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Abstract

Mixtures of granular materials made of different-sized particles may segregate

when subjected to vibration or shear rate and in the presence of a gravitational

field. This leads to highly inhomogeneous mixtures, which are undesirable in

many industrial processes. This work focuses on size-driven segregation in poly-

disperse mixtures. We described the evolution of the particle size distribution

through a Population Balance Equation (PBE), which we solved numerically

with the Direct Quadrature Method of Moments. To allow segregation and

micromixing to occur, we closed the size-conditioned velocity of the particles

with a segregation-remixing model. The PBE was then included in an Eulerian-

Eulerian model and solved in a commercial Computational Fluid Dynamics

(CFD) code. We used the model to study granular flows down inclined planes.

The numerical results were then compared with those obtained from Discrete

Element Method simulations. The CFD-PBE model predicts well segregation

and micromixing in packed beds of polydisperse powders.
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1. Introduction10

Granular materials consisting of particles with different properties may unex-

pectedly segregate when sheared in the presence of a gravitational field (Savage

and Lun, 1988). Among the different properties, size is thought to be the most

critical in driving segregation (Alonso et al., 1991). Two are the main mecha-

nisms responsible for size-driven segregation: shear-induced particle percolation15

(or kinetic sieving) and squeeze expulsion (Savage and Lun, 1988). Their com-

bination is referred to as gravity-driven segregation (Gray, 2018). The basic

idea is that as the grains avalanche down-slope, the local void fraction fluctu-

ates, and the small particles are more likely to percolate downwards through the

gaps that create beneath them. Then, because of force imbalances, any-sized20

particle can be squeezed out of its own layer to an adjacent one. These two

mechanisms result into a downward flux of small percolating particles and an

upward flux of large rising particles (Bridgwater, 1994; Savage and Lun, 1988;

Alonso et al., 1991).

In many practical situations, segregation is undesirable; for instance, it can25

reduce the performance of a packed bed and degrade the quality and safety

of a solid product. Furthermore, segregation-related issues increase production

costs and wastes of many pharmaceutical, chemical and agricultural processes

(Bridgwater, 1976; Standish, 1985; Ottino and Khakhar, 2000; Gray and Ancey,

2011).30

Even if segregation has been studied for nearly a century, and a lot of efforts

have been made to understand its underlying physical mechanisms (Fan et al.,
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2017; Umbanhowar et al., 2019; Volpato et al., 2020), a quantitative analysis of

the phenomenon is still lacking, and much remains to be done (Alonso et al.,

1991; Ottino and Khakhar, 2000; McCarthy, 2009). Design decisions are still35

made without a fundamental understanding of the phenomenon and, to mini-

mize the effects of segregation, process engineers still rely on empirical heuristic

rules and avoidance practices (Ottino and Khakhar, 2000; McCarthy, 2009).

One of the most important limitations, which is present also in many advanced

studies, is that mixtures are assumed to be binary or ternary. But real mixtures40

are polydisperse, in particular over their size (Mazzei, 2013; Strumendo and

Arastoopour, 2008).

Here, we focus on cohesionless powders characterized by a particle size dis-

tribution. To account for particle polydispersity and describe the evolution in

time and space of the particle size distribution, we used the Population Balance45

Equation (PBE) (Arastoopour et al., 2017). Although in theory PBEs can be

solved analytically, only few analytical solution strategies have been developed.

Therefore, population balance equations are usually solved numerically. Many

numerical methods are available, such as the method of Laplace transforms, the

method of moments, the method of weighted residuals and the Monte Carlo50

method (Ramkrishna, 2000; Arastoopour et al., 2017). The Method of Mo-

ments, or MOM, is computationally attractive because provides good results at

low computational cost (Arastoopour et al., 2017). It consists in tracking the

lower-order moments of the distribution function with transport equations. In

its classical form, the MOM requires that the functional form of the distribution55
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function remain the same during the process. Furthermore, a moment closure

problem arises because, for any given set of moments the modeller wishes to

track, higher-order moments feature in the transport equations (Marchisio and

Fox, 2007; Mazzei, 2011). In the Quadrature Method of Moments (QMOM),

the closure problem is overcome via a quadrature-based approximation of the60

particle size distribution. This formulation of the MOM was first developed by

McGraw (1997) for modelling the evolution of aerosols, and then further devel-

oped by Marchisio and co-workers for modelling crystal growth, aggregation and

breakage (Marchisio et al., 2003a,b). In this approach, a few drawbacks still ex-

ist: the reconstruction of the distribution function from a finite set of moments65

is impossible, unless one knows a-priori the functional form of the Particle Size

Distribution (PSD), and the computational cost is higher than in MOM since

weights and nodes have to be back-calculated from the moments of the distri-

bution at each time step in each cell of the computational domain (Strumendo

and Arastoopour, 2008; Mazzei et al., 2012; Arastoopour et al., 2017). Further-70

more, when a number of moments greater than four is tracked, the higher-order

moments corrupt leading to non-physical values of quadrature nodes (Mazzei

et al., 2012). To overcome the disadvantages of QMOM, Marchisio and Fox

(2005) proposed the Direct Quadrature Method of Moments (DQMOM). This

differs from the QMOM because it tracks directly the weights and nodes of the75

quadrature approximation rather than tracking the moments of the PSD (Aras-

toopour et al., 2017). Since both methods adopt the same approximation of the

PSD, they are theoretically equivalent (Mazzei, 2013). The Finite size domain
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Complete set of trial functions Method Of Moments (FCMOM) by Strumendo

and Arastoopour (2008) is another promising formulation, since it does not re-80

quire specific assumptions for the distribution function and it converges fast to

the solution of the PBE. It differs from the other approaches because it still

solves the PBE in terms of its lower moments, but then reconstructs the distri-

bution function itself (Arastoopour et al., 2017). However, since the FCMOM

assumes that all particles, independently of their internal properties (e.g. size),85

are convected with an average phase velocity, it cannot be applied to model

size-driven segregation.

In this work, we implemented the version of DQMOM developed by Mazzei

et al. (2010), in which the average phase velocity is replaced with a size-

conditioned velocity. To determine the size-conditioned velocities, Mazzei et al.90

(2010) used the averaged dynamical equations of multiphase flows, whereas we

closed them constitutively using a segregation-remixing model. The transport

equations obtained from the DQMOM were then integrated within an Eulerian-

Eulerian framework and solved in a Computational Fluid Dynamics (CFD) soft-

ware.95

We applied this coupled CFD-PBE model to simulate the segregation dy-

namics of an inert, dry and cohesionless polydisperse powder, initially uniformly

mixed, flowing down an inclined plane. We chose to simulate a chute flow be-

cause of its relative simplicity, which allows developing and testing new theories

(Bhattacharya and McCarthy, 2014). To test the accuracy of the model, we100

compared its results to those of a Discrete Element Method (DEM) model.
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Even if the CFD-PBE model appears to be complex, it predicts well the evolu-

tion in time and space of the particle size distribution for a wide range of bed

depths. Its main advantage with respect to DEM is that the computation time

required is lower.105

The paper is organized as follows. In Section 2, we introduce the PBE, we

discuss the closure for the size-conditioned particle velocity and we describe the

DQMOM, i.e. the solution technique we employed. Section 3 deals with the

CFD-PBE coupling and with the closure of the effective stress tensor of the

mixture. The CFD implementation in Ansys Fluent is described in Sections110

4, while in Section 5, we present the DEM framework used to validate the

model. In Section 6, the results are reported and compared with DEM findings.

Conclusions are drawn in Section 7.

2. The population balance equation and solution methods

The evolution of a polydisperse solid phase can be mathematically described115

at the mesoscopic level by the Generalized Population Balance Equation (GPBE)

(Marchisio and Fox, 2007). Starting from this equation, in this section we derive

the DQMOM transport equations. Firstly, we express the GPBE in terms of

Volume Density Function (VDF). Then, in order to solve the PBE within the

CFD code and determine the VDF, we reduce to one the dimensionality of the in-120

ternal state space of the PBE (Section 2.1) and we approximate the VDF with a

quadrature formula (Section 2.3). The reduced PBE features an unclosed term:

the size-conditioned velocity. As closure relation, we use a segregation-remixing
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model from the literature (Section 2.2). The problem reduces to solving 2n

transport equations for quadrature weights and weighted nodes where n is the125

number of classes in the quadrature approximation.

2.1. The Generalized PBE

Let us consider a particle population characterized by two internal coordi-

nates: the particle size ξ (scalar quantity) and the particle velocity v (vector

quantity). The equation that includes also the particle velocity vector as inter-

nal mesoscale variable is referred to as generalized population balance equation

(Marchisio and Fox, 2013). To describe the population of particles, we used

a volume density function (VDF) fv (v, ξ;x, t) that represents the volume of

particles with size ξ in the range dξ and velocity v in the range dv that are, at

time t, contained in the volume dx around x. If neither reactions nor attrition

occur, the GPBE expressed in terms of volume density function reads (Mazzei

et al., 2010):

∂

∂t
fv (v, ξ;x, t) +∇x · [fv (v, ξ;x, t)v] +

∇v · [fv (v, ξ;x, t)Ap (v, ξ;x, t)] = Sv (v, ξ;x, t)

(1)

where x is the position vector in real space, Ap is the continuous rate of change

of particle velocity (i.e. the velocity of the particles in the velocity subspace)

and Sv is the source term that accounts for discontinuous jumps both in the130

velocity state space due to particle collisions and in the size space caused by

aggregation and breakage. Note that in the GPBE diffusion in physical space

is never present.
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Eq. 1 governs the spatial and temporal evolution of the VDF. Solving it

is extremely difficult: it is an integro-differential equation with respect to the

internal variables, and its dimensionality is higher than the classical transport

equations (it is four dimensional in its internal state space) (Mazzei et al., 2010;

Strumendo and Arastoopour, 2008; Arastoopour et al., 2017). To reduce the

dimensionality of the internal state space, we integrate out the coordinate v, so

that Eq. 1 reduces to:

∂

∂t
f̂v (ξ;x, t) +∇x ·

[
f̂v (ξ;x, t) ṽ(ξ;x, t)

]
= 0 (2)

where, by definition, it is:

f̂v (ξ;x, t) ≡
∫

Ωv

fv (v, ξ;x, t) dv (3)

f̂v (ξ;x, t) ṽ(ξ;x, t) ≡
∫

Ωv

fv (v, ξ;x, t)vdv (4)

with Ωv ≡ R denoting the domain of variation of v. In the reduced PBE (Eq.

2), since the particle velocity is no longer an internal coordinate, the source135

term vanishes because no discontinuous jumps take place in the size space (i.e.

particles neither aggregate or break) and f̂v (ξ;x, t) is a monovariate VDF with

particle size being its only internal state variable. There is, however, an unclosed

term: the mean velocity conditioned on the particle size ṽ(ξ;x, t). To close ṽ

one must either solve a balance equation, as done by Mazzei et al. (2010), or140

use a constitutive relation. In this work, we employed a constitutive relation.
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2.2. Size-conditioned velocity

In dense, gravity-driven, free-surface flows of granular avalanches with dis-

similar grains, segregation takes place. Two are the competitive mechanisms

characterising segregation: gravity-driven size segregation and diffusive remix-145

ing caused by the random motion of the particles as they collide and shear over

one another (Bridgwater, 1976; Savage and Lun, 1988; Gray and Chugunov,

2006). Gravity-driven size segregation is the combination of kinetic sieving and

squeeze expulsion; it results in a net segregating flux of the smaller particles

downwards and of the larger particles upwards (Savage and Lun, 1988). Com-150

peting against segregation, there is diffusive remixing (Gray and Chugunov,

2006). To account for remixing, one includes a diffusional term in the model,

and therefore an associated diffusion coefficient D . Unfortunately, there is no

theory on diffusion that applies to dense polydisperse granular flows, so here we

assumed that diffusion is isotropic and that D is a constant (i.e. it does not155

even depend on the particle size). Particles are then conveyed by the main solid

flow, whose velocity (i.e. the Eulerian velocity of the mixture) is governed by

the dynamical equation of the mixture.

In light of these considerations, three terms contribute to the mass flux of

the particles in a gravity-driven size segregating system: 1) a segregative flux

caused by kinetic sieving and squeeze expulsion, 2) a diffusive flux responsible

for remixing and 3) an advective flux that conveys particles down-slope. We
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can thus write:

f̂v(ξ;x, t)ṽ(ξ;x, t) = f̂v(ξ;x, t)vb(x, t)+

f̂v(ξ;x, t)vs(ξ;x, t)−D∇xf̂v (ξ;x, t)

(5)

where vb(x, t) is the Eulerian velocity of the solid mixture and vs(ξ;x, t) is the

size-dependent segregation velocity.160

If we consider a chute flow, the coordinate system has the x-, y- and z-axis

in the stream-wise, span-wise and surface normal direction, respectively. Thus,

the y-component of the segregation velocity is much smaller than the other

two components (i.e. vs,y ≈ 0) and the segregation velocity in Cartesian index

notation reads:

vs(ξ;x, t) = vs,x(ξ;x, t)ex + vs,z(ξ;x, t)ez (6)

To model the x- and z-components of the segregation velocity, different seg-

regation laws can be employed, since a general and valid description of the

continuum segregation model is still lacking. In this study, we arbitrarily chose

the expression proposed by Marks et al. (2012):

vs,x(ξ;x, t) = γ̇

(
g · sin θ

c

)
(fc − 1) (7)

vs,z(ξ;x, t) = γ̇

(
g · cos θ

c

)
(fc − 1) (8)

where g is the acceleration due to gravity, θ is the angle of inclination with

respect to the horizon, γ̇ is the shear rate, and c is a coefficient of inter-particle

drag with unit of 1/s−2. γ̇ is proportional to the magnitude of the deviatoric
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part of the strain-rate tensor S:

γ̇ = 2||S|| (9)

where ||S|| ≡
√

tr(S2)/2 is the second invariant of the tensor S. About c, its

nature is still poorly understood, so we assume it to be a constant. We also

assume that the scaling factor for the multicomponent case, fc, scales with the

characteristic length of the particle, ξ (Marks et al., 2012; Tunuguntla et al.,

2014):

fc =
ξ∫∞

0
f̂v(ξ;x, t)ξ dξ

(10)

Note that one could employ other forms for the percolation velocity. Introducing

Eq. 5 in the reduced population balance equation (Eq. 2) gives:

∂

∂t
f̂v +∇x ·

(
f̂vvb

)
+∇x ·

(
f̂vvs

)
−D∇2

xf̂v = 0 (11)

This equation governs the evolution of the monovariate VDF f̂v (ξ;x, t). The

model relies on two parameters, the drag coefficient and the diffusivity. We will

see in Section 2.3 that, because of the inclusion of diffusion, a source term will

appear in the DQMOM transport equation.

2.3. Direct Quadrature Method of Moments165

There are many solution methods for population balance equations. How-

ever, for practical needs, knowing the evolution of the first few moments of

the VDF is enough to fulfil engineering requirements (Ramkrishna, 2000). The

idea behind the method of moments is solving the density function in terms of

its lower-order moments by integrating out the size coordinate from the PBE170
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(Mazzei et al., 2010; Arastoopour et al., 2017). However, this method involves

a closure problem: for any given set of moments, the equations involve higher-

order moments external to the set. This makes the MOM rarely applicable.

The quadrature method of moments presented by McGraw (1997) eliminates

the closure problem by approximating the VDF with quadrature formulas.175

In this work, we solved the population balance equation with the direct

quadrature method of moments. The volume density function f̂v in Eq. 11 is

approximated as a summation of n Dirac delta functions:

f̂v ≈
n∑
α=1

φα(x, t)δ (ξ − ξα(x, t)) (12)

where n is the number of classes of the quadrature approximation, while φα and

ξα are the weights and nodes of the α-th quadrature class, respectively.

We assume that the void fraction in the granular mixture ε is constant,

uniform and equal to 0.37. Thus, the overall solid volume fraction is always

equal to (1− ε) = 0.63. Because of this assumption, we could work in terms of180

void-free VDF (i.e. its weights sum to one), and so void-free quadrature weights

in the quadrature formula. From now on, we refer to f̂v as void-free VDF.

Introducing Eq. 12 in Eq. 11 gives:

∂

∂t

(
n∑
α=1

φαδ (ξ − ξα)

)
+∇x ·

(
n∑
α=1

φαδ (ξ − ξα)vb

)
+

∇x ·

(
n∑
α=1

φαδ (ξ − ξα)vs,α

)
−D∇2

x

(
n∑
α=1

φαδ (ξ − ξα)

)
= 0

(13)

where vs,α(x, t) is the segregation velocity of the particles belonging to the

quadrature class α. Since both φα(x, t) and ξα(x, t) are functions of the real
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space coordinates and the time, Eq. 13 yields:

n∑
α=1

[
cφα(x, t)δ (ξ − ξα)− (cφξα (x, t)− ξαcφα(x, t))δ′ (ξ − ξα)

]
=

n∑
α=1

[Dδ′′φα∇xξα · ∇xξα]

(14)

where we defined:

∂

∂t
φα +∇x · (φαvb) +∇x · (φαvs,α)−D∇2

xφα ≡ cφα (15)

∂

∂t
σα +∇x · (σαvb) +∇x · (σαvs,α)−D∇2

xσα ≡ cσα (16)

with σα ≡ (φαξα) being the α-th weighted node.

Equation 14 expresses the population balance equation for a monovariate

population of particles whose size-conditioned velocity is closed as reported in

Section 2.2. The unknowns functions are φα(x, t) and ξα(x, t), namely the

weights and the nodes of the quadrature approximation. Also, the source terms

cφα(x, t) and cφξα (x, t) are unknowns, but they can be determined by computing

the moment transforms of the PBE, namely by forcing the quadrature-based

VDF to agree with the first 2n integer moments of the actual VDF (Mazzei,

2011). By definition, the k-th order integer moment of f̂v, with f̂v approximated

as reported in Eq. 12, reads:

Mk ≡
∫ ∞

0

ξkf̂v (ξ;x, t) dξ ≈
n∑
α=1

φα(x, t)ξkα(x, t) (17)

If we apply this transform to each term of Eq. 14, we obtain a linear algebraic
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system in the 2n unknown source terms cφα and cφξα :

n∑
α=1

cφαξ
k
α + k

n∑
α=1

(cφξα − ξαcφα)ξk−1
α =

k(k − 1)

n∑
α=1

Dφαξ
k−2
α ∇xξα · ∇xξα , k ∈ [0, 2n− 1]

(18)

In this work, we employed a two-node quadrature approximation; thus we ob-

tained four source terms:

cφ1 (x, t) = −6(χ1 − χ2)(ξ1 − ξ2)−2

cφξ1 (x, t) = [2χ2(2ξ1 + ξ2)− 2χ1(ξ1 + 2ξ2)](ξ1 − ξ2)−2

cφ2 (x, t) = −cφ1 (x, t)

cφξ2 (x, t) = −cφξ1 (x, t)

(19)

where the subscript 1 or 2 indicates the quadrature class, and χα is equal to:

χα ≡ Dφα∇xξα · ∇xξα (20)

Now that the source terms are known, solving the PBE reduces to solving Eqs.

15 and 16 for each quadrature class. If one wanted to track directly the evolution

in time and space of the quadrature nodes instead of the weighted nodes, the

transport equation would be:

∂

∂t
ξα + vb · ∇xξα + vs,α · ∇xξα −D∇2

xξα = cξα (21)

with the source term equal to:

cξα ≡
cσα − cφαξα + 2D∇xφα · ∇xξα

φα
(22)

As explained in Mazzei (2011), the diffusive terms generate the source terms.

In our case, spatial diffusion arises in the transport equations because vα has185
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been closed using the segregation-remixing model, which is made of two com-

petitive mechanisms: gravity-driven segregation and diffusive remixing. Thus,

since we have diffusion, we also have generation. Furthermore, diffusion con-

sents micromixing: each element can interact with the other elements within

the domain so that powders are allowed to mix also at the microscopic length190

scale (Mazzei et al., 2010; Mazzei, 2011).

3. Multiphase fluid dynamic model

3.1. CFD-PBE coupling

Process operations such as storage, conveying, mixing and sizing of particles

range from small scale (e.g. pharmaceutical industries) to large scale (e.g. min-195

erals industries). Simulating large-scale systems via DEM may be unfeasible

because of the required computational effort and time. However, to cope with

a full-scale industrial system, one can use computational fluid dynamic simula-

tions. For this reason, we developed a segregation CFD-PBE coupled model to

be implemented in a CFD code. The flowchart of the CFD-PBE coupled model200

is reported in Fig. 1. We simulated a two-phase system consisting of two phases:

the granular mixture flowing down an inclined plane, and the air lying above

the mixture. We used the VOF modelling approach, which allows calculating

the velocity and volume fraction profiles in the two phases. The volume fraction

is uniform in the bulk of each phase, varying only near the interface between205

the two phases. The velocity field in the granular phase coincides with vb, the

bulk velocity featuring in the PBE (see Eq. 11). Once the segregation fluxes
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Figure 1: Schematic diagram of the CFD-PBE coupled model. The PBE is solved by adopting

the DQMOM.

are obtained, the PBE is solved by adopting the DQMOM. Since segregation

determines changes in the local rheology, and consequently the flow, the nodes

and weights of the quadrature approximations are then fed back into the CFD210

model and used to update the local rheology of the bulk solid at the subsequent

time step.

3.2. Multifluid dynamical equations

We considered a polydisperse powder flowing down an inclined plane un-

der gravity and in ambient conditions. We limited our investigation to a two-215

dimensional incompressible granular flow. As already mentioned, we assumed
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that the mean solid volume fraction 1 − ε is constant within the powder bed

(Gray and Thornton, 2005). Because of these assumptions, the polydisperse

granular material can be represented as a single continuous phase. The second

phase is instead superficial ambient air. The two phases do not interpenetrate,220

and mass transfer does not occur.

As Eulerian-Eulerian multiphase model, we employed the coupled level-set

and volume of fluid (VOF) method, a numerical technique designed for im-

miscible fluids that allows tracking the position of the interface. In the VOF

method, pressure and velocity field u are found by solving the mass and mo-

mentum equations:

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂

∂t
(ρu) +∇ · (ρuu) = ∇ · σ + ρg (24)

where σ is the effective stress tensor. The closure of the effective stress tensor

is discussed in Section 3.3. The material properties required in Eq. 24 are

determined by the presence of the component phase in each control volume. In

a two phase system, density and viscosity are respectively:

ρ = (1− αs)ρair + αsρs (25)

η = (1− αs)ηair + αsηs (26)

where αs is the volume fraction of solid. In this way, the discontinuity across the

interface is smooth, whereas away from the interface air and solid maintain their
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characteristic properties (Olsson et al., 2007; Dianat et al., 2017). The volume

fraction of the solid phase is obtained by solving the transport equation:

∂αs
∂t

+∇ · (αsu) = 0 (27)

whereas, the volume fraction of air is computed based on the following con-

straint:

αair = 1− αs (28)

The interface between air and solid is captured by the level-set method. The

level-set ψ(x, t) is a continuous function defined as the signed distance from the

interface. In a two-phase flow system, the level-set is zero at the interface,

positive in the primary phase (i.e. air) and negative in the secondary phase (i.e.

solid) (Dianat et al., 2017):

ψ(x, t)



+|δ| x ∈ primary phase

0 at the interface

−|δ| x ∈ secondary phase

(29)

where δ denotes the distance from the interface. The level-set advection equation

is:

Dψ

Dt
= 0 (30)

As mentioned, in the solid phase the velocity u coincides with the velocity vb

featuring in Eq. 11.
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3.3. Effective stress tensor

The stress tensor σ in Eq. 24 can be decomposed into an isotropic and a

deviatoric part:

σ = −pI + τ (31)

where p is the pressure (i.e. it derives from the mass conservation in Eq. 23), I

is the identity tensor and τ is the deviatoric stress tensor. Closing σ therefore

reduces to expressing constitutively τ . The closure of τ is achieved by specifying

three constitutive equations: a flow rule, an alignment condition and a plastic

yield condition (Barker and Gray, 2017). Let us beginning with the flow rule. If

we consider incompressible granular systems, the flow rule far from the interface

between solid and air is:

∇ · u = 0 (32)

The alignment condition is formulated in terms of the strain rate tensor, D

(Barker and Gray, 2017; Heyman et al., 2017; Schaeffer et al., 2019):

D ≡ 1

2

(
∇ · u+∇ · uT

)
(33)

and reads:

τ

||τ || =
D

||D||
(34)

where || · || denotes the second invariant. This conditions states that the prin-

cipal directions (i.e. eigenvectors) of τ and D must be aligned (i.e. parallel)

(Pitman and Schaeffer, 1987). The third constitutive equation, take the form

of a generalized yield condition that relates ||τ || with the pressure:

||τ || = µp (35)
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being µ the effective friction coefficient. Introducing the yield condition (Eq.

35) into the alignment condition (Eq. 34) leads to a closure relation for the

deviatoric stress tensor:

τ = µp
D

||D||
(36)

If we consider that for incompressible granular flows γ̇ = 2||D||, and if we

substitute the definition of D (Eq. 33), Eq. 36 becomes:

τ =
µp

γ̇

(
∇ · u+∇ · uT

)
(37)

Thus, the closure of τ is achieved by customizing the frictional viscosity of the

solid phase:

ηs =
µp

γ̇
(38)

In Ansys Fluent, this can be done by means of customized user define functions.

In Eq. 38 there is still an unknown: the effective friction coefficient µ. To close

it, we used the incompressible µ(I)− rheology proposed by the Groupement

De Recherche Milieux Divisés (G. D. R. MiDi, 2004). The incompressible µ(I)

rheology (G. D. R. MiDi, 2004; Jop et al., 2006) states that the friction coefficient

µ is rate dependent and scales with the inertial number I. For mono-sized

particulate flows, the inertial number takes the form (G. D. R. MiDi, 2004; Da

Cruz et al., 2005):

I =
dγ̇√
p/ρ∗s

(39)

where d is the particle diameter and ρ∗s is the intrinsic solid density. Note that

ρ∗s, which is defined as the mass of the solid per unit constituent volume, differs

from the bulk density ρs ≡ (1 − ε) · ρ∗s, which is instead associated with the
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total volume the solid occupies. The most frequently used form for expressing

the local frictional coefficient as a function of I has been proposed by Jop et al.

(2006):

µ(I) = µs +
µ2 − µs
I0/I + 1

(40)

In the friction law, µs is the static friction coefficient, µ2 is the limiting value225

toward which the friction coefficient converges at high inertial number, and I0

is a constant. The friction coefficient expressed in this way is an increasing

monotonic function: it starts from the critical minimum value µs for zero shear

and increases asymptotically to µ2 when I diverges.

Since the dependence of the rheology on the particle size distribution is still

matter of research (Yohannes and Hill, 2010; Marks et al., 2012), we assumed

that the friction law in Eq. 40 holds also for polydisperse granular materials,

with:

I =
Dγ̇√
p/ρ∗s

(41)

where D is the average diameter of the PSD (Tripathi and Khakhar, 2011;

Rognon et al., 2007), expressed as the ratio between the first and the zeroth

moments of the distribution:

D =

∑
k φαξα∑
k φα

=
M1

M0
(42)

To sum up, the closure of τ is achieved by introducing a user defined func-230

tion for the frictional viscosity of the solid (Eq. 38), where µ is function of a

generalized Inertial number definition (Eq. 41). This is the simplest hypothesis

we could employ for polydisperse mixtures.
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Figure 2: On the left: a sketch of the simulated system and the coordinate system. The blue

shaded area represents the solid phase and θ is the inclination angle of the chute. On the

right: a piece of the 2D mesh employed in the CFD simulation.

4. CFD implementation

The CFD-PBE coupled model was implemented in a CFD code to predict235

the evolution of the PSD of a polydisperse system flowing down an inclined

plane. This section gives detailed information about framework and numerical

scheme.

4.1. Framework

We considered a polydisperse powder flowing down an inclined plane. The240

angle of inclination is θ = 30o with respect to the horizon and the powder

is subjected to gravity. Fig. 2 reports a sketch of the system. The granular

material is represented as a single solid phase, with bulk density equal to ρs =

1260 kg/m3. This choice is motivated by the fact that the solid volume fraction

is assumed uniform and constant within the powder bed. Even though all the245

particles are advected within the bulk flow, we could track the downward relative
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motion between particles of different size thanks to the DQMOM transport

equations (see Section 2.3).

4.2. Numerical scheme

To run the simulations, we used the commercial CFD code Ansys Fluent250

17.2. As multifluid model, we employed the coupled level-set and volume of

fluid method. The primary phase is ambient air whereas the secondary phase

is the bulk solid. The two phases are immiscible, and mass transfer does not

occur among them. The solid phase is composed of a polydisperse mixture of

grains whose particle size distribution is approximated with a two-nodes quadra-255

ture formula. The quadrature weights and the quadrature weighted nodes were

treated as user scalars, and their transport equations (Eqs. 15 and 16) were

added to the default equations of the code. We also implemented the closure

for the solid frictional viscosity (Eq. 38) by means of user defined functions.

We used the pressure-based solver, which is recommended for low-speed260

incompressible flows. To convert scalar transport equations into algebraic equa-

tions that are numerically solvable, the code adopts a finite-volume discretiza-

tion scheme. For what concerns the spatial discretization, we used the Least

Squares Cell-Based algorithm. We set a second order accurate level-set method,

whereas momentum and user defined scalars were discretized through a first-265

order upwind scheme. Temporal discretization is first order accurate and im-

plicit. To couple pressure and velocity, we adopted the SIMPLE (Simultaneous

Solution of Non-linearly Coupled Equations) algorithm. We then adopted the

compressive interface capturing scheme, which is particularly suitable for flows
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with high ratios of viscosities between the phases. The pressure values at the270

cell-face are interpolated by a body-force-weighted scheme. To compute the

flow variables, we used a maximum of 20 iterations for each time step. Setting

the tolerance of all the variables equal to 10−3, we usually attained convergence

within the iteration limit. The time step was set to 10−3 s.

4.3. Boundary and initial conditions275

The simulation domain is an inclined chute 1 m long and 3 cm high repre-

sented as a two-dimension computational grid. The effect of the front and back

walls is therefore neglected. The mesh is uniform almost everywhere, with 15090

cells of 2 x 1 mm size (see Fig. 2). We assigned a no-slip boundary condition at

the bottom wall (Hirshfeld and Rapaport, 1997; Silbert et al., 2003), and 100280

Pa gauge pressure at the domain upper boundary and outlet boundary. With

regard to the inflow, after several trial experiments, we saw that a good feed

rate to induce a stable flow (Silbert et al., 2003) can be obtained by imposing a

constant inlet velocity of 0.35 m/s for the solid phase.

In its initial state, the bulk solid is uniformly well-mixed and fill the chute285

height up to H = 1.5 cm. To assign the initial conditions, we need to know

the values of the n quadrature weights and n quadrature nodes at time 0 and

everywhere within the computational domain. For this purpose, we had first

to calculate the first 2n order moments by implementing Eq. 17 to the volume

density function of the particle size distribution (which is known). Since the290

quadrature approximation is Gaussian, the quadrature nodes and weights can

be efficiently obtained from the moments of the density function by adopting
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Figure 3: The simulated PSD expressed in terms of 10 different size classes and a two-node

representation. The positions and the heights of the vertical lines represent the Dirac delta

functions of the quadrature formula.

the product-difference algorithm of Gordon (McGraw, 1997). Fig. 3 shows the

continuous particle size distribution of our granular system considering 10 dif-

ferent size classes (in reality the PSD is usually determined by sieve analysis and295

thus expressed in terms of discrete sizes), and its two-nodes representation. The

values of its first four integer moments are reported, together with quadrature

nodes and weights, in Tab. 1. Note that the zeroth order moment is equal to one

since we are considering a void-free VDF. Finally, since the inflow is constant

and uniform, we imposed constant fluxes of the user-defined scalars at the solid300

inlet.
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Moments of the VDF

M0 [-] M1 [mm] M2 [mm2] M3 [mm3]

1 1.2535 1.6440 2.2346

Quadrature nodes and weights

ξ1 [mm] φ1 [-] ξ2 [mm] φ2 [-]

0.92 0.394 1.47 0.606

Table 1: Values of the VDF moments, quadrature nodes and weights obtained from the PSD

reported in Fig. 3

5. DEM validation

The challenge is to validate the results of the CFD-PBE coupled model.

A valuable tool to test and calibrate continuum models (Weinhart et al., 2013)

when experimental observations are unfeasible (e.g. it is difficult to measure the305

evolving particle-size distribution of polydisperse systems during flow) is rep-

resented by Discrete Element Method (DEM) simulations. The 3D soft-sphere

simulation was implemented in LIGGGHTS®-PUBLIC (Kloss et al., 2012), an

open source DEM particle simulation software. As contact force model, we em-

ployed the non-linear spring-dashpot model developed by Hertz and Mindlin310

(Johnson and Jackson, 1987; Mindlin, 1949). This means that particles inter-

act by elastic contact, whereas the normal dissipation is represented through a

dashpot element. To account for gear-like rotation of two particles in contact,

we used the constant directional torque (CDT) as rolling friction model.

Periodic boundary conditions are imposed in the stream-wise (x) and span-315

wise (y) directions. Periodic boundary conditions allow reducing the number

of particles required, since only a sector of the full geometry is simulated. To
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avoid plug flow, the bottom wall must be a rough surface. To model roughness,

we fixed some particles to the base (Zheng and Hill, 1996).

The system is filled with a total of 3000 particles, all having the same intrinsic320

density (ρ∗s = 2000kg/m
3
). Unlike Marks et al. (2012), who simulated a polydis-

perse mixture of spheres distributed uniformly, we implemented a non-uniform

particle size distribution (i.e. the 10 different size classes reported in Fig. 3). For

all the particles, we defined the following material properties: Young’s modulus,

Poisson ratio, sliding friction coefficient, coefficient of restitution and coefficient325

of rolling friction. Since it has been shown that the use of a relatively small

Young’s modulus does not result in a significant error in structural analysis

(Zhou et al., 2004), E was set of the order of magnitude of MPa instead of

GPa. This reduces the computational time without significantly affecting flow

patterns, velocity profiles and shear stresses (LIGGGHTS(R)-PUBLIC website,330

n.d.; Remy et al., 2009). The computational time step was set equal to 10−6

s, small enough to avoid the propagation of the disturbance farther than the

immediate neighbourhood of each particle (Cundall and Strack, 1979). The

simulation parameters are summarized in Tab. 2.

The simulation was initialized with gravitational acceleration acting in the335

negative z-direction (i.e. the plane is horizontal). The bed of particles was

generated within the simulation domain and let settle by gravity. Once settled,

the gravity vector was rotated to simulate the inclination angle θ. At that point,

particles started to avalanche down-slope.
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Variable Symbol Value

Particle density [kg/m3] ρ∗s 2000

Young’s modulus [MPa] E 26

Poisson ratio σ 0.25

Sliding friction coefficient µs 0.56

Rolling friction coefficient µr 0.001

Restitution coefficient en 0.60

Number of particles NT 3000

Time step [s] ∆t 1e−6

Boundary conditions − p p f

Table 2: A summary of the DEM simulation parameters.

6. Results and discussion340

As discussed above, the aim of this paper is to validate our segregation

CFD-PBE coupled model. In this section, we report in order: the results from

the CFD simulation, the results from the DEM simulation and the comparison

between the two. In both cases, in order to evaluate segregation, we divided the

domain, starting from the bottom, in three layers: a bottom layer, a top layer345

and a middle layer sandwiched in between. Each layer was 4 mm height in the

z-direction.

6.1. CFD-PBE coupled model simulations

We ran the CFD simulation considering a two-node quadrature approxima-

tion for the PSD and constant mean values for drag coefficient and coefficient350

of diffusion. Following Marks et al. (2012), the diffusion coefficient had to be of

the order of magnitude of D ∼ 10−5 m2/s. About the drag coefficient, suitable
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values that lead to reasonable segregation velocities are about c ∼ 104−105 s−2.

The results reported in this paper were obtained with D = 1.2 ·10−5 m2s−1 and

c = 6 · 104 s−2. Furthermore, we set µs = 0.176, µ2 = 0.643 and I0 = 0.279,355

whereas the air was modelled with a density of 1.225 kg/m3 and a viscosity of

1.7894·10−5 Pa s. Then, we defined the investigation window at 0.8±0.1m from

the inlet (at the inlet the flux is constant and homogeneous).

The CFD simulations give the values of the quadrature weights and nodes in

each computational cell of the domain; from these values we can obtain the cell360

values of the first four integer moments. Thus, we just have to divide the bed

in layers and from the numerical profiles of the VDF moments determine their

average values in each layer and then the corresponding average values of the

quadrature nodes and weights. Fig. 4 shows the evolution in time of the first

raw moment, which represents the mean particle diameter. We can distinguish365

three inversely graded segregated layers characterized by finer particles at the

bottom, coarser grains on top, and medium-sized particles in between. This

means that, as expected, smaller particles have, on average, a net downward

motion, thus particles segregate by size. Segregation is even more pronounced

at the bottom, where the shear rate is higher.370

The evolution of the two nodes, still for the three layers, is shown in Fig. 5.

More CFD-PBE results are reported in the Supplementary Information.

6.2. DEM simulation

The DEM simulation treats a section 2 cm long and 1 cm wide of the full

geometry considered in the CFD simulation; this is because simulating the entire375
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Figure 4: Evolution of the first order moment of the PSD in the bottom, middle and top

layers obtained by solving the CFD-PBE coupled model.

geometry would require more than 1.5 · 105 particles.

Fig. 6 displays three snapshots of the simulation, where the different colours

denote different sized particles. At time t = 0 s particles are homogeneously

distributed, whereas at time t = 6 s the system has already reached its final

steady state.380

Unlike continuum models, the results of DEM simulations yield the position

of each particle at any given time. This allowed us to determine the numerical

fraction of each size class in each layer, to reconstruct the PSD in terms of

volume density function (see. Fig. 7), and to calculate the first four moments of

the distribution. The smaller particles collect preferentially close to the bottom,385

whereas the top is richer in bigger particles. From the VDF moments, we back-

calculated the two weights and two nodes of the distribution by employing the

product-difference algorithm of Gordon (Gordon, 1968). These are used in the
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Figure 5: Evolution of the first (on the left) and second (on the right) quadrature node in the

bottom, middle and top layer obtained by solving the CFD-PBE coupled model.

following section for model validation.

6.3. Confirming the model390

First, we wanted to verify that the velocity field is correctly predicted by

the rheological model. We therefore performed preliminary simulations both in

CFD and DEM considering a monodisperse bed of particles, all having diameter

equal to the mean particle diameter of the distribution reported in Fig. 3 (= 1.25

mm). Fig. 8 shows the streamwise velocity profile (i.e. the x component of the395

velocity vector as a function of the z coordinate) of the mono-sized bed of grains

at steady state in the two cases. The velocity profiles agree, with a R-squared

value of 0.994. Thus the shear rate profile, which induces segregation, must be

similar, and the two granular flows comparable.

Fig. 9 reports the evolution of quadrature weights (first column) and weighted400

nodes (second column) obtained from both our CFD-PBE coupled model (coloured

lines) and DEM simulations (black lines). The results refer to the top, mid-

dle and bottom layers and show that segregation is less pronounced on top,
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Figure 6: Snapshots from the DEM simulation. The system is filled with 3000 particles

characterized by the volume density PSD reported in Fig. 3. The colors denote the particle

diameter. At t = 0 s, the sample is well mixed. At time t = 6 s, the system has reached

steady state and the segregation profile has fully developed.

Figure 7: Particle size distribution at t = 0 s (black line), and after 6 s (coloured lines) in the

three layers from DEM simulations.
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Figure 8: Comparison of the dimensionless streamwise velocity profile as a function of z/dp

obtained with DEM and CFD simulations.

where the shear rate is smaller, and increases as the bottom wall is approached.

The CFD-PBE coupled model predicts well the evolution of both weights and405

weighted nodes in the middle and top layers, but not in the bottom layer. This

disagreement will be discussed in the following section.

Figs. 10, 11 and 12 report the PSDs and their two-node quadrature repre-

sentations achieved after 6 s in the bottom, middle and top layers, respectively.

The vertical lines, whose positions and heights are the quadrature nodes and410

quadrature weights, represent the Dirac delta functions of the quadrature formu-

las. As we can see, the results of the CFD-PBE and DEM simulations agree very

well in the middle layer, and quite well in the top layer. However, the results

differ in the bottom layer. There, the positions indicate the quadrature nodes

are over-estimated. Moreover, if the weight of the first node is overestimated,415

the weight of the second node is underestimated.
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Figure 9: Evolution of the quadrature weights (on the left) and weighted nodes (on the

right) obtained from the segregation CFD-PBE coupled model (coloured lines) and the DEM

simulation (black line). The results refer to the top, middle and bottom layers.
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Figure 10: PSD at the bottom of the chute after t = 6 s. The red lines represent the two-node

representation obtained from the DEM simulation, while the green lines are the two-node

representation obtained from the CFD simulation.

Figure 11: PSD in the middle layer at t = 6 s. The red lines represent the two-node representa-

tion obtained from the DEM simulation, while the orange lines are the two-node representation

obtained from the CFD simulation.
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Figure 12: PSD in the top layer at t = 6 s. The red lines represent the two-node representation

obtained from the DEM simulation, while the blue lines are the two-node representation

obtained from the CFD simulation.

Thus, despite our CFD-PBE coupled model works for a range of conditions,

it fails under some circumstances. The limitations of our model are not directly

related to the CFD-PBE framework but rather to the assumptions we made

of constant and isotropic diffusion, constant drag coefficient, and uniform and420

constant bed porosity.

6.4. Discussion

We can justify the observed discrepancies on theoretical grounds by exam-

ining the assumptions we employed in the CFD-PBE model regarding diffusion,

drag coefficient and bed porosity.425

In granular flows, diffusion has mainly been studied for monodisperse parti-

cle systems. According to Utter and Behringer (2004), who studied the random
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motion of monodisperse grains in a two-dimensional Couette shearing experi-

ment, the self-diffusivity is proportional to the local shear rate and to the square

of the particle radius (i.e. D ∝ γ̇d2). In chute flows of bidisperse disks, Berton430

et al. (2003) observed that the diffusive process is independent of the particle

size and that the diffusion coefficient associated with each layer increases linearly

with the layer height. Since the shear rate decreases when the height increases,

being maximum at the wall, it follows that D should not depend on the particle

size and should decrease with the shear rate. This disagrees with what Utter435

and Behringer (2004) reported. More recently, Chassagne et al. (2020) showed

that the diffusion coefficient should depend on the inertial number.

The articles just cited reveal that the process of particle diffusion in dense

monodisperse granular media is still unclear and reliable constitutive equations

are unavailable. For dense polydisperse granular media, this is all the more440

true (Chassagne et al., 2020). This is why we decided to model the process as

isotropic using a constant coefficient of diffusion. To better address the problem

of inhomogeneous diffusion coefficients, one could carry out simulations based

on a classical random walk (Berton et al., 2003), but this is beyond the scope

of this paper.445

In this work, we further assumed a linear drag law with constant drag co-

efficient c, even though c is expected to be a function of the Reynolds number

(Re), Froude number (Fr), particle concentration, particle size, restitution coef-

ficient and flow depth (Gauer et al., 2007; Panaitescu et al., 2017). The absence

of constitutive equations accounting for these dependences (Marks et al., 2012)450
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justifies our modeling choice.

Finally, even if it is well-known that the packing porosity varies with the

size distribution of the materials involved (Ouchiyama and Tanaka, 1986), we

neglected this effect. Accounting for variations in the local porosity would re-

quire a more expensive multiphase model than the coupled level-set and volume455

of fluid (VOF) method.

To prove that the inconsistency of the results is due to the assumptions we

made and not to the CFD-PBE coupling framework, we have reported in Fig.

13 the evolution of weights and weighted nodes obtained at the bottom layer for

different values of the parameters D and a constant value of the drag coefficient460

(i.e. c = 6 · 104 s−1). As expected, the higher the diffusion coefficient, the

lower the degree of segregation. Analogously, Fig. 14 reports the evolution of

weights and weighted nodes obtained at the bottom layer for different values of

the drag coefficient and same diffusion (i.e. D = 1.2 ·10−5m2s−1). At increasing

values of the drag coefficient, the segregation process becomes slower and less465

pronounced. Thus, to quantitatively change the results in the bottom layer,

one should al least define drag and diffusion coefficients as functions of the bed

depth.

All these considerations suggest that the main features of the CFD-PBE

model are correct; the evolution of weights and weighted nodes is well predicted470

for a high portion of the flow depth. Nevertheless, to improve the accuracy

of the model, in particular in the region close to the wall, we must describe

the gravity-induced segregation process and the shear-induced diffusion process
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Figure 13: Evolution of weights (on the left) and weighted nodes (on the right) in the bottom

layer obtained with constant drag (c = 6 · 104s−1) and different values of the parameters D

using the CFD-PBE coupled model. The solid black lines represent the DEM results and are

reported for comparison.

Figure 14: Evolution of weights (on the left) and weighted nodes (on the right) in the

bottom layer obtained with different values of the drag coefficient and same diffusivity

(D = 10−5m2s−1) using the CFD-PBE coupled model. The solid black lines represent the

DEM results and are reported for comparison.
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more accurately. This requires more physical insight into these processes and

more reliable constitutive equations.475

7. Conclusion

In this paper, we presented a new CFD-PBE coupled model for describing

segregation in dense polydisperse granular flows. The PBE was solved with the

direct quadrature method of moments proposed by Marchisio and Fox (2005).

We adopted a two-node quadrature approximation of the particle size distribu-480

tion and used a segregation-remixing model to close the size-conditioned particle

velocity. The 2n resulting transport equations were then implemented in Ansys

fluent. To track the interface between the granular medium and air, we used

the coupled level-set and VOF method. To determine the velocity field in the

granular mixture, we employed the rheological model of Jop et al. (2006). To485

test the model, we modelled segregation in a granular mixture with an arbitrary

polydisperse grain size distribution flowing down an inclined plane and we com-

pared the results to those of DEM simulations. This geometry was chosen for

its importance and simplicity but our results should be broadly applicable to

other dense granular flows.490

The CFD-PBE coupled model predicts reasonably well the segregation pro-

cess. It has a considerable benefit and, unlike DEM, allows simulating large

polydisperse powder systems with reasonable computational cost. This is a rel-

evant step forward for the scale-up and design of all those industrial applications

that employ granular materials in large quantities as it happens, for instance,495
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in agriculture, chemical engineering industries and mining.

Despite its advantages, the model has a few drawbacks. It requires constitu-

tive equations for the gravity-induced segregation process and the shear-induced

diffusion process, processes that strongly influence the numerical results. Even

though in the literature there are a lot of studies, the constitutive equations500

for these processes are still unreliable and inaccurate, often controversial, and

many fundamental questions still remain to be answered.
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