempted to organise such analysis into publically available tools (Dmitriy V. Bagaev 

et al., 2016; ImmunoMind, 2019; Kaplinsky & Arnaout, 2016; Nazarov et al., 2015; 

Shugay et al., 2015), no gold standard has yet emerged (Rosati et al., 2017). 

 

A number of summary metrics are however recurrent in TCR-Seq data analysis and 

commonly accepted as informative and useful. The simplest metrics that can be 

derived resemble what could be obtained with the early techniques generating TCR 

repertoire data mentioned in Section 1.4.1. They include V and J gene usage, total 

and unique TCR counts and distribution of CDR3 lengths. 

 

Diversity/ Clonality 

A more elaborate concept that is very commonly looked at in TCR repertoire data is 

diversity. TCR-Seq data often approximates to a power-law distribution (Oakes et 

al., 2017), meaning that most re-arrangements are very infrequent, a large proportion 

are singlets (only seen once in the repertoire) but the bulk of the total re-

arrangements is occupied by a few sequences which are individually very abundant. 

The manner in which the data is distributed between infrequent or frequent clones is 

captured by diversity or clonality scores. A repertoire in which the frequency of TCR 

re-arrangements is evenly distributed will generate a high diversity score or a low 

clonality score, whereas a repertoire in which a small number of unique re-

arrangements occupies a large proportion of total counts will generate a low diversity 

score or high clonality score. The assumption is that antigen experienced TCR 

repertoire will be more clonal (high clonality score) than non-antigen experienced 

ones. Consequently, these scores are used to infer antigenic exposure in a sample: 

high clonality scores should indicate the presence of antigen exposed T cells. Many 

different scores capturing diversity exist and are routinely applied to TCR-Seq data 

including Rényi indices, the Gini index, the Simpsons index, the Shannon entropy 

(Mora & Walczak, 2016) or the clonality index (Kirsch, Vignali, & Robins, 2015). 

These metrics capture the same idea and, in practice, strongly positively or 

negatively correlate to one another.  

 
Similarity 

Another important category of metrics aims to capture how two or more TCR-Seq 

samples compare, which enables to infer how the repertoire differs between 
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individuals or, more interestingly, how it changes in space and time within the same 

individual. This is particularly useful when additional information is known about the 

samples, such as comparing a tumour sample to an adjacent non-tumour sample or 

comparing different conditions of the same tissue, for instance blood samples of 

cancer patients before or after a specific treatment. These metrics fall under the 

concept of similarity and include the Jaccard index, Pearson and Spearman 

correlation coefficients and the dot product. 

 

Tracking 

A sub-category of similarity consists in tracking a particular TCR or set of TCRs of 

interest across several samples. In such instances, the data is looked at on a per 

TCR basis and simply asks whether a particular re-arrangement is present or absent 

in a given sample and/or at which frequency. This is of particular interest in the 

management of haematological malignancies which was actually one the first 

applications of repertoire data analysis, as mentioned in Section 1.4.1. This will be 

further discussed in Section 1.4.5 and in Chapter 5. 
 

Antigen-specificity 

Finally, the last category of analysis that can be performed on TCR-Seq data 

constitutes the holy grail of high-level processing: determining the specificity of a 

given TCR. A first approach is to generate large databases of known TCR 

specificities, which can be obtained through multimer sorting experiments for 

instance. Two such databases exist, VDJdb (D. V. Bagaev et al., 2020) and McPAS-

TCR (Tickotsky, Sagiv, Prilusky, Shifrut, & Friedman, 2017), and are already 

gathering a large amount of TCRs, which is however still very limited compared to 

the titanic number of possible unique TCRs.  

 

A second category of approaches aimed at determining the specificity of a given 

TCR consists in modelling the binding affinity of TCR-peptide-MHC complexes 

(Borrman, Pierce, Vreven, Baker, & Weng, 2020; Moris et al., 2020; Springer, Besser, 

Tickotsky-Moskovitz, Dvorkin, & Louzoun, 2020; Tong et al., 2020). Building such 

models often requires training an algorithm on a dataset of known specificities such 

as the ones described above. Although the performance of such methods is 
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improving on the recurrent publically available benchmarking datasets, it remains 

unclear how they perform outside the training setting. 

 

Lastly, a less direct approach yet significantly less constrained than the methods 

described above is the grouping of similar CDR3 sequences based on amino-acid 

motif usage (N. Thomas et al., 2014). The idea behind this approach, which has been 

demonstrated in several instances (Glanville et al., 2017; H. Huang, Wang, Rubelt, 

Scriba, & Davis, 2020), is that different TCRs harbouring very similar CDR3 regions 

are likely to be recognising the same peptide-MHC complex. Several variations exist, 

and implement more or less stringent grouping criteria (Pogorelyy et al., 2019). With 

this approach, the corresponding peptide is unknown, which makes it less powerful 

than the ones mentioned above are attempting in theory but is in practice convenient 

to derive metrics of interest (see Chapter 3, Chapter 4 and Chapter 5). 

1.4.4 Challenges 

A number of challenges are associated with every step of TCR repertoire data 

generation and analysis (library preparation, sequencing, low-level processing and 

high-level processing). Very early in the process, sequencing errors can be 

introduced because of the error rate of the polymerases used in the PCR 

amplification or the DNA sequencing reaction itself. These errors can artificially 

inflate the diversity of a sample by introducing novel TCRs in silico that are not 

actually present in the sample. The source of these technical errors will vary 

depending on the technical specificities of a given protocol and several solutions are 

currently implemented. These include using the Phred quality score of sequencing 

reads, filtering out low frequency TCRs and the use of UMIs (Heather et al., 2018). 

This matter will not be discussed further in this thesis but is worth keeping in mind. 

 

Another level of limitations to TCR-Seq data analysis, which is common to all NGS 

data analyses, is the representativeness of a sample. As mentioned above, the 

immense diversity of the TCR repertoire results in a single sample containing 

thousands to millions of unique TCR sequences with virtually no overlap between 

individuals and very little overlap between samples of the same individual. In 

addition, in several instances such as cancer TCR-Seq analysis, sampling the tissue 

of interest itself presents representativeness issues. Firstly, the tissue of interest 
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might be difficult to access hence it might be preferable to sample more accessible 

tissue, such as blood, and try to extrapolate findings from one compartment to the 

other (Lucca et al., 2021). This is very attractive, in particular for the development of 

clinical biomarkers or any analysis aiming to be applicable to routinely acquirable 

samples, which can be quite different from what an academic project can offer. 

However, determining how well does the TCR repertoire of a certain tissue depict 

the immune response occurring in another tissue is certainly not straightforward and 

will be discussed in Chapter 3, and Chapter 4. 

 

Secondly, even when the tissue of interest can be accessed, the sampling process 

is often unable to sample the entire tissue. For instance, in the context of the same 

tumour mass, biopsies of different parts of the tumour can be extremely different. 

How one sample is representative of another sample of the same tissue is not trivial 

to determine, which will be discussed in the specific context of NSCLC in Chapter 3. 

1.4.5 Applications 

For the past 20 years, the interest for TCR-sequencing data analysis has only grown, 

together with the number of fields in which its clinical relevance has been 

demonstrated. One of the first applications of TCR-Seq, still very active today, is the 

measurement of minimal residual disease (MRD) in haematological malignancies. 

Indeed, diseases such as acute (D. Wu et al., 2012) or chronic (Logan et al., 2011) 

lymphoblastic leukaemia are associated with the emergence of aberrant clonotypes, 

sometimes productive but in many instances non-productive (Allam & Kabelitz, 

2006). Consequently, measuring the prevalence of these conventional or trans TCRs 

via TCR-Seq is a powerful biomarker in the clinical management of such diseases 

(O'Connor et al., 2018). Chapter 5 will showcase repertoire sequencing generated 

in this context for a cohort of childhood B-ALL patients and show that such data 

contains a rich and complex signal that goes beyond MRD assessment. 

 

Although they will not be discussed in detail in this thesis, it should be mentioned 

that the main applications of TCR-Seq data analysis include the characterisation of 

a number of non-infectious and infectious diseases such as inflammatory and 

autoimmune disorders (Chapman et al., 2016; Goronzy, Zettl, & Weyand, 1998), 
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infection (Heather et al., 2015; Wisskirchen et al., 2017) and immune responses 

following vaccination (Ademokun et al., 2011; Qi et al., 2016). 

1.5 The TCR Repertoire in cancer 

1.5.1 TCR clonality as a biomarker 

In the last decade, numerous studies have utilised TCR sequencing data analysis as 

a measure of the immune response to cancer, especially in the context of checkpoint 

blockade therapy, as eluded to in Section 1.2.3. Most of these studies used 

repertoire data derived from blood samples and attempted to define TCR metrics 

that could be robustly used as biomarkers of response to immunotherapies. 

 

In 2014, several studies investigated how TCR-Seq could inform response to anti-

cytotoxic T-lymphocyte protein 4 (CTLA-4) treatment, particularly in the context of 

melanoma. Robert et al. described a global effect of tremelimumab on the blood TCR 

repertoire of 21 metastatic melanoma patients. When compared to healthy control, 

patients exhibited increased diversification (measured by Shannon entropy) of the 

blood TCR repertoire post treatment (Robert et al., 2014). In a cohort of metastatic 

castration-resistant prostate cancer and metastatic melanoma patients, Che et al. 

repeated this observation and also found that it was the maintenance of TCRs 

expanded pre-treatment in the post-treatment blood that associated with response 

(Cha et al., 2014). Kvistborg et al. added to the complexity of this picture by 

longitudinal monitoring of the reactivity against 145 melanoma associated epitopes 

in a cohort of 40 patients treated with ipilimumab. In this context, the authors 

confirmed that maintenance of pre-existing specificities was occurring but argued 

that the striking increase in the number of specificities detected post-treatment was 

probably a more important mechanism of response to anti-CTLA-4 therapy 

(Kvistborg et al., 2014). In 2017, Oh et al., published a study on immune related 

adverse events (IRAEs) in cohort of metastatic castration-resistant prostate cancer 

patients treated with Ipilimumab. The increase of the diversification of the repertoire 

could be preferentially linked to the patients with IRAEs. Together, these findings 

indicate that the interpretation of how TCR-Seq can inform the response to anti-

CTLA-4 treatment is not trivial and probably comprises of several layers that are yet 

to be de-convoluted (Oh et al., 2017). 
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In parallel, similar efforts were conducted in an attempt to understand the clinical 

response to therapies targeting the programmed cell death 1 (PD-1)/programmed 

death ligand 1 (PD-L1) axis. In the intratumoural setting, Tumeh et al. showed in 

2014 a pre-treatment association between response and more clonal TCR repertoire 

in a cohort of 46 metastatic melanoma patients treated with pembrolizumab (Tumeh 

et al., 2014). In 2018, Amaria et al. repeated this observation in a cohort of 23 high-

risk resectable melanoma patients treated with nivolumab alone or in combination 

with Ipilimumab. In addition, they demonstrated an association between response 

and the maintenance of pre-treatment expanded TCRs in the tumour (Amaria et al., 

2018). 

 

Two studies highlight even further these discordant observations between TCR 

measurements and response to anti-CTLA4 treatment or anti-PD-1/PD-L1 treatment 

for melanoma patients. In 2017, Roh et al. demonstrated an association with more 

clonal intratumoural repertoires and response to PD-1 blockade but not CTLA-4 

blockade (Roh et al., 2017). In 2018, Levesque et al. showed that the same diversity 

score had the opposite predictive power depending on the treatment type: melanoma 

patients responding to anti-PD1 treatment had less diverse repertoires in the blood 

whereas melanoma patients responding to anti-CTLA-4 treatment had more diverse 

repertoires in the blood (Hogan et al., 2019). Together, these studies in melanoma 

cohorts highlight the complexity of the TCR repertoire both in blood and in the tumour 

and demonstrate that even supposedly simple measures could have drastically 

different meanings depending on the context. 

 

Since then, numerous studies have performed TCR sequencing in the context of 

immune checkpoint blockade (ICB) therapy for many different cancer types (Fairfax 

et al., 2020; Han et al., 2020; Naidus et al., 2021; Schalper et al., 2019; Zhao et al., 

2019). The range of metrics that have been derived from such data and associated 

to clinical response is still very heterogeneous and lacks clarity. In addition to 

leveraging TCR-Seq data in order to develop biomarkers of response to treatment, 

there is a clear need to take a step back and to build a deep understanding of the 

biology that underlies these metrics. This is required to guide the design of 
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meaningful metrics and better interpretation of TCR-Seq data derived from cancer 

patients.  

 

Chapter 4, which forms sections of a submitted manuscript under review, will show 

an example of integration of TCR-Seq data within a complex multi-omics cohort of 

nivolumab treated metastatic renal cell carcinoma patients. 

1.5.2 Antigen specificity 

As explained in Sections 1.1 and 1.2, the central feature of the cytotoxic response to 

cancer is the specificity of infiltrated T cells. The amount of reactivity to cancer within 

the intratumoural TCR repertoire is highly variable across cancer types and across 

patients within the same indication as demonstrated in ovarian and colorectal cancer 

by Scheper et al. in 2019 (Scheper et al., 2019). Although it should be mentioned 

that there is evidence of a potential anti-cancer function of the non-cancer-specific 

TIL compartment (Danahy, Berton, & Badovinac, 2020; Erkes et al., 2017), the key 

challenge that this thesis addresses is the identification of cancer-specific TCRs and 

the ability to distinguish them from the rest of the repertoire, enriched for bystander 

T cells (Simoni et al., 2018). 

 

Several studies have now demonstrated that such specificities are indeed detectable 

in TCR-Seq data. The Rosenberg group first demonstrated that neoantigen specific 

CD8 T cells could be isolated from the tumours of melanoma patients (Gros et al., 

2014) via direct tetramer sorting. They subsequently showed that tumour specific 

TCRs could be also be obtained in silico by focusing on the most expanded 

intratumoural clones (Pasetto et al., 2016). 

 

Another indirect way to link TCR-Seq data to specificity is to correlate certain TCR 

metrics to cancer intrinsic metrics, such as tumour mutational burden (TMB), which 

serve as a proxy for antigenicity of the tumour. In certain cancer types such as 

melanoma or lung cancers where non-synonymous mutations (NSMs) have been 

identified as an important source of tumour-specific antigens and TMB has been 

shown to correlate with several clinical features, it can be used to shed light onto 

specificity within TCR-Seq data. In 2017, for instance, Huang et al. showed an 

association between expanded TCR clones and tumour burden in patients with stage 
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IV melanoma (A. C. Huang et al., 2017). This concept will be extensively discussed 

in Chapter 3, in the context of NSCLC. 

 

In addition, as presented in Section 1.4, several methods have been developed to 

indirectly characterise antigenic specificity within TCR-Seq data intrinsically, relying 

on amino acid motifs usage, and are starting to be applied to immuno-oncology. 

Deriving meaningful metrics from such analysis is challenging but can prove useful, 

which will be discussed in sections of Chapter 3, Chapter 4 and Chapter 5. 

1.5.3 Spatial and temporal heterogeneity 

As seen in Sections 1.1, 1.2 and 1.3, within a single individual, both the cancer and 

the TCR repertoire are highly dynamic in space and time, and the sequencing of a 

particular specimen at a particular point in time will provide an incomplete view, as 

mentioned in Section 1.4.4. In addition, the cancer and TCR repertoire of an 

individual are evolving interdependently and changes in one will most certainly 

induce changes in the other. 

 

The metastatic setting is immediately relevant to the question of TCR repertoire 

spatial heterogeneity. In 2013, Emerson et al. showed in a small cohort of 5 

metastatic ovarian cancer patients that there was a striking coherence of the 

intratumoural TCR repertoire across different tumour regions of the same patient 

compared to matched blood samples (Emerson et al., 2013). In contrast, in 2017 

Reuben et al., highlighted a very heterogeneous TCR repertoire across metastatic 

sites of melanoma patients, with an observed proportion of overlapping clones below 

8% on average (Reuben et al., 2017). Descriptions of the TCR repertoire in the 

metastatic setting were also conducted in glioblastoma (Feng et al., 2017), breast 

(Wang et al., 2017) and gastric cancer (Kuang et al., 2017), depicting a complex 

picture of both overlapping and private TCRs across metastatic sites. 

 

Similar to the cancer genomic landscape, the intratumoural TCR repertoire has also 

been described to present heterogeneity within a single site, and not only across 

distant sites. In 2013, Gerlinger et al., demonstrated that distinct tumour regions 

harvested from the primary sites of a cohort of clear cell renal cell carcinoma patients 

systematically contained private TCRs and that the prevalence of TCRs not found 
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across all regions could reach up to 93%. Similar observations were made in 

oesophageal squamous cell carcinoma (M. F. Chen et al., 2016) and localised lung 

adenocarcinomas (Reuben et al., 2017). Chapter 3 will discuss a model showing that 

such heterogeneity is not random in a non-small cell lung cancer patients cohort. 

 

Finally, as mentioned above, the temporal heterogeneity of the TCR repertoire also 

seems to contain important information about the immune response to cancer. Both 

maintenance and replacement of TCRs have been observed intratumourally and in 

the blood of cancer patients, between separate time-points. Depending on the 

setting, it is still unclear what signal is a direct consequence of treatment or a simple 

correlation. For instance, in 2019, Yost et al. described a clear TCR replacement 

phenomenon occurring in basal or squamous cell carcinoma patients treated with 

PD-1 blockade, which however did not associate with response or non-response 

(Yost et al., 2019). Chapter 4 will specifically discuss maintenance and replacement 

of TCRs upon anti-PD-1 treatment in a cohort of metastatic renal cell carcinoma 

patients. 

1.5.4 Linking TCRs and T cell phenotypes 

As briefly mentioned in Section 1.2.3, the TME is itself a very heterogeneous system 

and the T cell compartment alone contains a complex gradient of phenotypes which 

is still being actively characterised. This is a very important component of TCR 

repertoire analysis as the same TCR found on a regulatory CD4 T cell, a naive CD8 

T cells or a cytotoxic CD8 T cell will have a drastically different role in the immune 

response to cancer. Cancer specific TCRs have been robustly associated to late 

differentiated CD8 phenotypes, often expressing PD-1 but this vision has been 

refined with the recent development of paired RNA and TCR single-cell sequencing. 

 

In 2019, Li et al. showed in a cohort of 25 melanoma patients that the most expanded 

TCR clones, hypothesised as enriched for tumour specificity, were predominantly of 

the CD8 dysfunctional phenotype (displaying high levels of PD-1 expression) but 

also comprised of cytotoxic, memory, transitional and even naive like cells, indicating 

a gradient of phenotypes sharing the same expanded TCRs (H. Li et al., 2019). 
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In the context of nivolumab treatment, Yost et al. showed transition of CD8 T cells 

from one phenotype to another in basal and squamous cell carcinoma patients. In 

addition to exact TCR matches, the authors leveraged CDR3 amino acid clustering 

via GLIPH (Glanville et al., 2017) to show that frequent transition were observed 

between memory and activated states. As mentioned above, no association with 

response was observed and the phenotype(s) of T cells that respond to anti-PD1 

therapy remain(s) to be fully determined (Yost et al., 2019). 

 

Integrating transcriptomic information to TCR data at the single cell level is still a 

novel challenge which is seeing a growing number of attempts to normalise 

approaches and interpretation. This year, Zhang et al. proposed an interesting 

approach combining both CDR3 sequence based distances and transcriptomic 

distances when comparing single cells. They show that the two types of distances 

are highly correlated in healthy controls but not in tumour samples, confirming active 

transition between T cell phenotypes in the TME (Zhang, Xiong, Wang, Liu, & Wang, 

2021). 

 

Such analysis is only beginning to reveal that combining TCR-Seq and RNA-Seq at 

the single-cell level contains more information than the summation of both and that 

elaborate integration approaches has the potential to unravel novel biology rather 

than simply confirming what has already been described. Chapter 5 will present a 

project that aims to integrate scTCR-Seq and scRNA-Seq in order to reveal novel 

specificities against cancer in a cohort of childhood B-ALL patients. 

 

1.6 Aims of the thesis 

In this chapter, I gave a brief view of key concepts of immuno-oncology, namely the 

evidence for the existence of an endogenous immune response to cancer in many 

settings and the evidence that tumour cells often escape this response. After 

highlighting that the recognition of cancer cells by T cells through the MHC-peptide-

TCR interaction is at the heart of this immune response and several immune-escape 

mechanisms, I introduced the notion of the TCR repertoire. Finally, I detailed the 

different aspects of the TCR repertoire that can be measured today, the techniques 
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that exist and the main applications of TCR repertoire data analysis, including its 

importance in cancer research. 

 

As mentioned in the previous section, in cancer research, TCR-Seq data has already 

proven useful as a biomarker of response to treatment in certain contexts and has 

already been used to unravel numerous insights into the immune response to 

cancer. However, a proportion of the studies mentioned above fail to converge 

towards a shared understanding of how TCR-Seq data behaves and how to interpret 

it. Whether it is a cause or a consequence of the previous statement, a joint 

observation is that analytical gold standards dedicated to TCR-Seq have not yet 

emerged. There is currently no tool dedicated to the analysis of TCR-Seq data that 

is equivalent to what DESeq2 (Love, Huber, & Anders, 2014) or edgeR (Robinson, 

McCarthy, & Smyth, 2010) are to RNA-Seq or to what Seurat (Satija, Farrell, 

Gennert, Schier, & Regev, 2015) is to scRNA-Seq. 

 

The lack of interest for developing such tools is partially explained by the fact that 

TCR-Seq is, today, mainly considered as a technique that complements other 

techniques, such as RNA-Seq, and helps confirm findings rather than discover novel 

biology. In this thesis, I aim to demonstrate that TCR-Seq can be used as a powerful 

discovery tool and can be the central driving element in complex multi-omics 

collaborative studies. In particular, just like differential expression analysis can 

capture an insightful signal in RNA-Seq data or the expression profile of a particular 

cluster of cells in scRNA-Seq data can identify cytotoxic T cells, there are questions 

in immuno-oncology that preferentially benefit from leveraging immune repertoire 

data. 

 

In this thesis, I analyse TCR-Seq data in three different clinical oncology scenarios 

to ask the following fundamental questions: 

 

1. Can cancer-specific TCRs be identified and distinguished from non-cancer-

specific TCRs? 

2. Can the TCR be used to link T cell specificity to T cell phenotype? 

3. What features of the intratumoural TCR repertoire relate to clinical features 

of cancer? 
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The three separate result chapters of this thesis present the metrics that can be 

extracted with which to address these questions in TCR-Seq data in a range of 

situations, from clean, dedicated TCR-Seq data to noisy, repurposed bulk repertoire 

data. Some metrics are common to all projects and some are tailored to data-specific 

requirements, showcasing the versatility of TCR-Seq data analysis. In each project, 

TCR-Seq data analysis revealed key insights that were further integrated with 

matched –omics data in order to identify and characterise features consistent with 

antigen exposure in NSCLC, metastatic ccRCC and childhood B-ALL.



Chapter 2. Materials and Methods 

In this chapter, I outline the bioinformatics and experimental procedures adopted 

throughout the thesis. As mentioned in Section 1.4.2, unless stated otherwise, all the 

sample collection, experimental procedures, library preparation, sequencing and 

low-level processing were performed by colleagues. Details of contribution are given 

at the beginning of Chapter 3, Chapter 4 and Chapter 5. All high-level bioinformatics 

analyses and visualisations are my own work and were carried out in the R statistical 

environment, unless otherwise specified. 

2.1 Datasets 

2.1.1 Lung TRACERx cohort 

All patients within the study presented in Chapter 3 were recruited to the Tracking 

Cancer Evolution through therapy (Rx) (TRACERx) study (Research Ethics 

Committee no. 13/LO/1546). Patients with sufficient RNA from at least two tumour 

regions were selected for the TCR sequencing study. Samples from adjacent non-

tumour lung and peripheral blood mononuclear cells (PBMCs) taken at the time of 

resection as well as a number of follow-up PBMC samples were sequenced 

whenever available. All tissue specimens were reviewed by a lung pathologist before 

being selected, as previously described (Jamal-Hanjani et al., 2017). For all 

analyses, data was locked on April 2018. 

 

TCR-sequencing and pre-processing 
TCR α-chain and β-chain sequencing was performed by utilising whole RNA 

extracted from NSCLC tumour samples and non-tumour lung tissue or from 

cryopreserved PBMC samples using the Chain protocol extensively described in 

Oakes et al., 2017. TCR identification, error correction and CDR3 extraction was 

performed using the Decombinator suite (Peacock, Heather, Ronel, & Chain, 2020; 

N. Thomas, Heather, Ndifon, Shawe-Taylor, & Chain, 2013). 
 
DNA&RNA-sequencing and pre-processing 
Whole-exome sequencing and subsequent non-synonymous mutation calling of 

multi-region tumour specimens and matched germline samples derived from whole 
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blood were performed as detailed in Jamal-Hanjani et al., 2017. All mutations 

classified as non-synonymous variants plus all mutations that introduced or removed 

a stop codon or introduced a frame shift were selected for further analysis. As 

detailed in Joshi et al. 2019, all mutations were classified as present or absent based 

on a 10% variant allele frequency (VAF) threshold and subsequently classified as 

ubiquitous if present in all regions of a tumour and regional if absent from at least 

one region.  
 

RNA was extracted by using a modification of the AllPrep kit (Qiagen) as described 

in Jamal-Hanjani et al., 2017. The prepared libraries were size-selected and 

multiplexed, and underwent quality control before paired-end sequencing. FASTQ 

data underwent quality control and were aligned to the hg19 genome with STAR 

(Dobin et al., 2013). Transcript quantification was performed using RSEM (B. Li & 

Dewey, 2011) with default parameters. 

 

RNA sequencing of sorted TIL subsets and pre-processing 
The BD FACSAria II flow cytometer was used to sort CD8+ TILs from NSCLC 

samples obtained from CRUK0017, CRUK0024 and CRUK0069. CD8+ TILs were 

sorted into two populations: (i) CD45RA-CCR7-CD57-PD-1+ cells and (ii) all other 

CD8+ T cells (‘not gate’). All cells were sorted into TRIzol followed by phenol-

chloroform RNA extraction. Subsequent RNA extraction and sequencing was 

performed as detailed in Joshi et al., 2019. 

 
To search for tumour-expanded TCRs within the RNA-Seq data, a tailor-made script 

in R was used. Briefly, the algorithm gives an estimate of the proportion of the TCRs 

present in a particular sample that can be attributed to the set of expanded TCRs in 

the tumour as a whole. More details can be found in Joshi et al., 2019. 

 

scRNA-sequencing of neoantigen-reactive T cells and pre-processing  
CD8+ T cells targeted against a clonal neoantigen (arising from the mutated MTFR2 

gene) in NSCLC tumour regions derived from patient L011 were previously identified 

by the Quezada group and the Swanton group (McGranahan et al., 2016). The 

staining of neoantigen-reactive T cells was based on dual-fluorescent multimer 
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labelling, using a freshly thawed vial of cryopreserved TILs from the same patient. 

Multimer-positive and multimer- negative single CD8+ T cells from NSCLC 

specimens were sorted and subjected to scRNA-Seq as detailed in Joshi et al., 2019. 

 
The bioinformatic reconstruction of TCRs from single-cell RNA-Seq data was 

performed with a modified version of Decombinator 

(https://github.com/innate2adaptive/Single-Tag-Decombinator). 

 

2.1.2 ADAPTeR cohort 

All patients within the study presented in Chapter 4 were recruited to the study of 

Anti-PD1 (Nivolumab) Therapy as Pre- and Post-operative Therapy in Metastatic 

Renal Cell Cancer (ADAPTeR) (NCT02446860). ADAPTeR is a single-arm, open-

label, phase 2 study of nivolumab therapy as pre-operative therapy in metastatic 

ccRCC. Response status was derived from the Response Evaluation Criteria in Solid 

Tumours (RECIST) score as detailed in Au et al., 2021. ADAPTeR was initially 

approved by NRES Committee London Fulham on 01/12/2014. ADAPTeR is 

performed in accordance with the ethical principles in the Declaration of Helsinki, 

Good Clinical Practice and applicable regulatory requirements. For all analyses, data 

was locked on December 2018. 
 

For translational study sample collection, baseline tumour biopsy via appropriate 

guidance (ultrasound or computer tomography) at least three days and up to 14 days 

prior to starting nivolumab was obtained. Where possible, multiple regions of 

nephrectomy specimen were sampled, as well as image guided biopsy of regressing 

lesions or at disease progression either at site of progression or, if not possible, 

percutaneous primary renal tumour biopsy, prior to commencement of any 

subsequent treatment. Blood samples were collected at each tumour sampling time-

point.  

 
Autopsy samples from ADR001, ADR005 and ADR015 were obtained through the 

Posthumous Evaluation of Advanced Cancer Environment (PEACE) Study (NIHR 

18422; NCT03004755), where samples are harvested within 48 hours from death. 
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TCR-sequencing and pre-processing 
TCR α-chain and β-chain sequencing and processing through Decombinator were 

performed by utilising whole RNA extracted from tumour samples or from 

cryopreserved PBMC samples as described above for the lung TRACERx bulk TCR 

cohort. 
 
DNA&RNA-sequencing and pre-processing 
RNA was co-extracted from fresh-frozen tumour tissue using AllPrep DNA/RNA mini 

kit (Qiagen) as detailed in Au et al., 2021. As described above for lung, the prepared 

libraries were size selected and multiplexed, and underwent quality control before 

paired-end sequencing. FASTQ data underwent quality control and were aligned to 

the hg19 genome with STAR. Transcript quantification was performed by using 

RSEM with default parameters. Samples with less than 15,000 genes detected were 

excluded. 

 

scRNA-sequencing and pre-processing  
Tumour infiltrating lymphocytes from ADR001 and ADR013 were stained with CD3 

and IgG4 antibodies for flow cytometry. Stained cells were FACS sorted as 

CD3+IgG4- (40,000 cells) and CD3+IgG4+ (20,000 cells) for ADR001 and CD3+IgG4- 

(50,000 cells) and CD3+IgG4+ (90,000 cells) for ADR013. FACS sorted cells were 

single cell sorted using the 10X Genomic machine. The sorted cells were processed 

using the 10X Genomic Chromium Next GEM Single Cell 5’ Reagents Kit V2 (dual 

index) for 5’gene expression library construction and V(D)J library construction. The 

samples were sequenced on the NextSeq using the High Output Kit v2.5 (150 

Cycles). 

 

FASTQ files containing gene expression (GEX) and VDJ were demultiplexed using 

cellranger mkfastq (https://github.com/10XGenomics/cellranger). GEX reads were 

aligned to GRCh38 and counted using cellranger count, VDJ reads were aligned to 

cellranger’s GRCh38 VDJ reference dataset using cellranger vdj. Expression 

matrices were analysed using the Seurat package version 3 (Stuart et al., 2019) and 

QC was performed as detailed in Au et al., 2021. 8382 CD3+IgG4- and 10083 
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CD3+IgG4+ cells in ADR013; and 4648 CD3+IgG4- and 3343 CD3+IgG4+ cells in 

ADR001 were retained after QC. 

2.1.3 B-ALL cohort 

Ethical approval was given for use of appropriately consented material from patients 

with B cell acute lymphoblastic leukaemia at the Great Ormond Street Hospital for 

Children (London, UK) and at the Royal Hospital for Children (Bristol, UK). All 

samples within the study presented in Chapter 5 were processed in the MRD 

laboratory at Great Ormond Street Hospital for Children and the Bristol Genetics 

Laboratory at Southmead Hospital, Bristol. 

 
Repertoire sequencing and pre-processing 
For the BIOMED-2 cohort, bone marrow mononuclear cell (BMMC) samples were 

processed using the protocol described by Bartram et al. in 2016, in which the 

IGH/TCR amplification step consists of a two stage PCR based on the BIOMED-2 

family primers (Bartram et al., 2016; van Dongen et al., 2003). 

 

In order to reconstruct the CDR3 region of IG and VDJ re-arrangements, FASTQ 

files were processed with MiXCR’s analyse amplicon pipeline with default 

parameters (Bolotin et al., 2015). 

 

All .clonotypes.*.txt files (TRA, TRB, TRG, IGH, IGK, IGL) but .clonotypes.TRD.txt 

(https://github.com/milaboratory/mixcr/issues/541#issuecomment-545963300) were 

pooled per sample and used for downstream analysis. 

 

Single-cell RNA and VDJ-sequencing and pre-processing  
For patients 913304, 1017078 and 1020374, freshly thawed vials of BMMCs were 

stained for cell surface markers at 4C in the dark and DAPI added to sort buffer at a 

final concentration of 1µg/ml to exclude dead or dying cells. Up to 100,000 live CD3+ 

T cells (LIVE, CD3+, CD19-, CD56-) and 100,000 leukaemia cells (LIVE, CD3-, CD19+, 

CD10+) were sorted separately into cold PBS + 0.04% BSA, with cell counts 

determined by the sorter. Cells were counted manually, using trypan blue to assess 

viability and confirm cell counts, spun (350g, 5 min 4°C) and re-suspended in PBS + 
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0.04% BSA at a final concentration of 1000 cells/µl. T cells and leukaemia cells from 

each sample were combined at a 9:1 ratio for capture on the 10X Chromium 

Controller. 

 

As described above for the ADAPTeR scRNA-Seq and scTCR-Seq data sets, the 

sorted cells were processed using the 10X Genomic Chromium Next GEM Single 

Cell 5’ Reagents Kit V2 (dual index) for 5’gene expression library construction and 

V(D)J library construction. The samples were sequenced on the NextSeq using the 

High Output Kit v2.5 (150 Cycles). FASTQ files containing gene expression (GEX) 

and VDJ were de-multiplexed using cellranger mkfastq (10x Genomics). GEX reads 

were aligned to GRCh38 and counted using cellranger count, VDJ reads were 

aligned to cellranger’s GRCh38 VDJ reference dataset using cellranger vdj.  

 

Expression matrices were analysed using the Seurat package version 4 (Hao et al., 

2020). For the VDJ data, the filtered_contig_annotations.csv files (generated with 

the cellranger vdj method) were loaded into R as data frames using the read.csv 

command. For simplicity and continuity with the B-ALL BIOMED-2 repertoire cohort, 

only beta chains were considered. For each sample, clonotypes were defined by 

unique beta CDR3 re-arrangement. Only productive CDR3 re-arrangements were 

considered (cdr3 != “None”) and cells expressing more than one productive beta re-

arrangement were excluded from further analysis. 

2.2 TCR Metrics 

2.2.1 Clonality 

For the lung TRACERx bulk TCR cohort, the ADAPTeR bulk TCR cohort and the B-

ALL BIOMED-2 cohort, the clonality index defined as 1 – the normalised Shannon 

entropy was estimated for each sample by using the command entropy from the 

entropy R package, on the basis of the observed frequency of the TCRs in that 

sample. 

𝐶𝑙𝑜𝑛𝑎𝑙𝑖𝑡𝑦 = 1 + ( 𝑝* ∙ ln(𝑝* )/ln(𝑁) 

where 𝑝*  is the frequency of the ith TCR in the repertoire and 𝑁 is the number of TCRs 

in that repertoire.  
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For the B-ALL BIOMED-2 cohort and the lung TRACERx bulk TCR cohort, to smooth 

out library size bias, the clonality score was computed as the arithmetic mean of 100 

repetitions of the above formula computed for a random subset of 1000 total TCRs, 

per sample. 

2.2.2 Classification of expanded/outlying TCR 

For the ADAPTeR bulk TCR cohort and the lung TRACERx bulk TCR cohort, TCRs 

present in a sample above a threshold frequency of 2/1,000 were labelled as 

expanded. This threshold was optimised for the lung TRACERx bulk TCR cohort 

(Joshi et al., 2019). 

Tissue specific expansion 

For the lung TRACERx bulk TCR cohort, the relative abundance of the TCRs in the 

tumour (averaged over all regions) versus in paired non-tumour lung from the same 

patient was computed. The P value for the difference in abundance between tumour 

and non-tumour lung was calculated with the poisson.test function from the stats R 

package. 

Longitudinal expansion/contraction  
For the ADAPTeR bulk TCR cohort, the relative abundance of the TCRs in the pre-

treatment sample versus the abundance in paired post-treatment sample from the 

same patient was computed for both the tumour compartment and the blood 

compartment, separately. As described above, the P value for the difference in 

abundance between pre- and post- was calculated with the poisson.test function in 

R. 

 
Outlier detection 
For the B-ALL BIOMED-2 cohort, the labelling of outlying re-arrangements was 

performed via a two-step process. Firstly, a derivative of the IQR outlier detection 

method was applied on the group (Ω) of re-arrangements with frequencies only 

observed once in the sample, corresponding to a y axis value equals to 1 on the log-

log plots displayed in Figure 5.2. These frequencies were compared to the following 

threshold value: 



Chapter 2 Materials and Methods 

 

58 

 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑄Q + 2.5×(𝑄Q − 𝑄V) 

where 𝑄V and 𝑄Q are the first and third quartiles of frequency values within Ω. If a 

given frequency was above this threshold, the corresponding re-arrangement was 

labelled as outlying.  

 

Secondly, all log-log plots resulting from step one were manually screened to assess 

whether the threshold computed as above was splitting the data at a reasonable 

value. If the threshold value was not reasonable (for example classifying re-

arrangements as aberrant when they did not appear as outliers by visual inspection 

when plotted), a more appropriate threshold was manually picked and re-applied to 

the sample. 

2.2.3 Pairwise similarity 

For the lung TRACERx bulk TCR cohort, the ADAPTeR bulk TCR cohort and the B-

ALL BIOMED-2 cohort, the similarity between two TCR repertoires was assessed 

with the normalised dot product (also known as the cosine similarity) between the 

vectors of TCR abundance. The similarity between the two vectors is given as: 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 	
𝑇𝐶𝑅V ∙ 𝑇𝐶𝑅X
𝑇𝐶𝑅V × 𝑇𝐶𝑅X

 

where 𝑇𝐶𝑅V and 𝑇𝐶𝑅X are the abundance vectors, ∙ represents the vector product 

and paired vertical bars represent the Euclidean norm of the vector.  

2.2.4 Spatial diversity 

For the lung TRACERx bulk TCR cohort, an additional spatial diversity score was 

computed per patient. The normalised Shannon diversity was estimated for each 

expanded TCR by using the command entropy.empirical from the entropy R package 

(Hausser & Strimmer, 2009) on the basis of the observed frequency of the TCR 

across all regions as: 

𝐻 = −( 𝑝* ∙ ln	(𝑝* )/ln	(𝑁)) 

where 𝐻 is the diversity, 𝑝* is the observed frequency in the ith region and 𝑁 is the 

number of regions. 𝑝*   is obtained by dividing the observed frequency in region i by 

the sum of the frequencies across regions such that 𝑝* = 1. 𝐻 lies between 0 

(TCR found in one region only) and 1 (TCR evenly found across all regions). To 
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derive a metric for each patient, the average of the diversity scores obtained for all 

expanded TCRs was computed. 

  

A similar index was used to calculate the genomic mutational diversity. In this case, 

Shannon diversity was obtained for each nonsynonymous mutation with the same 

formula, where  𝑝* was obtained by dividing the observed corrected prevalence of the 

mutation in the ith region by the sum of the corrected prevalence across regions such 

that 𝑝* = 1.  

2.2.5 Ubiquitous and regional definition 

In the lung TRACERx bulk TCR cohort, expanded intratumoural TCRs were 

subsequently classified as ubiquitous or regional. First, the probability that a TCR 

was absent from a region owing to sampling was determined. For each TCR, the 

likelihood of the data given two alternative models was compared. In model 1 (the 

null model), the TCR counts are drawn from a single Poisson distribution with the 

mean equal to the mean of all regions. In model 2, the TCR counts are drawn from 

a mixed distribution where one or more regions has no TCR with a probability of 1, 

and the remaining regions are drawn from a Poisson distribution. Then, the log-

likelihood ratio between the two models was calculated. Finally, for each TCR, both 

models were run 1,000 times, drawing independent deviates from a Poisson 

distribution with the mean equal to the mean of all regions. The proportion (p) of 

simulations in which the log-likelihood ratio was greater or equal to the one observed 

with the real data was calculated. This procedure gives a non-parametric estimation 

of the P value correcting for the increased complexity of model 2. The algorithm was 

implemented in R and was run on all TCRs in each tumour. A TCR was deemed 

absent if the P value (corrected for multiple testing) was less than 0.05 (TCRs where 

the null model was significantly less likely to explain the data than the alternative 

model 2).  

 
Expanded TCRs were then classified as regional if they were absent from at least 

one region of the tumour. Otherwise, they were classified as ubiquitous. Ubiquitous 

TCRs can therefore be absent from the data for specific regions but this is attributed 

to sampling rather than true spatial heterogeneity. 
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The same classification strategy was applied to the somatic mutation data obtained 

from matched WES sample. All mutations classified as non-synonymous variants, 

plus all mutations that introduced or removed a stop codon or introduced a frame 

shift were similarly classified as regional or ubiquitous. All mutations with frequencies 

of less than 10% were first labelled as absent and all mutations with frequencies 

greater than 10% as present. Then, each mutation was classified as ubiquitous if it 

was present in all the regions of a tumour and regional if it was absent from at least 

one region.  

2.2.6 CDR3 amino acid clustering 

For the lung TRACERx bulk TCR cohort, the ADAPTeR bulk TCR cohort and the B-

ALL BIOMED-2 cohort, the pairwise similarity between pairs of TCRs was measured 

on the basis of amino acid triplet sharing. Sharing was quantified using the 

normalised string kernel function stringdot (with parameters type = ‘spectrum’, length 

= 3, normalised = TRUE) from the Kernlab package (Karatzoglou, Smola, Hornik, & 

Zeileis, 2004). The kernel is calculated as the number of amino acid triplets (sets of 

three consecutive amino acids) shared by two CDR3s, normalised by the number of 

triplets in each CDR3 being compared. The TCR similarity matrix was converted into 

a network diagram by using the iGraph package in R (Csardi & Nepusz, 2005). Two 

TCRs were considered connected if the similarity index was greater than 0.82. 

For the ADAPTeR bulk TCR cohort, to normalise the counts of clusters obtained 

(Nreal) for the input size for each sample, a random sample (of size equal to the 

number of expanded CDR3s Nin) of CDR3s was drawn and subjected to the same 

clustering strategy. This control step was repeated 10 times for each sample and the 

average number of clusters obtained for those controls (Nctrl) was used to build the 

normalised cluster count value: Nreal/Nctrl. 

For the lung TRACERx bulk TCR cohort, as no inter-patient comparison was 

computed, the normalised cluster count value was simply computed as Nreal/Nin. 
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2.2.7 Cluster diversity 

In the lung TRACERx bulk TCR cohort, for each CDR3 cluster constructed as 

described above, in order to capture the contribution of each possible combination 

of regions to the cluster, the Shannon diversity was computed. If n is the number of 

regions for a given patient, there are N = 2n – 1 possible combinations of regions of 

any given size. The Shannon diversity is given by: 

𝐻 = −( 𝑝* ∙ log	(𝑝* )/ln	(𝑁)) 

where 𝐻 is the diversity, 𝑝* represents the relative contribution of the ith combination  

to the cluster and 𝑁 is the number of combinations. 𝑝* is obtained by dividing the 

count of CDR3s belonging to the ith combination by the total number of CDR3s in the 

cluster such that 𝑝* = 1 . 𝐻  lies between 0 (a cluster composed of CDR3s 

belonging to one combination only) and 1 (a cluster evenly composed of all possible 

combinations). To derive a metric for each patient, the average of diversity scores 

obtained for all clusters was computed.  

2.2.8 Frequency ratio 

For the ADAPTeR bulk TCR cohort, for each expanded TCR at baseline that could 

also be detected after treatment, the ratio of the observed frequency at pre-treatment 

divided by the observed frequency post-treatment was computed. To derive a metric 

for each patient, the average of ratio scores obtained for all pre-treatment expanded 

TCRs was computed. Those that could not be detected after treatment were 

excluded from this analysis.  

2.3 RNA-Seq metrics 

2.3.1 Differential gene expression and gene set enrichment analyses 

In the ADAPTeR bulk TCR cohort, DESeq2 (Love et al., 2014) was used for 

differential expression analysis, using the binomial Wald test after estimation of size 

factors and estimation of dispersion. To identify genes differentially expressed 

between responders and non-responders, only transcripts with normalised count 

number >5 in at least 5 patients were considered. Pathway analysis was performed 

using the R package XGR (Fang, Knezevic, Burnham, & Knight, 2016) using the 
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gene ontology biological process (GOBP) databases (Ashburner et al., 2000; Gene 

Ontology, 2021). Induced and suppressed transcripts were analysed separately 

against the background of all tested transcripts. The “lea” ontology algorithm was 

used. 

2.3.2 Danaher immune score 

For the lung TRACERx bulk TCR cohort and the ADAPTeR bulk TCR cohort, the 

Danaher immune score was evaluated using RSEM abundance, z score scaled 

across all samples for which RNA-Seq was available. The Danaher immune score is 

a 60-marker gene signature derived from pan-cancer RNA-Seq analysis for 14 

immune cell populations, where marker genes have been benchmarked against 

histological tumour-infiltrating lymphocyte (TIL) estimates and flow cytometry data 

(Danaher et al., 2017): 

 

(1) Danaher Tcells: CD3D, CD3E, CD3G, CD6, SH2D1A, TRAT1	

(2) Danaher CD8: CD8A, CD8B	

(3) Danaher Cytotoxic: CTSW, GNLY, GZMA, GZMB, GZMH, KLRB1, KLRD1, 

KLRK1, PRF1, NKG7 

(4) Danaher Bcells: BLK, CD19, MS4A1, TNFRSF17, FCRL2, KIAA0125, PNOC, 

SPIB, TCL1A	

(5) Danaher NKcells: NCR1, XCL2, XCL1	

(6) Danaher CD45: PTPRC	

(7) Danaher DC: CCL13, CD209, HSD11B1	

(8) Danaher CD8Ex: CD244, EOMES, LAG3, PTGER4	

(9) Danaher Mac: CD163, CD68, CD84, MS4A4A	

(10) Danaher Mast: MS4A2, TPSAB1, CPA3, HDC, TPSB2	

(11) Danaher Neut: CSF3R, S100A12, CEACAM3, FCAR, FCGR3B, FPR1, 

SIGLEC5	

(12) Danaher NKCD56: IL21R, KIR2DL3, KIR3DL1, KIR3DL2	

(13) Danaher Th1: TBX21	

(14) Danaher Treg: FOXP3 

 

For each signature, the signature score was calculated as the mean of z-score 

scaled expression of all genes in that signature, and this for each sample.  
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2.4 scRNA metrics 

2.4.1 QC 

For the B-ALL 10X cohort, one Seurat object was created for each sample with the 

Read10X function performed on the filtered_feature_bc_matrix folder, obtained with 

the cellranger count method. A first round of basic Seurat QC was applied to each 

Seurat object with defaults parameters (min.cells = 5, nFeature_RNA > 200, 

nFeature_RNA < 2500 and percent.mt < 5). Then, the four samples were merged 

into one using the merge function and the Seurat functions NormaliseData, 

FindVariableFeatures, ScaleData, RunPCA were sequentially run on the merged 

object with default parameters. Clustering and UMAP was then performed with the 

FindNeighbors, FindClusters and RunUMAP functions with a clustering resolution of 

0.5 and using the first 30 principal components (PCs). A UMAP projection of cells 

overlaid with expression of CD3E enabled to immediately separate T cells from 

leukaemic cells and to identify one cluster with mixed expression that was excluded 

from further analysis. Barcodes identifying T cells were stored as a separate Seurat 

object. 

 

Following this first step, a second round of basic Seurat QC was applied to the initial 

Seurat objects created via the Read10X function, this time with less stringent filtering 

(min.cells = 2, nFeature_RNA > 200 and percent.mt < 10) as leukaemic cells were 

much less numerous and expected to be transcriptionally damaged. The procedure 

described above was then applied with the resolution parameter set to 0.8. Again, a 

UMAP projection of cells overlaid with expression of CD3E enabled to immediately 

identify the three clusters of leukaemic cells, which were extracted and stored as a 

separate Seurat object. 

2.4.2 Integration 

Following the construction of the T cell object and the leukaemic cell object, an 

integration procedure aimed at smoothing out any potential batch effect was applied 

to the former but not to the latter, as T cells were expected to be similar across 
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samples whereas leukaemic cells were expected to be extremely different between 

B-ALL patients (Caron et al., 2020). 

 

The T cell Seurat object was split back into four separate objects (one per individual) 

and the Seurat functions NormaliseData, FindVariableFeatures were reapplied to 

each object with default parameters. The FindIntegrationAnchors and IntegrateData 

functions were then ran on the first 20 dimensions. Then, the functions ScaleData, 

RunPCA, RunUMAP, FindNeighbors and FindClusters were run on the integrated 

assay with the same parameters as above. 

2.4.3 GSE132509 mapping 

The filtered_feature_bc_matrix folders from Caron et al., 2020 were downloaded 

from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132509). Each 

sample was imported as a Seurat object into R with the Read10X function and 

merged as described above. The strategy described above to separate T cells from 

leukaemic cells was applied in the same way. The resulting object was split back into 

one T cell object per sample and only samples with at least 200 T cells were kept for 

further analysis and integrated back together with the method described in the 

previous section. 

 

The resulting integrated object was then mapped onto the primary T cell object built 

as described in the previous section by sequentially applying the Seurat functions 

SCTransform, FindTransferAnchors and MapQuery on the first 20 PCs.  

2.4.4 CellphoneDB 

To analyse cell-cell interactions between leukaemic populations and T cell 

populations, the counts and cluster labels were extracted from the RNA assay of the 

pooled Seurat object and the statistical analysis method of the cellphoneDB 

algorithm (Efremova, Vento-Tormo, Teichmann, & Vento-Tormo, 2020) was ran on 

all populations together with default parameters. The resulting interactions were then 

extracted from the significant_means.txt output file and split per patient, only 

retaining significant interactions between a T cell population on one side and a 

leukaemic population on the other.



Chapter 3. Identification of distinct TCR populations 
that spatially mirror the genomic profile of NSCLC 
tumours 

3.1 Introduction 

The lung TRACERx study is a large prospective multi-institutional study (Jamal-

Hanjani et al., 2014) that aims to describe the genomic evolution of NSCLC and the 

impact of tumour genomic and immune heterogeneity on disease progression 

through the analysis of multi-region tumour samples. Led by Professor Swanton’s 

group, recruitment began in April 2014 and has recruited over 700 patients so far. 

The study provides a unique opportunity to explore the heterogeneity of the 

intratumoural immune landscape in NSCLC and how it relates to the genomic 

heterogeneity that has been described in that disease. 

 

The analysis of whole-exome sequencing (WES) data of tumour specimens from the 

first 100 Lung TRACERx cases revealed high levels of intratumoural heterogeneity 

in the mutational and copy-number profile of these tumours, driven by genome 

doubling and chromosomal instability (Jamal-Hanjani et al., 2017). In a separate 

study, Rosenthal et al. demonstrated that the TME exerts a selective pressure on 

the tumour that triggers various immune escape mechanisms directed towards 

impairment of neoantigen presentation (Rosenthal et al., 2019). This work shows the 

importance of antigen presentation for an effective anti-tumour immune response 

which suggests that the corresponding recognition by T-cells through TCR signalling 

is equally important. 

 

Taken together, these data suggested that the genomic heterogeneity that is 

described in NSCLC should be mirrored in the TCR repertoire of TILs and that the 

description of the immune landscape of NSCLC through the lens of TCR sequencing 

would provide novel insights on the anti-tumour immune response. 

 

In this chapter, I carry out an in-depth analysis of the TCR repertoires of multi-region 

tumour samples, matched adjacent non-tumour tissue and PBMC samples form 72 
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TRACERx patients with early stage NSCLC. Firstly, I reveal a pattern of 

heterogeneity in the TCR repertoire resembling the heterogeneity observed in the 

matched mutational profile of these patients and a range of clonotype frequency 

values associated with tumour specificity. I also describe how a novel method was 

built in order to identify distinct TCR populations that spatially follow the pattern of 

the well-established clonal/subclonal mutational dichotomy. Secondly, I provide 

indirect characterisation of these TCR populations through integration of matched 

transcriptomic data and in-depth analysis of networks of similar CDR3 amino acid 

chains associated with antigenic specificity. Lastly, I demonstrate that these TCRs 

can be detected in the blood, which is critical for potential clinical applications of this 

work.  

 

The TRACERx project is a collaborative effort involving multiple research groups. 

Details of individual contributions to the work presented in this chapter are as follows. 

Sample acquisition, preparation and sequencing were jointly done by Kroopa Joshi 

(oncologist at the Royal Marsden, formerly PhD student in the Quezada group), 

Imran Uddin (single cell genomics technician, single cell genomics facility, UCL, 

formerly lab technician in the Chain group) and Annemarie Woolston (post-doctoral 

fellow in the Chain group). Processing of raw FASTQ sequence data from TCR 

repertoire sequencing and single cell RNA-Seq was performed by Mazlina Ismail 

(post-doctoral fellow in the Attard group, formerly PhD student in the Chain group). 

Processing of raw FASTQ sequence data from RNA sequencing and prediction of 

neoantigen load was carried out by Rachel Rosenthal (Senior Bioinformatician at 

Achilles Therapeutics UK Limited, formerly PhD student in the Swanton group). The 

algorithm for CDR3 clustering and the custom script developed to detect pre-defined 

TCRs in RNA-Seq data were conceived by Benny Chain. Neoantigen reactive T cell 

experiments and FACS experiments were carried out by James Reading (group 

leader at UCL Cancer Institute, former post-doctoral fellow the Quezada group). I 

performed all downstream bioinformatics analysis and data visualisation. The data 

presented in this chapter of the thesis largely forms sections of a published 

manuscript (Joshi et al., 2019). 



Chapter 3 Results 

 

67 

 

3.2 Results 

3.2.1 Identification of TCRs enriched in tumour compared to non-tumour 

Based on availability of RNA from multiple tumour regions, 60 patients within the 

TRACERx 100 cohort and 12 additional TRACERx post-100 patients were selected 

(Figure 3.1). Taken together, the TCR repertoires (both α-chain and β-chain) from 

220 tumour regions, 64 matched non-tumour lung tissue samples and 56 PBMC 

samples taken at the time of primary surgery were sequenced. In addition, the TCR 

repertoires of 14 follow-up PBMC samples were sequenced (median time to follow-

up was just under two years). The selection of patients covered a large range of 

mutational and clinical profile (Figure 3.2), offering the opportunity to explore how 

characteristics of the TCR repertoire fit with different clinical features often used to 

describe NSCLC tumours. 

 

 
Figure 3.1 Lung TRACERx patient selection 

CONSORT diagram showing the selection of lung TRACERx patients for TCR 
sequencing. 
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Figure 3.2 Description of Lung TRACERx patient cohort 

The total number of non-synonymous mutations (clonal and subclonal) and patient 
clinical characteristics (histology, stage, smoking status and clinical outcome).  
 
The median number of total and unique TCRs retrieved was higher for β-chain than 

for α-chain in tumour samples (Figure 3.3), probably reflecting the fact that there are 

more RNA molecules per cell for β sequences than for α sequences (Oakes et al., 

2017). However, the total numbers of α- and β- chains were highly correlated, 

indicating that any metric derived in one compartment should be mirrored in the other. 

For that reason and for clarity purposes, if not otherwise specified, all data presented 

in this chapter and throughout the thesis was based on the β repertoire. In particular 

all analyses performed in this chapter were repeated successfully in the α repertoire 

and can be found in Joshi et al., 2019. 

 
A) B) C) 
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Figure 3.3 Total and unique number of intratumoural α-chain and β-chain 

TCRs sequenced, per tumour region 

The total number of TCR α-chain and β-chain TCRs sequenced (A), the number of 
unique TCR sequences detected (B) and the correlation between the total number 
of TCR α-chain and β-chain segments sequenced (C) in multi-region tumours (n = 
220). For the box plots displayed in (A) and (B) and all box plots in this thesis, the 
minimum and maximum values are indicated by the extreme points of the box plot; 
the median is indicated by the thick horizontal line; and the first and third quartiles 
are indicated by box edge. 
 
Power laws distribution and their associated log-log representation have been 

previously described as a valuable way to model and visualise TCR distributions for 

circulating effector memory T cells in blood (Oakes et al., 2017). In order to capture 

potential immediate differences between tumour and non-tumour repertoire, log-log 

representations of both compartments were plotted for one patient (Figure 3.4). 

Surprisingly, no difference was observed between the two tissue types (the 

distribution parameters fitted to tumour and to non-tumour samples did not differ 

significantly at the cohort level: n = 64 patients, P = 0.16, two-sided Mann–Whitney 

test, see Joshi et al., 2019). 
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Figure 3.4 Log-log representation of intratumoural TCR frequency distribution 

Representative log-log plot (from patient CRUK0046) tumour (red circles) and 
matched non-tumour repertoire (NTL; blue circles). The x axis represents TCR 
abundance (size of clone), and the y axis represents the proportion of the repertoire.  
 
Similarly, when computing the clonality score (see Materials and Methods) to 

measure the diversity of the repertoire, no significant difference was observed 

between the two compartments (Figure 3.5). 

 
Figure 3.5 Tumour and non-tumour TCR repertoire clonality scores, per 
patient 

The normalised clonality score (see Materials and Methods) of tumour regions (n = 
72 patients, with multiple tumour regions pooled from an individual patient; red 
circles) and non-tumour lung samples (n = 64 patients; blue circles). The two-sided 
Mann–Whitney test P value is shown. 
 
As no difference could be observed at the level of the entire repertoire, different 

frequency thresholds were applied in order to focus the analysis on the most 

expanded TCRs, which should intuitively identify more relevant specificities (Figure 

3.6). Such TCRs could be identified at each threshold values, both in tumour and 

non-tumour lung. 
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Figure 3.6 The intratumoural and non-tumour number of expanded TCRs per 

frequency threshold, per patient 

The number of TCRs detected above a given frequency threshold is shown for 
tumour (n = 72 patients; red circles) and matched non-tumour lung (n = 64 patients; 
blue circles). 
 
In order to assess whether such filtering was indeed retaining the most interesting 

part of the intratumoural repertoire, the composition of these groups of TCRs was 

further explored by labelling the TCRs observed at a frequency above 0.002 as 

“expanded”. This cut-off value was selected arbitrarily on the basis of being high 

enough to filter out “bystander” clonotypes and low enough to select a sufficient 

number of TCRs for downstream analysis (a number of metrics are less robust if the 

input size is too small). 

 

The TCRs expanded in the tumour and the ones expanded in the adjacent non-

tumour tissue were both determined and their respective frequency in each 

compartment was compared. A small number of expanded TCRs had a similar 

frequency in both compartments i.e. corresponding to TCRs expanded both in the 

tumour sample and the matched non-tumour sample. However, the majority of 

expanded TCRs had a remarkably larger frequency in the tumour repertoire or in the 

non-tumour. In order to investigate these distributions more closely, the probability 

of each expanded TCR being tumour or non-tumour specific was computed (see 

Materials and Methods, Figure 3.7). 
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Figure 3.7 Differential expansion level of TCRs in tumour and non-tumour 

A volcano plot showing the likelihood (–log10 (P value)) of each expanded TCR being 
tumour or non-tumour specific, plotted against differential expression in tumour 
versus non-tumour lung. Blue circles represent TCRs expanded (>0.002) in non-
tumour lung and red circles represent TCRs expanded in tumour. The horizontal 
dashed line corresponds to P = 0.01; the vertical dashed lines indicate a two-fold 
differential in expression between the tissues. 
 
The vast majority of the intratumoural expanded TCRs was not found in the non-

tumour tissue (mean proportion = 95%) whereas a much lower proportion of the 

TCRs expanded in the non-tumour lung was not found in the tumour tissue (mean 

proportion = 36%) (Figure 3.8). This is likely to be the effect of cancer specific 

antigenic stimulation occurring in the tumour versus expansion driven by common 

non-tumour lung antigens (e.g. respiratory viruses) occurring both in tumour and in 

the adjacent non-tumour tissue. 
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Figure 3.8 Proportion of tissue specific TCRs in expanded tumour and non-

tumour TCRs 

The proportion of expanded tumour or non-tumour lung TCRs that are specific to 
their respective tissue, defined on the volcano plot as TCRs that had adjusted P < 
0.05 and a differential abundance of at least two between the tissues. The two-sided 
Mann–Whitney test P value is shown; n = 72 patients (tumour) and n = 64 patients 
(non-tumour lung). 
 

These data show that applying such a frequency threshold on the intratumoural TCR 

repertoire was indeed enriching for a population of TCRs presenting features 

suggestive of tumour-specificity. 

3.2.2 The number of TCRs expanded in the tumour correlates with the 
number of non-synonymous mutations 

To explore this further, the matched genomic data was integrated with the TCR-Seq 

data by plotting the number of intratumoural expanded TCRs against the number of 

non-synonymous mutations (NSMs) when whole-exome sequencing was available 

(Figure 3.9). The number of expanded TCRs was significantly positively correlated 

with the number of non-synonymous mutations, which suggested that the distribution 

of expanded TCRs in the cohort was following the level of tumours’ neo-antigenicity. 

This supported the hypothesis that specific intratumoural expansion of TCRs was 

driven, at least partially, by neoantigen derived stimulation. 
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Figure 3.9 Correlation between intratumoural expanded TCRs and non-

synonymous mutations 

The correlation between the number of non-synonymous mutations and the number 
of unique intratumoural expanded TCRs (frequency ≥ 2/1,000) for each patient. The 
Spearman’s rank correlation coefficient and P value are shown (n = 59 patients). 
 
Interestingly, this association was robust over a range of cut-off values (Figure 3.10). 

Moreover, the same correlation was run for the number of TCRs expanded in the 

non-tumour lung as a control and no association was observed, agnostic of the cut-

off retained. This was consistent with the hypothesis that the expansion observed in 

the tumour is driven by a cancer specific antigenic signal that is absent in the 

matched non-tumour tissue. 
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Figure 3.10 Summary of correlations between intratumoural expanded TCRs 

and non-synonymous mutations, per frequency threshold 

The Spearman’s rank correlation coefficient and P value (shown above each point) 
for the relationship between the number of non-synonymous mutations and the 
number of unique intratumoural (n = 72 patients; red circles) or non-tumour lung (n 
= 64 patients; blue circles). expanded sequences at different frequencies (ranging 
from all TCRs (threshold of zero) up to those found at a frequency of ≥8/1,000).  
 

3.2.3 The distribution of expanded ubiquitous and expanded regional TCRs 
mirrors the genomic landscape of NSCLC 

To characterise this observation further, the spatial heterogeneity of the association 

between expanded TCRs and mutational burden was evaluated. The frequency of 

expanded TCRs in each individual tumour region was computed for each patient and 

showed a large variety of distribution profiles (Figure 3.11).  
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Figure 3.11 Representative intra-patient distributions of expanded TCRs 

across tumour regions 

Heat maps showing the abundance (log2 of 1 + the number of times each TCR was 
found) of expanded intratumoural TCRs (frequency ≥ 2/1,000) in different tumour 
regions for several patients. Patient ID is shown above each heat map. Each row 
represents one unique sequence, and each column represents one tumour region.  
 

For some patients, expanded TCRs were measured at high expansion levels in each 

one of the available tumour regions whereas some patients displayed a much more 

heterogeneous pattern where most of the expanded TCRs were measured in some 

of the tumour regions but absent in others (Figure 3.11 and Figure 3.12). 

 



Chapter 3 Results 

 

77 

 

 
Figure 3.12 Intra-patient repertoire similarity 

The pairwise intratumoural TCR repertoire similarity is shown for each patient (see 
Materials and Methods). Each circle represents a comparison between two regions 
from the same patient’s tumour. Patients are ordered along the x axis by descending 
mean intratumoural TCR similarity (n = 52 patients). 
 
Given the association observed between mutations and expanded TCRs and the 

previously well described genomic heterogeneity of NSCLC, the potential link 

between the TCR repertoire spatial heterogeneity and the mutational spatial 

heterogeneity was investigated. 

 

In order to capture this hypothetical association, a diversity score was computed for 

each patient, both for the genomic compartment and the TCR repertoire 

compartment which showed that TCR diversity was correlated with genomic diversity 

(Figure 3.13). 
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Figure 3.13 Correlation between TCR repertoire diversity and genomic 

diversity 

TCR repertoire diversity plotted against genomic diversity for each patient. The 
Spearman’s rank correlation coefficient and P value are shown; n = 41 patients.  
 

To explore this observation further, for patients with at least three tumour regions, 

expanded TCRs were sub-classified (see Materials and Methods) as either 

“ubiquitous” (found in every tumour region) or “regional” (absent in at least one 

region). Mutations were sub-classified in the same way (which slightly differs from 

the widely used clonal/subclonal distinction but was better suited for this work, see 

Materials and Methods). Like ubiquitous mutations, expanded ubiquitous TCRs were 

more abundant than regional TCRs (resp. expanded regional mutations, Figure 3.14), 

which suggested that those numbers may be correlated to one another. 

 



Chapter 3 Results 

 

79 

 

 

 
Figure 3.14 The number of non-synonymous mutations and the number of 

expanded TCRs, split between ubiquitous and regional 

(A) The numbers of ubiquitous and regional non-synonymous mutations for each 
tumour region. The two-sided Mann–Whitney test P value is shown; n = 60 patients. 
(B) The numbers of expanded (frequency ≥ 2/1,000) ubiquitous (red circles) and 
regional (grey circles) sequences for each tumour region. The two-sided Mann–
Whitney test P value is shown; n = 52 patients  
 
The number of expanded ubiquitous and regional TCRs were both plotted against 

the number of regional and ubiquitous non-synonymous mutations (Figure 3.15). In 

multivariate regression, the number of expanded ubiquitous (resp. regional) TCRs 

was positively associated with the number of ubiquitous (resp. regional) non-

synonymous mutations but not associated in any way with the number of regional 

(resp. ubiquitous) mutations.  

 

A) B) 
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Figure 3.15 Correlation between the number of non-synonymous mutations and 
the number of expanded TCRs, split between ubiquitous and 
regional 

The number of expanded ubiquitous (top) or regional (bottom) sequences plotted 
against the number of ubiquitous (left) or regional (right) nonsynonymous mutations 
for each tumour region. P values derived from multivariate regression are shown; 
dashed lines correspond to median values. n = 42 patients. 
 

These data supported the hypothesis that tumour specific ubiquitous TCRs are likely 

to recognise ubiquitous mutations whereas regional mutations would only produce a 

spatially constrained antigenic signal, resulting in a spatially constrained expansion 

of TCRs and in turn leading to the presence of regional TCRs. 

 

A) B) 

C) D) 
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3.2.4 Clustering of amino-acid motifs identifies groups of TCRs similar to 
expanded TCRs 

Further evidence to support the hypothesis that the expanded TCRs observed in the 

tumour were part of an antigen-specific response was sought in the amino acid 

content of expanded ubiquitous and regional TCRs. Patterns of amino acid motifs in 

sets of CDR3 β chains have previously been described as reflecting a common 

antigen specificity of TCRs (Dash et al., 2017; Glanville et al., 2017; Sun et al., 2017; 

N. Thomas et al., 2014). A custom clustering algorithm was built (Figure 3.16, see 

Materials and Methods) and firstly utilised to test whether expanded TCRs, 

hypothesised as enriched for tumour specificity, were indeed found inside clusters 

of similar CDR3 sequences. The algorithm was applied to each patient on the entire 

intratumoural repertoire and the structures identified were screened for the presence 

of expanded TCRs. 

 

 
Figure 3.16 Representation of the CDR3 clustering algorithm 

Diagram illustrating the CDR3 similarity network construction process. Individual 
CDR3s are deconstructed into overlapping series of contiguous amino acid triplets, 
and the pairwise similarity between two CDR3s is calculated as the normalised string 
(triplet) kernel. CDR3s that have a pairwise similarity of >0.82 are connected by an 
edge.	
	
The method systematically identified more clusters of CDR3 chains around 

expanded TCRs than around random TCRs (Figure 3.17), likely due to the fact that 

the antigenic signal giving rise to the expanded TCRs also generated TCRs with 

similar CDR3 chains. 
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Figure 3.17 Summary of counts of networks around ubiquitous and control 
CDR3s 

(A) Representative network diagrams of intratumoural CDR3 sequences for patient 
CRUK0009. Both panels show the network of CDR3 sequences that are connected 
to at least one other CDR3 within the tumour. Left, clustering around expanded 
intratumoural ubiquitous CDR3s (red circles). Right, clustering around a random 
sample of CDR3s from the same repertoire (same numbers as for the expanded 
ubiquitous CDR3s). (B) The clustering algorithm was run on all patients, and the 
number of clusters for the networks containing expanded ubiquitous and control 
randomly selected CDR3 sequences is shown. The one-sided Mann–Whitney test P 
value is shown; n = 46 patients. 
 

3.2.5 The distribution of TCRs clustered around expanded ubiquitous or 
expanded regional TCRs follows identical spatial constraints 

The composition of TCR clusters was additionally investigated in relation to the 

ubiquitous/regional labelling of expanded TCRs and their suspected link with 

ubiquitous/regional antigens. Each cluster was associated with a diversity score, 

measuring the spatial distribution of TCRs: a high diversity score corresponds to a 

cluster with an even representation of tumour regions and a low diversity score 

corresponds to a cluster skewed towards a specific subset of tumour regions. Then, 

two values were computed for each patient: the average of diversity scores of 

clusters containing a ubiquitous TCR and the average across clusters containing a 

regional TCR (Figure 3.18, see Materials and Methods). Clusters containing 

expanded regional TCRs presented significantly lower diversity scores, indicating 

that the CDR3 chains that are similar to expanded regional ones, likely recognising 

A) B) 
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the same antigen, are often found in the same region, whilst CDR3s that are similar 

to expanded ubiquitous ones are present across the entire tumour.  

 

 

Figure 3.18 Summary of spatial composition of networks around ubiquitous 
and regional CDR3s 

(A) Representative clustering around a ubiquitous or regional expanded TCR from 
CRUK0009, with nodes coloured according to the regions in which each TCR was 
found. b The average cluster diversity for clusters containing ubiquitous or regional 
expanded TCRs. The one-sided Mann–Whitney test P value is shown; n = 42 
patients.  
 

Together with the previous observations, the fact that spatially coherent clusters of 

related CDR3 sequences were identified was consistent with the hypothesis that 

these subsets are enriched for antigen-specific TCRs with similar spatial constraints. 

 

3.2.6 RNA-Seq of FACS sorted subsets of CD8+ T cells identifies expanded 
ubiquitous TCRs within a phenotype consistent with tissue resident 
tumour-antigen-reactive T cells 

Three indirect transcriptomic approaches were leveraged to further characterise the 

antigenic specificity of expanded TCRs. Firstly, TILs from three patients were sorted, 

using flow cytometry, into PD-1+CD45RA-CCR7-CD57- cells, a phenotype associated 

with cytotoxicity in cancer (Bengsch et al., 2018; Bengsch et al., 2010; A. C. Huang 

et al., 2017; Simoni et al., 2018) (labelled PD-1+ cells) and all other CD8+ T cells 

(labelled PD-1- cells) and subjected to RNA sequencing (Figure 3.19, see Materials 

and Methods). The resulting sequencing data was then screened for the presence 

A) B) 
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of expanded regional or ubiquitous TCRs as identified by matched TCR-Seq for 

these patients. Expanded ubiquitous and regional TCRs could be found both in the 

PD1+ and PD1- sorted subsets. However, expanded ubiquitous TCRs could be found 

significantly more often in the PD1+ subset than in the PD1- subset and the expanded 

regional TCRs seemed to follow the same pattern although it was difficult to conclude 

due to the low number of regional TCRs retrieved in these data. 

 

 

 

 
Figure 3.19 Distribution of expanded TCRs across FACS sorted PD-1+ and PD1- 

CD8+ T cells subgroups 

(A) CD8+ TILs from CRUK0024, CRUK0017 and CRUK0069 were sorted into two 
populations: CD45RA-CCR7-PD-1+CD57- and all other CD8+ TILs (referred to as PD-
1+ and PD- 1- subpopulations, respectively). The flow cytometry gating strategy for a 
representative patient is shown (pre-gated on live > singlets > CD3+ > CD8+ T cells). 
(B) RNA from sorted populations was extracted and sequenced, and the RNA-Seq 
data were mined for the presence of expanded ubiquitous and regional sequences. 
The heat maps show the number of times each expanded ubiquitous or regional TCR 
CDR3 sequence was found in the RNA-Seq data from PD-1+ or PD-1- cells, (see 
Materials and Methods). The colour key gives the proportions scaled for each row, 
where each row represents a distinct expanded TCR sequence.  
 
As mentioned above, given that lack of CD57 expression and high expression of PD-

1 has been associated with tumour specific CD8 T cells, these data were coherent 

the analysis performed up to Section 3.2.5, suggesting enrichment for tumour 

specificity in these TCR subsets. 

A) 

B) 

B) 
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3.2.7 Single-Cell RNA-Seq of Neoantigen reactive CD8+ T cells captures 
ubiquitous expanded TCRs 

Secondly, CD8+ TILs were sorted by fluorescent MHC multimers bound to a peptide 

encoded by a ubiquitous mutation in the MTFR2 gene in order to isolate antigen 

specific T cells in patient L011. Single-cell RNA sequencing was then performed on 

the sorted cells (Figure 3.20, see Materials and Methods). 

 

 

 

Figure 3.20 Isolation of neoantigen specific CD8+ T cells in patient L011 

(A) CD8+ T cells reactive to a clonal neoantigen were isolated from a patient with a 
high clonal nonsynonymous mutational load (patient L011). Phylogenetic tree of 
tumour adapted from McGranahan et al., 2016. (B) Representative dot plot of the 
TIL peptide:multimer sorting strategy (left) and the workflow for single-cell RNA-Seq 
(right). CD8+ TILs were screened for neoantigen- reactive T cells (NARTs) reactive 
to a peptide arising from the mutated MTFR2 gene and sorted for single-cell RNA-
Seq (pre-gated on lymphocyte > single cell > viable > CD3+CD8+ T cells)  
 
Two families of TCRs were identified in the single cell data based on the sharing of 

a same α-chain (“CALRLGSGGSEKLV”) or β-chain (“CASSPRTGGYEQY”) and 

were subsequently compared to the multi-region TCR sequencing available for 

patient L011. Strikingly, the TCRs retrieved from the multimer positive sort were 

expanded and ubiquitously expressed in the tumour and were absent from the 

matched adjacent non-tumour tissue (Figure 3.21). Conversely, the TCRs retrieved 

from the multimer negative sort, displayed a more diverse distribution pattern across 

tumour regions. Some of them were also ubiquitously expanded in the TCR-Seq 

data, probably because they were specific to another ubiquitous antigen that not 

captured by this experiment.  

 

A) B) 
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Figure 3.21 Frequency distribution of neoantigen specific TCRs across tumour 
and non-tumour samples for L011 

(A) TCR α-chain and β-chain sequences were bioinformatically reconstructed from 
the single cells (see Materials and Methods). The neoantigen-reactive T cells 
comprised two families of cells with distinct CDR3 sequences and abundances. (B) 
Heat map showing the abundance of antigen-specific β-chain sequences (β1, β2 and 
β3 from panel A) in tumour regions (R1–R3) and non-tumour lung (NTL) from 
multimer-positive (red) and multimer-negative (grey) cells within the bulk TCR 
sequencing data. Each row represents a unique TCR found in the multimer-positive 
or multimer-negative single cells.  
 

To summarise, together with the previous observation that PD1+ T cells are enriched 

for expanded ubiquitous TCRs, the fact that multimer positive T cells were also 

enriched for those was coherent with the hypothesis that this subset of TCRs 

identifies a population of cancer-specific T cells. 

 

3.2.8 The number of expanded ubiquitous TCRs correlates with immune 
related gene signatures in matched RNA-Seq 

Lastly, the bulk RNA-Seq data available was leveraged by computing the Danaher 

immune score for each tumour region (see Materials and Methods) and comparing 

it to the number of expanded regional and ubiquitous TCRs (Figure 3.22). 

Remarkably, the number of expanded ubiquitous TCRs was systematically positively 

correlated with several gene modules (amongst which the CD8 score, the NK score 

and the Th1 score showed a significant correlation) whereas the number of 

A) B) 
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expanded regional TCRs was systematically negatively correlated to the same gene 

modules, often in a statistically significant manner. 

 

 
Figure 3.22 Summary of correlations between the number of expanded 

ubiquitous and regional TCRs and RNA derived immune scores 

Correlation between the numbers of expanded intratumoural ubiquitous and regional 
TCR sequences and the transcriptional expression score (geometric mean) for a 
selection of Danaher immune scores. The area and colour of the circles correspond 
to	 the magnitude of the Spearman’s rank correlation coefficient. *P < 0.05; **P < 
0.01 after Bonferroni correction; n = 32 patients.  
 

3.2.9 Expanded intratumoural TCRs can be found in matched PBMC 
samples at the time of resection and at follow-up 

The associations between expanded TCR numbers and the genomic and 

transcriptomic data support the hypothesis that ubiquitous and regional TCRs 

identify a key population of cancer specific T cells in TCR-Seq data. For this work to 

be potentially utilised in future clinical applications, it would be highly valuable to be 

able to access those T cells through blood, without having to rely on multi-region 

intratumoural sampling. To this end, expanded ubiquitous and regional TCRs were 

searched for in matched blood samples and the corresponding proportions were 

computed (Figure 3.23). For both groups of TCRs, values were highly 

heterogeneous across the cohorts, ranging from 0 (none of the TCRs could be 

detected in blood) to 1 (all TCRs could be detected in blood). 
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Figure 3.23 Proportion of expanded intratumoural ubiquitous and regional 

TCRs detected in peripheral blood, per patient 

The proportion of expanded intratumoural ubiquitous and regional TCRs detected in 
peripheral blood from the same patient at the time of primary NSCLC surgery, with 
patients ordered by descending proportion; n = 45 patients. 
 

Expanded ubiquitous TCRs displayed much greater detection rates in blood than 

regional ones. In addition, when looking at those TCRs that can be found in the blood, 

expanded ubiquitous TCRs had significantly higher expansion levels in matched 

blood (Figure 3.24).  

 

Figure 3.24 Summary of proportion and frequency of intratumoural expanded 
ubiquitous and regional TCRs in matched peripheral blood 

(A) Summary of the proportion of expanded intratumoural ubiquitous (red circles) 
and expanded intratumoural regional (grey circles) TCRs detected within the blood 

A) B) 
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for all patients (the one-sided Mann–Whitney test P value is shown; n = 45 patients). 
(B) The frequency (number of TCR sequences detected, as a proportion of the total 
number of TCRs) of expanded intratumoural ubiquitous (red circles) and regional 
(grey circles) TCRs in the peripheral blood at the time of NSCLC surgery (the one-
sided Mann–Whitney test P value is shown; n = 42 patients and 22 patients for 
ubiquitous and regional, respectively). Only TCRs actually detected in blood were 
used for this analysis.	
	
To summarise, when compared to regional TCRs, not only were ubiquitous TCRs 

found more often in the blood but they were also found at higher expansion levels. 

This might be the result of the antigenic signal driving expansion of ubiquitous TCRs 

being stronger than the regional one because it is present across the entire tumour, 

leading to higher levels of emigration into the circulation. 

 

The weak overlap between tumour and blood for the regional TCRs might also mean 

that the T cells that express regional TCRs have a lower replenishment capacity, 

which could lead to an impaired protection capacity and could explain the correlation 

observed in matched bulk RNA-Seq described in the previous section. 

	
To explore this observation further, the same analysis was repeated in the 14 follow-

up blood samples that were available (Figure 3.25). Once again, ubiquitous and 

regional TCRs behaved differently: intratumoural ubiquitous TCRs were found less 

often in follow-up bloods than in baseline bloods whereas no difference was 

observed for regional TCRs. The drop in ubiquitous TCRs frequency may be driven 

by the surgical debulking of the tumour which is accompanied by the loss of the 

antigenic signal. On the other hand, the lack of drop within the regional TCR 

compartment is coherent with the previous observations and in line with the 

hypothesis that these TCRs identify a population of T cells that are less relevant than 

the ubiquitous one. In addition, as a control, the same analysis was repeated for 

TCRs expanded in the non-tumour lung compartment and showed that, similarly to 

regional TCRs, no longitudinal drop in frequency was observed in the blood following 

surgery. 
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Figure 3.25 Summary of proportion and frequency of intratumoural expanded 
ubiquitous and regional TCRs in matched follow-up peripheral 
blood 

The proportion of expanded intratumoural ubiquitous (A), regional (B) and non-
tumour (C) TCRs that were detected in the blood at the time of primary NSCLC 
surgery and at routine follow-up (The one-sided Mann–Whitney test P values are 
shown; n = 14 individual patients).   
 

Finally, to assess whether the frequency drop of expanded ubiquitous TCRs in the 

blood post-surgery was permanent or reversible, a longitudinal analysis of blood 

samples was performed for four patients for whom three separate time-points were 

available. Interestingly, a variety of possible temporal trajectories was observed: for 

CRUK0013 and CRUK0329 for instance, some ubiquitous TCRs disappeared at 

follow-up but reappeared at disease recurrence, some totally disappeared, some 

were found at all time-points and some were only detectable at recurrence, perhaps 

mirroring the parallel evolution of the tumoural genomic clonal composition and the 

corresponding antigenic landscape. 

A) B) C) 
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Figure 3.26 Representation of longitudinal evolution of intratumoural 

expanded ubiquitous TCRs prevalence in blood samples 

The relative proportion of expanded intratumoural ubiquitous TCRs with different 
patterns of occurrence in peripheral blood taken at three longitudinal time-points for 
patients CRUK0013, CRUK0046, CRUK0048 and CRUK0329. Expanded 
intratumoural ubiquitous TCRs found at all three time points are shown in red.  
 

3.3 Chapter discussion 

The results presented in this chapter are consistent with a model in which TILs 

comprise a mixture of bystander T cells, attracted by the inflammatory response in 

the TME, and tumour-specific T cells, recognising tumour antigens (Bengsch et al., 

2018; Ganesan et al., 2017; Simoni et al., 2018). In the context of treatment-naive 

NSCLC, applying a threshold on TCR frequency to label TCRs as “expanded” 

identified a population correlating with TMB, a primary antigenic source in lung 

cancer previously described to give rise to immunogenic neoantigens (McGranahan 

et al., 2016). 
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These clonotypes were highly enriched in tumour samples when compared to 

adjacent non-tumour tissue and could be further subdivided into ubiquitous and 

regional, depending on their multi-region frequency distribution within a patient’s 

tumour. Just as the number and respective proportions of ubiquitous and regional 

mutations hugely varied between patients in NSCLC (Jamal-Hanjani et al., 2017), so 

did ubiquitous and regional TCRs. In addition, they correlated with one another, 

suggesting that the spatial distribution of expanded TCRs is deterministic and is 

driven by the corresponding shape of the mutational landscape. 

 

The hypothetical antigenic spatial constraints that drive the distribution heterogeneity 

of expanded TCRs was further explored through clustering of similar CDR3 chains, 

which have been shown to identify antigen specific TCR subgroups (Glanville et al., 

2017; N. Thomas et al., 2014). In this setting, the composition of subgroups 

containing ubiquitous or regional TCRs was coherent with their inferred specificity 

and the expected distribution of TCRs specific to the same ubiquitous or regional 

neoantigen. 

 

Integrating these data with bulk RNA-Seq, and single-cell RNA-Seq of neoantigen 

reactive T cells comforted the hypothesis that expanded ubiquitous TCRs identify a 

population of tumour-specific cytotoxic T cells. Finally, these clonotypes could be 

detected in matched blood samples at the time of tumour resection but also at 

subsequent time-points when available which indicates that these specificities are 

stable over time and could be leveraged by targeted therapies. 

 

This study has several limitations. Firstly, although the method described here 

enables to identify a T cell population likely to be enriched for tumour specificity, 

none of the metrics computed were found to correlate with clinical outcome. This 

observation was puzzling given that TMB in NSCLC is predictive of a longer time to 

disease recurrence (Ghorani et al., 2020) and response to anti-PD-1 checkpoint 

blockade therapy (Rizvi et al., 2015). More work is needed to characterise these 

TCRs but the limited flow cytometry data presented here suggests that they may 

belong to dysfunctional T cells, which would be in line with recent findings showing 

that such phenotypes are typically enriched for highly expanded TCRs in lung (Guo 

et al., 2018) and melanoma (H. Li et al., 2019). This would explain why they do not 
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provide protection and would mean that clinically leveraging these specificities would 

require the ability to identify expanded ubiquitous clonotypes and reverse their 

phenotype. 

Secondly, the exceptional multi-region sampling that TRACERx offers was fully 

leveraged to identify expanded ubiquitous TCRs. Most studies or clinical settings do 

not have the resources to sample multiple regions per tumour which limits 

comparisons to other TCR data sets. It would be valuable to explore ways to define 

ubiquitous and regional TCRs that do not rely on systematic multi-region sampling. 

 

Lastly, although the bioinformatics analysis strongly supports that expanded 

ubiquitous and regional TCRs are specific to ubiquitous and regional mutations, it 

remains to be formerly proven. The data presented on tetramer sorted T cells for one 

patient are convincing but relies on a single patient. Also, non-synonymous 

mutations were exclusively used to represent the antigenic signal of NSCLC, which 

is a simplistic view. Other antigenic sources have been described in lung cancer 

(Litchfield et al., 2021) and should be investigated in this model.  





Chapter 4. Determinants of anti-PD1 response and 
resistance in clear cell renal cell carcinoma 

4.1 Introduction 

In contrast to NSCLC and some other solid cancers, TMB does not associate with 

better prognosis in RCC in the treatment naive setting nor does it in the context of 

checkpoint blockade therapy (Braun et al., 2020; McDermott et al., 2018; Motzer, 

Robbins, et al., 2020). Several other sources of antigen and their link to clinical 

response to CPI have been studied, including peptides derived from frameshift 

insertions and deletions (Turajlic et al., 2017), but the antigenic landscape of RCC 

remains elusive. 

 

Interestingly however, RCC sits amongst the most immune-infiltrated cancers 

(Ricketts et al., 2018; Rooney, Shukla, Wu, Getz, & Hacohen, 2015), which indicates 

that, although it remains to be extensively characterised, a strong antigenic signal 

seems to be present and attracting T cells to the TME. As TCR sequencing analysis 

offers a valuable opportunity to study the specificity of the immune response without 

knowledge of the antigen, it appears to be a relevant tool to apply to the 

understanding of the biology of RCC. 

 

ADAPTeR is a phase II, single-arm, open-label study of nivolumab in treatment-naive 

metastatic ccRCC. Whole-exome sequencing (WES); RNA sequencing; TCR 

repertoire sequencing; multiplex immunofluorescence, flow cytometry and single-cell 

RNA sequencing were performed across longitudinal, multi-region fresh tissue 

samples from each patient. 15 patients were enrolled from October 2015 to June 

2018 and clinical benefit was defined as partial response or stable disease (see 

Material and Methods) for more than six months until disease progression (hereon 

termed ‘responder’; five patients). “pre-treatment” and “post-treatment” refer to the 

baseline and week nine time-point, respectively. 

 

In this chapter, I firstly identify in RNA-Seq data a gene expression profile consistent 

with specific activation of T cells through TCR signalling in responding patients. 

Secondly, in matched TCR-Seq data, I identify a population of TCRs with features 
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suggestive of tumour specificity that are maintained upon treatment and associate 

with clinical response. Lastly, in a matched data set of single cell RNA-Seq, I show 

that specific structures of the TCR repertoire in a responding patient correspond to 

a subset of T cells that preferentially bound to nivolumab. 

 

The ADAPTeR project is a collaborative effort involving multiple research groups. 

Details of individual contributions to the work presented in this chapter are as follows. 

Sample acquisition, preparation and sequencing were jointly done by Lewis Au 

(oncologist at the Royal Marsden, clinical research training fellow in the Turajlic 

group), Nicos Fotiadis (Consultant Interventional Radiologist at the Royal Marsden), 

the ADAPTeR trials team, Emine Hatipoglu (oncologist at the Royal Marsden, PhD 

student in the Quezada group) and Imran Uddin (single cell genomics technician, 

single cell genomics facility, UCL, formerly lab technician in the Chain group). 

Processing of raw FASTQ sequence data from TCR repertoire sequencing and 

single cell TCR/RNA-Seq was performed by Tahel Ronel (research fellow at the UCL 

Cancer Institute Cancer Immunotherapy Accelerator, previously post-doctoral fellow 

the Chain group) and Gordon Beattie (single cell genomics research fellow, single 

cell genomics facility, UCL), respectively. I performed the processing of raw FASTQ 

sequence data from RNA sequencing and all downstream bioinformatics analysis 

and data visualisation for both RNA-Seq and TCR-Seq data. The data presented in 

this chapter of the thesis forms sections of a submitted manuscript currently under 

review. 
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4.2 Results 

4.2.1 Nivolumab induces upregulation of immune related transcripts  

 
Figure 4.1 Description of ADAPTeR patient cohort 

Patient study identification, best response to nivolumab by RECIST criteria, tumour 
sampling time-point, and number (n) of samples subjected to varied profiling 
techniques are shown. TIL := tumour-infiltrating lymphocyte; FACS := fluorescence-
activated cell sorting; WES := whole-exome sequencing; mIHC = multiplexed 
immunohistochemistry; IF := immunofluorescence. 
 
In order to detect pre-treatment transcriptomic differences between responders and 

non-responders, differential gene expression analysis (DGEA) was performed on 36 

samples across 14 patients (Figure 4.1, see Materials and Methods). In order to 

visualise the prevalence of immune related transcripts in the set of genes that were 

differentially expressed, the Danaher immune score (Danaher et al., 2017) genes 

were overlaid onto the 1761 (resp. 1621) transcripts that were found to be up-

regulated (resp. downregulated) in responders compared to non-responders. The 

genes of the Danaher immune score that mapped to the DGEA were exclusively 

found in the up-regulated compartment, indicating that immune infiltration prior to 

treatment was associated with clinical response (Figure 4.2, A). 
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Figure 4.2 Responders versus non-responders pre-treatment differential gene 
expression analysis and transcriptomic immune deconvolution 

(A) Transcripts differentially regulated pre-treatment between responders and non-
responders (n = 33 samples, 14 patients, negative binomial Wald test, Benjamini–
Hochberg corrected P values). 3,382 transcripts were differentially regulated 
(FDR<0.05), the ones that overlap with the Danaher immune score gene list are 
labelled. (B) Heatmap showing the relative expression (z scores) of genes from eight 
selected Danaher immune modules in pre-treatment samples. 
 
When dissecting further the Danaher immune score (Figure 4.2, B), gene modules 

identifying lymphoid infiltration (“Tcells”, “CD8”, “Cytotoxic”, “CD8Ex”, “NKcells”) 

were preferentially enriched in responders compared to the myeloid ones (“DC”, 

“Mac”). 

 

Next, to understand how checkpoint blockade therapy impacts the transcriptomic 

landscape that was observed at baseline, the same analysis was repeated in the 30 

RNA samples (collected across 11 patients) available post-treatment (Figure 4.3). 

A) B) 
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Figure 4.3 Responders versus non-responders post-treatment differential 
gene expression analysis and transcriptomic immune 
deconvolution 

(A) Transcripts differentially regulated post-treatment between responders and non-
responders (n = 27 samples, 10 patients, negative binomial Wald test, Benjamini–
Hochberg corrected P values). 7,975 transcripts were differentially regulated 
(FDR<0.05), the ones that overlap with the Danaher immune score gene list are 
labelled. (B) Heatmap showing the relative expression (z scores) of genes from eight 
Danaher immune modules in post-treatment samples.  
 
Whilst the pattern of enrichment of immune-related transcripts in responders post-

treatment was similar to the one observed pre-treatment, the magnitude of this signal 

was much greater (Figure 4.3, A). With 2,837 upregulated transcripts and 5,138 

downregulated ones, the total number of transcripts differentially regulated between 

responders and non-responders was more than twice the amount of what was 

observed pre-treatment. In addition, the observation made pre-treatment that the 

Danaher immune score was exclusively mapping to the upregulated transcripts was 

repeated post-treatment and the level of expression of the corresponding genes was 

higher post-treatment than pre-treatment (Figure 4.3, B). 

 

When summarising the average value of each Danaher immune module per patient 

and per time-point, most of the lymphocyte modules behaved similarly (Figure 4.4). 

For the pan-T cells module, for instance (which was the only one to differ significantly 

A) B) 
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between responders and non-responders at both time-points), treatment pushed 

both responders and non-responders towards higher scores. This resulted in a level 

of T cell infiltration in non-responders post-treatment equivalent to the one observed 

pre-treatment in responders. However, the lymphocyte immune scores post-

treatment in responders were higher than those in non-responders, at either time-

point. 

 

 
Figure 4.4 Danaher immune scores pre- and post-treatment comparing 

response groups 

Summary of relative Danaher immune scores expression levels per response group 
and per time point. The two-sided Mann–Whitney test performed on one value per 
patient and per time-point (score averaged by median value across biopsies if 
several available at a given time point), significant P value are indicated (*: P<0.05; 
**: P<0.01). R – responders; N-R - non-responders. n = 14 patients and 10 patients 
for pre- and post-treatment, respectively. 

4.2.2 Responders present exclusive upregulation of antigen recognition 
pathways  

Next, to determine whether the association between immune infiltration and clinical 

response was simply due to the quantity of immune cells present in the TME, or if 

some other qualitative change that would have been undetectable with the method 

described above was playing an important role in these observations, Gene Set 
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Enrichment Analysis (GSEA) was run on the set of differentially expressed 

transcripts, at both time-points (Figure 4.5, see Materials and Methods). 
 

 

Figure 4.5 Gene set enrichment analysis on transcripts differentially 
regulated in responders at both time-points 

GSEA analysis of genes preferentially up-regulated and down-regulated pre-
treatment (A) or post-treatment (B) in responders. Overlap (n): number of significant 
genes from a pathway (hypergeometric test). n = 14 patients and 10 patients for pre- 
and post-treatment, respectively. 
 

Although a number of pathways significantly enriched in responding patients were 

shared between pre- and post-treatment GSEA, there was a clear difference 

between time-points. Pathways enriched in pre-treatment responders describe a 

general enrichment for immune infiltration without any particular flavour of specificity 

at this point in time. However, post-treatment, enrichment of pathways such as “Type 

1 interferon signalling pathway” or “T cell receptor signalling pathway” indicate a 

different quality of infiltration in responding patients, likely driven by antigenic 

stimulation. 

 

4.2.3 Heterogeneity of the TCR repertoire in metastatic RCC 

To further investigate the potential role of tumour specificity in the mechanism 

underlying response to Nivolumab in this context, the TCR repertoires from 63 

tumour samples and 29 PBMC samples from 14 patients pre- and post-treatment 

were sequenced. 

A) B) 
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The analysis of repertoire similarity revealed a large range of heterogeneity within 

the cohort (Figure 4.6, see Materials and Methods), with a large variability of 

repertoire similarity values across samples from the same time-point, at the cohort 

level and at the patient level. 

 

 
Figure 4.6 Intra-patient TCR repertoire heterogeneity 

The pairwise intratumoural TCR repertoire similarity is shown for each patient. Each 
circle represents a comparison between two samples from the same patient and at 
the same time-point (n = 87 total comparisons from 12 patients). Red (resp. blue) 
circles indicate a pair of biopsies originating from the same site (resp. different 
metastatic sites). 
 
The ubiquitous/regional dichotomy described in Chapter 3 could not be robustly 

repeated for this project for three main reasons. Firstly, the nature of the material 

collected for sequencing resulted in a significantly lower number of TCRs retrieved 

per individual sample. Only pooling the different samples available for the same 

patient and at the same time-point enabled to retrieve a median number of unique 

β-chain (3,644) per time point and per patient equivalent to what was observed in 

Chapter 3 (3,711). Secondly, applying the same selection criteria of a minimum of 

three samples per time-point and per patient used in Chapter 3 in order to robustly 

define ubiquitous and regional TCRs would result in a significant reduction of the 

cohort as only six patients would meet this criterion at both time-points. Lastly, as 
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opposed to Chapter 3’s setting, multiple samples from the same patient and at the 

same time point in ADAPTeR were not always obtained from the same metastatic 

site, which adds difficulty to the interpretation of TCR repertoire spatial heterogeneity 

for that cohort. 

 

Although heterogeneity could not be studied systematically at cohort level, some 

individuals could be studied in more details. ADR001 (non-responder) and ADR013 

(responder) post-treatment nephrectomy samples met the criteria described above 

which enabled to explore spatial heterogeneity further for these two patients. Out of 

the seven (resp. six) post-treatment nephrectomy-derived tumour regions available 

for ADR001 (resp. ADR013), 5 were selected for each patient, based on similarity of 

total number of TCRs retrieved, for comparativeness and visualisation purpose. For 

both patients, each pair of tumour regions was compared with the cosine metric 

(Figure 4.7). 

 

 

 
Figure 4.7 Spatial heterogeneity in post-treatment nephrectomy for ADR001 

and ADR013 

Heat maps showing the pairwise similarities of a selection of five biopsies in the post-
treatment nephrectomy for ADR001 (left) and ADR013 (right). 
 

Strikingly, pairwise similarity scores in ADR013 post-treatment samples reached an 

average value of 71% against 17% for ADR001. This indicated that the intratumoural 
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immune infiltrate in ADR013 post-nivolumab was more homogenous in terms of 

specificity than ADR001’s one. 

 

Although these observations are individual case studies, they emphasise the 

differences in heterogeneity in the TME that exist in this clinical scenario. This was  

coherent with the model derived from longitudinal analysis of combined regions from 

the cohort that will be detailed in the rest of the chapter.  

4.2.4 Nivolumab treatment does not have a global effect on the 
intratumoural or the blood TCR repertoire 

To test whether anti-PD1 treatment induces a global reshaping of the TCR repertoire 

in metastatic RCC, the clonality score for each tumour sample and each blood 

sample was computed (Figure 4.8, see Materials and Methods). 

 

 

 
Figure 4.8 Intratumoural and blood pre- and post-treatment clonality score 

Boxplots summarising the intratumoural (T-) and blood (B-) TCR repertoire clonality 
score pre-treatment (-Pre) and post-treatment (-Post). Tumour and blood clonality 
scores are shown for each patient at each time-point; n = 14 patients, 11 patients, 
14 patients and 11 patients for T-Pre, T-Post, B-Pre and B-Post, respectively. 
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Unlike the significant increase in T cell infiltration measured in the RNA-Seq data as 

described in Section 4.2.1, the clonality score was not significantly higher pre- or 

post-treatment, neither intratumourally nor in the blood. In addition, the normalised 

count of TCRs that expand (significantly higher frequency post-treatment) was not 

different from the number of TCRs that contract (significantly lower frequency post-

treatment neither) in the tumour, nor in the blood (Figure 4.9). 

 

 
 

Figure 4.9 Intratumoural and blood longitudinal clonal expansion and 
contraction 

Correlated TCR sizes in tumour (A) and blood (B) samples. Scatter plots of tumour 
and blood TCR abundance pre- and post-treatment are shown for all patients. TCRs 
are coloured by expansion/contraction status (see Materials and Methods). The 
number of intratumoural (C) and blood (D) TCRs labelled as expanded or contracted 
between time-points, per patient, normalised for the total number of TCRs tested. 
Two-sided Mann–Whitney tests P value shown; n = 11 patients and 12 patients for 
tumour and blood, respectively. 
 
 

A) B) 

C) D) 
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It must be noted however that the blood repertoire was overall much more stable 

than the intratumoural one, with a tenfold increase of the normalised number of 

expanded and contracted TCRs in the tumour compared to blood. This might indicate 

that the effects of anti-PD-1, or at least the ability to characterise it through TCR-Seq 

analysis, is of much greater magnitude in the TME, compared to the blood. 

4.2.5 Longitudinal maintenance of expanded TCRs correlates with clinical 
response 

As Nivolumab treatment did not seem to have a global effect on the overall repertoire 

clonality, clonality scores were calculated separately for responders and non-

responders, both for tumour and blood (Figure 4.10). 

 

 

 
Figure 4.10 Intratumoural and blood pre- and post-treatment clonality score 

per response group  

The intratumoural (A) and blood (B) TCR repertoire clonality score pre-treatment (red 
circles) and post-treatment (blue circles) is shown for each patient. Patients are split 
between responders (Res) and non-responders (Non-). Mixed-effect model P values 
shown; n = 14 patients, 11 patients, 14 patients and 11 patients for pre- and post-
treatment tumours and pre- and post-treatment bloods, respectively. 
 

Although it did not reach significance, mixed-effect modelling identified a trend 

towards higher clonality values in responders both pre- and post-treatment in the 

tumour, but not in the blood. In addition, the comparison of pre-treatment 

A) B) 
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intratumoural clonality values with the two-sided Mann-Whitney test reached 

statistical significance (P = 0.042). This observation suggested that the intratumoural 

TCR repertoire of responding patients contained more expanded clonotypes, both 

pre- and post-treatment. This was not observed in blood, suggesting that the process 

driving this signal in the tumour was either non-existent or too weak to be detected 

in the blood, coherent with what was observed in Section 4.2.4. 

 

The high clonality values observed at both time-points in responders was raising the 

following question: were the TCRs driving high clonality pre- and post-treatment the 

same ones or not? To address this, similarity between individual patients’ TCR 

repertoires at the two time-points was measured using the cosine metric (Figure 4.11, 
see Materials and Methods).  

  

 

 
Figure 4.11 Intratumoural and blood longitudinal repertoire similarity score per 

response group 

The intratumoural (A) and blood (B) similarity score between pre-treatment and post-
treatment is shown for each patient. Patients are split between responders and non-
responders. Responding patients exhibit greater intratumoural cosine score, with the 
two-sided Mann–Whitney test P value shown; n=11 patients for tumour and 12 
patients for blood, respectively. 
 

Strikingly, despite the small cohort size, responding patients displayed significantly 

higher intratumoural similarity scores than non-responders. This analysis was 

repeated in the blood samples, which did not display the same pattern across the 

entire cohort. Taken together, responding patients showed a trend for more 

A) B) 
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expanded TCRs than non-responders and these TCRs were more stable over time 

i.e. the clonal expansion pre-existing in the tumour was maintained upon nivolumab 

exposure. 

 

In order to investigate this further, the frequency thresholds developed in the context 

of NSCLC (Chapter 3) were applied to both pre- and post-treatment samples of each 

patient in order to define expanded TCRs. To test whether focusing on expanded 

TCRs defined by such thresholds were indeed capturing the TCR population driving 

the differential clonality signal described above, the proportion of the repertoire 

occupied by TCRs labelled as expanded was correlated to the clonality score (Figure 

4.12). It confirmed that the 0.002 expansion threshold (that previously proved useful 

to enrich for specificity whilst selecting a substantial number of TCRs compared to 

more stringent thresholds) was also relevant in this setting, identifying TCRs 

representative of the clonality signal. 

 

 

Figure 4.12 Relationship between the clonality score and the proportion of the 
intratumoural repertoire pre-treatment occupied by expanded 
TCRs 

(A) The correlation between the proportion of the repertoire occupied by expanded 
TCRs defined by the 0.002 threshold and the clonality score, for each patient and 
each time point (B) The Spearman’s rank correlation coefficient and P value (shown 
above each point; n=14 patients) for the relationship between the clonality score and 
the proportion of the intratumoural repertoire occupied by expanded TCRs defined 
by different frequency thresholds (ranging from all TCRs (threshold of zero) up to 
those found at a frequency of ≥8/1,000). 
 

The greater stability of the intratumoural repertoire in responders described above 

(Figure 4.11) was further investigated from the perspective of the expanded TCRs 

A) B) 
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(Figure 4.13). When comparing the frequency of pre-treatment expanded TCR at 

both time-points, pre-treatment intratumoural expanded TCRs were found to be 

significantly less subject to clonal replacement in responders than in non-responders 

(see Materials and Methods). More precisely, the frequency of expanded TCRs pre-

treatment was longitudinally stable in responders but decreased by more than 50% 

on average in non-responders. This suggested that stable stimulation of clonotypes 

occurred preferentially in responders’ tumours. 

 

 
Figure 4.13 Longitudinal clonal replacement of pre-treatment expanded TCRs 

per response group 

(A) The frequency distribution of the intratumoural expanded TCRs pre-treatment 
(red circles; n = 469 individual TCRs combined from 12 patients) and post-treatment 
(blue circles). Only TCRs that were detected post-treatment were included. (B) The 
arithmetic mean of Pre/Post frequency ratios of TCRs expanded pre-treatment, per 
patient (see Materials and Methods). Two-sided Mann–Whitney test P value shown. 
 

4.2.6 The pattern of CDR3 sequences of maintained expanded TCRs display 
features of tumour specificity 

 
Together with signals of antigen driven immune filtration detected in post-treatment 

RNA-Seq data as described in Section 4.2.2, the fact that expanded TCRs were 

preferentially maintained through treatment in responders strongly suggested that 

the T cell response differed significantly between responders and non-responders. 

 

A) B) 
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As discussed in Chapter 3, a recognised feature of the T cell response to specific 

antigen is the presence of groups of CDR3s with similar sequence features. The 

clustering algorithm based on amino acid triplet sharing (see Section 3.2.4) was 

applied to both pre- and post-treatment TCRs. The number of clusters identified was 

normalised per patient and per time-point (Figure 4.14, see Materials and Methods). 

 

 
Figure 4.14 Normalised intratumoural cluster count pre- and post-treatment, 

per response group 

The clustering algorithm was run on all patients, and the pre-treatment (A) and post-
treatment (B) normalised number of clusters for the networks containing expanded 
sequences is shown. Two-sided Mann–Whitney test P value shown; n = 14 patients 
and 11 patients for pre- and post-treatment, respectively. 
 

Although the differences did not reach statistical significance, this analysis identified 

a trend towards higher cluster counts in responders, at both time-points. Interestingly, 

the increase in cluster counts in both responders and non-responders and the higher 

number of clusters for responders resembled what was observed in terms of T-cell 

infiltration in Section 4.2.1. 

 

Networks retrieved from ADR001 (non-responder) and ADR013 (responder) post-

treatment nephrectomy samples were explored further (Figure 4.15). Remarkably, 

ADR013’s post-treatment nephrectomy displayed a significantly more complex 

network structure than ADR001’s post-treatment nephrectomy. This was in line with 

the observation that ADR013 displayed a more homogeneous intratumoural TCR 

repertoire at this time-point compared to ADR001 (see Section 4.2.3). Together, 

A) B) 
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these analyses support the hypothesis that a specific anti-tumour immune response 

amplified by exposure to nivolumab was present in ADR013 but not in ADR001. 

 
Figure 4.15 Representative intratumoural post-treatment cluster diagrams  

Representative network diagrams of post-treatment intratumoural CDR3 β-chain 
sequences for patient ADR001 (left) and for patient ADR013 (right).  
 
 

In conjunction with the maintenance of expanded TCRs, this analysis suggested that 

anti-PD1 treatment in metastatic RCC impacts the intratumoural immune infiltrate 

independently of the features of T cell infiltration, but highly benefits a T cell infiltrate 

already that is enriched for tumour specificity. 

 

To examine this model more closely through the lens of the TCR repertoire, pre-

treatment expanded TCRs were subdivided into “maintained” if they were also found 

to be expanded post-treatment and “replaced” if not. Then, for each patient, each 

maintained or replaced sequence was mapped to the pre-treatment clustering 

structure, as represented for patient ADR008 in Figure 4.16. 
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Figure 4.16 Representation of workflow analysis of maintained and replaced 

TCRs in pre-treatment clustering networks 

Diagram illustrating pre-treatment clustering around maintained and replaced 
expanded TCRs for ADR008. 
 
The relative proportion of the maintained or replaced pool of TCRs that were part of 

a CDR3 cluster was then computed for each patient independently of clinical 

response (Figure 4.17). 
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Figure 4.17 Proportion of maintained and replaced TCRs part of pre-treatment 

clustering networks, per patient 

The proportion of pre-treatment expanded TCRs that are part of a cluster as depicted 
in Figure 4.16. TCRs were split between the ones that are also detected as expanded 
post-treatment and the ones that are not (respectively red circles and grey circles). 
Paired Wilcoxon signed-rank test P value shown. 
 
Strikingly (as depicted for ADR008 in Figure 4.16) and without exception, the 

proportion of maintained TCRs that were part of a cluster of similar CDR3 sequences 

was significantly greater than the corresponding proportion of replaced TCRs. 

 

Taken together, these data suggested that, in this cohort of patients, the clinical 

benefit of nivolumab preferentially associates with features consistent with the 

presence of tumour-specific T cells both from the perspective of TCR-Seq and RNA-

Seq. The state of the TME pre-treatment presented prognostic clinical value and 

supported a model in which anti-PD1 benefits patients for whom tumours already 

contain strong features of tumour specific T cells prior to treatment. The data then 

suggested that treatment facilitates expansion of both pre-existing and novel tumour 

specific TCRs, as a function of the strength of the antigenic signal, which was 

detected to be much higher in responders via TCR-Seq analysis. 
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4.2.7 Paired single-cell RNA and TCR sequencing demonstrates enrichment 
of Nivolumab-bound cells in CDR3 clustering networks 

Next, paired single-cell RNA- and TCR-Seq (scRNA/TCR-Seq) in drug-bound (IgG4+ 

CD3+) and unbound (IgG4-CD3+) immune cells was performed for ADR001 (non-

responder) and ADR013 (responder) (see Materials and Methods). Individual cells 

were annotated with their corresponding VDJ information, which could then be 

related to the bulk TCR-Seq data discussed until now in this chapter. The 

transcriptomic analysis of this 10X dataset was performed by Gordon Beattie and 

will not be discussed in this thesis. In summary, it revealed that drug-bound cells had 

similar profiles in both patients, upregulating pro-inflammatory cytokine/chemokine 

genes and T-cell activation pathways. It also confirmed enrichment of expanded 

TCRs in ADR013 compared to ADR001, which were more prevalent in drug-bound 

cells compared to non-drug-bound cells and presented higher levels of cytotoxicity-

associated gene expression (see Au et al., 2021 for more details). 

 

Remarkably, many of the TCRs detected in single cells were present within the 

CDR3 amino acid triplet clusters for post-treatment repertoires of ADR001 and 

ADR013 as observed in the bulk-TCR data (displayed in Figure 4.15). We could 

classify each TCR in the networks into IgG4+ or IgG4- based on the drug-binding 

status derived from the single cell data (if both IgG4+ or IgG4- cells were identified 

by the same TCR, the most frequent label was retained). The clustering observed 

for ADR001 was very limited, preventing a definitive conclusion about the cluster-

associated drug binding status. However, strikingly, a vast majority (89%) of post-

treatment expanded clustered TCRs, both pre-existing and novel, were found to be 

drug-bound in ADR013 (Figure 4.18). 
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Figure 4.18 Drug-binding status of CDR3s within the network diagrams of post-

treatment intratumoural sequences for ADR001 and ADR013 

Clustering was performed within the bulk TCR-Seq data around expanded 
intratumoural TCRs, subdivided between TCRs that were expanded in the post-
treatment repertoire exclusively (blue circles) and TCRs that were also expanded 
pre-treatment (orange circles). The network shows clusters for which at least one 
CDR3 was also detected in the scTCR-Seq. The network was then split between 
TCRs that were mapping to a majority of IgG4- cells (top panel) or a majority of IgG4+ 
cells (bottom panel) in the single-cell data.  The light grey circles represent the rest 
of clustering network derived from bulk post-treatment tissue, as shown in Figure 
4.15. 
 

This data shows that among the TCRs clustered by their similarity in CDR3s, which 

are expected to be enriched for tumour specific TCRs as demonstrated in this 

chapter and in Chapter 3, the majority are TCRs expressed by T cells bound to anti-

PD-1 drug. Although the single cell analysis could only be carried out on two patients, 

the data provides further evidence for the hypothetical relationship between tumour 

specific T cell infiltration and expansion and the clinical impact of nivolumab in 

metastatic RCC. 
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4.2.8 Post-mortem detection of pre-treatment expanded maintained TCRs 
associates with non-progressive lesions 

Finally, dynamics of maintained expanded TCRs could be explored in late metastatic 

events for one patient. Post-mortem sampling and subsequent TCR-Seq was 

performed for ADR005, who was co-recruited into the PEACE study in addition to 

ADAPTeR (see Materials and Methods). Primary tumour and lung metastases 

maintained a partial response to treatment until death, whereas new brain, bone and 

thoraco-nodal metastases emerged on treatment. To test if this differential response 

status observed in this patient could be linked to the population of expanded 

maintained TCRs that correlated with response during lifetime (see Section 4.2.5), 

the post-mortem repertoires were overlapped with the pool of five TCRs that were 

expanded both pre- and post-treatment (Figure 4.19).  

 

(A) PEACE samples with available TCR-Seq data for patient ADR005. (B) 
Representation of non-progressive sites (blue circles) and progressive sites (grey 
circles). (C) The proportion of TCRs that were expanded both pre-treatment and 
post-treatment during life (n=5) detected in each post-mortem sample, only samples 
where the detection rate is greater than 0 are displayed. 3/5 were detected in the 
lung metastatic and 1/5, 1/5, 2/5 and 3/5 were detected in region 1, region 2, region 
3 and region 4 of the primary site, respectively.  
 
Strikingly, out of these five expanded maintained TCRs, three (resp. none) could be 

detected in the non-progressive disease sites (resp. progressive disease sites). 

A) B) C) 

Figure 4.19 Post-mortem detection of expanded maintained TCRs for patient 
ADR005 
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These persistent TCRs may be tracking antigens shared between metastatic lesions 

and the primary tumour and could be exerting control on the progression of these 

lesions upon anti-PD1 treatment. On the other hand, these TCRs might be absent 

from progressive lesions because the antigenic landscape evolved too much, 

enabling these sites to escape the immune response, even under nivolumab. 

4.3 Chapter discussion 

The results presented in this chapter shed light on the link between response to 

nivolumab and TCR repertoire distribution dynamics in metastatic renal cell 

carcinoma. More specifically, they suggest that the mechanism of PD-1 action may 

be to maintain pre-existing T cell clones, rather than to act primarily by driving T cell 

clonal replacement, as it has recently been claimed to be the central mechanism of 

anti-PD-1 treatment (Yost et al., 2019) and anti-PD-L1 treatment (T. D. Wu et al., 

2020). 

 

Firstly, high level insights into the immune infiltrate through bulk-RNA sequencing 

analysis revealed that nivolumab induced increased immune infiltration across the 

whole cohort. Interestingly, both the composition and the quantity of the infiltrate 

seemed to be different depending on clinical response status, with responders 

displaying a higher immune infiltration, both pre- and post-treatment, together with 

signs of specific antigen-dependent T cell activation in the TME post-treatment. 

 

Supporting this hypothesis further, the TCR repertoire analysis revealed higher 

clonality values and larger amounts of CDR3 similarity networks in responders, both 

pre- and post-treatment, suggesting enrichment for tumour-specific T cells in these 

patients compared to non-responders. Longitudinal data revealed that the ability to 

maintain pre-existing TCRs throughout treatment associated significantly with 

clinical response. 

 

A potential explanation could be that responders possess an immunogenic antigenic 

landscape, able to trigger and maintain cancer-specific clonotypes, whereas non-

responders present a weaker antigenic signal to the immune system. Indeed, CDR3 

similarity network analysis revealed that, in all patients, the expanded clonotypes 
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that were part of such networks were more likely to be maintained than other 

expanded clonotypes. 

 

Paired single-cell RNA and single-cell TCR sequencing on two patients also 

supported this hypothesis, showing that TCRs within post-treatment CDR3 similarity 

networks corresponded to T-cells that had bound to the drug. This observation 

suggested that nivolumab benefits T cells expressing TCRs with features of antigen 

exposure, that have most likely expanded in the vicinity of a tumour providing a 

strong antigenic signal. 

 

This work focused mostly on pre-treatment expanded clones that are maintained 

throughout treatment because of their association with clinical response in the 

ADAPTeR cohort. Clonal replacement was also observed, as reported in other 

studies, but did not associate with response. 

 

Taken together, these data suggest that the maintenance of expanded TCRs 

throughout treatment and up until death might be a measurable consequence of a 

more important underlying biological feature: the quality and the strength of the 

antigenic signal driving the T cell response. Paradoxically, the nature of this signal 

in RCC remains elusive and inconsistent across studies (Abou Alaiwi et al., 2020; 

Braun et al., 2020; Braun et al., 2019; Litchfield et al., 2020; McDermott et al., 2018; 

Miao et al., 2018; Motzer, Banchereau, et al., 2020; Motzer, Robbins, et al., 2020; 

Rooney et al., 2015; Turajlic et al., 2017), compared to NSCLC where NSMs have 

been characterised as a rich antigenic source, as described in the previous chapter. 

 

There are several limitations to this study. The results obtained in this chapter are 

based on a small cohort and need to be confirmed in larger cohorts. In addition, it 

would be interesting to determine if they translate to other anti-PD1 treatments and 

even other checkpoint blockade inhibitors in RCC and other cancers. 

 

Also, most observations presented in this chapter solely rely on bioinformatic 

analysis and require further functional validation. In particular, in the context of the 

poorly characterised antigenic landscape of RCC, the hypothetical tumour specificity 

of expanded clones needs to be addressed by reactivity assays between tumour 
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material and autologous T cell populations. Functional characterisation of the tumour 

specificity of the maintained or replaced TCRs as defined in this chapter would be 

highly informative. This could further be tested in the context of checkpoint blockade 

therapy in patient derived xenograft models. 

 
 





 
Chapter 5. Identification and characterisation of 

cytotoxic T cells in B cell acute lymphoblastic 
leukaemia 

5.1 Introduction 

B cell acute lymphoblastic leukaemia (B-ALL) is the most common type of childhood 

cancer and although standard of care for these patients achieves survival rates over 

80%, treatment is long and toxic, and 15-20% of patients eventually relapse, often 

with more resistant disease (Hunger & Mullighan, 2015). 

 

Chimeric antigen receptor-modified (CAR) T cells and other recent adoptive cell 

therapies, relying on engineered T cells that recognise cell-surface antigens such as 

CD19, are opening a vast range of promising new treatments but are expensive and 

relapse still occurs in the context of these therapies. Leveraging endogenous T cell 

populations could provide alternative treatment options. 

 

Cancer specific T cells endogenously present in B-ALL patients’ bone marrow or 

PBMC have been detected in isolation (Weber et al., 2013; Zamora et al., 2019) but 

their behaviour and characterisation inside the host remains undescribed. 

 

Repertoire sequencing data are generated routinely in the clinic for the diagnosis 

and follow-up of B-ALL patients. Both the MRD laboratory at the Great Ormond 

Street Hospital for Children (GOSH) and the Bristol Genetics Laboratory at 

Southmead Hospital (SH) implement the widely used BIOMED-2 kit (van Dongen et 

al., 2003) and systematically generate repertoire sequencing at diagnosis, post-

treatment and at disease relapse. This data are primarily utilised to detect the 

malignant leukaemic clones and to use them as barcodes to measure minimal 

residual disease (MRD) post-treatment (O'Connor et al., 2018). 

 

In this chapter, I demonstrate that despite the overwhelming abundance of blast cells 

in diagnostic samples, clinical repertoire sequencing samples contain rich 
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information on the non-leukaemic infiltration in B-ALL. In particular, I firstly 

demonstrate that productive beta CDR3 chains, distinct from leukaemic re-

arrangements, can be identified in this data. Secondly, I show that these TCRs can 

be detected at diagnosis, post-treatment and at relapse and display features of 

antigen exposure, for some patients. Lastly, in matched single-cell RNA and TCR 

sequencing, I identify cytotoxic phenotypes that present features of TCR 

engagement with leukaemic cells. 

 

This project is a collaborative effort involving multiple research groups. Details of 

individual contributions to the work presented in this chapter are as follows. Sample 

acquisition, preparation and sequencing of BIOMED-2 were jointly done by Jack 

Bartram, Stuart Adams, Gary Wright, Lauren Wise, Natalie Kent and Eleanor Watt 

at GOSH and John Moppett, Jeremy Hancock, Stephanie Wakeman and Paul Archer 

at SH. Acquisition, preparation, and sequencing of 10X single-cell samples were 

jointly done by Maria Vila De Mucha (PhD student in the Quezada group), David 

O’Connor (paediatric haematologist at GOSH, clinical research training fellow in the 

Mansour group) and Imran Uddin (single cell genomics technician, single cell 

genomics facility, UCL). I performed the processing of raw data from bulk repertoire 

sequencing and single cell 10X data and all downstream bioinformatics analysis and 

data visualisation for repertoire sequencing data and 10X data (RNA-Seq and TCR-

Seq data). 

 

5.2 Results 

5.2.1 Malignant clones are distinct from healthy clones in repertoire 
sequencing data 

A cohort of 149 diagnostic, 32 post-treatment and 16 relapse partially annotated 

repertoire sequencing samples of bone marrow biopsies from GOSH and SH was 

analysed (Figure 5.1). This cohort will hereon be referred to as the BIOMED-2 cohort. 

In this setting, “treatment” refers to the induction phase of ALL treatment which 

consists of four weeks of chemotherapy and steroids. The subsequent phases of the 

treatment (consolidation and maintenance) are not considered in this project. The 

median time to relapse was three and a half years.  
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Figure 5.1 Representation of BIOMED-2 cohort  

Bone marrow sampling time-point, and number (N) of samples subjected to 
repertoire sequencing are shown. 197 samples were evaluable: diagnostic (N=149); 
day 29 (post induction treatment, N=32); relapse (N=16). Seven additional bone 
marrow samples obtained from healthy individuals complete the cohort (not shown). 
N= 162 individuals 
 
These samples were obtained through routine clinical collection and subjected to 

DNA based sequencing meant to monitor MRD. They were retrospectively analysed 

in the context of this project in order to investigate the hypothetical presence of 

tumour-reactive T cells in the bone marrow of childhood B-ALL patients. In addition, 

seven matched aged (median = six years old) healthy bone marrow samples, derived 

from excess marrow of donors (siblings in this case) in the context of allogeneic stem 

cell transplantation procedures, were included in the cohort and used as control in 

the analysis. 

 

All samples were parsed through MiXCR to retrieve all BCR and TCR 

rearrangements, both productive ones and non-productive ones and log-log 

representations were screened in order to obtain a high-level visualisation of the B-

ALL repertoire (Figure 5.2). 
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Representative log-log plots of bone marrow pooled BCR and TCR repertoires from 
healthy donor HD2 (A) and from patient PX319497 at diagnosis (B). Outlying clones 
are indicated by red circles (see Materials and Methods). The x axis represents TCR 
abundance (clone count), and the y axis represents the proportion of the repertoire 
(proportion of unique clones). 
 

The shape of the bone marrow pooled BCR and TCR repertoires in diagnostic B-

ALL samples was strikingly distinguishable from those of healthy bone marrows. 

Whereas the shape of the distribution in healthy bone marrow samples was a 

continuous curve as expected for log-log representation, the distribution in diagnostic 

B-ALL samples systematically comprised of an additional group of large clone counts, 

clearly separate from the main curve (red dots), hereon referred to as outlying clones. 

 

Clinical data from these samples indicated that the median proportion of blast 

leukaemic cells in these samples was 93%, in line with what is described in the 

literature for such cohorts (Wright et al., 2019). In addition, reports on the genomic 

composition of this disease indicate that the clonal composition of B-ALL is quite 

restricted (Abdo et al., 2020), which explains why, usually, no more than five re-

arrangements identified at diagnosis are registered to asses MRD post-treatment 

(Wright et al., 2019). In that context, the distribution revealed by log-log 

representation is not surprising and it can be safely assumed that outlying re-

A) B) 

Figure 5.2 Log-log representation of healthy and leukaemic bone marrow 
repertoires 
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arrangements are highly enriched for leukaemic re-arrangements whereas the rest 

of the distribution should be, in majority, leukaemia free. 

 

Following this observation, a semi-automated outlier detection pipeline was run on 

each sample (see Materials and Methods), which was subsequently labelled as 

containing outlying rearrangements or not (Figure 5.3). As expected, both diagnostic 

and relapse samples systematically fell into the former category whereas health 

bone marrow samples fell into the latter. Post-treatment sample displayed a more 

heterogeneous profile reflecting the fact that not all patients reached satisfying MRD 

levels at day 29. 

 

 
Figure 5.3 Representation of leukaemic clone detection rate 

The binary leukaemic clone(s) detection status (presence/absence, see Materials 
and Methods) of healthy donor (red), diagnostic (blue), day 29 (green) and relapse 
(purple) bone marrow samples is shown for all patients. 

5.2.2 Healthy beta TCR clones compose a rich and diverse repertoire at 
diagnosis 

Next, for each sample, the non-leukaemic part of the repertoire was filtered for 

productive beta chain TCRs (not containing “_” or “*” in the MiXCR reconstructed 

amino acid sequence) starting with a Cysteine (“C”) only. Alpha chain TCR and BCR 

rearrangements were not considered further, unless stated otherwise. Samples that 

contained less that 100 unique productive beta chain TCRs were excluded from 
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downstream analysis. The clonality score of the beta repertoire was computed for 

each patient, at each available time-point, together with healthy bone marrow 

controls (see Materials and Methods, Figure 5.4). 

 

 
Figure 5.4 Healthy and leukaemic bone marrow TCR repertoire clonality score 

The clonality score of healthy donor (red, N=7), diagnostic (blue, N=115), day 29 
(green, N=28) and relapse (purple, N=14) bone marrow samples is shown (N=132 
individuals). 
 

Strikingly, the clonality scores of healthy bone marrow samples were very 

homogeneous with only limited variation observed between individuals. On the 

contrary, patient derived samples displayed a large range of clonality values at all 

time-points. In addition, clonality scores at diagnosis and at relapse were significantly 

higher than scores in patient derived day 29 post-treatment samples (P=0.00005 and 

P=0.0009, respectively). This data indicated higher prevalence of expanded 

productive beta TCRs in samples with high leukaemic content when compared with 

samples with low or null leukaemic content. 

 

Similarly to the observations previously described for NSCLC and metastatic RCC 

in Chapter 3 and Chapter 4, the high frequency TCRs in these samples could 

potentially identify leukaemia specific T cells. The large variability of clonality values 

observed at diagnosis and at relapse could then be explained by a gradient of 
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immunogenicity of leukaemias across the cohort, which would be coherent with the 

variability of the corresponding genomic profiles in these patients. 

 

To investigate this further, the GOSH patients were split into three main genomic 

categories when data was available. Patients retained for this analysis displayed 

either the TEL-AML fusion, the MLL fusion or a non-diploid genome (hyper ploidy, 

hypo ploidy or general haploidy detected). No association between genotype and 

clonality scores was observed (Figure 5.5), suggesting that this classification does 

not segregate more or less immunogenic leukaemias, in the context of the 

hypothetical presence of cancer specific T cells in these samples, identified by high 

clonality scores. 

 

 
Figure 5.5 Bone marrow TCR repertoire clonality score per genotype 

The clonality score of TEL-AML (red, N=8), MLL (blue, N=4) and non-diploid (green, 
N=19) diagnostic bone marrow samples is shown for each patient 

5.2.3 Longitudinal analysis reveals repertoire sharing between diagnosis 
and relapse 

Following this observation, the hypothetical presence of leukaemia-specific TCRs 

was investigated in an antigen-agnostic manner by longitudinally comparing the beta 

repertoires and outlying rearrangements (identified as described in Section 5.2.1) 
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between diagnosis and relapse. For some patients, the pool of outlying clones at 

diagnosis was distinct from the pool of outlying clones at relapse but for others, one 

or more re-arrangements were shared between time-points (Figure 5.6). This 

suggested that the relapse disease was driven by the same primary leukaemic clone 

in the latter group of patients, whilst it was most likely driven by a novel clone 

selected by Darwinian evolution in the former group of patients. 

 

Representative log-log plots of bone marrow pooled BCR and TCR repertoires from 
patient 883429 diagnostic (A) and relapse (B) sample. Outlying clones are indicated 
by red circles. The non-productive BCR re-arrangement 
“CARDGYNWNS_YYYYGMDVW”, detected as leukaemic at both time-points, is 
shown. The x axis represents TCR abundance (clone count), and the y axis 
represents the proportion of the repertoire (proportion of unique clones). 
 

Hypothetically, the sharing of one or more outlying clones between primary disease 

and relapse should translate to a longitudinally stable antigenic landscape which may 

consequently drive a longitudinally stable pool of leukaemia-specific TCRs. To 

investigate this hypothesis, primary and relapse non-leukaemic TCR repertoire were 

compared for the ten patients that had sufficient data at both time-points (see 

Materials and Methods, Figure 5.7). 

A) B) 

Figure 5.6 Log-log representation of matched diagnostic and relapse 
repertoires 
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Figure 5.7 Leukaemic and non-leukaemic longitudinal similarity score 

The similarity score between diagnostic and relapse non-leukaemic TCR repertoire 
is shown for each patient. Patients are split between leukaemic clone overlap group: 
Yes (resp. No) for patients with shared (resp. mutually exclusive) outlying clones 
between time-points.  
 
Strikingly, four out of five patients for whom the outlying rearrangements, 

hypothesised as identifying leukaemia, were different between time-points displayed 

no overlap in the corresponding TCR repertoire. In contrast, five out of seven patients 

for whom at least one outlying re-arrangement at relapse that was already detected 

as such at diagnosis had non-zero overlap values in their corresponding TCR 

repertoire, which could indicate maintenance of cancer-specific TCRs. 

 

Next, CDR3 amino acid clustering was performed on pooled diagnostic and relapse 

samples to test whether the longitudinal overlap could be extended to similar but not 

identical CDR3 chains (see Materials and Methods). Although clustering structures 

could not be observed for all patients, probably due to the low input size for some of 

them, interesting networks were found in several patients, including patient 883429 

(Figure 5.8). 
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Figure 5.8 Pooled diagnostic and relapse CDR3 clustering representation 

Representative network diagrams of bone marrow CDR3 sequences for patient 
883429. Each circle represents a unique CDR3 found exclusively at diagnosis 
(green), exclusively at relapse (brown) or detected at both time points (grey). CDR3s 
that have a pairwise similarity of >0.82 are connected by an edge.  
 

As previously explained in Chapter 3 and Chapter 4, such networks probably indicate 

groups of TCRs with identical specificity, which in this context are hypothesised to 

recognise leukaemia-specific antigens. In patient 883929, the relapse of identical 

leukaemic clones was not only associated with shared productive beta sequences 

between diagnosis and relapse (Figure 5.7) but also with a number of CDR3 

similarity clusters, grouping together TCRs from both time-points. 

 

Following the hypothesis formulated above, these observations could be interpreted 

as follows: at diagnosis, beta repertoires contain cancer specific TCRs. After 

intensive chemotherapy, both the normal and the malignant repertoire of the bone 

marrow is ablated. Some degree of memory immune repertoire is however stored 

and can be recruited in the instances where the leukaemia relapses, but only if the 

relapse is driven by the same leukaemic clone. 

5.2.4 Matched single-cell RNA sequencing identifies CD8 T-cells with 
features of antigen experience in B-ALL samples 

In order to provide more substantial evidence to the hypothesis generated by the 

analysis described above, single-cell RNA and TCR sequencing was performed for 



Chapter 5 Results 

 

131 

 

three diagnostic samples from three different patients, together with a control healthy 

bone marrow sample. For each patient sample, T cells and leukaemic cells were 

separated and see remixed to a nine-to-one ratio in order to maximise the amount 

of sequencing dedicated to T cells whilst still keeping some amount of leukaemic 

cells. The aim was to investigate the hypothetical interactions between cytotoxic T 

cells and leukaemic cells that was expected in these samples (see Materials and 

Methods). 

 

A total of 4,151 and 5,156 T cells were identified in the healthy sample and the B-

ALL samples, respectively and 643 leukaemic cells. Both T cells and leukaemic cells 

were evenly spread between patients (mean=1,719; SD=129 for T cells and 

mean=214, SD=36 for leukaemic cells). Combining unsupervised clustering with 

expression profiles of CD19, CD3E, CD4, CD8A, FOXP3 and KLRB1 enabled to 

identify and separate the major cell types presents in the pooled single cell data set: 

CD8+ T cells, CD4+ T cells, CD4+ T regulatory cells, innate-like T cells, gamma-delta 

T cells and leukaemic cells (Figure 5.9). 

 

 
Figure 5.9 Pooled UMAP visualisation of T cells and leukaemic cells 

UMAP (uniform manifold approximation and projection) visualisations of 9,438 cells 
from 3 diagnostic B-ALL bone marrow samples and one healthy donor sample. In 
each quadrant, the z-scored expression of a specific gene is shown.  
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Next, unsupervised clustering was performed on the T cells and the expression 

levels of a selection of 46 genes of interest were examined across the entire dataset 

which enabled to label each cluster (Figure 5.10). 

 

 
Figure 5.10 Gene expression profile of T cell clusters 

Heatmap representation of z-scored expression of selected immune related genes 
across the different T cell clusters as defined, per cell.  
 
Both the CD4+ and the CD8+ compartments contained a highly prevalent naive-like 

population, characterised by the highest expression levels of CCR7, LEF1 and TCF7 
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and a lack of expression of any gene related to effector function. The CD4 

compartment also comprised of a memory-like population displaying intermediate 

levels of KLRB1 and BLIMP-1 (PRDM1) (Crotty, Johnston, & Schoenberger, 2010) 

together with high expression of CCR7, LEF1 and TCF7 and a regulatory T cell 

population, with a distinguishable expression of FOXP3, TIGIT and CTLA4. 

 

The CD8+ compartment was more complex and contained two memory populations 

(intermediate levels of CCL5, GZMK) and two effector populations (exclusive 

expression of IFN-γ (IFNG) and perforin (PRF1) and PD-1 (PDCD1)), in addition to 

the naive cluster. The two memory clusters differed by their usage of TIGIT and 

GZMK, CD8 memory 1 displaying intermediate levels of both genes versus no 

expression in CD8 memory 2. CD8 effector 2 appeared like more differentiated than 

CD8 effector 1, with higher expression of GNLY. In addition, CD8 effectors 1 and 2 

were distinguishable by mutually exclusive usage of GZMK and GMZH, respectively. 

 

Finally, 2 clusters of CD4-, CD8- T cells were present: one innate-like cell population, 

characterised by the highest expression levels of KLRB1 together with the 

expression of the characteristic transcription factor ZBTB16 (Leruste et al., 2019); 

and one gamma delta T cell population, characterised by expression of TRDC and 

TRGC1/2 together with the absence of αβ TCR retrieval. Cluster labelling and UMAP 

distribution is summarised in Figure 5.11. 

 



Chapter 5 Results 

 

134 

 

 
Figure 5.11 Pooled UMAP visualisation of T cells and leukaemic cells clusters 

UMAP visualisation of 9,438 cells from three diagnostic B-ALL bone marrow samples 
and one healthy donor sample, and their repartition among the different identified 
clusters. 
 

5.2.5 Cytotoxic CD8 T-cells are highly enriched in leukaemic bone marrows 
when compared to health control 

Next, the pooled Seurat object of T cells was split between the three B-ALL patients 

and the healthy bone marrow sample to determine whether the distribution of the 

single-cell clusters identified above was different between T cells from leukaemic 

bone marrow and T cells from healthy bone marrow (Figure 5.12). 
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Figure 5.12 Prevalence of T cell clusters in B-ALL and healthy control samples 

Bars displaying the relative cellular prevalence of T cell clusters in each individual 
sample, split between B-ALL patients (yellow) and healthy control (grey). Individual 
values are shown. 
 
Naive-like CD4 and CD8 T cells were the most abundant subtypes throughout the 

data set, together accounting for more than 50% of all single cells, but there were 

even more abundant in the healthy bone marrow sample, where 80% of single cells 

were naive-like. Conversely, although much less abundant overall, the CD4 memory, 

CD8 effector 1&2, gamma-delta and innate-like clusters represented a 

systematically higher proportion of B-ALL samples than the healthy sample. 

Remarkably, the CD8 effector 2 cluster, which was identified as the most cytotoxic 

CD8 subtype (expression of GZMB, PRF1 and GNLY), was virtually absent from the 

healthy bone marrow and only found in leukaemic samples. No clear difference was 

observed in the rest of the clusters. 

 

These observations are limited by the very small number of samples in this cohort 

and no statistical significance could be reached. To address this, a publically 

available data set of B-ALL and T-ALL bone marrow 10X sequencing data with 

healthy controls (Caron et al., 2020) was integrated to the Seurat object, hereon 

referred to as GSE132509. A total of three B-ALL samples, one T-ALL sample and 

three healthy bone marrow samples from GSE132509 was added to the analysis. 

UMAP coordinates and cluster annotations were obtained for this validation dataset 

via integration with the primary data (Figure 5.13, see Materials and Methods). 
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Figure 5.13 Prevalence of T cell clusters in primary and validation data sets 

(A) UMAP visualisation of B-ALL bone marrow samples (right panels) and healthy 
donor samples (left panels) in the primary data set (top panels) and the validation 
data set (bottom panels). (B) Boxplots summarising the relative cellular prevalence 
of each T cell clusters in B-ALL patients (yellow) and healthy controls (grey). The 
two-sided Mann–Whitney test P values are shown. 
 
The differential distribution of leukaemic samples versus healthy samples was 

remarkably stable across both data sets which enabled some of the observations 

made above to reach statistical significance when tested in the combined data set of 

A) 

B) 
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seven leukaemic samples and four healthy samples. More precisely, the CD8 

effector 2 and the gamma-delta cluster (resp. the CD8 naive-like cluster) were 

significantly more (resp. less) abundant in the leukaemic samples when compared 

to healthy samples. 

5.2.6 Single cell TCR-Seq reveals clonal expansion in cytotoxic T cell 
phenotypes 

Next, for the original data set of three B-ALL samples and one healthy control, single 

beta CDR3 chains extracted from the matched VDJ kit sequencing data and were 

mapped to the transcriptomic data (see Materials and Methods). Individual CDR3 

sequences were labelled as single (detected in only one cell) or expanded (detected 

in at least two cells, Figure 5.14). 

 

 
Figure 5.14 Pooled UMAP visualisation of singlet and doublet beta CDR3 chains 

UMAP visualisation of 5,715 cells from 3 diagnostic B-ALL bone marrow samples 
and 4,006 cells from one healthy donor sample, split by TCR status. Cells were 
labelled as singlets if their TCR was seen only once in the data set and doublets if 
shared by at least one other cell. 
 
Firstly, beta CDR3 chains were robustly identified in every cluster apart from the 

innate-like cluster and the gamma-delta cluster where the paucity of TCRs was in 
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line with the absence of CD8A or CD4 expression. Secondly, contrary to single TCRs 

which were evenly distributed across CD4+ and CD8+ clusters, expanded TCRs 

displayed a remarkably constrained profile and were almost exclusively detected in 

the two CD8 effector clusters. When looking at the distribution of expanded TCRs 

per sample, most of them were restricted to patient 913304, indicating either a 

sampling bias or a particularly strong clonal expansion occurring for this patient 

(Figure 5.15). 

 
Figure 5.15 Prevalence of doublet CDR3 chains 

Bars displaying the relative cellular prevalence of CDR3 doublets in each T cell 
clusters (left panel) and in each individual sample (right panel). 
 

5.2.7 Engagement of cytotoxic T cells with leukaemic cells is supported by 
cell-cell interaction analysis 

Together with a transcriptional profile displaying many features of cytotoxicity, the 

fact that both CD8+ effector clusters contained a large proportion of expanded TCRs 

supported the hypothesis that these clusters contained T cells recognising leukaemic 

cells and engaged in cytotoxic action against those. To further investigate this model, 

co-expression of ligand-receptor pairs were computed between patient specific 

leukaemic clusters and each cluster of T cells using the cellphoneDB (Efremova et 

al., 2020) software (Figure 5.16, see Materials and Methods). 
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Figure 5.16 Interaction between T cell clusters and leukaemic cell clusters 

Network diagram of ligand–receptor interactions for each pair of pooled T cell 
clusters and leukaemic clusters as determined by cellphoneDB (see Materials and 
Methods); Solid lines represent pathways between two populations, the width of 
each line is proportional to the number of pathways. Each quadrant represents one 
individual patient. 
 
The number of interactions between T cell clusters and leukaemic clusters varied 

between patients, with a total of 675, 570 and 464 interactions detected for patient 

1020374, 913304 and 1017078 respectively. This could perhaps indicate a gradient 

of immunogenicity of primary leukaemias, which was hypothesised in Section 5.2.2 

following the observation that clonality scores were highly variable between patients 

at the time of diagnosis. 

 

In addition, when split per T cell cluster, the distribution of the number of interactions 

was highly conserved across patients with the CD8 effector populations 
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systematically generating the greater number of interactions and the two naive 

populations, the smaller number (Table 5.1). 

 

1020374 

 

913304 

 

1017078 

CD4 naive-like 44 CD4 naive-like 39 CD4 naive-like 31 

CD4 memory 75 CD4 memory 62 CD4 memory 46 

CD4 Treg 66 CD4 Treg 55 CD4 Treg 45 

CD8 naive-like 42 CD8 naive-like 38 CD8 naive-like 31 

CD8 memory 1 56 CD8 memory 1 48 CD8 memory 1 38 

CD8 memory 2 53 CD8 memory 2 45 CD8 memory 2 37 

CD8 effector 1 90 CD8 effector 1 74 CD8 effector 1 64 

CD8 effector 2 91 CD8 effector 2 73 CD8 effector 2 62 

gamma-delta 76 gamma-delta 63 gamma-delta 58 

innate-like 82 innate-like 73 innate-like 52 

 
Table 5.1 Number of interactions between T cell clusters and leukaemic cell 

clusters 

The number of interactions between T cell clusters and leukaemic cell clusters, split 
per patient. Each row displays the number of interactions between the corresponding 
T cell cluster and the leukaemic cells from the corresponding patient. 
 

Together with the observation that CD8 effector clusters display a phenotype 

previously reported as tumour-specific and that they accounted for the vast majority 

of expanded clones (see Section 5.2.6), this data suggests that these populations 

are actively engaged with leukaemic cells. 

5.3 Chapter discussion 

The results presented in this chapter reveal that the non-leukaemic TCR repertoire 

of the bone marrow in childhood B-ALL patients contains rich information on the 

potential endogenous specificities of T cells against cancer. 

 

Firstly, retrospective analysis of clinical repertoire sequencing samples enabled to 

define the bone marrow beta TCR repertoire of B-ALL patients at diagnosis, post 

induction treatment and at relapse. Straightforward metrics demonstrated that the 
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TCR repertoire of B-ALL patients was significantly different from a control cohort of 

matched aged healthy individuals. 

 

The latter group displayed a very homogeneous distribution profile with limited 

variation of the clonality score between individuals. In B-ALL patients however, 

clonality scores were higher overall and highly variable across the cohort and time-

points. In addition, the re-appearance of the primary leukaemic clone at relapse was 

associated with the re-appearance of the same beta TCRs, suggesting the TCR 

repertoire could be stable in time when the antigenic landscape of the corresponding 

leukaemia was sufficiently stable. 

 

Following the hypothesis that this signal in the TCR repertoire data was driven by 

antigenic signal, single-cell RNA-Seq and TCR-Seq of T-cells and leukaemic cells 

was performed. In this subsequent dataset, the presence of expanded T cell clones 

in specific subsets of effector CD8 T cells was clear and significantly enriched in B-

ALL patients when compared to health controls. In addition, cell-cell interactions 

were detected between these subsets of effector CD8 T cells and leukaemic cells, 

suggesting that they were participating in an active, endogenous and specific anti-

tumour immune response. 

 

Taken together, these data support the idea that the bone marrow of B-ALL patients 

contains cancer-specific T-cells and additionally demonstrate that cytotoxic activity 

of T cells is endogenously occurring in situ. Together with the recent demonstration 

that neoantigen-reactive T cells can be isolated from the bone marrow of B-ALL 

patients (Zamora et al., 2019), this analysis supports the hypothesis that actionable 

cancer-specific T cells are present in the TME.  

 

This study has several limitations. Firstly, similarly to what was discussed at the end 

of Chapter 3 and Chapter 4, functional work is required to fully prove the specificity 

and activity of the T-cells identified. Such work could include reactivity assays 

between tumour material and autologous T cell populations or transduction of TCRs 

hypothesised as-cancer specific into T cells and subsequent in vitro or in vivo (PDX 

models) cancer challenge.  
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Secondly, the current view is very limited by a T-cell exclusive description and further 

analysis of matched scRNA-Seq or flow cytometry of the rest of the non-leukaemic 

cell populations that interact with T-cells is needed. In particular, matched analysis 

of the myeloid compartment will help to understand what limits the cytotoxic activity 

of endogenous cytotoxic T-cells in B-ALL. 

 

Lastly, further characterisation of TCR repertoire of B-ALL patients in the context of 

the current novel immunotherapy approaches, which are less destructive than the 

treatment received by the patients included in this analysis, would be key to 

understand how to therapeutically leverage the endogenous specificities identified 

here. 

  



Chapter 6. Discussion and future directions 

6.1 Introduction 

Although the number of published cancer research studies generating TCR-Seq data 

is growing exponentially (Figure 6.1), we are still at the dawn of optimal usage and 

interpretation of these data. More generally, there is a consensus around the fact 

that next generation sequencing in cancer research has reached a critical point 

where, beyond the analysis of single-omics data analysis, it is the integration of multi-

omics data that will yield novel insights (Chakraborty, Hosen, Ahmed, & Shekhar, 

2018). 

 

 
Figure 6.1 Normalised number of TCR cancer research publication since 2000 

The normalised number of TCR cancer research publications per year. The y axis is 
showing the number of Google scholar results returned by the query #[allintitle: t cell 
receptor cancer] divided the number of Google scholar results returned by the query 
#[allintitle: cancer], multiplied by 1000. Each bar corresponds to a rolling yearly 
window for the Google scholar search, starting at [2000-2001]. These data were 
retrieved on the 12th of April 2021. The R function geom_smooth was used to 
compute and plot the logistic regression curve. 
 

This thesis shows how TCR-Seq driven –omics data integration analysis can be 

performed in a range of cancer types and technological contexts to extract key 

features of the intratumoural TCR repertoire that are consistent with antigen 
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exposure, the cornerstone of the anti-tumour cytotoxic action of T cells (see Section 

1.2.3). 

 

More precisely, the fundamental immuno-oncology research questions that this 

thesis raises are the following (see Section 1.6): 

 

1. Can cancer-specific TCRs be identified and distinguished from non-cancer-

specific TCRs? 

2. Can the TCR be used to link T cell specificity to T cell phenotype? 

3. What features of the intratumoural TCR repertoire relate to clinical features 

of cancer? 

 

In lung cancer, non-synonymous mutations are a well described source of tumour 

specificity, giving rise to tumour-specific T cells in the tumour and in the periphery, 

which have been identified and characterised in multiple instances. As well as 

providing further evidence for the existence of neoantigen-specific T cells via the 

analysis presented in Chapter 3, TCR-Seq data can now provide insights that go 

beyond this point. The analyses performed in the context of the multi-region, multi-

omics TRACERx study highlighted the complex yet structured spatial heterogeneity 

of the TCR repertoire in NSCLC. 

 

In renal cancer, in contrast to lung, the sources of antigen for the tumour-specific T 

cell response are still mainly unknown. The study presented in Chapter 4 did not 

benefit from the same spatial resolution or the same statistical power that the lung 

cancer cohort had. Despite these limitations, the renal cohort offered a unique 

longitudinal sampling strategy to investigate the causes and/or the effects of 

response to anti-PD1. Taken together, this means that the approach to the analysis 

of TCR-Seq data in this cohort had to be adapted. In this instance, the analysis led 

to novel insights into the relative importance of replacement and maintenance of 

tumour-specific T cells in mediating the therapeutic action of anti-PD-1 antibodies. 

 

Finally, in childhood B-ALL, repertoire sequencing data is generated routinely in the 

clinic but, paradoxically, little is known about the cancer specific T cells in the bone 

marrow. Indeed, repertoire data is acquired in order to identify the malignant clones 
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and to longitudinally track their persistence (MRD>0) or disappearance (MRD=0). 

Previous studies demonstrated that specific T cells could be sorted from the bone 

marrow or the blood of B-ALL patients, suggesting that a larger cancer-specific T cell 

population exists and could be characterised by dedicated TCR-Seq analysis. 

Following on from the work presented in Chapter 3 and Chapter 4, the idea that such 

childhood B-ALL clinical cohorts of repertoire sequencing could be re-analysed 

emerged and was explored in Chapter 5. The results suggested that a cancer-

specific T cell population might be identifiable through TCR-Seq and primed a 

dedicated single-cell sequencing experiment to characterise this population. 

6.2 Current limitations and future perspectives 

6.2.1 The intratumoural TCR repertoire in lung cancer 

As mentioned above, the granularity achieved in the lung cancer cohort is very 

advanced but this study will still benefit from current and future work carried out in 

this cohort and/or separate cohorts. Firstly, despite indirect evidence, the specificity 

of ubiquitous and regional TCRs is not formally demonstrated. Single-cell TCR-Seq 

is currently being carried out by the Chain group in order to retrieve the α or the β 

chain matching the corresponding β or α chain identified as expanded ubiquitous or 

regional. Doing so will enable to reconstruct full αβ TCRs hypothesised as specific 

to ubiquitous or regional mutations as described in Chapter 3. The patients selected 

for this single-cell experiment are also enrolled in a patient-derived xenograft model 

study which means that, when αβ TCRs of interest are identified, they could be 

engineered into T cells and the T cells subsequently injected into these animals to 

study their ability to recognise and control tumour. This elaborate set of experiments 

could enable to fully validate the hypothesis put forward in Chapter 3. 

 

In addition, the main caveat of this project is that the multi-region sampling setting 

that TRACERx offers is not translated into the clinical setting is most instances. 

Although it is hard to visualise how the ubiquitous/reginal dichotomy could be 

reproduced outside this setting, future work leveraging the overlap with the blood 

compartment or maybe more advanced machine learning approaches could assess 

how much information can be inferred from limited single sample data. 
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6.2.2 The intratumoural TCR repertoire in renal cancer 

The findings presented in Chapter 4 rely on a small number of patients and despite 

reaching statistical significance for some of them, would highly benefit from being 

repeated in larger cohorts. In particular, a small number of patients are outlying the 

main distribution for certain metrics and it would be important to determine if they 

represent a larger group of ccRCC patients that has distinctive features or if they are 

simple outliers that would not scale up in numbers in a larger cohort. 

 

The second main limitation of this project is the inability to identify the antigenic 

sources driving the TCR expansions observed. Although this caveat is not specific 

to this study but applies broadly to renal studies, it remains a very important piece of 

the puzzle that Chapter 4 is attempting to put together. Recent data suggest that our 

failure to identify cancer-specific antigens in renal cancer is mostly due to 

technological limitations as some putative antigen sources are today easier to 

characterise than others. For instance, although this could not be repeated in this 

study, insertions and deletions have been identified as a potential greater source of 

immunogenicity that NSMs in renal cancer (Turajlic et al., 2017). Future work carried 

out by groups that aim to describe novel alternative sources of cancer-specific 

antigens, such as the Litchfield group at UCL, is needed. This will help understand 

what determines maintenance or replacement of expanded clones upon nivolumab 

treatment and potentially inform better predictors of response. 

6.2.3 The intratumoural TCR repertoire in childhood leukaemia 

The childhood leukaemia study presented in Chapter 5 has two main components: 

a large cohort of relatively poor-quality bulk data and a small cohort of high quality 

single-cell data. 

 

Two axes could be considered to validate the findings in the first cohort. Firstly, CD3+ 

cells could be purified from these samples and submitted to dedicated TCR-Seq. 

That way, the large fraction of repertoire data occupied by malignant clones in the 

primary samples would be available for a deeper description of the non-malignant 

TCR repertoire. However, given the limited availability of these clinical samples for 

re-sequencing, this option is not realistic. Another axis would be to pursue the re-
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purposing approach and leverage the large amount of bulk RNA-Seq publically 

available for childhood B-ALL patients, such as the St Jude Cloud (McLeod et al., 

2021). Tools such as TRUST (B. Li et al., 2017) version 4 claim to be able to 

reconstruct TCRs from bulk RNA-Seq data sets and could be applied to generate 

additional low quality but large cohorts of repertoire data of childhood B-ALL patients’ 

bone marrow samples. 

 

Regarding the second part of the study, focusing on a small number of patients, it is 

absolutely critical that further experiments are conducted in order to push the model 

forward. In addition to repeating the observations made in a larger cohort, expanding 

these findings to the larger immune population, including the myeloid compartment, 

would be insightful. Also, functional work providing further evidence of the 

hypothetical tumour specificity of the TCRs identified in this data set are needed. To 

this end, the three patients selected for single-cell RNA-Seq were also selected for 

a tumour reactivity assay currently being conducted between the Chain group and 

the Quezada group. In addition, those same patients were additionally selected for 

the patient derived xenograft program, which could be leveraged to study this 

hypothesis further, in vivo. 

6.3 Summary 

Taken together, the work presented in this thesis demonstrates that TCR-Seq data 

analysis can be used to identify and characterise features of the intratumoural TCR 

repertoire associated with antigen exposure. These features are consistent with 

antigen exposure but are not formally linked to tumour specificity. Instead, they are 

used in an antigen-agnostic manner throughout the thesis to characterise the 

potentially reactive intratumoural TCR repertoire and how it relates to particular T 

cell phenotypes and clinical features. 

 

It is important to note that the analyses performed do not distinguish tumour-specific 

TCRs from non-tumour-specific ones on the basis of individual TCR characteristics. 

On the contrary, in most instances, the relevant metrics emerge from a consideration 

of the global TCR repertoire at a given time-point. The identification of tumour-

reactive TCRs in an antigen-agnostic manner is considered a strength of this 
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approach, since the antigen landscape in most cancers is complex, dynamic and 

often poorly described. 

 

As the number of data sets grows (Figure 6.1), it seems critical that standardised 

and unified gold-standard analytical tools emerge, suitable to the wider community 

of non-computational cancer immunologists. I hope that this thesis, which puts 

forward a model of best practice for the identification of features associated with 

antigen exposure in tumour-derived TCR-Seq data, will benefit the community and 

contribute to such approaches being developed and widely applied. 
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