
entropy

Article

Some Interesting Observations on the Free Energy Principle

Karl J. Friston 1 , Lancelot Da Costa 1,2 and Thomas Parr 1,*

����������
�������

Citation: Friston, K.J.; Da Costa, L.;

Parr, T. Some Interesting

Observations on the Free Energy

Principle. Entropy 2021, 23, 1076.

https://doi.org/10.3390/e23081076

Academic Editor: Kevin H. Knuth

Received: 1 June 2021

Accepted: 10 August 2021

Published: 19 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 The Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK;
k.friston@ucl.ac.uk (K.J.F.); l.da-costa@imperial.ac.uk (L.D.C.)

2 Department of Mathematics, Imperial College London, London SW7 2AZ, UK
* Correspondence: thomas.parr.12@ucl.ac.uk

Abstract: Biehl et al. (2021) present some interesting observations on an early formulation of the free
energy principle. We use these observations to scaffold a discussion of the technical arguments that
underwrite the free energy principle. This discussion focuses on solenoidal coupling between various
(subsets of) states in sparsely coupled systems that possess a Markov blanket—and the distinction
between exact and approximate Bayesian inference, implied by the ensuing Bayesian mechanics.
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1. Introduction

We enjoyed reading the deconstruction of the free energy principle (FEP) in [1]—as
introduced some years ago in [2]. Having said this, no one likes to be told that they have
made mistakes. Fortunately, all of the observations in [1] are interesting, some are correct
and none confound the FEP. In what follows, we use the observations of Biehl et al. (ibid)
to drill down on the interesting points they raise—and their implications in the setting of
the FEP.

To contextualise these observations, we first rehearse the major steps in deriving the
FEP and then focus on three cardinal issues addressed in Biehl et al.; namely, what is
the precise form of the dynamical coupling among (subsets of) states that constitute a
Markov blanket partition? What implications attend a nonzero evidence bound, when
interpreting self-organisation as self-evidencing (i.e., Bayesian inference)? Further, when do
variational free energy gradients vanish? The first of the three issues appears in Biehl et al.
distributed across their observations 1–3. The second and third appear in observation 5 and
the surrounding discussion. Biehl et al. make several observations; however, some are
recapitulated (e.g., in the context of generalised coordinates of motion). Their observation
6 is one example of this. We ignore these observations. Please note that the numbering of
observations from Biehl et al. refers to the numbers that are assigned in the main text of the
paper, and not to the order in the bullet-pointed list provided at the start of the paper.

One could read Biehl et al. as a critique of early formulations of the FEP—in terms of
implicit assumptions and incomplete (heuristic) proofs—as opposed to a critique of the
FEP per se. However, the issues they identify are still fundamental. Some of these issues
are addressed in [3]. However, that monograph has not been subject to external peer review
(and contains at least one technical error). A concise version of the Bayesian mechanics is
presented in [4]. In what follows, we will use the notation and nomenclature in [3], which
is currently the most comprehensive treatment of the FEP and to which we refer readers
for detailed applications to physical systems. The novel contribution of this paper is an
explicit specification of the conditions imposed upon a dynamical flow that are sufficient
to ensure a Markov blanket.

2. The Free Energy Principle in Brief

Technically, the free energy principle asserts that any “thing” that attains a nonequilib-
rium steady state can be construed as performing an elemental sort of Bayesian inference.
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Informally, this can be described as self-evidencing [5]; namely, anything that exists is
actively seeking evidence for its existence. In short, life is its own existence proof [6].
This self-evidencing gloss is licensed by the fact that the gradient flows that underwrite
nonequilibrium steady-state can be expressed as a gradient descent on surprisal or self-
information [2]. This is mathematically equivalent to a gradient ascent on log model
evidence or marginal likelihood. Unpacking this further, if we take the view that (per-
sistent) existence implies a steady-state density, interpretable as the marginal likelihood
of an implicit model, the dynamical flows that underwrite this steady-state are towards
regions of high probability density. In Bayesian statistics, a marginal likelihood is known
as model evidence. The implication is that dissipative flows that maximise the evidence
for a model—i.e., the steady-state density that operationalises existence—can be read as
“seeking evidence” for existence. This provides the formal underpinning for a teleological
framing of “self-organisation” in dissipative structures as “self-evidencing”. Technically,
the argument involves two moves:

First, a thing is defined stipulatively in terms of a Markov blanket [7,8], such that
something’s internal states are independent of its external states, when conditioned on
its blanket states. Blanket states can be further partitioned into active and sensory states
that are not influenced by internal and external states, respectively. This partition is
not part of the definition of a Markov blanket but describes a way of characterising the
blanket states. For any given blanket, the set of active or sensory states may be empty.
As we will see, the dynamical coupling between these blanket states and the internal and
external states is asymmetrical. However, the asymmetry emerges specifically under the
assumption of sparse coupling. By starting from a Langevin formulation of a random
dynamical system, the associated density dynamics can be expressed as the solutions
to the Fokker Planck equation [9,10]. Crucially, because we are (stipulatively) assuming
nonequilibrium steady-state, the steady-state solution to the Fokker Planck system enables
us to express the dynamics or flow of states in terms of a Helmholtz decomposition [11–13].
This decomposition divides flow into dissipative gradient flows on the self-information
of any state (i.e., its negative log probability at steady state) and a divergence-free or
solenoidal flow. When this solution may be decomposed according to a Markov blanket
partition, the implicit conditional dependencies require certain solenoidal coupling terms to
disappear. This means that one can express the dynamics of something’s autonomous states
(i.e., internal and active states) as a function of—and only of—the blanket and internal
states. By construction, this is a (generalised) gradient flow on self-information or surprisal.
See Figure 1.

The second move is to note that the conditional independencies, implied by the
Markov blanket, induces a particular kind of information geometry [14,15] in the internal
state space. In brief, for any blanket state, there must be an expected internal state—and
a conditional density over external states, given that blanket state. This means there is a
statistical manifold in the internal state-space, corresponding to the conditional expecta-
tions of internal states, given blanket states. In other words, every point on the internal
manifold corresponds to a conditional density—or posterior Bayesian belief—over exter-
nal states. This endows the internal manifold with an information geometry, where the
distance between probability distributions can be measured with the Fisher information
metric tensor [16–18], supplied by the conditional distribution over external states. Put
simply, flows on the internal manifold can be construed as belief updating or Bayesian
inference [19]. This view is licensed by the fact that the (average) flow on the internal statis-
tical manifold is a gradient flow on surprisal (i.e., the negative Bayesian model evidence)
of the blanket (and internal) states. In essence, this is the free energy Lemma [3].

One can take this further and use arguments related to integral fluctuation theorems [20,21],
a set of results based upon characterising the probabilities of alternative paths a system
might follow, to derive probability densities over the trajectory of active states. This allows
one to characterise autonomous behaviour (i.e., the dynamics of autonomous states) in
terms of constructs from psychology and economics; e.g., risk in relation to the goal states
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encoded by the steady-state density [22,23]. This affords a description of self-organisation
to nonequilibrium steady state as Bayesian inference (a.k.a., active inference) that has both
sentient (i.e., inferring external states of affairs) and enactive (i.e., densities over trajectories
of active states) aspects. In short, the FEP furnishes a description of the perception–action
cycle [24] as evinced in anything that exists, in virtue of possessing a Markov blanket.
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Figure 1. Markov blankets. This schematic (reproduced from [3]) illustrates the partition of states into 
internal states (µ, in blue) and hidden or external states (η, in cyan) that are separated by a Markov 
blanket (b) comprising sensory (s, in magenta) and active states (a, in red). The upper panel shows 
this partition as it would be applied to action and perception in a brain. Note that the only missing 
influences are between internal and external states—and directed influences from external (respec-
tively internal) to active (respectively sensory) states. The surviving directed influences are high-
lighted with dotted connectors. In this setting, the self-organisation of internal states then corre-
sponds to perception, while active states couple internal states back to external states. The lower 
panel shows the same partition but rearranged so that the internal states are associated with the 
intracellular states of a Bacillus, where the sensory states become the surface states or cell membrane 
overlying active states (e.g., the actin filaments of the cytoskeleton). Here, the coupling between 
sensory and internal—and between active and external states—was suppressed to reveal a simple 
coupling architecture that leads to a Markov blanket. Autonomous states (α) are those states that are 
not influenced by external states, while particular states (π) constitute a particle; namely, autono-
mous and sensory states—or blanket and internal states. The equations of motion in the upper panel 
underwrite the conditional independencies of the Markov blanket, as described in the main text. By 
this, we do not mean that these equations of motion define a Markov blanket, or even that they are 
necessary for a Markov blanket—which can exist in static systems with no dynamics. Instead, these 
equations represent flows that, under certain assumptions, result in a Markov blanket at steady 
state. Please see (1) and the associated discussion. 
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Figure 1. Markov blankets. This schematic (reproduced from [3]) illustrates the partition of states
into internal states (µ, in blue) and hidden or external states (η, in cyan) that are separated by a
Markov blanket (b) comprising sensory (s, in magenta) and active states (a, in red). The upper panel
shows this partition as it would be applied to action and perception in a brain. Note that the only
missing influences are between internal and external states—and directed influences from external
(respectively internal) to active (respectively sensory) states. The surviving directed influences are
highlighted with dotted connectors. In this setting, the self-organisation of internal states then
corresponds to perception, while active states couple internal states back to external states. The lower
panel shows the same partition but rearranged so that the internal states are associated with the
intracellular states of a Bacillus, where the sensory states become the surface states or cell membrane
overlying active states (e.g., the actin filaments of the cytoskeleton). Here, the coupling between
sensory and internal—and between active and external states—was suppressed to reveal a simple
coupling architecture that leads to a Markov blanket. Autonomous states (α) are those states that are
not influenced by external states, while particular states (π) constitute a particle; namely, autonomous
and sensory states—or blanket and internal states. The equations of motion in the upper panel
underwrite the conditional independencies of the Markov blanket, as described in the main text. By
this, we do not mean that these equations of motion define a Markov blanket, or even that they are
necessary for a Markov blanket—which can exist in static systems with no dynamics. Instead, these
equations represent flows that, under certain assumptions, result in a Markov blanket at steady state.
Please see (1) and the associated discussion.

In and of itself, this is just a theoretical exercise. Practically, things get more interesting
when we use the free energy principle to engineer gradient flows by writing down a
generative model, under which model evidence can be evaluated. This means one can then
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solve the equations of motion—that emulate the gradient flows above—to create systems
that self-organise to some nonequilibrium steady-state. In this setting, the steady state is
operationally defined in terms of the priors over external or blanket states that are part of
the generative model. Having said this, the application of the free energy principle and
active inference [25–28] is beyond the scope of the critique in Biehl et al. (ibid). They focus
on the tenets that underwrite the free energy Lemma. We now turn to three key tenets,
highlighted by [1].

3. Observation One

Certain solenoidal coupling terms are precluded when a Markov blanket emerges under
sparse coupling.

This observation speaks to the constitution of the flow of systemic states x = (η, s, a, µ)
at nonequilibrium steady state. We refer to the constituents of x as external, sensory, active,
and internal states, respectively. This flow can be expressed as the solution to the Fokker
Planck equation, in terms of a Helmholtz decomposition–also known as the fundamental
theorem of vector calculus.:

.
x = f (x) + ω

f (x) = (Q− Γ)∇=(x)
(1)

This decomposition is at the heart of the free energy principle and most formulations
of nonequilibrium steady state in nonlinear systems; ranging from molecular interactions
through to evolution: see [10,11,29,30]. For a concise derivation of Equation (1), under
simplifying assumptions, please see Lemma D.1 in [13]. Here, =(x) = − ln p(x) is surprisal
or self-information and the antisymmetric matrix Q = −QT mediates solenoidal flow. The
density p(x) is the steady state density. The positive definite matrix Γ ∝ I (the identity
matrix) plays the role of a diffusion tensor or covariance matrix describing the amplitude
of random fluctuations, ω (assumed to be a Wiener process). In this form, the flow can
be decomposed into dissipative gradient flows −Γ∇= and divergence-free or solenoidal
flow Q∇=. Note that the off-diagonal terms of Γ are zero because random fluctuations
are independent. However, this independence does not preclude solenoidal coupling
among states. For simplicity, in (1) and what follows, we assume that the amplitude of
fluctuations and solenoidal flow matrices vary sufficiently slowly with x that they can be
considered constant.

Some readers may have encountered the Helmholtz decomposition in 3-dimensional
spaces, where it is expressed in terms of the curl of a vector potential and the gradient of
a scalar potential [31]. This form emphasises the relationship with Maxwell’s equations
in electromagnetics [32], which decompose vector fields into their electric and magnetic
components. While Equation (1) is expressed only in terms of a scalar potential, it is simple
to rewrite this (for a 3-dimensional system) to include a vector potential (A):

f (x)= ∇× A(x)− Γ∇=(x)

A(x),

 −Q32
Q31
−Q21

=(x)

Q=

 0 −Q21 −Q31
Q21 0 −Q32
Q31 Q32 0


(2)

This exploits the skew-symmetry of the Q matrix. The question now is which
solenoidal coupling terms are consistent with the conditional independencies implied
by a Markov blanket? More generally, we want to know the form of the steady state flow
that engenders conditional independencies between external and internal states. Tech-
nically, a Markov blanket is the set of variables that, if known, render two other sets
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conditionally independent [33]. This implies the joint density of internal and external
states, conditioned upon blanket states, factorizes as follows:

(µ⊥η)|b⇔ p(µ, η|b) = p(µ|b)p(η|b) (3)

The identification of Markov blankets at nonequilibrium steady state is not as straight-
forward as it might appear (please see Appendices A and B for a detailed account). Given a
joint density over a partition of states, a Markov blanket comprises the parents, the children
and the parents of the children of any random variable. In dynamical systems, the joint
density is a function of time. This means that, to evaluate a probability density, we need
to do more than specify the internal, external, and blanket states at which the density
is evaluated. We also need to specify the time at which it is evaluated. For Markovian
systems, the states at the current time are the blanket states that separate states in the future
from states in the past. However, these are not Markov blankets of the steady-state density.
This joint density rests on the solution to the density dynamics in Equation (1). Note that
the usual rules of identifying parents, children and parents of children cannot be applied
directly to the dynamical coupling or flow. Differentiating this solution, with respect to the
states, reveals the relationship between the flow—specified by a Jacobian J = ∇ f (x)—and
conditional independencies—specified by a Hessian H = ∇2=:

∇ f (x) = (Q− Γ)∇2=(x)⇒
J(x) = (Q− Γ)H(x)

Jηη Jηs Jηa Jηµ

Jsη Jss Jsa Jsµ

Jaη Jas Jaa Jaµ

Jµη Jµs Jµa Jµµ

 =


Qηη − Γηη Qηs Qηa Qηµ

−QT
ηs Qss − Γss Qsa Qsµ

−QT
ηa −QT

sa Qaa − Γaa Qaµ

−QT
ηµ −QT

sµ −QT
aµ Qµµ − Γµµ




Hηη Hηs Hηa Hηµ

HT
ηs Hss Hsa Hsµ

HT
ηa HT

sa Haa Haµ

HT
ηµ HT

sµ HT
aµ Hµµ

 (4)

Here, the flow constraints are summarized to the first order by the Jacobian. For
example, if the Jacobian encoding the coupling between external and internal states is zero,
we can express the flow of internal states as a function of, and only of, particular states (π).
Particular states comprise internal states and their Markov blanket. These can be construed
as the states of a particle; hence, particular states:

Jµη = ∇η fµ(x) = 0⇒ fµ(x) = fµ(π) (5)

Similarly, the Hessian or curvature matrix encodes conditional dependencies, in
the sense that if the corresponding submatrix is zero, internal and external states are
conditionally independent:

Hµη = ∇µη=(x) = 0⇒ =(µ|b, η) = =(µ|b)⇒ (µ⊥η)|b (6)

Equation (4) shows that the amplitude of random fluctuations and solenoidal coupling
play a key role in relating flow constraints and conditional dependencies. The solenoidal
components are especially important in the setting of nonequilibrium steady state. Indeed,
on one reading of nonequilibrium dynamics, the very presence of solenoidal flow is
sufficient to break detailed balance—and preclude any equilibria in the conventional
(statistical mechanics) sense [10,21,31,34].

The question now is which solenoidal terms and conditional independencies admit a
Markov blanket. We are interested in Markov blankets that emerge from sparse coupling
among states. Here, sparse coupling is taken to mean that no state is influenced by
all other states. Clearly, the flows can be fine-tuned to create Markov blankets in the
absence of any sparsity constraints on coupling (for examples of this fine-tuning, see
Appendix A of Biehl et al. [1]); however, the FEP only applies to Markov blankets that
emerge under sparse flows; in particular, when autonomous states are uncoupled from
external states (by definition). This was not made explicit in early formulations of the free-
energy principle, which focused on simple cases that satisfied this condition. Much of the
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critique in Biehl et al. is completely understandable in light of this omission. Condition 1
in Biehl et al. satisfies the flow constraint, while Condition 2 corresponds to the existence
of a Markov blanket. Biehl et al. then observe that Condition 1 does not imply Condition 2,
and vice versa (Observation 1). This is generally true; however, the FEP only applies when
Condition 2 is satisfied under Condition 1. The issue at hand is to identify the functional
forms of steady-state flow that satisfy both conditions. In other words, each row of the
Jacobian must contain at least one zero entry. Inspection of (4) shows that this can only be
satisfied when each row of the Hessian contains at least one zero entry. If we supplement the
requisite conditional independence between internal and external states with conditional
independencies between active and external states—and between sensory and internal
states—we have the following functional form (please see Appendices A and B for a more
formal analysis):

Jηη Jηs Jηa
Jsη Jss Jsa

Jas Jaa Jaµ

Jµs Jµa Jµµ

 =


Qηη − Γηη Qηs
−QT

ηs Qss − Γss

Qaa − Γaa Qaµ

−QT
aµ Qµµ − Γµµ




Hηη Hηs
HT

ηs Hss Hsa

HT
sa Haa Haµ

HT
aµ Hµµ

 (7)

There are other conditional independence structures that one could consider. Inter-
esting examples include circular flow constraints (when external states influence sensory
states that influence internal states that influence active states that influence external states)
or flow constraints that lead to conditional independence between internal and external
states—and between sensory and active states. This latter case was used by Biehl et al.
(Appendices A and B), in their so-called counterexamples; however, these are simply
counterexamples to the functional form of Equation (7), not counterexamples that vio-
late the assumptions of the free energy lemma. The form in Equation (7) satisfies the
sparse coupling constraint by precluding solenoidal coupling between autonomous and
non-autonomous states:

[
Qηa Qηµ

Qsa Qsµ

]
= 0⇒


Jηµ = Qηa Haµ + QηµHµµ

Jsµ = Qsa Haµ + QsµHµµ

Jaη = −QT
sa HT

ηs −QT
ηaHηη

Jµη = −QT
sµHT

ηs −QT
ηµ Hηη

 = 0 (8)

There are three special cases of (7) that obtain when suppressing (i.e., setting to zero)
solenoidal coupling between sensory and external states, between active and internal states
or both. The latter case was considered in [2], in which there is no solenoidal coupling
between the different kinds of states. This special case is referred to as Condition 3 in
Biehl et al. (ibid). This special case may be ubiquitous in systems with short-range
coupling; for example, the simple cell-like structure in the lower panel of Figure 1. In this
simple case, active states are effectively shielded from external states by sensory states,
while sensory states are separated from internal states by active states. The general case
corresponds to the upper panel in Figure 1, in which active states influence external states
directly—and sensory states are coupled directly to internal states. In both instances,
autonomous states are functions of, and only of, particular states and internal states are
conditionally independent of external states. These two conditions underwrite the free
energy lemma below.

In summary, substituting (8) into (1) allows us to express the flow of autonomous
states as a function of, and only of, particular states: fη(η, b)

fs(η, b)
fα(µ, b)

 =

 Qηη − Γηη Qηs
−QT

ηs Qss − Γss

Qαα − Γαα

 ∇η=
∇s=
∇α=

⇒ (µ⊥η)|b (9)
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Recall that x is a vector quantity, so f is a vector-valued function. The subscripted
indices in (9) identify elements of this vector. Please refer to Figure 1 for the sets of states
indicated by each subscripted symbol. This (sparse) flow precludes solenoidal coupling
between autonomous and non-autonomous states and renders internal and external states
conditionally independent. However, it does not preclude solenoidal coupling between
internal and active states—or between external and sensory states. Examples of these
forms of solenoidal coupling may be commonplace. For example, the solenoidal coupling
between external and sensory states may be manifest in oscillatory interactions between the
external milieu and sense organs that respond to vibrations (e.g., the tympanic membrane
of the ear). Similarly, solenoidal coupling between internal and active states may be
ubiquitous in sentient creatures with brains—in the form of pacemakers and central pattern
generators that produce stereotyped behaviors, such as phonation or respiration [35].

More generally, solenoidal coupling may be essential for self-organisation and active
inference; especially, when considered in the light of oscillations and communication [34]
or, indeed, evolutionary dynamics: at an evolutionary level, solenoidal flows and fluxes
play a central role in accounting for self-organisation in evolution in terms of phenomena
like Red Queen dynamics [10]. Red Queen dynamics can be interpreted in two (related)
ways that relate to the solenoidal and dissipative parts of the Helmholtz decomposition.
The first is that, in systems with small amplitude fluctuations, the solenoidal flow causes
the system to revisit the same regions repeatedly. The second is that the presence of large-
amplitude random fluctuations would cause diffusion of the probability density if it were
not for the dissipative part of the flow. In other words, at steady state, the dissipative
flow counteracts the random fluctuations to keep the density from changing; namely, the
endless co-evolution that persists at evolutionary steady-state, following the optimization
of fitness; i.e., surprisal or, in the treatment of [30], intrinsic potential.

4. Observation Two

The difference between the variational density and conditional density, as assessed by a
Kullback-Leibler (KL) divergence or bound can be arbitrarily large.

D[qµ(η)||p(η|b)] = c ≥ 0

This divergence was characterized as (less than) c in [1] (there listed as observation 5 (iii)),
who note that c does not have an upper bound. So, what does this imply for the free
energy lemma? In itself, this observation is unremarkable. In variational inference, the KL
divergence is used to construct an upper bound to surprise, implying it is only necessary
for the divergence to have a lower bound. However, it brings into focus a key distinction
between different interpretations of the Bayesian mechanics implied by the information
geometry endowed by a Markov blanket. Recall from above that there exists a statistical
manifold in the internal state space, on which the flow of (conditional expectations of)
internal states µ(b) = Ep[µ|b] perform a gradient descent on the surprisal of particular
states. Note that we are dealing with conditional expectations of internal states, denoted by
boldface. The derivations in Biehl et al. and subsequent observations (e.g., observations 4)
ignore this definition of the internal manifold—and can therefore be discounted. They
overlooked this because their arguments are based on the heuristics in [2]. Similarly,
ref. [36] failed to specify this important aspect of the free energy lemma. Please see the
Appendix C. The gradient descent on surprisal can be expressed as a gradient flow on a
free energy function of particular states π = (µ, b). From Equation (9)

fα(µ, b) = (Qαα − Γαα)∇α=(µ, b)
≈ (Qαα − Γαα)∇αF(µ, b)

(10)

The approximation in (10) holds when the divergence varies sufficiently slowly with
changes in particular states. This means the most likely path conforms to a variational
principle of least action, where the free energy F(π) ≡ F

[
qµ(η), π

]
is a functional of a
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variational density qµ(η) ≈ p(η|b) that is parameterized by the conditional expectation
of internal states. In general, this free energy is an upper bound on the surprisal of
particular states:

F(π) , Eq[=(η, π)]
}

energy

− H
[
qµ(η)

]
}

entropy

= =(π)
}

surprisal

+ D
[
qµ(η) ‖ p(η | b)

]
}

evidence bound
= Eq[=(π | η)]

}
inacuracy

+ D
[
qµ(η) ‖ p(η)

]
}

complexity

≥ =(π)

(11)

The expectations in (11), including those implicit in the KL divergences, relate to
the external states only. This is evident in that the free energy is a function of particular
states and not their average. This functional can be expressed in several forms; namely,
expected energy minus the entropy of the variational density, which is equivalent to the
self-information associated with particular states (i.e., surprisal) plus the KL divergence
between the variational and posterior density (i.e., evidence bound). In turn, this can be
decomposed into the expected negative log-likelihood of particular states (i.e., [in]accuracy)
and the KL divergence between posterior and prior densities (i.e., complexity). In short, free
energy constitutes a Lyapunov function for the expected flow of autonomous states.

This functional is referred to as a free energy because it comprises an entropy and an
expected potential [37]. However, it can be re-expressed as the surprisal associated with
particular states (itself interpretable as a potential) and the KL divergence (i.e., relative
entropy) between the variational density—parameterized by any point on the internal
manifold—and the posterior over external states, given blanket states. In this instance,
the expected potential is the surprisal and the KL divergence is between the variational
density—parameterized by any point on the internal manifold—and the posterior over
external states, given blanket states. In Bayesian statistics and machine learning, this
divergence is known as an evidence bound. This is because it supplies a non-negative
bound on surprisal or log evidence [19,38,39]. To license an interpretation of surprisal, in
terms of model evidence, we have to express surprisal in terms of a generative model;
namely, a joint density over causes and consequences. Here, the generative model is simply
the steady-state density over external (causes) and blanket (consequences) states.

In summary, the existence of a Markovian partition allows one to express dynamics
as either gradient flows on (i) the NESS potential or (ii) variational free energy. These
alternative formulations mean that one can interpret (physical) dynamics as (inferential)
processes that minimise variational free energy. Technically, the NESS potential (i.e.,
surprisal) is a function of particular states. Conversely, variational free energy can be read
as a functional of a probability density over external states, which is parameterised by
internal states. This equips the gradient flows with an information geometry that licences a
teleological interpretation of dynamics in terms of inference. Put simply, one can either
regard a “thermometer” as (i) a physical system responding to forces and thermodynamic
fluxes or, (ii) measuring (i.e., inferring) the ambient (i.e., external) temperature.

Focusing on this example, one could formulate the behaviour of a (mercury) ther-
mometer in terms of a partition of states. These include the ambient temperature (external),
the temperature of the mercury in the bulb (sensory), the volume of the mercury (active),
and the height of the column of mercury in the cylinder (internal). Note that this system
satisfies the conditions outlined in observation 1 as, if we knew the volume of mercury, the
ambient temperature would tell us nothing new about the height of the column—satisfying
the Markov blanket condition. Furthermore, the sparse coupling condition is satisfied as
there is no direct dynamical coupling between the internal and external states. To define
a variational density in this setting, we would note that, given the temperature and vol-
ume of the mercury, there is a well-defined mapping between the expected height of the
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mercury and the distribution of ambient temperatures we would expect. Expressing this
distribution as a function of the conditional expectation of the height of the mercury gives
us the variational density.

The thermometer example illustrates the importance of the result in (10). If we wanted
to build a thermometer, we would not start from the equations of motion and accompanying
NESS density, we would start with a generative model and perform a gradient descent on
the accompanying variational free energy. In other words, the importance of the FEP lies in
formulating (active) inference as a principle of least action that can be realised in physical
systems or in silico, given a generative model.

Exact or Approximate?

There are two ways that we can take this interpretation of flows on the internal
(statistical) manifold forward. The first and simplest is to stipulate that the variational
density—parameterized by the internal state or coordinate on an internal manifold—is the
posterior over external states. On this view, the bound in (11) collapses to zero and the
flow of (the conditional expectations, given blanket states, of) internal states can be read as
performing exact Bayesian inference. However, this interpretation fails to specify how the
(conditional expectations of) internal states parameterize the posterior Bayesian beliefs over
external states. To do this, we would need to define a functional form for the variational
density and associate internal states with its parameters or sufficient statistics (e.g., mean
and precision). However, as soon as we commit to a parameterized form, we move away
from exact Bayesian inference and into the realm of approximate Bayesian inference. This is
because the exact equivalence between the variational and posterior density over external
states is no longer guaranteed. This inflates the bound above, leading to variational Bayes.

This kind of inference predominates in the statistical and machine learning literature,
because it is relatively straightforward to compute the variational free energy, given a
parameterized form for the variational density [38–40]. On the other hand, it is practically
impossible to evaluate the Bayesian model evidence directly. On some accounts of varia-
tional Bayes, the use of a variational free energy was introduced by Richard Feynman in
the setting of the path integral formulation of quantum electrodynamics [37]. Effectively, it
converts an intractable integration problem into a tractable optimization problem. In other
words, it affords a computable objective function, whose minimization will approximate
the minimization of the evidence, which is always upper bounded by the variational free
energy. Indeed, in machine learning, variational free energy is often referred to as an
evidence lower bound (ELBO) [19].

From our perspective, this means that we can either interpret the flow on an inter-
nal manifold as exacting exact Bayesian inference. Alternatively, if we committed to a
functional form for the variational density, it would look as if the flow is approximating
approximate Bayesian inference. This distinction was articulated in terms of the difference
between a particular and variational free energy in [3]. The functional form for the varia-
tional density was Gaussian, leading to a ubiquitous form of variational Bayes under the
Laplace assumption [41]. The details here are not important. The key thing to observe is
that the bound can either be zero or not. This leaves the question: does the size (of the
bound) matter?

The answer is no. This can be seen easily if one considers the internal states as
performing a gradient descent on surprisal. If the corresponding variational free energy
has (approximately) the same value—to within an additive constant c—the dynamics will
be identical everywhere (because the gradients do not depend upon the constant). In other
words, it does not matter whether c is small or large: the approximate Bayesian inference
interpretation only requires that the bound is (approximately) the same everywhere on the
statistical manifold. See Figure 2.
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Figure 2. Evidence bounds and gradient flows. This schematic tries to convey the intuition that the
gradient flows on surprisal (pink)—as a function of some statistical manifold (here conditional
expectations of internal states, given blanket states)—are the same as gradient flows on variational
free energy (green); if, and only if, the KL divergence or evidence bound is conserved over the
manifold. The left panel shows a view of the two functions from the side, while the right panel
provides a view from the top.

This leads to the interesting question: are there any guarantees that the bound is
constant? The answer is no. If it were possible to compute the bound, then one would
use the surprisal or log evidence directly. In other words, the whole point of variational
free energy is that it converts an intractable marginalization problem into a tractable
optimization problem. Generally, one tries to optimize the form of the variational density
to minimise variational free energy and thereby ensure a relatively tight bound that cannot
vary substantially over the statistical manifold in question [19,42]. However, this is a purely
practical consideration. From the point of view of self-evidencing, it just means that we
can assert that self-organisation to nonequilibrium steady state necessarily entails exact
Bayesian inference (i.e., self-evidencing) with posterior beliefs that are parameterized by
something’s internal states. This inference may be exact; however, we will not be able to
specify the form of posterior beliefs. Alternatively, the self-organisation can be interpreted
as approximating approximate Bayesian inference under some parameterized form for
the encoding of beliefs about the external states by internal states. With this distinction in
place, we can now consider observation three.

5. Observation Three

The gradients of the evidence bound vanish for nonequilibrium steady-state flows on the
internal manifold.

Biehl et al. [1] note that—for flow on the internal manifold—the gradients of the KL
divergence or evidence bound disappear. This is true for both exact and approximate
Bayesian inference interpretations. For exact Bayesian inference, the KL divergence is
stipulatively zero everywhere, meaning the gradients vanish everywhere. For approximate
Bayesian inference, the gradients of the KL divergence account for the difference between
flow on the internal manifold and gradient flows on variational free energy. This difference
accounts for the approximate equality in (10). Conceptually, this means that the free energy
principle is not claiming that self-organisation to steady-state minimizes variational free
energy; rather that self-organisation to steady-state can always be read as approximating
approximate Bayesian inference. Practically, it means that if we specified a generative
model (i.e., a desired steady-state density) and solved the following equations of motion
(under an assumed form for the variational density) we can approximate self-organisation
to a desired steady-state.

fα(µ, b) = (Qαα − Γαα)∇αF(µ, b)
≈ (Qαα − Γαα)∇α=(µ, b)

(12)
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Figure 3 illustrates a synthetic system, described in detail in [3] from which approx-
imately inferential dynamics can be identified on finding the Markov blanket. In brief,
the system in question comprises a set of macromolecules whose dynamics are governed
by their electrochemical state and by Newtonian forces resulting from these states. On
identifying a Markovian partition, the parametrisation of a variational density was based
upon the maximally correlated linear combinations of the states of the internal and external
macromolecules. This synchronisation gives the appearance that internal states are infer-
ring external states: i.e., that the variational density—parameterised by internal states—is
in the neighbourhood of the free energy minimum. The implication here is that inference
may be thought of as (generalised) synchronisation across a Markov blanket.
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Figure 3. Sentient dynamics and the representation of order. This figure illustrates approximate Bayesian inference that follows
when associating the internal states of a system with a variational (i.e., approximate posterior) density over external
states. This figure is based upon the simulation of a small rod-like particle used to illustrate different perspectives on
self-organisation in [3], where the details of this system are specified. In brief, each macromolecule is defined by a set of
electrochemical states modelled as stochastic Lorenz attractor. These attractors are coupled between pairs of macromolecules,
where the coupling strength depends upon the distance between each pair. In addition, the position and velocity of each
macromolecule are described by (stochastic) Newtonian equations of motion subject to forces based upon the difference
in electrochemical states between a molecule and its neighbours. The upper panels illustrate a collection of simulated
macromolecules, in terms of internal (blue) active (red) sensory (magenta) and external (cyan) states. The middle left panel
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shows the first canonical vector of motion over the external states (green arrows) that are represented by the internal states
(blue dots). The blue and cyan dots are placed at the location of internal and external states, respectively. The colour
level reflects the norm (sum of squares) of the first canonical vectors showing the greatest covariation between external
and internal states. The middle panel illustrates a synchronisation manifold (conditioned upon the Markov blanket) that
maps from the electrochemical states of internal macromolecules to the velocity of external macromolecules. The blue dots
identify the manifold per se, while the cyan dots are the estimated expectations used to estimate the manifold (using a
fifth-order polynomial regression). The lower panel shows the same information but plotted as a function of time during
the last 512 s of the simulation. The conditional expectation is based upon the internal states, while the real motion is
shown as a cyan line. The blue shaded areas correspond to 90% confidence intervals. The lower right panel illustrates
simulated event-related potentials of the sort illustrated by the insert (lower right panel). The simulated evoked response
potential (ERP) was obtained by time locking the internal electrochemical states to the six time points that showed the
greatest expression of the first canonical variate (indicated by the vertical lines in the middle panel). The dotted lines are six
trajectories around these points in time, while the solid lines correspond to the average. The blue lines are the responses of
internal states, while the cyan lines correspond to the real motion associated with the first canonical vector. The timing in
the lower panels was arbitrarily rescaled to match empirical peristimulus times—illustrated with an empirical example of
event-related potentials in the middle right panel.

6. Conclusions

In conclusion, we looked at three fundamental issues that underpin the free energy
principle. The first was the role of solenoidal coupling—within and across the Markov
blanket that defines anything of interest. The key observation—here and in Biehl et al.
(ibid)—is that certain solenoidal coupling terms are precluded. One obvious example is the
coupling between internal and external states. However, this does not necessarily preclude
coupling between internal states and active states—or between external states and sensory
states. Furthermore, there can be pronounced solenoidal coupling within any subset of the
Markov blanket partition. The role of solenoidal coupling may be quite important in many
systems. This is purely based on the heuristic that oscillatory and synchronous behavior
underpins most biorhythms over many temporal scales and may be characteristic of biotic
self-organisation [43–45]. In this setting, oscillations are assumed to be a manifestation
of solenoidal flow; namely, circulation on iso-probability contours that form the fabric of
classical (Lagrangian) mechanics (e.g., the orbits of heavenly bodies).

The second issue we looked at is the distinction between flows that look “as if”
they are performing exact Bayesian inference, exactly or approximate Bayesian inference,
approximately. The only thing that matters—in terms of this distinction—is if we want
to parameterize and evaluate (or indeed simulate) posterior beliefs about external states
that are parameterized by internal states. Crucially, these are not the internal states at any
given moment. The internal states that constitute the statistical manifold are conditional
expectations, given blanket states. This means that the interpretation in terms of Bayesian
inference emerges only in expectation—or on average. This is an unremarkable and
ubiquitous aspect of empirical studies of sentience. The classical example here is the
averaging of multiple responses to sensory perturbations, when characterizing evoked
responses in internal states (e.g., event-related potentials generated by internal neuronal
states of the brain). See Figure 3. for an example. Since writing this paper, we have
been encouraged by the enthusiasm with which these issues have been discussed in the
literature. For readers interested in delving further into these exchanges, recent papers
include [46–49]. In concluding, we would like to thank Biehl et al. for a thorough and
useful deconstruction of [2].
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Appendix A

The main text considered the relationship between coupling and steady state condi-
tional independencies, in terms of the functional form of the Helmholtz decomposition,
under the constraint that no given state could be influenced by all other states. In some
circumstances, one would like to identify Markov blankets in systems whose flow or
equations of motion are known (or can be estimated).

Because the Markov blanket is defined in terms of conditional independence between
external and internal states, it is necessary to show that if certain constraints on the Jacobian
J(x) = ∇ f (x) are satisfied everywhere, the Hessian submatrix Hµη(x) = ∇µη=(x) is zero
everywhere. In fact, assuming a local linear solution is not true everywhere, if external
states do not influence active or internal states—and internal states do not influence sensory
or external states—then, at nonequilibrium steady-state, all states possess a Markov blanket.

fη(η, b)
fs(η, b)
fa(µ, b)
fµ(µ, b)

⇒


(µ⊥η)|(s, a)
(a⊥η)|(s, µ)
(s⊥µ)|(a, η)

(A1)

On differentiating the Helmholtz decomposition with respect to systemic states we
have, ∀x:

f (x) = (Q− Γ)∇=(x)⇒
J(x) = (Q− Γ)H(x)

Jηη Jηs Jηa
Jsη Jss Jsa

Jas Jaa Jaµ

Jµs Jµa Jµµ

 =


Qηη − Γηη Qηs Qηa Qηµ

−QT
ηs Qss − Γss Qsa Qsµ

−QT
ηa −QT

sa Qaa − Γaa Qaµ

−QT
ηµ −QT

sµ −QT
aµ Qµµ − Γµµ




Hηη Hηs Hηa Hηµ

HT
ηs Hss Hsa Hsµ

HT
ηa HT

sa Haa Haµ

HT
ηµ HT

sµ HT
aµ Hµµ

 (A2)

The Jacobian Juv = ∇v fu(x) and Hessian Huv = ∇uv=(x) of nonlinear systems are
functions of states. This means the flow constraints in (A2) are satisfied everywhere in
state space. For simplicity, we assume that the divergence and solenoidal matrices change
sufficiently slowly over state space, such that they can be treated as constant. In other
words, we appeal to a zeroth-order Taylor expansion on these matrices. A sparse solution
to (A2) requires that certain solenoidal and Hessian terms vanish everywhere (i.e., by
assumption we do not admit non-sparse solutions that satisfy linear constraints). Examples
of non-sparse solutions can be found in Biehl et al. (ibid), based on fine-tuned, linear
solutions. These solutions are for systems with linear flow, which means the solutions are
true everywhere, because the Jacobians and Hessians of linear systems are not functions of
states. By direct calculation (i.e., considering all joint combinations of nonzero solenoidal
and Hessian submatrices), there are two sparse solutions:

https://www.fil.ion.ucl.ac.uk/spm/
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Jηη Jηs Jηa
Jsη Jss Jsa

Jas Jaa Jaµ

Jµs Jµa Jµµ

 =


Qηη − Γηη Qηs
−QT

ηs Qss − Γss

Qaa − Γaa Qaµ

−QT
aµ Qµµ − Γµµ




Hηη Hηs
HT

ηs Hss Hsa

HT
sa Haa Haµ

HT
aµ Hµµ




Jηη Jηs Jηa
Jsη Jss Jsa

Jas Jaa Jaµ

Jµs Jµa Jµµ

 =


Qηη − Γηη Qηs
−QT

ηs Qss − Γss Qsa

−QT
sa Qaa − Γaa Qaµ

−QT
aµ Qµµ − Γµµ




Hηη

Hss Hsa
HT

sa Haa
Hµµ


(A3)

Special cases of (A3) can be obtained by setting the admissible solenoidal terms
above to zero. The solutions in (A3) share zero Hessian submatrices. This implies that all
particular states possess a Markov blanket, under these particular flow constraints (and
sparsity assumptions):

fη(η, b)
fs(η, b)
fa(µ, b)
fµ(µ, b)

⇒


Jηµ(x)
Jsµ(x)
Jaη(x)
Jµη(x)

 = 0⇒


Hηµ(x)
Hηa(x)
Hsµ(x)

 = 0⇒


(µ⊥η)|(s, a)
(a⊥η)|(s, µ)
(s⊥µ)|(a, η)

(A4)

The difference between the two solutions in (A3) rests on solenoidal coupling between
sensory and active states. If present, this coupling implies conditional independence
between sensory and external states. The intuition behind (A4) rests on noting that—
at nonequilibrium steady-state—the Jacobian J(x) = (Q− Γ)H(x) factorizes into two
matrices: the first comprises the sum of a leading diagonal matrix Γ and an antisymmetric
matrix Q, while the second is a symmetric Hessian H(x). This means a sparse Jacobian
induces joint constraints on Q and H(x). When these linear constraints are satisfied by
sparse solenoidal coupling, certain conditional independencies are implied.

Note that the particular flow constraints are not necessary to produce a Markov
blanket between internal and external states. For example, for sparse coupling constraints
(i.e., no state is influenced by all states and every state is coupled to at least one other state)
there are 24 sparse solutions.

In this appendix, we looked at the conditions on solenoidal flow that guarantee
conditional independence between internal and external states. Complementary treatment
is provided in the next appendix that considers the conditions under which dissipative flow
leads to conditional independence. This treatment allows for solenoidal flow everywhere
but considers the linear constraints on this flow, implied by the nonequilibrium steady-state
solution to the Fokker Planck equation.

Appendix B

Formally, the definition of Markov blankets, in terms of dynamical (i.e., causal) influ-
ences, is a little more delicate than their definition given a probabilistic graphical model
(i.e., conditional dependencies). This is because the conditional dependencies among the
states of a dynamical system are those that obtain at nonequilibrium steady state, which
depends upon dynamical coupling among states in a nontrivial way. The aim here is to
identify sufficient conditions that render subsets of states conditionally independent of
each another—so that they can be distinguished in a statistical sense.

Definition A1 (dissipative partition). a dissipative partition is a partition into external, blanket
(i.e., sensory and active) and internal states, where internal and external states do not influence each
other—and one or more subsets of states are dissipative, i.e., the leading diagonal elements of the
associated Jacobian are large and negative.
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Lemma A1 (Markov blankets). The sensory and active states of a dissipative partition constitute a
Markov blanket b = (s, a) that renders external and internal states conditionally independent:

(µ⊥η)|b⇔ p(µ, η|b) = p(µ|b)p(η|b) (A5)

Proof. at nonequilibrium steady state, the following solution to the Fokker Planck equation
holds [11,29]:

f (x) = (Q− Γ)∇=(x) (A6)

Here, =(x) = − ln p(x) is surprisal or self-information and the antisymmetric (skew)
matrix Q = −Q† mediates solenoidal flow. The positive definite matrix Γ ∝ I is a diffusion
tensor describing the amplitude of random fluctuations. We will assume, without loss
of generality, the states have been suitably scaled to render Γ = I. In this (Helmholtz)
decomposition, the flow f (x) can be decomposed into dissipative gradient flows −Γ∇=
and divergence-free or solenoidal flow Q∇=. Differentiating, with respect to the states,
reveals the relationship between the flow—specified by a Jacobian J = ∇ f (x)—and
conditional independencies—specified by a Hessian H = ∇2=:

∇ f (x) = (Q− Γ)∇2=(x)⇒
J(x) = (Q− Γ)H(x)⇒
H(x) = −(Γ−Q)− J(x) ≈ −(Γ + Q)J(x)

(A7)

Here, the coupling is encoded by the Jacobian. The approximate equality follows
from a first-order Taylor expansion of the inverse of a mixture of matrices (valid for small
Q and Γ = I). For example, if the Jacobian encoding the coupling between external and
internal states is zero, we can express the flow of internal states as a function of, and only
of, particular states:

Jµη = ∇η fµ(x) = 0⇒ fµ(x) = fµ(π) (A8)

Similarly, the Hessian or curvature matrix encodes conditional dependencies, in
the sense that if the corresponding submatrix is zero, internal and external states are
conditionally independent:

Hµη = ∇µη=(x) = 0⇒ =(µ|b, η) = =(µ|b)⇒ (µ⊥η)|b (A9)

Equation (A7) shows that the amplitude of random fluctuations and solenoidal cou-
pling play a key role in relating dynamic coupling and conditional dependencies. The
solenoidal components are especially important in the setting of nonequilibrium steady
state. Indeed, on one reading of nonequilibrium dynamics, the very presence of solenoidal
flow is sufficient to break detailed balance—and preclude any equilibria in the conventional
(statistical mechanics) sense [10,21,31,35].

The symmetry of the Hessian matrix places linear constraints on the solenoidal
coupling [29]; where, dropping the dependency on x for simplicity:

(Q− Γ)−1 J = Π = ΠT = JT(Q− Γ)−T

⇒
JQ + QJT = ΓJT − JΓ⇒

vec(Q) = (I ⊗ J + J ⊗ I)−vec(ΓJT − JΓ)

(A10)

These constraints mean that the solenoidal flow can be expressed as a function of the
Jacobian and the amplitude of random fluctuations, as shown in the last equality of (A10).
In turn, this means we can express the Hessian, encoding conditional independencies, as a
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function of the Jacobian. For example, in a system with one external, blanket and active
state, substituting (A10) into (A7) gives:

H(x) =


64κ7+ ···
64κ6+ ···

−32κ6(Jbη+Jηb)+ ···
64κ6+ ···

16κ5(Jbη Jbµ−Jηb Jµb)+ ···
64κ6+ ···

−32κ6(Jbη+Jηb)+ ···
64κ6+ ···

64κ7+ ···
64κ6+ ···

−32κ6(Jbµ+Jµb)+ ···
64κ6+ ···

16κ5(Jbη Jbµ−Jηb Jµb)+ ···
64κ6+ ···

−32κ6(Jbµ+Jµb)+ ···
64κ6+ ···

64κ7+ ···
64κ6+ ···


J(x) =

 Jηη − κ Jηb
Jbη Jbb − κ Jbµ

Jµb Jµµ − κ

, Γ =

 I
I

I


(A11)

To simplify the (symbolic) math, we used the Taylor approximation in (A7). Here, the
elements of the Hessian are expressed as rational functions (ratios of polynomials) of κ > 0,
retaining the leading orders. These functions have horizontal and linear asymptotes, such
that in the limit of dissipative flows, we have:

lim
κ→∞

H(x) =


κ − 1

2

(
Jbη + Jηb

)
0

− 1
2

(
Jbη + Jηb

)
κ − 1

2

(
Jbµ + Jµb

)
0 − 1

2

(
Jbµ + Jµb

)
κ

⇒ Hµη

lim
κ→∞

Hηµ(x) = 0 : ∀x ⇒ (µ⊥η)|b

(A12)

In short, for sufficiently dissipative systems, the linear constraints on solenoidal flow
ensure conditional independence between internal and external states, given blanket states.�

The above proof assumed single states; however, the results can be generalised using
numerical analyses (or symbolic math) for high dimensional systems. An example is
presented in Figure A1.
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Figure A1. Dissipation and conditional independence: numerical analyses that show the conditional in-
dependence between internal and external states depends upon dissipation, as quantified by the 
average value of the leading diagonal Jacobians. In this example, a system with 24 states was di-
vided equally into external, blanket and internal states. The panels above report the variance of the 
solenoidal term, the Jacobian and Hessian, based on 512 random samples where each element of the 
Jacobian was sampled from a unit Gaussian distribution and values of 4, 4 and 32 were added to the 
leading diagonal for the external, blanket and internal states, respectively. The black blocks on the 
lower left (and upper right) show that an absence of coupling in the Jacobian—between the external 
and internal states—precludes solenoidal coupling and renders the external and internal states con-
ditionally independent. 
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Figure A1. Dissipation and conditional independence: numerical analyses that show the conditional independence between
internal and external states depends upon dissipation, as quantified by the average value of the leading diagonal Jacobians.
In this example, a system with 24 states was divided equally into external, blanket and internal states. The panels above
report the variance of the solenoidal term, the Jacobian and Hessian, based on 512 random samples where each element of
the Jacobian was sampled from a unit Gaussian distribution and values of 4, 4 and 32 were added to the leading diagonal
for the external, blanket and internal states, respectively. The black blocks on the lower left (and upper right) show that an
absence of coupling in the Jacobian—between the external and internal states—precludes solenoidal coupling and renders
the external and internal states conditionally independent.
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Appendix C

Following a deconstruction of the free energy lemma in [36] by [1], we note that the
definition of the variational density in Equation (14) of [36] is incomplete, in relation to
subsequent formulations; e.g., [4]. It should be read as:

q(ψ̃|̃r) = p(ψ̃|s̃, ã, r̃) = p(ψ̃|s̃, ã) : r̃ = E[̃r|s̃, ã]

This means the representation of external states by internal states is in terms of
expected internal states, conditioned on blanket states.
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