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Abstract

Cooperation is usually understood as a social phenomenon. However, it also occurs

on the cellular level. A number of key mutations associated with malignancy can be

considered cooperative, as they rely on the production of diffusible growth factors

to confer a fitness benefit. Evolutionary game theory provides a framework for

modelling the evolutionary dynamics of these cooperative mutations.

This thesis uses evolutionary game theory to examine the evolutionary dynam-

ics of cooperation within epithelial cells, which are the origin point of most cancers.

In particular, we consider how the structure and dynamics of an epithelium affect

cooperative success. We use the Voronoi tessellation model to represent an ep-

ithelium. This allows us much greater flexibility, compared to evolutionary graph

theory models, to explore realistic dynamics for population updating.

Initially, we consider a model where death and division are spatially decou-

pled. We analyse pairwise social dilemma games, focussing on the additive pris-

oner’s dilemma, and multiplayer public goods games. We calculate fixation prob-

abilities, and conditions for cooperative success, by simulation, as well as deriving

quasi-analytic results. Comparing with results for graph structured populations with

spatially coupled birth and death, or well-mixed populations, we find that in general

cooperation is promoted by local game play, but global competition for offspring.

We then introduce a more realistic model of population updating, whereby

death and division are spatially coupled as a consequence of contact inhibition.

The strength of this coupling is positively correlated with the strength of contact

inhibition. However, the extent to which strong spatial coupling inhibits cooperation

depends on mechanical properties of the tissue.
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Evolutionary models of cancer are becoming increasingly used, not only to
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Chapter 1

Introduction

1.1 Cooperation on the cellular level

Cooperation is prevalent in nature. We usually think of cooperation as a social

phenomenon, whereby individuals work together towards a mutual benefit. When

animals hunt in groups, they can catch larger prey, leading to a greater share of food

than if they had hunted alone. Cooperation is not, however, limited to interactions

between animals, but can be observed on every scale of life, from complex human

societies, right down to the cellular level [1].

Within multicellular organisms, cells perform specialised functions, sacrific-

ing their own proliferative potential for the benefit of the whole. Just as cooperation

between humans can lead to much richer and more complex forms of social organ-

isation, so we see within our own bodies that the organisation of cells leads to high

complexity life forms.

What happens, then, if cells cease to cooperate? The problem of free-riders

is well known in a social context. When people work together for a common good

there is an incentive to defect, to leave the work to others, and still take a share of the

reward. When cells become malignant, they stop functioning in the best interests of

the organism and prioritise their own proliferation. Thus, cancer is often considered

to represent a breakdown of cellular cooperation [2].

This does not present the whole picture, however. As malignant cells grow

and replicate, they form their own subpopulation within the host. Therefore, while
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cancer cells defect from the organism as a whole, they can evolve cooperative traits

which benefit the tumour.

This thesis is focused on the evolution of cooperation in epithelial cells, which

are the origin point for most cancers. These cells are organised into tissues, known

as epithelia, which form linings and surfaces in the body. We seek to understand

how the population structure and dynamics of epithelia impact on the evolution of

cooperation. Before considering specific models of cooperating epithelial cells, we

address the important question of how cooperative behaviour is possible from an

evolutionary perspective, and the important role of population structure and update

dynamics.

1.2 Evolutionary game theory and cooperation

As we have discussed, cooperation occurs on all scales of life, but how it is able to

evolve presents a conundrum, as it seems to defy Darwinian principles. Evolution

by natural selection occurs on the level of the individual, favouring traits with higher

reproductive value. We know that there are myriad circumstances where a better

outcome will come from cooperation. However, if the fitness of an individual, be it

cell, plant, or animal, is increased by defecting, we expect the selection pressure to

push the population towards total defection. Why then, is cooperation so prevalent

in the natural world?

Evolutionary game theory provides a framework for modelling evolutionary

dynamics when selection is frequency-dependent. That is, the fitness of an individ-

ual depends not only on its own traits, but on the traits of others in the population.

This is the case with cooperation, where, for example, a cooperator in a population

of cooperators will have high fitness, while a cooperator in a population of defectors

will not. Evolutionary game theory was in fact conceived to explain the existence of

‘limited war’ type fighting, a form of cooperative behaviour amongst animals [3, 4].

Games played between cooperators and defectors are commonly referred to

as social dilemmas [5], and the evolutionary success of each strategy depends on

the specific formulation of the game. The prisoner’s dilemma is arguably the most
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famous example. Within a group of interacting individuals playing the prisoner’s

dilemma, mutual cooperation would result in the best collective outcome. However,

the best strategy for any individual is to defect. Correspondingly, if it is assumed

interactions occur randomly, defection is the only evolutionarily successful strategy.

For cooperation to be successful, an additional mechanism is necessary. Kin

selection, direct and indirect reciprocity, group selection, and network reciprocity

can all fulfil this role [6]. Network reciprocity is particularly important for our

purposes, because it refers to the introduction of population structure. In many

cases, and certainly for cell populations, which are often organised into tissues,

this is more realistic than assuming a well-mixed population. The introduction of

population structure into evolutionary game theory models has, therefore, been the

focus of extensive work over the past thirty years [7–15].

Introducing population structure can have a significant effect on evolutionary

dynamics [11], in particular in promoting cooperation [6]. The established frame-

work for modelling games on structured populations is evolutionary graph theory

[14, 16–23]. Individuals occupy vertices on a fixed graph and interact with their

neighbours. This means cooperators are able to form clusters and interact preferen-

tially with other cooperators, thus providing one another reciprocal benefits.

Evolutionary graph theory imposes spatial constraints, not only on interactions,

but also on birth and death. To maintain the fixed graph structure, it is necessary

to define an update rule, which determines exactly how birth and death occur. Two

commonly used are the birth-death and death-birth update rules, which essentially

differ in the order in which birth and death events occur. These ensure that a death

always occurs simultaneously with a neighbouring birth event, so there is an empty

vertex on the graph for the offspring to occupy. Enforcing these spatial constraints

means that competition occurs on a local, rather than global, level. The choice of

update rule has a substantive effect on the success of cooperation.

The success of cooperation is also dependent on the game itself, and the pris-

oner’s dilemma is by no means the only choice. The stag-hunt and snowdrift games

present slightly weaker forms of social dilemma, for which cooperation can be suc-
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cessful, even in a well-mixed population [24]. These social dilemma games in-

volve pairwise interactions, however, there is a broader class of public goods games,

which consider interactions between cooperators and defectors within larger groups

[25].

Much of the literature is focused towards social behaviour, however, evolution-

ary game theory has also been used to model cellular evolution. Many examples,

including signalling, cross-talk and host-cell/parasite interactions, have been ex-

plored over the last two decades (see [26] for a review). In the next section, we

will consider how evolutionary games have been used to model cellular mutations

relevant to cancer, and some of the shortcomings of using evolutionary graph theory

to represent epithelial structure and dynamics.

1.3 Somatic evolution of cancer
Oncogenesis is a process of somatic evolution1, whereby cells must undergo a num-

ber of genetic changes to become malignant. These mutations lead to acquired capa-

bilities that confer some growth advantage, known as the hallmarks of cancer. Cur-

rently, eight hallmarks have been identified: self-sufficiency in growth signalling,

evading growth suppressors, evading apoptosis, enabling replicative immortality,

inducing angiogenesis, activating tissue invasion and metastasis, reprogramming

energy metabolism, and avoiding immune destruction [27, 28].

As we discussed in Section 1.1, cancer can be considered as the breakdown of

cellular cooperation, as malignant cells cease performing their role as part of the

whole organism. However, these malignant cells can evolve new cooperative traits

which benefit the tumour population.

Many of the hallmarks, such as self-sufficiency in growth signalling and in-

ducing angiogenesis, rely on the production of diffusible growth factors2 [29]. This

means the resulting fitness benefit is not necessarily reserved for the cell that pro-

duces the growth factor, but may be shared. Furthermore, there is likely an en-

1Somatic evolution refers to the evolution of somatic cells. These are the cells comprising the
body of an organism, as opposed to reproductive cells.

2Growth factors are proteins, or other molecules, used for cell signalling. They can stimulate
various processes, such as growth, proliferation, wound healing and differentiation.
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ergy cost associated with the production of the growth factor. Producer cells can,

therefore, be considered cooperators, as they produce a shared benefit at a cost to

themselves [30, 31].

Within the game-theoretical context, the evolution of growth factor production

has been modelled as a two-player game between cooperators and defectors in a

well-mixed population [32]. Cooperators produce a growth factor, at a cost, which

benefits both themselves and the cells they interact with, while defectors produce no

growth factor. The original model is a borderline case of the snowdrift game and has

been extended to include additional strategies [33] and spatial structure by placing

cells on a lattice [34]. This latter study considered both snowdrift and prisoner’s

dilemma games. More realistic models have been developed in recent years that

consider the exchange of growth factors as a multiplayer public goods game with

non-linear benefit function and variable diffusion range [35–39]. Furthermore, these

games have been considered on fixed graph structures that reflect the heterogeneity

of tissues [40].

Another hallmark which provides an example of cellular cooperation is the

reprogramming of energy metabolism. Commonly known as the Warburg effect

[41], this relates to the fact that cancer cells produce energy through glycolysis.

Metabolism by glycolysis, which produces lactic acid as a biproduct, is less efficient

than aerobic respiration and is usually only used by healthy cells when oxygen is

scarce. Cancer cells, however, tend to use glycolysis even when oxygen is abundant.

One proposed explanation for this is that although the individual suffers a cost, as

glycolysis is less efficient, the resultant increase in acidity is beneficial to the tumour

as a whole, due to its deleterious effect on healthy cells [42].

Models of the Warburg effect have been developed for pairwise games in well-

mixed populations [43, 44] and extended to include strategies of invasion [43, 45].

Furthermore, recent work has been done to model the Warburg effect using mul-

tiplayer public goods games [46, 47]. These differ from growth factor models in

that overproduction of the public good (lactic acid) can have a deleterious effect on

the cancer cells, as well as the healthy cells. A combined model of glycolysis and
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growth factor production has also been developed, which utilises a double public

goods game [48]. Further examples of the application of game theory to cancer

evolution include microenvironment dependency [49, 50], environmental poisoning

[51] and invasion [52]. There are also a number of models for therapeutics, which

attempt to find better strategies for deploying cancer drugs [53–55].

These models either consider a well-mixed population or use evolutionary

graph theory to incorporate population structure, however, there are several short-

comings of this approach when applied to somatic evolution. Tissue and tumour

structures are not fixed but dynamic, due to processes such as cell division, apopto-

sis (programmed cell death), differentiation (cell specialisation), and motility. Ad-

ditionally, the constraints imposed by the update rule imply strong spatial coupling

between birth and death, which is not necessarily realistic. The choice of update rule

is one of the main determinants of evolutionary outcomes [56], so it is an essential

consideration.

Dynamic graph models of evolutionary games do exist, however, they mostly

focus on switching connections between vertices, either at random or to increase

fitness [57–60]. These types of models are relevant in social networks, for exam-

ple, where agents choose who they interact with, and can break social ties with

individuals who do not cooperate [61]. They are not good models, however, for

populations of cells which are spatially constrained in two- or three-dimensional

structures. Furthermore, they still require birth and death to be coupled.

Recent work has introduced a new ‘shift update’ with the aim of addressing the

unsuitability of the traditional update rules for somatic evolution. Within this up-

date rule, birth and death occur in independent locations, and a process of shifting is

used to fill the empty space left by the dead cell and make space for the offspring. It

works extremely well in one-dimension [62], predicting enhanced cooperative suc-

cess compared to other update rules. However, the extension into two dimensions

[63] is not straightforward as the shifting of cells disrupts the cluster formation of

cooperators. This can be resolved by introducing a repulsive force between cells of

different types and choosing energy-minimising shift paths. If the force is strong



1.4. Thesis outline 23

enough, the shift dynamics is again an effective promoter of cooperation. However,

it relies on this somewhat artificial preferential sorting.

An alternative framework, developed in [64, 65], uses a topological tissue

model [66] to generate a dynamic graph, which represents cellular interactions, and

allows for spatially decoupled birth and death. Graph topologies, however, do not

necessarily correspond to normal tissues. In particular, all defector populations have

abnormal polygon distributions, and cooperators on the boundary of a defector clus-

ter can end up with unrealistically high numbers of neighbours. The introduction of

forces in a spatial tissue model could resolve these issues.

This thesis aims to consider the effect of population structure and tissue dy-

namics on the evolution of cooperation in an epithelium. To resolve some of the

shortcomings of previous models, we represent epithelial dynamics explicitly using

a mechanical model—the Voronoi tessellation (VT) model [67, 68]. This allows

us to consider the effects of fully decoupled birth and death, while maintaining a

realistic tissue structure. It also provides the flexibility to introduce more realistic

forms of spatial coupling as a result of density-dependent proliferation.

1.4 Thesis outline

The remainder of this thesis is set out as follows. In Chapter 2 we give an outline

of evolutionary game theory and how it is used to model cooperation. We begin by

introducing pairwise games and then extend to multiplayer games. In both cases,

we look at known results for well-mixed and structured populations, and consider

the difference between local and global update rules.

In Chapter 3 we introduce epithelia in more detail, explaining their role within

the body and their key characteristics. We give an overview of agent-based models

which have been used to represent epithelial dynamics, and outline the VT model

in detail, which we use extensively in the subsequent chapters.

We then begin our analysis of evolutionary games in epithelial cells by using

the VT model and a spatially decoupled update rule to represent epithelial pop-

ulation structure and dynamics. In Chapter 4 the focus is on pairwise games, in
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particular, a simple version of the prisoner’s dilemma. We find that spatially decou-

pling cell division and death promotes cooperation. This holds for the prisoner’s

dilemma, but also more broadly for pairwise social dilemma games. We show that

cooperation is always favoured in the snowdrift and stag hunt games for the VT

model with decoupled update rule. Additionally, there is likely a small deleterious

effect on cooperation due to cellular motion in the VT model.

We extend these results to multiplayer games in Chapter 5. These allow for

cases where the benefit to a cell is a non-linear function of the number of cooper-

ators, which provides a more realistic model for the effect of a diffusible growth

factor. We derive conditions under which cooperation is favoured and/or beneficial

for populations where birth and death are spatially decoupled, and apply these to

the VT model. We find, once again, that the VT model with decoupled updating

promotes cooperation. We also consider how the gradient of selection can provide

insights into the evolutionary dynamics.

In Chapter 6 we begin to consider the spectrum of spatial dependence of birth

and death between the decoupled and death-birth update rules. This is done by

introducing contact inhibition, the phenomenon whereby cells stop proliferating at

high density, into the VT model. The strength of contact inhibition determines the

strength of spatial coupling, which in turn affects the success of cooperation. We

also find an effect on cooperative success which relates to the tissue tension, and

explore this using a one-dimensional version of the VT model.

Finally we discuss our key results in chapter 7, namely that cooperative success

is maximised by local game interactions and global competition, and consider the

implications for models of cancer evolution. We also discuss possible extensions

and future avenues of research.



Chapter 2

Evolutionary game theory

2.1 Introduction
The focus of this thesis is to explore how the structure and dynamics of epithelia

affect the evolutionary success of cooperation. To do this, we utilise evolutionary

game theory, which provides a robust framework for modelling the evolution of

cooperation. In this chapter, we outline this modelling framework, introducing key

concepts and results that will be used extensively throughout this thesis.

Games between cooperators and defectors can take many forms, with the com-

monality that cooperation benefits the collective, but there is always an individ-

ual incentive to defect. These games can broadly be divided into two categories:

pairwise social dilemma games and multiplayer public goods games. The former,

describing the case where individuals interact one-on-one with other players, is in-

troduced in Section 2.2. The latter case of multiplayer games, which allows for

group interactions, is outlined in Section 2.3.

2.2 Pairwise games
Evolutionary game theory was originally formulated for pairwise games [3, 4] in

which individual players interact one-on-one to derive a payoff. These games can

be represented as an n× n matrix, where n is the number of possible strategies or

types. The focus here is on 2× 2 social dilemma games [5, 69], which describe

interactions between players of two types: cooperators (C) and defectors (D).

Payoffs are determined by the types of the interacting players. Mutual co-
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operation results in a ‘reward’ R, while mutual defection leads to a ‘punishment’

P. Interactions between defectors and cooperators result in a ‘temptation’ T and

a ‘sucker’s payoff’ S awarded, respectively. These are summarised by the payoff

matrix
C D( )

C R S

D T P
. (2.1)

In order that a game is considered a social dilemma [69–71] the following condi-

tions must be satisfied:

1. R > P: mutual cooperation is preferred over mutual defection,

2. R > S: mutual cooperation is preferred over unilateral cooperation,

3. 2R > T + S: mutual cooperation is preferred over an equal probability of

unilateral cooperation and defection.

One (or both) of the following is also required for the game to be a social

dilemma, either

4a. T > R: unilateral defection is preferred over mutual cooperation, or

4b. P > S: mutual defection is preferred over unilateral cooperation.

These conditions create tension between the interests of the collective and the in-

dividual [70]. The best mutual strategy is for both players to cooperate, however,

this is put at risk by either the temptation to defect due to greed (4a), or the fear that

one’s opponent will defect (4b).

There are thus three distinct social dilemmas with different incentives to defect

[70]: the snowdrift game (T > R > S > P) for which the incentive is greed, the stag-

hunt game (R > T > P > S) where the incentive is fear, and the prisoner’s dilemma

(T > R > P > S) for which both fear and greed are involved, and there is a double

inducement to defect.
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Figure 2.1 shows these parameter regions schematically, additionally including

the harmony game, which is not a social dilemma, as there is no temptation to de-

fect. We have used the standard parameterisation, which is to set R = 1 and P = 0.

This is done without loss of generality for the replicator equation, described in Sec-

tion 2.2.1, which is invariant under translation, while positive rescalings can be ab-

sorbed by the selection strength parameter. Additionally, there is no loss of general-

ity under this parameterisation for the Moran process, described in Section 2.2.2, so

long as the weak selection limit is employed. Here, translation refers to the addition

of a constant to each element of the payoff matrix, while rescaling refers to multi-

plication by a constant. For a full classification of two-strategy pairwise games, see

[26, 72].

In the remainder of this section we outline the framework for modelling the

evolutionary dynamics of these pairwise social dilemma games. First, we consider

introducing the replicator equation for infinite well-mixed populations, as well as

the stochastic dynamics in finite populations. We then move on to spatial exten-

sions, focusing on evolutionary graph theory. We consider the special case of the

additive prisoner’s dilemma (APD) game and outline how the structure coefficients

can be used to generalise APD results to any 2×2 matrix game.

2.2.1 The replicator equation

If we assume an infinite well-mixed population, the standard model of evolutionary

game dynamics is the replicator equation [73–77], which describes the deterministic

selection process. Let xC = x ∈ [0,1] and xD = 1−x, be the cooperator and defector

frequencies, respectively. The respective payoffs are then given by

πC(x) = xR+(1− x)S (2.2)

πD(x) = xT +(1− x)P . (2.3)
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Harmony Snowdrift
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Figure 2.1: Social dilemma games in the T -S plane, as defined by Equation (2.1), with
R = 1 and P = 0. Green shading indicates the regions where the game is a
social dilemma. The inset graphs plot ẋ vs. x, as defined by the Equation (2.7).
Stable and unstable fixed points are indicated by filled and open circles, re-
spectively. Crosses in the T -S plane show parameter values used for each inset
plot. An example is given for each game showing the qualitatively different
behaviour: cooperator domination for the harmony game, defector domination
for the prisoner’s dilemma, bistability for the stag-hunt, and stability of coex-
istence for the snowdrift game. The red dotted line, S = 1−T is the additive
prisoner’s dilemma (or harmony) game.

It is reasonable to assume that there will be other contributions to fitness besides

payoffs, thus we define fitness to be

FX = 1+δπX , (2.4)

where the selection strength parameter δ determines the relative importance of the

payoff compared to other factors. The subscript X refers to the player type, C or D.

The replicator equation, which assumes reproduction is proportional to fitness,
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is given by

ẋ = x(FC−F) = δx(πC−π) (2.5)

where F = xFC +(1− x)FD and π = xπC +(1− x)πD are the average fitness and

payoff respectively. Here we assume faithful reproduction, i.e. offspring inherit the

parent type with no mutation. Equivalently, we can write the replicator equation as

ẋ = x(1− x)(FC−FD) = δx(1− x)(πC−πD) . (2.6)

Substituting in Equations (2.2) and (2.3) we obtain

ẋ = δx(1− x)[S−P+ x(R−S−T +P)] (2.7)

for the rate of change of cooperator frequency in terms of the game parameters.

Equation (2.7) always has two fixed points at x = 0 and x = 1, regardless of the

parameter values. A third fixed point is also present at

x∗ =
P−S

R−S−T +P
(2.8)

if R > T and P > S (stag-hunt) or R < T and P < S (snowdrift). Thus there are

four qualitatively different regimes corresponding to the different games (see Fig-

ure 2.1):

• Prisoner’s dilemma: there is a stable fixed point at x = 0 and an unstable

fixed point at x = 1, so defection dominates.

• Snowdrift: there are two unstable fixed points at x = 0 and x = 1 as well as

an internal stable fixed point, so cooperation and defection are able to coexist.

• Stag-hunt: there are two stable fixed points at x = 0 and x = 1 (bistability)

and an internal fixed point which is unstable. This is also known as a coordi-

nation game, as the best strategy is that of your opponent.

• Harmony game: the fixed points at x = 0 and x = 1 are unstable and stable,
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respectively, so cooperation dominates. This is not a social dilemma, as there

is no incentive to defect.

Of course, for many real-world applications, the assumption of an infinite pop-

ulation size will not be appropriate. For smaller population sizes, stochastic effects

will be important. For a finite population, there are only two absorbing states, at

x = 1 and x = 0. Thus, we can consider the probability of ending up in each of these

states, for different initial conditions in each region of the parameter space.

2.2.2 Stochastic dynamics in finite populations

For a finite population, we consider a Moran process [76, 78] with frequency-

dependent fitness. At discrete time intervals, an individual is selected uniformly

at random to die. Simultaneously, an individual is chosen to reproduce, with proba-

bility proportional to its fitness. The offspring inherits the parent type and replaces

the dead cell. Thus, the population size Z remains constant in time.

The number of cooperators is denoted n and the number of defectors Z− n.

Thus, the payoffs are

πC =
(n−1)R+(Z−n)S

Z−1
(2.9)

πD =
nT +(Z−n−1)P

Z−1
, (2.10)

respectively for a cooperator and defector. The probabilities of changing the num-

ber of cooperators from n to n± 1 in a single timestep are given by the transition

probabilities T±n . These define a Markovian birth-death process with two absorbing

states at n = 0 and n = Z. We can write down the transition probabilities explicitly

in terms of fitnesses:

T+
n =

(
1− n

Z

) nFC

ZF
T−n =

n
Z

(
1− nFC

ZF

)
, (2.11)

or in terms of payoffs by substituting in Equations (2.4), (2.9) and (2.10).

In the weak selection limit δ � 1, assuming that the payoffs are a small con-
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tribution to the overall fitness, the transition probabilities become

T+
n =

n
Z

Z−n
Z

[1+δ (πC−π)]+O(δ 2) (2.12)

T−n =
n
Z

Z−n
Z

[
1−δ

n
Z−n

(πC−π)

]
+O(δ 2) . (2.13)

We can then calculate the cooperator fixation probability φl , defined as the proba-

bility of reaching the absorbing state n = Z, given the initial state has l cooperators.

The fixation probability for a single initial cooperator, denoted as ρC, is of particular

interest, and unless otherwise stated, we refer to this as the fixation probability.

The fixation probabilities are found by solving the recursion relation [76, 77]

φn = T−n φn−1 +(1−T−n −T+
n )φn +T+

n φn+1 , (2.14)

with the boundary cases

φ0 = 0 and φZ = 1 . (2.15)

Letting γn =
T−n
T+

n
, this gives

ρC = φ1 =

[
1+

Z−1

∑
m=1

m

∏
n=1

γn

]−1

(2.16)

for the fixation probability of a single cooperator and

φl = φ1

(
1+

l−1

∑
m=1

m

∏
n=1

γn

)
. (2.17)

for an arbitrary initial state l.

From Equations (2.12) and (2.13) we obtain, in the weak selection limit,

γn = 1−δ (πC−πD)+O(δ 2) (2.18)

= 1− δ

Z−1
[n(R−S−T +P)+Z(S−P)−R+P]+O(δ 2) , (2.19)

where in the second equality we have substituted in the payoffs from Equations (2.9)
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and (2.10). Thus from Equation (2.16) we obtain an expression for the fixation

probabilities in the weak selection limit:

ρC ≈
1
Z
+

δ

4Z

[
(R−S−T +P)

2Z−1
3
−R−S−T +3P+2(S−P)Z

]
. (2.20)

Figure 2.2 plots Equation (2.20) in the T -S plane, where we have set R = 1 and

S = 0.

Figure 2.2: Fixation probabilities for a single initial cooperator in a population of Z = 100
individuals. The parameter space is divided into four regions corresponding to
different social dilemma games. We have set R = 1, P = 0. Cooperation is a
beneficial mutation when ρC > 1/Z, shown by red. Note that for the prisoner’s
dilemma cooperation is never beneficial.

In addition to the cooperator fixation probability, we can define the defector

fixation probability, ρD, and the neutral fixation probability, ρ0. The latter gives

the probability of fixation for a randomly chosen cell in a population of identical

cells and is obtained by setting δ = 0. Thus, it is clear from Equation (2.20) that

ρ0 = 1/Z. Based on these three fixation probabilities, we can define two measures

of success for a cooperative mutant [56, 79]:
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• cooperation is a beneficial mutation when ρC > ρ0,

• cooperation is favoured by selection, or has an evolutionary advantage, when

ρC > ρD
1.

Similarly, defection is beneficial if ρD > ρ0 and favoured if ρD > ρC.

The conditions for a mutant to be beneficial and favoured are not necessarily

equivalent. For example, if ρC > ρ0 and ρD > ρ0, it is possible that ρC < ρD and

thus cooperation is beneficial but not favoured. It is also possible that cooperation

is favoured but not beneficial. For payoff matrices which satisfy equal-gains-from-

switching, i.e. R+P = S+T , ρC > ρ0 implies ρC > ρ0 > ρD [79]. Thus the fact

that a cooperator is favoured guarantees that it is also beneficial if there is equal-

gains-from-switching. This holds for the APD game, which we will introduce in

Section 2.2.3, for which S = 1−T .

From Equation (2.20) we obtain the condition for cooperation to be a beneficial

mutation, given by

(Z−2)R+(2Z−1)S > (Z +1)T +(2Z−4)P , (2.21)

which becomes

R+2S > T +2P (2.22)

in the large population limit, Z → ∞. To find the condition for cooperation to be

favoured, we examine the ratio of fixation probabilities

ρC

ρD
=

Z−1

∏
j=1

γ j (2.23)

≈ 1− δ

2
[(R−S−T −P)(Z−1)−R−S−T +3P+2(S−P)Z] (2.24)

where the approximation is once again taken in the weak selection limit. Thus,

1This is equivalent to the condition that the equilibrium frequency of cooperators is greater than
a half when mutation is allowed [10].
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ρC > ρD is satisfied when

(Z−2)R+ZS > ZT +(Z−2)P , (2.25)

which in the large population limit Z→ ∞, becomes

R+S > T +P . (2.26)

These conditions are plotted in Figure 2.3

0 1 2

T

1

0

1

S

Prisoner's dilemmaStag-hunt

Harmony Snowdrift

Figure 2.3: Conditions for cooperation to be favoured and beneficial for a pairwise social
dilemma game in a large well-mixed population. The dashed line corresponds
to ρC = ρD and the solid line to ρC = ρ0. These are S = 1−T and S = (1−T )/2
respectively, by Equations (2.22) and (2.26), where we have set R = 1 and
P = 0.

Blue region (top): C is beneficial and favoured (ρC > ρ0 > ρD).
Pink region (left): C is favoured but not beneficial (ρ0 > ρC > ρD).
Green region (right): C is beneficial but not favoured (ρD > ρC > ρ0).
Orange region (bottom): C is neither beneficial nor favoured (ρC < ρ0 and
ρC < ρD).
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It is clear from Figures 2.2 and 2.3 that cooperation can be beneficial and/or

favoured for the stag-hunt and snowdrift games. However, this is never the case for

the prisoner’s dilemma. As discussed previously, the prisoner’s dilemma presents

the strongest form of social dilemma, as there is a double incentive to defect (the

temptation to increase ones own payoff and the fear that others will defect). This is

also consistent with the deterministic result for the prisoner’s dilemma, that defec-

tion always dominates.

The introduction of spatial structure can promote cooperation, even under the

prisoner’s dilemma [7, 10, 11]. As the assumption of a well-mixed population will

not in many cases be biologically realistic, introducing population structure is a

natural extension to the theory. Spatial models have been introduced based on sets

[80, 81], phenotype space [82] and graphs [16–18, 21]. In the next section, we in-

troduce evolutionary graph theory, which is most relevant for representing epithelial

structure.

2.2.3 Evolutionary graph theory

Evolutionary graph theory provides a framework for incorporating structure into

evolutionary models, by representing the population as a fixed graph [16]. This can

have a profound effect on evolutionary outcomes, with certain structures amplifying

or suppressing selection [83, 84] These effects depend on both the graph topology

and the particular update rule, which is used to mediate birth and death and maintain

fixed graph structure. Evolutionary games, and cooperation in particular, have been

modelled extensively using evolutionary graph theory [14, 17, 18, 21]. Here we

introduce the standard evolutionary graph theory framework and explain some key

results from the past two decades.

Consider a population of individuals, labelled i ∈ {1, . . .Z}, as the vertices of

a graph with adjacency matrix

Ai j =

1, if i and j are neighbours,

0, otherwise.
(2.27)
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The type of individual i is given by si ∈ {0,1}, with si = 0 denoting a defector and

si = 1 a cooperator. The state of the population is then given by the Z-dimensional

vector s.

For a population in state s, individual i obtains a payoff πi(s) from its neigh-

bours, which is calculated according to a payoff matrix. For a general 2×2 game,

as described by the matrix (2.1), this is given by

πi(s) = sis
(1)
i R+ si(1− s(1)i )S+(1− si)s

(1)
i T +(1− si)(1− s(1)i )P , (2.28)

where

s(1)i = ∑
j∈G

Ai js j

ki
, (2.29)

and ki = ∑ j∈G Ai j is the degree of vertex i (i.e. number of neighbours). Fitness is

then defined to be

Fi(s) = 1+δπi(s) , (2.30)

where δ > 0 is once again the selection strength parameter.

2.2.3.1 The additive prisoner’s dilemma

As we saw in Sections 2.2.1 and 2.2.2, the prisoner’s dilemma is the strongest form

of social dilemma and, for the well-mixed population, always promotes defection.

Much of the work done on evolutionary graph theory, therefore, focuses on the

APD, which we recall is the additive prisoner’s dilemma. In this simplified version

of the prisoner’s dilemma, cooperators provide a benefit b to their neighbours at a

cost c. This is summarised by the payoff matrix

C D( )
C b− c −c

D b 0
, (2.31)
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where b > c. The payoff to an individual i is, therefore,

πi(s) =−csi +b ∑
j∈G

Ai js j

ki
. (2.32)

Rescalings of the payoff matrix can be absorbed by δ . Therefore, without loss of

generality, the game can be defined by a single parameter. This is chosen to be the

benefit-to-cost ratio b/c.

As noted in Section 2.2.2, these payoffs have equal-gains-from-switching.

Thus, the conditions for cooperation to be beneficial and favoured are equivalent.

In the remainder of this section we will introduce some results derived for the APD,

before considering how they can be generalised to an arbitrary two-strategy game,

as described by Equation (2.1).

One important note is that throughout this thesis we use an average payoff, i.e.

the contribution from each neighbour is normalised by the total number of neigh-

bours. An alternative would be to use an accumulative payoff, in which contribu-

tions are simply added together. For a regular graph (including a complete graph

representing the well-mixed population) this choice does not affect the dynamics

other than to alter the selection strength, however for heterogeneous graphs it can

impact the dynamics. For example, on scale-free networks, which exhibit high de-

gree heterogeneity, this choice affects whether cooperation is sustainable [9, 79].

For the most part, we are focused on regular graphs, or graphs with small degree

heterogeneity.

2.2.3.2 Update rules

Evolution proceeds via a spatial extension of the Moran process [16, 78], whereby

at each time step an individual dies and another reproduces. The exact mechanism

for this process is decided by the update rule, and can have a substantive effect

on the evolutionary outcomes. Evolutionary graph theory usually requires a local

update rule to maintain the fixed graph structure.

Local updating involves a spatial relationship between birth and death events.

Two commonly used local update rules are defined as follows:
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• birth-death: an individual is selected to reproduce with probability propor-

tional to fitness; one of its neighbours is chosen to die uniformly at random;

• death-birth: an individual is chosen to die uniformly at random, one of its

neighbours is selected to reproduce with probability proportional to fitness.

In both cases, the offspring is able to occupy the empty vertex left after the death has

occurred, thus keeping the graph structure fixed [56]. These update rules are some-

times referred to as BD-B (birth-death with selection on birth) and DB-B (death-

birth with selection on birth) to emphasise that selection is acting on birth. Alterna-

tive update rules, for which selection acts on death, can then be referred to as BD-D

and DB-D [85]. In this paper, we limit ourselves to the case where selection acts on

birth, thus we do not use this notation to differentiate the two cases.

Under a global update rule, there is no spatial dependence between birth and

death events [81]. Thus, the probability of an individual reproducing is dependent

only on its own fitness and the population fitness. This contrasts with local update

rules, in which local competition plays a role.

Within evolutionary graph theory, the shift update rule is an example of global

updating. In this case, an individual is chosen to reproduce with probability pro-

portional to fitness, and another is chosen uniformly at random to die. A path is

then selected on the graph which connects the two events. Individuals are shifted

along this path until there is an empty vertex next to the parent for its offspring to

occupy. This kind of update works well on a one-dimensional lattice [62], however

it becomes more complex in two dimensions [63]. This is because shifting causes

significant rearrangement of individuals and breaks up clusters. Global updating is

implemented much more naturally within set or phenotype structured populations

[81].

2.2.3.3 Critical benefit-to-cost ratios

The APD is fully described by the benefit-to-cost ratio, b/c. Therefore, we can con-

sider how this parameter affects the success of cooperation. As discussed in Sec-

tion 2.2.2, we consider that cooperation is beneficial when ρC > ρ0 and favoured
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when ρC > ρD. However, as the APD has equal-gains-from-switching, these con-

ditions are equivalent. Thus, we can define a single critical benefit-to-cost ratio

(b/c)∗ at which ρC = ρ0 = ρD. Cooperation is both beneficial and favoured when

b/c > (b/c)∗.

The value of (b/c)∗ can be considered a measure of the success of cooperation

in a particular population, which is defined by its structure and update rule. Low

(b/c)∗ implies that only a small incentive is needed for cooperation, and thus coop-

eration is more successful than in the case of high (b/c)∗, when a larger incentive

is needed.

We saw in Section 2.2.2 that cooperation is never favoured or beneficial for

the APD in a well-mixed population. In such a case (b/c)∗ is infinite. Similar

results are obtained for graph-structured populations with the birth-death update

rule. Homogeneous graphs, for example, cannot support cooperation with the birth-

death update rule for finite (b/c)∗ [17, 20, 56].

On the other hand, the death-birth update rule has been found to support co-

operation, and the critical benefit-to-cost ratios have been calculated for various

graphs. A simple rule for large k-regular graphs is that (b/c)∗ = k in the weak

selection limit, δ � 1 [17]. Simulation results indicate that this condition also pro-

vides a good approximation for random graphs and scale-free networks, where k is

taken to be the average number of neighbours. For finite bi-transitive graphs, which

include regular graphs, the critical benefit-to-cost ratio

(b/c)∗ =
Z−2

Z/k−2
, (2.33)

is derived in [20].

More recently, the fixation probabilities and corresponding critical benefit-to-

cost ratios have been derived for any graph G in the weak selection limit [14]. This

was done by expressing ancestral lineages in terms of random walks and apply-

ing coalescence theory. The coalescence time τi j is the expected meeting time of

two independent random walks starting from vertices i and j. These can be found
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computationally by solving a Z2-dimensional system of linear equations

τi j =

1+ 1
2 ∑k(pikτ jk + p jkτik) i 6= j

0 i = j ,
(2.34)

where pi j = Ai j/ki is the probability of moving from vertex i to j in a one-step

random walk.

Furthermore, we can define tn, the expected coalescence time from the two

ends of an n-step random walk, where the initial vertex for the random walk is

chosen with probability proportional to its degree ki. Letting p(n)i j be the probability

of moving from vertex i to j in an n-step random walk, values of tn can be found by

solving the recurrence relation

tn+1 = tn +
1
K ∑

i∈G
ki p

(n)
ii τi−1 , (2.35)

with t0 = 0. Here, K = ∑i∈G ki and

τi = 1+ ∑
j∈G

pi jτi j (2.36)

is the expected remeeting time of two random walks starting at i.

For a death-birth update rule and APD game, the cooperator fixation probabil-

ity is then given by

ρC =
1
Z
+

δ

2Z
(−ct2 +b(t3− t1))+O(δ 2) (2.37)

and the critical benefit-to-cost ratio is

(
b
c

)∗
=

t2
t3− t1

. (2.38)

Therefore, by solving computationally for the coalescence times, it is possible to

calculate the critical benefit-to-cost ratio for any graph with death-birth updating in

the weak selection limit. Results are also derived for the birth-death update rule in
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[14].

Thus far, we have considered results for the APD, while neglecting the full

spectrum of social dilemma games defined by Equation (2.1). However, it is pos-

sible to use the critical benefit-to-cost ratios derived for the APD, to determine the

success of mutants under any two-strategy pairwise game by calculating the struc-

ture coefficients.

2.2.3.4 Structure coefficients

Recall that a two-strategy game between two players can be defined by a 2× 2

payoff matrix, such as Equation (2.1). Individual payoffs are defined on the graph

by Equation (2.28). A simple rule for strategy C to be favoured over D is derived in

[10] for the weak selection limit. It tells us that ρC > ρD if

σR+S > T +σP , (2.39)

where σ is the structure coefficient. This structure coefficient depends on the pop-

ulation structure and update rule, as well as the mutation rate if mutation is al-

lowed. However, it is independent of the game. Note that the condition for C to be

favoured is not equivalent to the condition for C to be beneficial (ρC > ρ0), unless

equal-gains-from-switching is satisfied.

In the case of the APD, the structure coefficient can be written in terms of the

critical benefit-to-cost ratio,

σ =
(b/c)∗+1
(b/c)∗−1

. (2.40)

Therefore, the critical benefit-to-cost ratios derived for the APD can be used to find

the condition for a mutant to be favoured under any two-strategy pairwise game.

However, this does not encompass all classes of games. We now move on to con-

sider what happens when individuals interact within groups.

2.3 Multiplayer games
There are many cases where pairwise games are not the most natural description

for interacting individuals. Within the context of animal behaviour, for example,
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individuals may cooperate in a group to hunt. Cellular cooperation through the

production of diffusible growth factors can also be considered a group interaction,

as the benefit is shared between a number of cells within the diffusion range.

In the following, we extend the theory of evolutionary games, introduced in

Section 2.2, to incorporate multiplayer games [86] for well-mixed [87, 88] and

graph-structured populations [15, 89]. We begin by introducing a general formu-

lation for two-strategy multiplayer games, before focusing on public goods games

(PGGs) between cooperators and defectors [25], which provide an analogue for

pairwise social dilemma games. We look at how the concept of structure coeffi-

cients is generalised to multiplayer games, reporting some known results and de-

riving structure coefficients for the cycle graph with birth-death and shift update

rules.

We consider an arbitrary multiplayer game with two strategies, A and B. Play-

ers interact in groups of size N = k + 1, where k is the number of co-players for

the focal player. For a well-mixed population co-players are randomly selected

from the population, whereas for a graph-structured population they correspond to

the nearest neighbours. As a result of these interactions, an A-type player receives

payoff a j,k, while a B-type player receives payoff b j,k. Here, j is the number of A

co-players. The fitness of each individual is then defined as 1+ δa j,k or 1+ δb j,k,

where δ is the selection strength parameter. The population evolves according to a

Moran process, as described in Sections 2.2.2 and 2.2.3.

2.3.1 Public goods games

Many of the results in the following sections are for general games, however we are

focused on PGGs played between cooperators and defectors. These games are de-

fined by a benefit function b ·β (x) and a cost function which we take to be constant

c, with b > c. The function β (x) is constrained to take values in [0,1]. Here, x is the

proportion of cooperators within the interacting group. Thus, the cooperator and
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defector payoffs are defined, respectively, as

a j,k = b ·β
(

j+1
k+1

)
− c , b j,k = b ·β

(
j

k+1

)
. (2.41)

To ensure that the payoff is higher when all players cooperate than when no players

cooperate, we enforce the condition b ·β (1)− c ≥ b ·β (0). Often this is done by

setting c = 1, b > 1, β (1) = 1 and β (0) = 0.

The most common PGG, known as the N-player prisoner’s dilemma (NPD),

uses a linear benefit function [72, 90, 91]. However, non-linear benefit functions

may be more realistic and can lead to much richer dynamics, even for well-mixed

populations [92]. An example is the volunteer’s dilemma (VD), which defines the

benefit as a Heaviside step function [33, 91, 93–95]. The NPD and VD can be

defined by specifying their benefit functions:

β (x) = x , (NPD) (2.42)

β (x) = Θ(x− x̃) , (VD) (2.43)

where x̃ is the critical proportion of cooperators required to receive the benefit and

Θ(x) is the Heaviside step function.

Both the NPD and VD can be represented as limiting cases of a more general

sigmoid benefit function. This is defined by

β (x) =
α(x)−α(0)
α(1)−α(0)

, (2.44)

where

α(x) =
1

1+ es(h−x)
(2.45)

is the logistic function, s is the steepness and h is the inflection point. The sigmoid

benefit function allows for a wide spectrum of behaviour from purely diminishing

returns (h = 0) to purely increasing returns (h = 1). The NPD and VD are obtained

in the limits s→ 0 and s→ ∞, respectively. This can be seen in Figure 2.4.

To assess the impact of population structure and the choice of update rule on
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Figure 2.4: Sigmoid benefit function, defined by Equation (2.44). Left panel: h= 0.5; s= 1
(dash-dot), s = 10 (dash) and s = 1000 (solid). We regain the limiting cases by
letting s→ 0 (NPD) or s→ ∞ (VD). Right panel: s = 10; h = 0.2 (dash-dot),
h = 0.5 (dash), h = 0.8 (solid).

cooperation under these various regimes, we introduce the σ -rule. This is an ex-

tension of Equation (2.39), which gave the condition for cooperation to be favoured

for a pairwise game. N-player games require N structure coefficients, which are

uniquely defined up to a constant factor [15]. We can, therefore, choose to set one

of them equal to one, which is why only a single structure coefficient was required

for pairwise games (N = 2).

2.3.2 Structure coefficients

Recall from Section 2.2.2, that a strategy A is favoured over B, when ρA > ρB. The

σ -rule, derived in [88], states that

ρA > ρB ⇐⇒
k

∑
j=0

σ j(a j−bk− j)> 0 , (2.46)

where σ j are the structure coefficients. It is assumed here that the group size N =

k+ 1 is fixed. Therefore, we have dropped the explicit dependence of the payoffs

on k, letting a j,k = a j and b j,k = b j. Structure coefficients depend on the population

structure and update rule, but are independent of the game. If we calculate σ j

for a given population structure and update rule, we can, therefore, determine the

favoured strategy for any game by Equation (2.46).

For certain population structures, such as the well-mixed population and the

cycle graph, the state is fully described by the number of A-players n. Thus, we can
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define the ratio of fixation probabilities as

ρA

ρB
=

Z−1

∏
n=1

T+
n

T−n
, (2.47)

where T±n are the transition probabilities to go from n→ n± 1 A-type individuals

[77]. This does not hold in general, as the transition probabilities in more complex

population structures will depend on the spatial configurations of different player

types, and thus are not uniquely defined by n.

In the remainder of this section, we consider various cases where the structure

coefficients can be calculated from transition probabilities in the weak selection

limit. For PGGs, we can use Equation (2.46) to obtain the critical benefit-to-cost

ratios (b/c)∗1, above which cooperation is favoured. We use the subscript 1 to make

clear that, unlike for the APD, the value of b/c above which cooperation is favoured,

is not necessarily equivalent to the value above which cooperation is beneficial. For

the latter case, we define (b/c)∗0, such that ρC > ρ0 when b/c > (b/c)∗0.

2.3.3 Well-mixed population

The structure coefficients for a well-mixed population [87] are given by

σ j =

1 , if 0≤ j ≤ N−2

Z−N
Z , if j = N−1 .

(2.48)

Thus, we can obtain the condition under which ρA > ρB, for any game, by plugging

these into Equation (2.46). For a PGG defined by Equation (2.41) the condition that

cooperators are favoured is

Z−N
Z

b [β (1)−β (0)]>
N−1

∑
j=0

σ j c . (2.49)

Clearly, the shape of the benefit function does not impact whether cooperation is

favoured, as this condition depends only on the end points of the benefit function.
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The critical benefit-to-cost ratio is given by

(
b
c

)∗
1
=

N(Z−1)
Z−N

, (2.50)

where we have set β (1) = 1 and β (0) = 0. For a large population, this becomes

(b/c)∗1 = N.

2.3.4 Cycle graph

Exact expressions for the structure coefficients of the cycle graph can be obtained

in the weak selection limit. The cycle is a one-dimensional lattice with periodic

boundary conditions. Individuals interact with their two nearest neighbours, thus

the group size is N = 3.

2.3.4.1 Death-birth update

The structure coefficients for the death-birth update rule are derived in [15]. They

are given by

σ0 = 1 , σ1 = Z−2 , σ2 = Z−3 . (2.51)

From Equation (2.46) we obtain the conditions for cooperation to be favoured under

an NPD, as defined by Equation (2.42). This gives the critical benefit-to-cost ratio

(
b
c

)∗
1
=

3(Z−2)
2(Z−3)

, (2.52)

which for Z→ ∞ becomes (b/c)∗1 = 3/2. Therefore, the conditions for cooperation

to be favoured are less stringent than those obtained for a well-mixed population.

For a general PGG defined by Equation (2.41) the critical benefit-to-cost ratio is

(
b
c

)∗
1
=

2(Z−2)
(Z−3)[β (1)+β (2/3)−β (1/3)−β (0)]

. (2.53)

2.3.4.2 Birth-death update

We derive the structure coefficients for the birth-death update rule, following a sim-

ilar method used in [15] for the death-birth updating. For the cycle, the transition
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probabilities are uniquely defined by the number of A-players in the population n.

Thus, we can write down the ratio of transition probabilities, which for a birth-death

update are

T+
n

T−n
=


(1+δa0)/(1+δb1) , if n = 1

(1+δa1)/(1+δb1) , if 1 < n < Z−1

(1+δa1)/(1+δb2) , if n = Z−1 .

(2.54)

Substituting these into Equation (2.47), and taking the limit, δ � 1, we obtain

ρA

ρB
≈ 1+δ [a0−b2 +(Z−2)(a1−b1)] . (2.55)

In order that ρA > ρB, the second term must be positive. Thus, comparing this

condition with Equation (2.46), we find the structure coefficients

σ0 = 1 , σ1 = Z−2 , σ2 = 0 . (2.56)

For the NPD, cooperation is favoured when b/c is greater than

(
b
c

)∗
1
=

3(Z−1)
Z−3

, (2.57)

which becomes b/c > 3 in the limit, Z → ∞. These conditions are equivalent to

those obtained for the well-mixed population. For a general PGG defined by Equa-

tion (2.41) the critical benefit-to-cost ratio is

(
b
c

)∗
1
=

Z−1
(Z−3)[β (2/3)−β (1/3)]

. (2.58)

Interestingly, this depends only on the internal points of the benefit function. This

differs from the result for the well-mixed population, which depends only on the

end points, β (0) and β (1).
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2.3.4.3 Shift update

We follow the same procedure to derive the structure coefficients for the shift update

rule. This time the ratio of transition probabilities is given by

T+
n

T−n
=



(Z−1)(1+δa0)
2(1+δb1)+(Z−3)(1+δb0)

, if n = 1

(Z−n)(2(1+δa1)+(n−2)(1+δa2))
n(2(1+δb1)+(Z−n−2)(1+δb0))

, if 1 < n < Z−1

2(1+δa1)+(Z−3)(1+δa2)
(Z−1)(1+δb2)

, if n = Z−1 .

(2.59)

Letting δ � 1, Equation (2.47) becomes

ρA

ρB
≈ 1+δ [(a0−b2)+2(HZ−1−1)(a1−b1))+(Z−2HZ−1)(a2−b0)] , (2.60)

where Hm is the m-th harmonic number:

Hm =
m

∑
n=1

1
n
. (2.61)

Thus, the structure coefficients are given by

σ0 = 1 , σ1 = 2(HZ−1−1) , σ2 = (Z−2HZ−1) . (2.62)

The critical benefit-to-cost ratio for the NPD is

(
b
c

)∗
1
=

3(Z−1)
3(Z−1)−4HZ−1

. (2.63)

In the large population limit, this becomes (b/c)∗1 = 1. As the NPD requires that

b > c, cooperation is always favoured in the large population limit for a shift update

under weak selection.

In fact, if we consider a general cooperation game as defined by Equa-

tion (2.41) we obtain (
b
c

)∗
1
=

1
β (1)−β (0)

(2.64)

in the large population limit, Z → ∞. Letting β (1) = 1 and β (0) = 0, we again
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obtain (b/c)∗1 = 1. Thus, for the shift update on the cycle, as with the well-mixed

population, the condition for cooperation to be favoured is not dependent on the

shape of the benefit function (although in this case we required the large population

limit). Furthermore, cooperation is favoured for the cycle with shift update for all

PGGs, as defined by Equation (2.41), given that the population is sufficiently large.

2.3.5 Regular graphs

In higher dimensions, the transition probabilities are no longer uniquely defined

by the number of A-players in the population, but depend also on their configura-

tion. Expressions for the structure coefficients of k-regular graphs, with k ≥ 3 and

death-birth updating, have been derived [15] using pair approximation and diffusion

approximation [17]. It was found, for a VD game, that the predicted results fit well

with simulation data for random regular graphs, but they underestimate the critical

benefit-to-cost ratio for lattices [15].

We do not state the full expressions here, which are non-trivial functions of

k. However, they yield a simple condition for cooperation to be favoured with the

NPD in the large population limit, Z � k. The critical benefit-to-cost ratio in this

case is given by
b
c
>

k+1
2

. (2.65)

2.4 Other population types and extensions
In the preceding sections, we have given an overview of the aspects of evolutionary

game theory most relevant to this thesis. However, this is by no means a compre-

hensive overview of this vast topic. Before concluding, therefore, we will briefly

mention several extensions which, while not explored fully in this thesis, are rele-

vant for future research.

We have focused exclusively on symmetric two-strategy games. Of course,

games can be asymmetric [96] and have many strategies [97]. Indeed interactions

between tumour cells have been modelled as games with three [43] or more strate-

gies [45, 47]. Furthermore, strategies need not even be discrete. The evolution of

continuous traits is modelled using adaptive dynamics [39, 98], which have also
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been applied to cancer [99].

Evolutionary graph theory, as we have seen, allows for the introduction of

structure, whereby a population is represented as a static graph. This is not the

only possible representation of population structure, however. Other studies have

considered set-structured populations [80], as well as those organised in phenotype

space [82], both of which are able to promote cooperation. Unlike fixed graphs,

populations structured by sets or phenotypic similarity use global updating (see

Section 2.2.3.2), so the probability of reproduction depends on the individual fitness

and total population fitness, rather than local effects.

For fixed graph-structured populations, it is possible to incorporate motion, by

allowing individuals to swap vertices [22]. Dynamic graphs have also been studied,

whereby individuals are able to alter their edge connections based on their interac-

tions [58–60].

Thus far, we have considered PGGs where the benefit is shared equally within

a group. A further extension is to consider the public good explicitly diffusing

through the population. One example is a model in which a public good diffuses

through a graph-structured population and the benefit to cells is proportional to the

local concentration of public good [15]. More recently a model has been developed

which explicitly represents the production, diffusion and decay of a public good in

continuous space [100].

2.5 Discussion

Evolutionary game theory provides a comprehensive framework for modelling the

evolution of cooperation within a population. We have provided an overview of

the theory for both pairwise and multiplayer games in well-mixed and structured

populations. It is clear that there are three key determinants for the evolutionary

success of cooperation: the game, the population structure, and the update rule. The

choice of game is clearly important. For pairwise games, we have seen that cooper-

ation can succeed for the snowdrift and stag-hunt games in well-mixed populations,

but not for the prisoner’s dilemma. In general, whether cooperation is favoured is
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summarised by the σ -rule, given by Equations (2.39) and (2.46) for pairwise and

multiplayer games, respectively. These depend on the specific game parameters.

The role of population structure and update rule in Equations (2.39) and (2.46),

is summarised by structure coefficient σi. The effects of each are difficult to disen-

tangle from one another, and while it is commonly accepted that population struc-

ture promotes cooperation, this is clearly not always the case. We have seen a

number of examples where a birth-death update rule leads to outcomes indistin-

guishable from the well-mixed population. Thus, the cooperation-promoting ef-

fects of the population structure appear to be suppressed by this choice of update

rule. By contrast, population structure with death-birth updating does promote co-

operation. Results for the cycle graph suggest that global update rules, such as the

shift update, can promote cooperation in structured populations, more so even than

the death-birth update.

The central question of this thesis is to consider how population structure and

tissue dynamics affect the ability of cooperative mutants to succeed in epithelia. It

is clearly possible to incorporate realistic epithelial structure into the evolutionary

graph theory framework. However, the impact of tissue dynamics is less clear. An

epithelium is a dynamic structure, with new cells arising after division, and cells

leaving the tissue due to apoptosis, extrusion, or differentiation. How these pro-

cesses are connected will clearly impact the update dynamics and therefore should

determine our choice of update rule. However, it is not clear that any choice of

update rule available within evolutionary graph theory is appropriate. To consider

these questions, we go beyond evolutionary graph theory and incorporate evolution-

ary games into an explicit tissue model, which is able to more realistically represent

epithelial dynamics.



Chapter 3

Modelling epithelia

3.1 Introduction

Multicellular organisms are built of cells, which are tightly regulated to maintain

the life of the whole. Cells are organised into tissues, which in turn form organs.

Epithelia are the tissues which form surfaces, such as skin and the linings of organs.

They consist of sheets of tightly packed cells, which can be single-layered (simple)

or multilayered (stratified). We focus on simple epithelia.

Epithelial cells are approximately polygonal on their apical surfaces. These

polygons have characteristic side number distributions, which are remarkably con-

served across a range of animal and plant species [101, 102]. Without exception,

the most common cell shape in an epithelium is the hexagon, and the distributions

are uni-modal with a low probability of having more than seven or less than five

sides.

This characteristic epithelial structure must be taken into account when consid-

ering evolutionary dynamics. An epithelium could be represented as a planar graph,

for example, a hexagonal lattice would be a reasonable first approximation. More

realistic representations, which incorporate variation in neighbour number, can be

obtained using a Voronoi tessellation (VT) which has been shown to replicate the

topological properties of epithelia [103, 104].

A VT is a partitioning of the plane, or some domain, into regions based on

the placement of seeds [105, 106]. Each Voronoi region is defined to contain every
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Figure 3.1: Voronoi tessellation (VT, black) and Delaunay triangulation (DT, red) of a set
of seeds. The VT divides the plane into polygons such that every point in a
polygon is closer to its corresponding seed than any other. The DT partitions
the plane into triangles, with the seeds as vertices, and is the dual graph to the
VT. In the VT model, the seeds correspond to cell centres, and spring forces
act along the lines of the DT.

point in the domain closer to the given seed than any other. Cell shapes correspond

to these Voronoi regions, which are polygons. The dual graph of the VT, known as

the Delaunay triangulation (DT), corresponds to the neighbour structure. The VT

and DT for a given set of seeds are shown in Figure 3.1.

Epithelia have conserved topological properties, however they are not static

structures. Constituent cells within an epithelium are undergoing a number of dy-

namic processes. Cells grow and proliferate by cell division. They are able to move,

thus leading to rearrangements of cell neighbours. Cells may also leave the tissue

for various reasons, such as differentiation (cell specialisation), live-cell extrusion,

or apoptosis (programmed cell death).

For adult homeostatic tissues, it is vital that these processes are well-regulated.

If the cell population is depleted, the epithelium will no longer perform its barrier

function [107]. Over-proliferation on the other hand, can lead to tumour forma-

tion. Thus, to maintain homeostatic population size, the number of cell divisions

must match the number of cell deaths [108–111]. We use the term death here, and

throughout this thesis, to refer to any event causing a cell to leave the tissue, includ-
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ing differentiation, whereby cells become specialised.

In Chapter 2 we saw that evolutionary dynamics are impacted, not only by the

structure of a population, but also by the update rule, which defines how birth and

death occur. In order to maintain the static graph structure required in evolutionary

graph theory, these update rules tend to make the restriction that birth and death

occur simultaneously at neighbouring sites (the exception is the shift update rule,

see Section 2.2.3.2).

To relax this restriction, we seek to utilise an explicit tissue model, rather than

relying on static graph representations. In the remainder of this section, we give

an overview of the literature on agent-based tissue modelling, before outlining the

VT model in detail, which is used throughout this thesis. Finally, we consider

two alternative ways in which the population can be updated, while maintaining

homeostasis. The first way is by spatially decoupling birth and death, while still

maintaining temporal coupling, so the population size remains constant. The second

is by introducing contact inhibition into the model, which enables the epithelium to

maintain homeostatic population size. This leads to some level of spatial coupling

between division and death, which depends on the strength of contact inhibition.

3.2 Agent-based tissue modelling

Agent-based tissue models represent cells as discrete units, with tissue level be-

haviour emerging as a result of cellular interactions. Models of this type, in contrast

to continuum tissue models, are ideal for our purpose, as evolutionary processes are

also based on cellular behaviour. There is an extensive literature on agent-based

tissue models, which can be separated into two categories: lattice-based and lattice-

free models. These can be in two- or three- dimensions, however we are focused on

the former, as they are able to provide good representations of epithelial sheets and

are computationally much faster. For a comprehensive review, the reader is referred

to [112]. Here we will outline the main types of model, before describing the VT

model in detail, which is used throughout this thesis.
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3.2.1 Lattice-based models

The defining characteristic of lattice-based models is that the spatial arrangement

of cells is restricted by some sort of lattice. This could be a regular grid, such as a

square or hexagonal lattice, or a more realistic non-symmetric structure. Whichever

lattice is chosen, it remains fixed throughout the simulation.

The simplest examples are cellular automata, whereby each lattice site can be

occupied by a single cell [113–116]. These cellular automata models incorporate

cell death, division, and movement, but are not able to represent mechanical pro-

cesses. Death is simple to implement by removing the cell and leaving an empty

lattice site. Division can be realised by placing one progeny cell at the lattice site of

the parent, and a second in a neighbouring empty site. If no such site is available,

the parent cell may be able to shift cells along to make space for its progeny. Move-

ment can be incorporated by a simple swapping procedure. Additionally, cells may

attempt to move to empty lattice sites or push cells out the way.

The cellular Potts model is a more complex lattice-based model, whereby each

cell consists of multiple lattice sites [117]. Variation in cell area and shape is there-

fore possible, and some mechanical processes can be incorporated. Furthermore,

cell divisions can be implemented without the shoving process needed for the cel-

lular automaton, simply by assigning half the lattice sites of a parent cell to each

progeny cell. The cellular Potts model has been used to model a range of pro-

cesses such as morphogenesis [118, 119], angiogenesis [120] and tumour growth

[121, 122].

3.2.2 Lattice-free models

Lattice-free models are not restricted by a discrete lattice structure, but rather repre-

sent cells in continuous space. Here we outline the two main classes of lattice-free

models: cell-centre and vertex models.

As the name suggests, cell-centre models represent the tissue as a set of points

corresponding to cell centres, which move freely in space and exert forces on one

another. Different cell-centre models are characterised by the choice of force law

and the definition of cell size/shape and neighbourhood.
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Force laws range from spring-like forces governed by Hooke’s law [67], to

more complex nonlinear laws, which incorporate repulsion and adhesion forces

[123, 124]. There are two main methods for determining cell neighbourhood. Mod-

els of overlapping spheres define an interaction radius, such that all cell centres

inside the radius belong to that cell’s neighbourhood [125]. Alternatively, in the

VT model, the neighbourhood is defined by performing a VT on the set of cell cen-

tres. Recall from Section 3.1, that a VT is a partitioning of the plane into polygons.

Thus, the VT not only defines the neighbourhood structure, but also the shape of

each cell. The VT model has been used extensively to represent intestinal crypt

dynamics [67, 68], as well as to study tissue mechanics [124] and cell fate selection

[126]. Further details of the VT model are provided in Section 3.3.

An alternative class of lattice-free models are vertex models. These represent

the tissue by the positions of cell vertices, which form polygonal cells. Vertices

are subject to forces and move in space [127]. These forces consist area elastic-

ity, line tension, and contractility contributions [128]. Additional rules must be

implemented to mediate cell neighbour rearrangements. Vertex models have been

used extensively in studies of packing geometry and epithelial morphogenesis (see

[129, 130]).

In selecting a model for the purposes of this thesis, we had several competing

priorities. Evolutionary processes occur over large timescales and it is necessary to

run a large number of simulations to determine quantities such as fixation proba-

bilities (see Chapter 2). Therefore, computational speed is desirable. However, the

cellular automata, which is by far the fastest and simplest agent-based tissue model,

is not ideal for our purposes. In particular, cell division relies on moving cells along

a path to make space for the new cell. This process is reminiscent of the shift update

rule implemented in evolutionary graph theory (see Section 2.2.3), and can lead to

instantaneous topological effects at a considerable distance from the division event,

which has evolutionary consequences.

We, therefore, prefer to choose a model that is able to incorporate division

and death with only local topological effects. While the cellular Potts, overlapping
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spheres, and vertex models all satisfy this requirement, we choose to use the VT

model. This is because, as a cell-centre model, it very naturally provides the graph

structure needed for evolutionary modelling. Furthermore, it uses a very simple

force law, and, compared to overlapping spheres, has a more realistic and well-

defined concept of area and cell shape. However, we note that other choices of

model would also be acceptable, in particular the vertex model could provide a

good alternative.

3.3 Voronoi tessellation model

In this section, we outline the VT model [67, 68, 131] used throughout this thesis.

Parameter values used in Chapters 4 and 5 can be found in Table 4.1 and those used

in Chapter 6 in Table 6.1.

The VT model is a cell-centre model. Cells exert spring-like forces on one

another, with spring constant µ , such that

FS
i j(t) =−µ r̂i j(t)(|ri j(t)|− si j(t)) (3.1)

is the force exerted on cell i due to j. Here ri j = ri− r j, is the displacement vector

pointing from j to i and r̂i j is the corresponding unit vector, with ri indicating the

position of i. The natural separation between cells, si j(t) = sM, is constant and the

same for all neighbour pairs. The exception to this is for newborn sibling cells for

whom si j grows linearly, from ε to sM, over time period tM. This period corresponds

to the mitosis part of the cell cycle, i.e. the time it takes for a cell to divide. In some

cases, it will be set to zero.

Defining Ni(t) to be the set of cells neighbouring i, the total force acting on

cell i is given by

FS
i (t) = ∑

j∈Ni(t)
FS

i j . (3.2)

The cellular environment is highly viscous, with drag forces dominating over inertia

(low Reynolds number) [132–134]. It is therefore usual to ignore inertial forces,
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resulting in a first-order equation of motion for each cell i, given by

η
dri

dt
= FS

i (t) , (3.3)

where η is the drag coefficient. This is solved numerically using a forward Euler

method:

ri(t +∆t) = ri(t)+
∆t
η

FS
i , (3.4)

where ∆t is a sufficiently small time step for numerical stability.

The cell shapes correspond to Voronoi regions, which are obtained by perform-

ing a VT using the cell centres as seeds. Each cell, therefore, has a well-defined

shape and area within the VT model. The dual graph of the VT is known as the

Delaunay triangulation. This comprises vertices corresponding to each cell, and

edges, which connect neighbouring cells. Thus, performing the VT also defines the

neighbour connections which are used to determine the forces. Neighbours will also

be important for determining cell fitnesses, when we introduce evolutionary game

theory into the model in Chapter 4. To account for topological changes which may

occur, it is necessary to recompute the VT after every timestep during which cells

may have moved, divided or died.

It is simple to implement division and death events within the VT model. When

death occurs, the cell centre is removed from the tissue and a VT is performed. For

a division, the cell centre is removed and two new centres are placed, separated by

a small distance ε , across a uniformly random axis. These events result in local

topological changes, rather than long range effects.

3.4 Division and death in homeostatic epithelia

There is significant freedom in choosing how and when divisions and deaths occur

within the VT model. Our main constraint is that homeostasis must be maintained,

else there is a risk the population will die out or grow excessively. Within evolution-

ary graph theory, as outlined in Chapter 2, it is guaranteed that the population size

is constant, as birth and death events occur simultaneously via the Moran process.
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However, it also requires that the population structure is static, and birth and death

are spatially coupled by a local update rule.

We take advantage of the greater flexibility within the VT model to define a

decoupled update rule, whereby birth and death occur simultaneously, but are spa-

tially independent. This is an example of a global update rule (see Section 2.2.3.2).

The population size therefore remains constant, however the population structure

is dynamic. In contrast to the discrete time Moran process commonly used in evo-

lutionary graph theory, a continuous time process fits more naturally with the VT

model. As our focus is on fixation probabilities, rather than fixation times, we can

compare results between the two models.

The decoupled update rule models epithelial dynamics under the assumption

that birth and death are spatially independent of one another. This allows us, in

Chapters 4 and 5, to examine the opposite extreme to the local update rules used in

evolutionary graph theory, where birth and death are tightly coupled, and compare

the two.

In a real epithelium, the spatial coupling of birth and death will be connected

to its mechanisms for maintaining homeostasis. These mechanisms are still be-

ing understood experimentally; however, there is a growing body of evidence that

both density-dependent proliferation [108, 135] and density-dependent cell extru-

sion could play an important role [136, 137].

Density-dependent control of division or death is likely to result in some level

of spatial coupling between the two processes, therefore the specifics of these mech-

anisms could play an important role in the evolutionary dynamics of the tissue.

We, therefore, also consider a model where homeostasis is maintained by density-

dependent proliferation, i.e. contact inhibition. We choose to focus on density-

dependence of proliferation, because there is evidence that it plays the more impor-

tant role in homeostatic tissues [110], while density-dependence of death is more

important in developing tissues [111, 136]. The VT model with contact inhibition,

which we introduce in Chapter 6, allows for fluctuations of population size around

an equilibrium. It provides an intermediate and more realistic model of spatial cou-
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pling in between the local and decoupled update rules.

3.5 Discussion
In this chapter, we have outlined some of the key properties of epithelia that are

likely to affect their evolutionary dynamics, in particular their structure and update

dynamics. We have considered how an epithelium may be modelled within evolu-

tionary graph theory, by representing the population as a hexagonal lattice or VT,

as well as the limitations of this approach. Namely, that it is necessary to enforce a

local update rule to maintain the fixed graph structure.

To remove this limitation, we have considered how epithelial dynamics can be

represented explicitly with agent-based tissue models. We have outlined a number

of lattice-based and lattice-free models commonly used in the literature, and cho-

sen to focus on the VT model. This cell-centred model is simple to integrate with

evolutionary models, and crucially, allows divisions and deaths to occur with only

local rearrangements of the population structure.

Using the VT model, we have substantial flexibility to explore how the up-

date dynamics affect evolutionary outcomes. Initially, we will focus on the case

where division and death are spatially decoupled, considering how this affects the

evolutionary dynamics of pairwise social dilemma games and multiplayer public

goods games in Chapters 4 and 5, respectively. We will then consider how density-

dependent proliferation, which maintains homeostatic population size, causes spa-

tial coupling of division and death that is intermediate between the decoupled up-

date rule and death-birth update rule. We will explore in Chapter 6 how this affects

evolutionary outcomes for pairwise games.



Chapter 4

Pairwise games between epithelial

cells

This chapter is based on the paper: Jessie Renton and Karen M. Page. Evolution of

cooperation in an epithelium. Journal of the Royal Society Interface, 16:20180918,

2019 [138].

4.1 Introduction
In this chapter, we begin our analysis of the impact of population structure and

dynamics on cooperative success in an epithelium. We consider the case where

birth and death are spatially decoupled by incorporating evolutionary dynamics into

the VT model. We consider pairwise social dilemma games, which we introduced

in Section 2.2, primarily focusing on the additive prisoner’s dilemma (APD). We

choose this game as a starting point, as it can be described by a single parameter,

and is a particularly strong form of social dilemma. In Chapter 5 we extend the

analysis to multiplayer public goods games.

This chapter is set out as follows. In Section 4.2, we outline the model, which

integrates evolutionary game theory with the VT model, before deriving approx-

imate analytic results for the cooperator fixation probabilities. These are verified

by simulation results. Section 4.3 then considers results from evolutionary graph

theory and how these compare with the VT model. We find that cooperation is

significantly promoted under the VT model and postulate that this is due to the de-
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coupling of birth and death. To verify this we implement a death-birth update rule

in the VT model. We also introduce a migration analogue into evolutionary graph

theory simulations to consider whether there could be an effect due to cell rear-

rangement in the VT model. Our results confirm that the decoupling of birth and

death promotes cooperation in the VT model, and migration may be having a minor

deleterious effect. In Section 4.4 we extend our results to general pairwise social

dilemma games.

4.2 Evolutionary games in the Voronoi tessellation

model

4.2.1 The model

The framework used here integrates evolutionary game theory with the VT model.

These are described extensively in Chapters 2 and 3 respectively. Here we outline

the integrated model for pairwise games.

Recall that the VT model represents a two-dimensional tissue, such as an ep-

ithelium, as a set of points corresponding to the cell centres. This model is described

in Section 3.3 and we use the parameters summarised in Table 4.1 throughout this

chapter.

Table 4.1: Parameters for the Voronoi tessellation model used in Chapters 4 and 5. Space is
measured in units of cell diameter (CD). Explicit units are not given for µ and η ,
as the cell dynamics depend only on their ratio µ/η , which has units h−1. Note
that µ has dimensions [mass]/[time]2 and η has dimensions [mass]/[time].

Symbol Description Value

Z Population size 100
µ Spring constant 50.0
η Drag coefficient 1.0
tM Growth time for new cells 1.0 hours
sM Natural separation of mature cells 1.0 CD
ε Initial separation of sibling cells 0.1 CD
∆t Time step 0.005 h
λ Division & death rate 12.0−1 h−1

The cells are labelled i ∈ {1, . . .Z}, for a population size Z. Cell shapes are
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defined by performing a VT on these points. Recall that the dual graph to the VT is

the DT, which defines the connectivity graph, G. This graph has adjacency matrix

Ai j(t) =

1, if i and j are neighbours at time t,

0, otherwise.
(4.1)

Cell fitnesses can therefore be determined from this adjacency matrix, in the

same way as they are in evolutionary graph theory (see Section 2.2.3). The main

difference is that the graph is no longer static, thus the adjacency matrix is time

dependent. For the APD, cooperators provide a benefit b > c to their neighbours at

a cost c > 0. Thus, the payoff to cell i is

πi(s) =−csi +b ∑
j∈G

Ai js j

ki
, (4.2)

where ki = ∑ j∈G Ai j is the degree of vertex i (i.e. number of neighbours). Fitness is

then

Fi(s) = 1+δπi(s) , (4.3)

where δ ≥ 0 is the selection strength parameter and the constant 1 takes into account

other contributions to fitness. As rescalings of the payoffs can be absorbed by δ ,

the APD can be defined by the single parameter, b/c.

The population evolves according to a Moran process, whereby division and

death events occur simultaneously. However, in contrast to evolutionary graph the-

ory, we implement the process in continuous rather than discrete time. We note

that a translation to continuous time in evolutionary graph theory models does not

affect fixation probabilities [14], and therefore the results are directly comparable

between discrete and continuous time.

In the continuous time Moran process update events occur at exponentially

distributed times with per-cell rate λ . When an update event occurs a parent cell

is chosen at random from the population with probability proportional to fitness.

This cell divides creating two offspring cells, which are exact clones of the parent.
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Figure 4.1: Spatially decoupled update rule in the Voronoi tessellation model. When an
update event occurs a parent cell is chosen to reproduce with probability pro-
portional to fitness (blue). A second cell is chosen to die uniformly at random
(red). The parent cell divides across a random axis, and the dead cell is removed
from the tissue.

Simultaneously, a cell is chosen to die and removed from the population. If the

same cell is chosen to divide and to die, it produces a single offspring cell. We call

this a decoupled update rule, as there is no spatial dependence between birth and

death events (see Figure 4.1). It is an example of a global update rule, as described

in Section 2.2.3.2.

To calculate fixation probabilities for a single mutant cooperator invading a

defector population in the VT model, we run simulations as follows. We begin

with defector cells placed on a regular hexagonal lattice with periodic boundary

conditions and the simulation algorithm proceeds until the system has relaxed into

a dynamic equilibrium. We then choose a random cell to become a cooperator and

continue the simulation until only cooperators or defectors remain. The simulation

algorithm consists of the following steps:

(i) DT is performed to determine the cell neighbours,

(ii) forces are calculated and the cells moved accordingly,

(iii) an update event occurs with probability Zλ∆t.

Time snapshots for an example simulation are shown in Figure 4.2. In this

example, the simulation was initiated with a single neutral mutant (i.e. δ = 0) and

run to fixation.
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1 days 3 days 6 days 8 days

Figure 4.2: Time snapshots for a simulation of mutant invasion in the Voronoi tessellation
model with decoupled update rule. The simulation is initialised with a single
neutral mutant (grey) in a population of Z = 100 cells and run until fixation.
Selection is neutral (δ = 0), so all cells have equal fitness. Parameters for the
Voronoi tessellation model are given in Table 4.1.

4.2.2 Approximating the fixation probabilities

Due to the complexities of the VT model it is not possible to derive exact analytical

expressions for the fixation probabilities. Instead we look for approximate solutions

by considering the expected fitness for different cell types in populations with a

given number of cooperators [139]. Although the graph is dynamic and dependent

on the spatial distribution of points, it is also planar and mechanically constrained

by the intercellular forces. Furthermore, if we begin with a single mutated cell,

its progeny are likely to remain in a cluster as the clone grows. Thus, we assume

that variation in fitnesses for cells of each type will be small, for a given number of

cooperators in the population, and that the average over a large number of states is

a reasonable approximation.

Let Sn = (sn,G) denote a state with n cooperators, where sn is the vector of

cell types and G is the graph. Then T+/−(Sn) is the probability that, when an event

occurs, the number of cooperators is increased/decreased by one, i.e

T+(Sn) =
(

1− n
Z

)
∑i∈G siFi

∑i∈G Fi
(4.4)

T−(Sn) =
n
Z

(
1− ∑i∈G siFi

∑i∈G Fi

)
. (4.5)

We can then define the average transition probabilities for a state with n cooperators

to be T±n = 〈T±(Sn)〉 where the average is taken over a large ensemble of possible
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states. Substituting in for the fitnesses (4.3) and taking the weak selection limit

δ � 1 we obtain

T+
n =

n
Z

(
Z−n

Z

)
(1+δ 〈πC−π〉0)+O(δ 2) (4.6)

T−n =
n
Z

(
Z−n

Z

)(
1− n

Z−n
δ 〈πC−π〉0

)
+O(δ 2) , (4.7)

where 〈.〉0 denotes an average over a large ensemble of possible states for the neutral

process δ = 0, and

πC =
1
n ∑

i∈G
siπi π =

1
Z ∑

i∈G
πi . (4.8)

These are the population mean cooperator fitness and population mean fitness, re-

spectively. From (4.2) and (4.8) we obtain

〈πC−π〉0 =−c
(

1− n
Z

)
+b
(

Λ
CC
n −

n
Z

)
, (4.9)

where

Λ
CC
n =

1
n

〈
∑

i, j∈G

sis jAi j

ki

〉
0

(4.10)

is the expected proportion of cooperator neighbours for a cooperator in a population

with n cooperators. This can be calculated computationally by running simulations

for a neutral process (δ = 0) and tracking clones (groups of cells with common

ancestry). At each time interval, we calculate the contribution to ΛCC
n for all clones

in the system, treating each lineage as a group of n cooperators in a population of

defectors. Figure 4.3 plots ΛCC
n for Z = 100.

We use the equation for cooperator fixation probability derived in [76] (see

Section 2.2.2) for a well-mixed population:

ρC =

[
1+

Z−1

∑
m=1

m

∏
n=1

γn

]−1

, (4.11)

where γn = T−n /T+
n . For the well-mixed population, the transition probabilities, and



4.2. Evolutionary games in the Voronoi tessellation model 67

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of cooperators, n/Z

0.0

0.2

0.4

0.6

0.8

1.0

CC n

Figure 4.3: Expected proportion of cooperator neighbours for a cooperator ΛCC
n . This is

calculated using Equation (4.10) by running simulations of the Voronoi tessel-
lation model with Z = 100 and neutral selection δ = 0. In each simulation we
track clones, which have a common ancestor, and look at snapshots of the sim-
ulated tissue in time. Each snapshot gives us a potential ‘state’ from which to
find the population mean proportion of cooperator neighbours for a cooperator,
for different clone sizes. ΛCC

n is then calculated by taking the mean over at least
5000 values. Error bars show standard deviation.

thus γn, are uniquely defined for each value of n. For the VT model, we substitute

in the mean transition probabilities given by Equations (4.6) and (4.7), to obtain

ρC ≈
1
Z
+

δ

Z

{
−c(Z−1)

2
+b

Z−1

∑
m=1

m

∑
n=1

(
ΛCC

n −n/Z
Z−n

)}
+O(δ 2) (4.12)

for the cooperator fixation probability in the weak selection limit. The critical

benefit-to-cost ratio is then obtained by setting ρC = 1/Z, giving

(
b
c

)∗
≈ Z−1

2

[
Z−1

∑
m=1

m

∑
n=1

(
ΛCC

n −n/Z
Z−n

)]−1

. (4.13)

Figure 4.4 compares Equation (4.12) with simulation results for the VT model,

where we have set Z = 100, δ = 0.025 and c = 1. The fixation probability for

each value of b/c is obtained by running 104 simulations to fixation, starting with
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a single mutant cooperator. Figure 4.4 shows there is a reasonable fit between our

approximation of the fixation probabilities with the simulation data in the region

2.0 < b/c < 3.5. These values are close to the critical benefit-to-cost ratio and

therefore represent the region in which we would expect the weak selection limit to

hold, thus this equation for the fixation probabilities is a reasonable approximation.
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Figure 4.4: Fixation probabilities for the additive prisoner’s dilemma in the Voronoi tes-
sellation model with decoupled updating are approximated by Equation (4.12)
and plotted here (solid line) for δ = 0.025, c = 1 and Z = 100. Comparison
with simulation results (points) shows that the approximation is good near the
critical benefit-to-cost ratio (i.e. where ρC = ρ0 = 1/Z, dotted line), but breaks
down outside the region 2 < b < 3.5. This is consistent with the fact that the
equation is derived in the weak selection limit, and suggests that it can be used
to calculate the critical ratio. Individual data points are calculated from 104

simulations, each of which starts with a single cooperator and is run to fixation.

The critical benefit-to-cost ratios, calculated from simulations and Equa-

tion (4.13), are given in Table 4.2. For both we get a value of (b/c)∗ = 2.8, correct

to one decimal place. In the next section we will compare this with results from

evolutionary graph theory.
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Theory Simulation

DT (death-birth) 6.69 6.74
HL (death-birth) 6.68 6.67
VT model (decoupled update) 2.78 2.83
VT model (death-birth) - 7.26

Table 4.2: Summary of critical benefit-to-cost ratios (b/c)∗ for the additive prisoner’s
dilemma: death-birth update on a fixed Delaunay triangulation graph (DT) and
a hexagonal lattice (HL); Voronoi tessellation (VT) model with decoupled and
death-birth update rules. Simulation results are given in all cases, and theoretical
results are given where available.

4.3 Comparing with evolutionary graph theory
Within the framework of evolutionary graph theory, population structure is repre-

sented by a static graph. Using the theory outlined in Section 2.2.3 it is possible to

calculate fixation probabilities for any graph using Equation (2.37) [14]. The coa-

lescence times are found computationally, by solving Equations (2.34) and (2.35).

We represent epithelial structures using two graph types. Epithelial cells have

on average six neighbours, therefore the hexagonal lattice (HL) is a natural choice.

Of course, epithelia exhibit some variation in neighbour number, thus we also con-

sider a more realistic graph structure derived from a VT [104]. This is done by

taking snapshots of the population structure from the VT model. We label these DT

as they correspond to the Delaunay triangulation (see Section 3.3).

For the birth-death update rule, cooperation is never favoured by selection

for the APD game [17, 20, 56]. The critical benefit-to-cost ratio is given by

(b/c)∗ = ∞. This is equivalent to the well-mixed population result. Thus, it is

clear that cooperation does much worse on a fixed graph with birth-death updating,

than it does in the VT model, as the latter has a finite critical benefit-to-cost ratio.

Figure 4.5 plots fixation probabilities for the death-birth update rule on both

HL and DT graphs, with a population size of Z = 100 and periodic boundary con-

ditions. Simulation results are determined by running 105 simulations to fixation,

starting with a single mutant cooperator, and calculating the fixation probability for

each benefit-to-cost ratio. Again we set δ = 0.025 and c = 1. Theoretical results are

calculated using Equation (2.37). Figure 4.5 shows a good fit between simulation
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and theory in the range 4 < b/c < 12.

It is clear from Figure 4.5 that there is negligible difference between the HL

and DT graph results. We show results for a single instance of a DT graph, however

we have calculated fixation probabilities for an additional five DT graphs using

Equation (2.37), and find the results are indistinguishable. Critical benefit-to-cost

ratios from both theory and simulation are given in Table 4.2 for the HL and DT

graphs. In both cases we obtain (b/c)∗ = 6.7, correct to one decimal place.

The HL therefore seems to be a reasonable approximation to the structure.

Using the more realistic DT, with neighbour number heterogeneity, does not signif-

icantly alter fixation probabilities or the critical benefit-to-cost ratio, at least in the

weak selection limit we are using. We note, however, that these results are for an

average payoff. Using an accumulative payoff, for which payoffs are summed over

interactions, can amplify the differences due to heterogeneity [79].

Figure 4.6 plots fixation probabilities for the HL with death-birth updating

alongside the VT model results for decoupled birth and death. It is clear that fixation

probabilities are significantly higher in the latter case. Furthermore, the critical

benefit-to-cost ratio for the VT model is less than half that for the HL with death-

birth update (see Table 4.2). Therefore, cooperation is more successful in the VT

model.

Thus far, we have considered only results for weak selection, i.e. δ → 0. How-

ever, in Appendix C we calculate fixation probabilities for non-small values of δ ,

by simulation. We show that the weak selection result, that cooperation is more

successful for the VT model with decoupled update rule, compared to the HL with

death-birth update rule, also holds for intermediate δ . However, for sufficiently

large δ this breaks down, as neither population is able to support the invasion of

cooperation, at least for the values of b/c we consider.

The question then arises as to what mechanism is causing this amplifying effect

in the VT model. There are two key differences between the evolutionary graph

theory models and the VT model. Firstly, the VT model uses a spatially decoupled

update rule, and secondly, it allows for some level of cell motion. Cells are able to
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Figure 4.5: Fixation probabilities for the additive prisoner’s dilemma game on fixed graphs,
with death-birth updating. We have set Z = 100, c = 1 and δ = 0.025. Solid
lines plot evolutionary graph theory results for the fixation probabilities on a
hexagonal lattice (HL; blue circles) and a Delaunay triangulation (DT; black
squares), obtained from Equation (2.37). The critical benefit-to cost ratio,
which occurs where fixation probability is equal to ρ0 = 1/Z (dotted line), is
(b/c)∗ ≈ 6.7 for the HL and DT.

Simulation points are also shown for both cases and fit well with the theory
when (b/c) > 4. As Equation (2.37) was derived in the weak selection limit
we only expect it to be accurate near the critical benefit-to-cost ratio. Individ-
ual data points are calculated from 105 simulations, each of which starts with a
single cooperator and is run to fixation.

move past one another, and thus there is some local rearrangement of neighbours.

We consider the effect of motion on the evolutionary success of cooperation

by introducing an analogue into the evolutionary graph theory model, whereby we

allow cells to swap sites with their neighbours [22]. At each time step, a swap occurs

with probability m and a cell is chosen uniformly at random to switch places with

one of its neighbours. This process is independent of cell fitness. The parameter m

quantifies the amount of motion. By setting m = 0, we regain the original model

without motion.

Figure 4.7 plots the fixation probability against benefit-to-cost ratio for a range

of m values, demonstrating that increased motion within this framework leads to a
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Figure 4.6: Fixation probabilities for the additive prisoner’s dilemma game in the Voronoi
tessellation (VT) model with Z = 100, c = 1 and δ = 0.025. Points show sim-
ulation results for a decoupled update rule (black, circles) and a death-birth
update rule (red, squares). Each data point is obtained from 104 simulations.
For the decoupled update rule the approximate fixation probabilities given by
Equation (4.12) are plotted (black, solid line) and for the death-birth update we
plot a best fit line (red, dashed line). Fixation probabilities, given by Equa-
tion (2.37), for a fixed hexagonal lattice (HL) with death-birth update (blue,
solid line) are also shown for comparison.

The dotted line shows the fixation probability for a neutral mutant. It is clear
that cooperation is significantly favoured in the VT model with decoupled up-
date rule when compared to the fixed HL with death-birth update rule, as the
critical benefit-to-cost ratio is more than halved for the former. However when
a death-birth update is introduced on the VT model this effect is suppressed
and the critical benefit-to-cost ratio is very close to the fixed HL case.

decrease in the evolutionary success of cooperation. An intuitive explanation for

this result is that motion can break up clusters and lead to more mixing of defectors

and cooperators. Cooperators are most successful when they are able to cluster,

whereas defectors benefit from mixing, therefore motion is detrimental to coopera-

tive success. It therefore seems unlikely that the ability of cells to move past each

other in the VT model is the reason for increased cooperative success.

Alternatively, we postulate that the spatial decoupling of birth and death pro-

motes cooperation. To verify this, we consider the VT model with a death-birth
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Figure 4.7: Fixation probabilities for the additive prisoner’s dilemma with migration on a
hexagonal lattice with death-birth update rule. These are obtained through sim-
ulation with Z = 100, c = 1 and δ = 0.025. The parameter m is the probability
that a migration event will occur in each timestep. If such an event occurs two
neighbouring cells are randomly selected to swap places. Increasing m leads
to decreased cooperative success. The case where m = 0 corresponds to the
original evolutionary graph theory model we have used, with no migration.

update rule. This is implemented by following the simulation algorithm defined in

Section 4.2.1, however birth and death are no longer spatially independent. When

an update event occurs, a cell is chosen for death uniformly at random. Fitnesses

are then calculated for the neighbouring cells, and one of these is chosen to divide,

with probability proportional to fitness. This process is shown schematically in

Figure 4.8.

Fixation probabilities for the VT model with death-birth update rule are shown

in Figure 4.6. These are calculated for each value of b/c from 104 simulations. The

figure shows that cooperation is less successful for the death-birth update rule, com-

pared to the decoupled update rule, when using the VT model. In fact, cooperation

is less successful in the VT model than for the static HL graph, when both use a

death-birth update rule. This is evidenced by the higher critical benefit-to-cost ratio

for the former, as can be seen in Table 4.2.

We therefore conclude that the spatial decoupling of birth and death leads to
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Figure 4.8: Death-birth update rule in the Voronoi tessellation model. When an update
event occurs a cell is chosen to die uniformly at random from the population
(red). From the neighbourhood of the dead cell (yellow) a parent cell (blue)
is then chosen with probability proportional to fitness. The parent cell divides
and the dead cell is removed from the tissue.

the promotion of cooperation in the VT model. This is consistent with results for

other global update rules, such as shift updating [62, 63]. The fact that migration

appears to suppress the success of cooperation could also provide an explanation

as to why, if a death-birth update rule is used in both cases, cooperation is more

successful for the static HL graph than the VT model.

We can understand intuitively why decoupling birth and death promotes coop-

eration by considering which cells compete for proliferation. In structured popula-

tions, the individual cell types tend to remain clustered. In general, cooperator cells

have the highest fitness when they are surrounded by other cooperators, i.e. they

are in the bulk of the cooperator cluster. By contrast, defectors have highest fitness

when they are near cooperators, i.e. on the boundary of the defector and cooperator

clusters.

When birth and death are spatially decoupled, all cells compete to reproduce,

and any update event can lead to a change in the number of cooperators. Therefore,

the cooperator population is able to benefit from the high fitness contribution from

bulk cooperators. By contrast, for the death-birth update, the cooperator population

only changes when a boundary cell dies. The only cells which can replace it are

nearest neighbours, therefore it is boundary cooperators competing with boundary

defectors, which is not optimal for cooperators.

We can verify that invading cooperators in the VT model are clustered visu-

ally, e.g. by considering Figure 4.2. However, we can also verify clustering more
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formally by plotting the join count statistics [140]. The join counts for cooperator-

cooperator (CC) or cooperator-defector (CD) pairs are given by

CC =
1
2 ∑

i, j∈G
sis jAi j and CD =

1
2 ∑ i, j ∈ G(si− s j)

2Ai j , (4.14)

respectively, for a population represented by graph G. Essentially these count the

number of neighbouring cooperator-cooperator and cooperator-defector pairs. The

former (CC) is a measure of positive spatial autocorrelation, while the latter (CD),

is a measure of negative spatial autocorrelation.

In Figure 4.9 we plot the observed join counts for invading cooperators, aver-

aged over 50 simulations. We also plot join counts calculated for the same simu-

lations, where we have randomised the positions of cooperators and defectors. It
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Figure 4.9: Join count statistics for the Voronoi tessellation model plotted against the num-
ber of cooperators n. The join count gives the number of cooperator-cooperator
(CC) or cooperator-defector (CD) pairs. We compare the observed join count
for invading cooperators (black) with random permutations of cooperators
(red). It is clear that the join count for CC pairs is higher, and the join count for
CD pairs is lower, for invading cooperators, than we would expect if coopera-
tors were randomly distributed. This is true for all values of n. Thus, we can
conclude that there is positive spatial autocorrelation, i.e. invading cooperators
in the VT model are clustered.
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is clear from Figure 4.9 that the join count for CC pairs is higher for the observed

data, than the randomised data, while CD is lower for the observed data compared

to the randomised data. As expected, this implies positive spatial autocorrelation,

i.e. that cooperators are clustered.

4.4 Social dilemma games

Thus far, this chapter has focused on the APD as a model of cooperation, calculating

the critical benefit-to-cost ratios above which cooperation is favoured. The APD is

a natural choice for initial investigation, as it presents the strongest form of social

dilemma, and can be defined by a single parameter. However, we saw in Section 2.2

that there is a spectrum of social dilemma games. Furthermore, it is trivial to calcu-

late the structure coefficients for a given population structure and update rule, from

the critical benefit-to-cost ratios, using Equation (2.40) [10]. These can be used to

determine conditions for cooperation to be favoured using the σ -rule, defined by

Equation (2.39).

These conditions are plotted in Figure 4.10 for a general pairwise social

dilemma game defined by Equation (2.1). For each population type and update

rule σ is calculated according to Equation (2.40) using the values of (b/c)∗ defined

in Table 4.2. The well-mixed population has σ = 1. We then plot the critical line,

σR+S = T +σP, for each case. This divides the parameter space into one region

where cooperation is favoured, and one where defection is favoured.

Introducing population structure shifts the critical line so that cooperation is

favoured for a greater region of parameter space compared to the well-mixed pop-

ulation. This is true for the death-birth update, both when used with the static HL

and with the VT model. The largest effect is observed when the VT model is used

with decoupled updating. In this case, cooperation is favoured for all snowdrift,

stag-hunt and harmony games, and the majority of prisoner’s dilemma games. The

birth-death update on a static HL has structure coefficient σ = 1 [10, 17], therefore

the critical line is equivalent to that of the well-mixed population.
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Figure 4.10: Conditions for cooperation to be favoured for pairwise social dilemma games
defined by Equation (2.1) with R = 1 and P = 0. Each line divides the T -
S plane into regions where cooperation is favoured (σR+ S > T +σP) and
defection is favoured (σR+S < T +σP). The structure coefficient σ depends
on the population structure and the update rule.

Results are shown for a well-mixed population (WM), VT model with death-
birth update (VTdb), hexagonal lattice with death-birth update (HLdb) and
VT model with decoupled update (VTdecoupled). The latter case gives the
largest region of parameter space for which cooperation is favoured, including
the entirety of the harmony, snowdrift and stag-hunt games, and majority of
the prisoner’s dilemma.

4.5 Discussion

It is well-established that population structure, such as that exhibited by epithelia,

can lead to better evolutionary outcomes for cooperators [6, 10, 17]. This can be un-

derstood intuitively, as population structure allows cooperators to cluster together.

The cooperator population therefore retains a greater proportion of the benefit it

produces, while defectors, which are less likely to neighbour cooperators, lose out.

The link between population structure and the evolutionary success of cooper-
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ation, however, depends on the update dynamics. This is because the exact mech-

anism for population updating affects which cells compete. Within evolutionary

graph theory, it is usually necessary to use a local update rule, which spatially cou-

ples birth and death. In this chapter we have compared graph theory results to

evolutionary dynamics in the VT model, which provides a more realistic represen-

tation of an epithelium and has allowed us to introduce a global update rule which

decouples birth and death.

Within evolutionary graph theory we considered two update rules: the birth-

death and death-birth. For the former, cooperation is never beneficial for the APD

and the critical benefit-to-cost ratio is infinite. This result is equivalent to the well-

mixed population. For the death-birth update rule, cooperation is beneficial when

b/c exceeds the critical benefit-to-cost ratio. This was calculated to be (b/c)∗ = 6.7

for both HL and DT graphs using known results [14].

The fact that the results are so similar for the HL and DT suggests that there

is a negligible affect on cooperative success due to the heterogeneity of neighbour

number, which is exhibited by DT. However, the choice of an averaged payoff could

be suppressing the effect of heterogeneity compared to an accumulated payoff, as it

does for scale-free networks [9, 79]. It would be advisable, therefore, to compare

fixation probabilities of the two structures for an accumulated payoff. We do not

expect a substantial difference, however. Vertex degrees in scale-free networks fol-

low a polynomial distribution and therefore exhibit large variance, whereas degree

variance in DTs is comparatively small.

For the VT model with decoupled update rule, we derived an approximate

equation for the cooperator fixation probability in the weak selection limit, which

is verified by simulation. From this we calculated the critical benefit-to-cost ratio,

above which cooperation is beneficial, which is given by (b/c)∗ ≈ 2.8. This is

significantly lower than the evolutionary graph theory results for both death-birth

and birth-death updating.

Furthermore, when the VT model was run with a death-birth update, cooper-

ation did worse than in the evolutionary graph theory model of a static HL. This
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led us to conclude that the decoupling of birth and death is the main mechanism

for increased success of cooperation in the VT model. This is consistent with pre-

vious work looking at a shift update rule within evolutionary graph theory, which

found that decoupling birth and death led to increased cooperative success in one-

dimension [62], and in two dimensions if a repulsive force was introduced between

cells of different types [63].

The fact that the critical benefit-to-cost ratio is slightly higher in the VT model

with death-birth update, compared to evolutionary graph theory results, could be

due to the fact that cells can move and change neighbours in the former. Indeed

we found that introducing migration into an evolutionary graph theory model sup-

pressed cooperation, and it is therefore possible that the motion of cells is acting to

reduce cooperative success in the VT model.

The majority of this chapter focused on the APD game; however, we also ex-

tended our results to consider general pairwise social dilemma games. Using the

σ -rule [10] we calculated conditions for cooperation to be favoured (ρC > ρD) for

pairwise social dilemma games. We found that for the VT model with decoupled

update, cooperation is favoured for all stag-hunt and snowdrift games, and for a

majority region of the prisoner’s dilemma parameter space. For the death-birth up-

date (within the VT model or a static HL) smaller regions of parameter space lead

to cooperation being favoured for the stag-hunt, snowdrift and prisoner’s dilemma

games. These get even smaller for the birth-death update, which is equivalent to the

well-mixed population.

Thus far, we have limited the analysis to pairwise games. However, it has been

argued that multiplayer public goods games are more realistic for cancer modelling,

and can lead to substantively different results. In the next chapter we extend our

modelling framework to incorporate multiplayer games, again comparing results

for well-mixed populations and evolutionary graph theory, with the VT model.



Chapter 5

Cooperative success in epithelial

public goods games

This chapter is based on the paper: Cooperative success in epithelial public goods

games. Journal of Theoretical Biology, 528:110838, 2021 [141].

5.1 Introduction
Applications of evolutionary game theory to cancer evolution have mainly focused

on pairwise games [26, 51, 142]. It is arguable, however, that multiplayer pub-

lic goods games (PGGs) better represent cellular interactions which occur within

groups [25]. For example, a cell producing a growth factor will provide a benefit to

other cells within its diffusion range.

The focus of this chapter, therefore, is to consider how epithelial structure and

dynamics affect cooperation when it is modelled by a PGG. We extend the analysis

of Chapter 4, which incorporated evolutionary dynamics into the VT model for

pairwise games. Once again, we spatially decouple birth and death, comparing with

the local update rules primarily used in evolutionary graph theory models.

Multiplayer PGGs were introduced in Chapter 2. The most common PGG, the

NPD, uses a linear benefit function [72, 90]. However, nonlinear benefit functions

may be more realistic [92], and can lead to much richer dynamics, even for well-

mixed populations. An example is the volunteer’s dilemma (VD), which defines the

benefit as a Heaviside step function [33, 93–95].
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A sigmoid benefit function has been proposed as an appropriate model for

growth factor production. Experiments on neuroendocrine pancreatic cancer cells

in vitro have found sigmoid dependence of proliferation rates on the concentration

of growth factor IGF-II [38]. Furthermore such a function is relatively general, with

both the NPD and VD arising as limiting cases [143].

Throughout this chapter we focus on a sigmoid benefit function, however the

results are applicable to any two-strategy multiplayer game, as described in Sec-

tion 2.3. Details of the evolutionary game theory framework for multiplayer games

can be found in that section.

The remainder of this chapter is set out as follows. In Section 5.2 we consider

conditions under which cooperation is favoured or beneficial for multiplayer PGGs.

In both cases, we derive approximate results for a global update rule with an ar-

bitrary population structure. Then in Section 5.3 we apply this theory to consider

conditions for cooperator success in an epithelium, using spatial statistics calcu-

lated through simulation of the VT model. Finally, in Section 5.4, we discuss the

implications of our work for the evolution of cooperative public goods in epithelia

and make some remarks on the different significance of beneficial and favourable

mutants.

5.2 Multiplayer games with global updating

In this section we derive results for the evolutionary dynamics of arbitrary mul-

tiplayer games with global updating. First we consider conditions under which

cooperation is favoured, and then conditions for cooperation to be beneficial. The

decoupled update we introduced for the VT model in Chapter 4 is an example of a

global update rule (see Section 2.2.3.2). Thus, we will be able, in Section 5.3, to

use these results to consider cooperative success for multiplayer PGGs in the VT

model.

We consider an arbitrary multiplayer game with two strategies, A and B, as

introduced in Section 2.3. Individuals interact in groups of size N = k+ 1, which

consist of the focal player and its k co-players. The focal player obtains a payoff
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a j,k or b j,k, depending on whether it is of type A or B. Here j is the number of A co-

players in the group. For a graph-structured population, the co-players are the direct

neighbours of an individual. The fitness of each individual is defined as 1+ δa j,k

or 1+δb j,k, where δ is the selection strength parameter.

The population evolves according to a Moran process [78]. We have outlined

a number of results from evolutionary graph theory in Section 2.3. Here we derive

results for global update rules, for which the probability of an individual reproduc-

ing is dependent only on its own fitness and total population fitness, but not on any

local effects.

5.2.1 Conditions for cooperation to be favoured

Recall from Section 2.3 that the σ -rule, defined by Equation (2.46), can be used to

determine when a strategy is favoured for any game, if the structure coefficients for

the population are known. These structure coefficients depend on the population

structure and update rule, but not the game.

In the following we derive a general expression for the structure coefficients

under a global update rule. This could apply to the well-mixed population, the cycle

graph with shift update rule or the VT model with decoupled update rule. Results

outlined in Section 2.3 assumed that games were played on a fixed graph or well-

mixed population, within groups of constant size, N. For well-mixed populations

we were free to choose N (although some results required N � Z, where Z is the

population size), while for regular graphs we set N = k+1, where k is the degree of

the graph. Here we relax this condition and allow for variable population structure

and group size.

We make the assumption that there is a fixed distribution, f A/B
j (n,k), defining

the probability that an A/B-player interacts with j co-players of type A, given it

has k co-players in total and there are n players of type A in the population. If the

population were defined on a graph, this would be the probability of an A/B-player

having j A-type neighbours, given k total neighbours. This assumption is true for

a well-mixed population or cycle graph, but not necessarily for other population

structures where f A/B
j (n,k) depends on the specific configuration of players.
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The frequency of individuals with k neighbours is given by gk. We make the

further assumptions that this distribution is fixed, and does not depend on type. See

Appendix E for a discussion of the validity of this assumption for the VT model.

In general, for a global update rule, we can define the transition probabilities

T+
n =

Z−n
Z

nFA

nFA +(Z−n)FB
T−n =

n
Z

(Z−n)FB

nFA +(Z−n)FB
, (5.1)

where

FA = 1+δ

Z−1

∑
k=1

k

∑
j=0

f A
j (n,k)gka j,k (5.2)

FB = 1+δ

Z−1

∑
k=1

k

∑
j=0

f B
j (n,k)gkb j,k (5.3)

are the population averaged fitnesses. The payoffs a j,k and b j,k depend explicitly on

the number of neighbours k.

Substituting Equations (5.1) to (5.3) into Equation (2.47), and taking the weak

selection limit we obtain

ρA

ρB
≈ 1+δ

Z−1

∑
n=1

Z−1

∑
k=1

k

∑
j=0

gk[ f A
j (n,k)a j,k− f B

j (n,k)b j,k]︸ ︷︷ ︸
Γ

. (5.4)

Thus ρA > ρB when Γ > 0. In the weak selection limit,

f A
j (n,k) = f B

k− j (Z−n,k) (5.5)

must hold by symmetry, and thus

Z−1

∑
n=1

f A
j (n,k) =

Z−1

∑
n=1

f B
k− j(n,k) . (5.6)
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Therefore we have

Γ =
Z−1

∑
k=1

k

∑
j=0

Z−1

∑
n=1

gk f A
j (n,k)(a j,k−bk− j,k) . (5.7)

The condition for A to be favoured over B is thus given by

Z−1

∑
k=1

k

∑
j=0

σ j,k(a j,k−bk− j,k)> 0 , (5.8)

where

σ j,k = gk

Z−1

∑
n=1

f A
j (n,k) (5.9)

are the structure coefficients. For a fixed group size, N = k + 1, this reduces to

Equation (2.46), with

σ j =
Z−1

∑
n=1

f A
j (n) , (5.10)

where we have dropped the explicit dependence on k.

Recall that this derivation is based on the assumption that f A
j (n,k) is fixed. In

cases where this is not true, we set it equal to the expectation of f A
j (n), taken over

a large ensemble of possible configurations under neutral selection, δ = 0. This

enables us to approximate the structure coefficients, using Equation (5.10), when

f A
j (n) is not fixed.

The well-mixed population is an example where f A
j (n) is fixed. It is defined

by a hypergeometric distribution:

f A
j (n) =

(
Z−1

k

)−1(n−1
j

)(
Z−n
k− j

)
. (5.11)

We can therefore find the structure coefficients [87] by substituting this expression

for f A
j (n) into Equation (5.10):

σ j =

(
Z−1

k

)−1 Z−1

∑
n=1

(
n−1

j

)(
Z−n
k− j

)
︸ ︷︷ ︸

S

. (5.12)
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It can be shown (see Appendix A in [87]) that

S =


( Z

k+1

)
if 0≤ j < k(Z−1

k+1

)
if j = k .

(5.13)

Thus the structure coefficients are given by

σ j =


Z

k+1 if 0≤ j < k

Z−k−1
k+1 if j = k .

(5.14)

These are equivalent to Equation (2.48) up to a constant factor. The cycle graph also

has a fixed distribution, f A
j (n), thus the structure coefficients for the shift update rule

can also be obtained exactly using Equation (5.10).

For a variable group size, the structure coefficients for the well-mixed popula-

tion are given by

σ j,k = gkσ j(k) = gk


Z

k+1 if 0≤ j < k

Z−k−1
k+1 if j = k,

(5.15)

where σ j(k) are defined in Equation (5.14).

Once the structure coefficients have been determined, we can use Equa-

tion (2.46) or Equation (5.8) to find the condition under which cooperation is

favoured. For a PGG, as defined by Equation (2.41), this is given by

b
c
>

Z−1

∑
Z−1
k=1 ∑

k
j=0 σ j,k

[
β

(
j+1
k+1

)
−β

(
k− j
k+1

)] . (5.16)

5.2.2 Conditions for cooperation to be beneficial

Thus far, we have considered conditions under which a mutant is favoured. How-

ever, we recall from Section 2.2.2, that an alternative measure of mutant success

can be obtained by considering the conditions under which it is beneficial. Here,
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we derive the condition for an A-mutant to be beneficial, i.e. ρA > ρ0.

As in the previous section, we make the assumption that the distributions gk

and f A/B
j (n,k) are fixed. Thus, the population averaged fitnesses of A and B players

are defined by Equations (5.2) and (5.3) and the transition probabilities by Equa-

tion (5.1). The fixation probability for a single A-mutant [77] is then given by

ρA =

[
1+

Z−1

∑
m=1

m

∏
n=1

T−n
T+

n

]−1

. (5.17)

Substituting in the transition probabilities and taking the weak selection limit δ � 1

we obtain

ρA =
1
Z
+

δ

Z2

Z−1

∑
k=1

k

∑
j=0

(
θ

A
j,ka j,k−θ

B
j,kb j,k

)
+O(δ 2) , (5.18)

where we have defined

θ
A
j,k = gk

Z−1

∑
m=1

m

∑
n=1

f A
j (n,k) (5.19)

θ
B
j,k = gk

Z−1

∑
m=1

m

∑
n=1

f B
j (n,k) = gk

Z−1

∑
m=1

m

∑
n=1

f A
k− j(Z−n,k) . (5.20)

The final equality is obtained by symmetry arguments in the weak selection limit.

The condition for A to be a beneficial mutation, ρA > 1/Z, is therefore given

by
Z−1

∑
k=1

k

∑
j=0

(
θ

A
j,ka j,k−θ

B
j,kb j,k

)
> 0 . (5.21)

If we consider a PGG as defined by Equation (2.41), then cooperation is beneficial

when
b
c
>

Z(Z−1)

2∑
Z−1
k=1 ∑

k
j=0

[
θ A

j,k β

(
j+1
k+1

)
−θ B

j,k β

(
j

k+1

)] . (5.22)

For a fixed group size N = k+1 these conditions simplify to

k

∑
j=0

(
θ

A
j a j−θ

B
j b j

)
> 0 (5.23)



5.2. Multiplayer games with global updating 87

and
b
c
>

Z(Z−1)

2∑
k
j=0

[
θ A

j β

(
j+1
k+1

)
−θ B

j β

(
j

k+1

)] , (5.24)

where

θ
A/B
j =

Z−1

∑
m=1

m

∑
n=1

f A/B
j (n,k) . (5.25)

5.2.3 Antisymmetry-of-invasion property

We saw in Section 2.2.2 that for pairwise games the conditions for a mutant to

be beneficial and favoured are equivalent, if the game satisfies a condition known

as the equal-gains-from-switching condition. Here, we show that for multiplayer

games the conditions for a mutant to be beneficial and favoured are equivalent if the

payoffs satisfy a property we call antisymmetry-of-invasion. We consider the case

where group size is fixed; however, the results can be generalised for variable group

size, given certain conditions.

The values θ A
j and θ B

j , defined by Equation (5.25), can be written as

θ
A
j =

Z−1

∑
n=1

(Z−n) f A
j (n)

θ
B
j =

Z−1

∑
n=1

n f A
k− j(n) .

(5.26)

Thus we have

θ
A
j +θ

B
k− j = Z

Z−1

∑
n=1

f A
j (n) = Zσ j , (5.27)

where the last equality is from the definition of σ j as stated by Equation (5.10). The

condition for A to be beneficial, given by Equation (5.23), thus becomes

k

∑
j=0

[
θ

A
j a j−

(
Zσ j−θ

A
j

)
bk− j

]
> 0 . (5.28)

This can be rewritten in the form

k

∑
j=0

(
θ

A
j −

Z
2

σ j

)(
a j +bk− j

)
+

Z
2

k

∑
j=0

σ j
(
a j−bk− j

)
> 0 . (5.29)
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If the payoffs satisfy

a j +bk− j = Q , (5.30)

where Q is a constant that is independent of j, then the first term in Equation (5.29)

vanishes. The condition for A to be beneficial, therefore, becomes

k

∑
j=0

σ j
(
a j−bk− j

)
> 0 , (5.31)

which is equivalent to the condition for A to be favoured, as defined by Equa-

tion (2.46). Thus the conditions for cooperation to be beneficial and favoured are

equivalent when Equation (5.30) holds, which we call the antisymmetry-of-invasion

property. If Q is independent of k, this result generalises to variable group size.

Note that if we substitute in the payoffs for a two-player matrix game, defined

by Equation (2.1), we regain the pairwise equal-gains-from-switching condition:

R+P= S+T =Q. In Appendix D we discuss the implications of the antisymmetry-

of-invasion property for invasion processes.

5.3 Public goods games in an epithelium

A number of studies have considered the evolutionary dynamics of sigmoid PGGs

in epithelia, representing the tissue either as a well-mixed population [37], or a fixed

graph structure with various local update rules [36, 40]. Here we use the framework

introduced in Chapter 4 to consider the evolutionary dynamics of PGGs in the VT

model with decoupled update rule. This is a global update rule, therefore we can

apply the results derived in Section 5.2.

We start by calculating spatial statistics for the VT model for neutral selec-

tion (δ = 0). We then use these to calculate the conditions for cooperation to be

favoured and beneficial, according to the theory developed in Section 5.2. We ver-

ify theoretical results by running simulations in various parameter regimes. We also

compute the gradient of selection to obtain a fuller picture of the dynamics. In all

cases we compare VT model results with the well-mixed population, and with re-

sults for regular graphs where they are available. Throughout this section, we use C
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and D to label the two strategies, rather than A and B, to highlight the fact that this

is a PGG played between cooperators and defectors.

5.3.1 Spatial statistics of the Voronoi tessellation model

We use the VT model with decoupled update rule as introduced in Chapters 3 and 4

with parameters defined in Table 4.1. Values for gk and f C
j (n,k) are obtained by

averaging over a large ensemble of possible states in the weak selection limit. We

make the assumption that variation around this mean can be neglected.

Figures 5.1 and 5.2 show the distributions gk and f C
j (n,k) for the VT model

under neutral selection, calculated by averaging over 500 simulations, each of which

starts with a single neutral mutant and is run to fixation. See Appendix E for further

discussion on neighbour distributions in the VT model and the validity of assuming

gk is independent of n and cell type.
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Number of neighbours, k
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Figure 5.1: Degree distribution for the Voronoi tessellation model. Error bars show stan-
dard deviation. Data is obtained from simulations using a decoupled update
rule with neutral selection (δ = 0) and population size Z = 100.

5.3.2 Favourable cooperation

The condition for cooperation to be favoured can be approximated by calculating

the structure coefficients using Equation (5.9). Figure 5.3 plots the VT structure

coefficients with those for a well-mixed population as defined by Equation (5.14).

Using the structure coefficients we can derive the condition for cooperation to

be favoured for an arbitrary PGG, as defined by Equation (2.41). We define the
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Figure 5.2: Frequency distributions f A
j (n,k) and f B

j (n,k) for Z = 100. These define the
probability that a cell of type A or B, respectively, has j neighbours of type A,
given k neighbours total and n cells of type A in the population. The lower panel
compares values of f B

j (n,k) calculated directly through simulation (dashed)
with values obtained from the simulated data for A cells defined by f B

j (n,k) =
f A
k− j(Z−n,k).

critical benefit-to-cost ratio (b/c)∗1, such that ρC > ρD when b/c > (b/c)∗1. Thus
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Figure 5.3: Comparing the structure coefficients σ j,k for the Voronoi tessellation model
with decoupled updating (VT) and for the well-mixed (WM) population. Both
have the same neighbour distribution seen in Figure 5.1.

from Equation (5.16) we can write

(
b
c

)∗
1
=

Z−1

∑
Z−1
k=1 ∑

k
j=0 σ j,k

[
β

(
j+1
k+1

)
−β

(
k− j
k+1

)] . (5.32)

For an NPD, defined by Equation (2.42), this becomes

(
b
c

)∗
1
=

Z−1

∑
Z−1
k=1 ∑

k
j=0 σ j,k

2 j+1−k
k+1

. (5.33)

Substituting in the structure coefficients we obtain (b/c)∗1 ≈ 2.22 for the VT

model with decoupled update rule and population size Z = 100. For a well-mixed

population with the same group size distribution we obtain (b/c)∗1 ≈ 7.35. As we

would expect there is a significant increase in the success of cooperative mutants

under the VT model. This is due to the high level of assortment in the VT model,

which means cooperators are likely to have more cooperator neighbours than defec-

tors.

On average, cells have six neighbours, so the mean group size is seven. We

can, therefore, compare the critical benefit-to-cost ratio for a well-mixed population

with variable group size, given above, to that of a well-mixed population with fixed

group size, N = 7. The latter is given by Equation (2.50) to be (b/c)∗1 = 7.45.

Clearly, incorporating variation in group size has a negligible impact on whether

cooperation is favoured in this case.
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We note that our model assumes that cells receive a payoff only from the game

in which they are the focal player. However, an alternative formulation of multi-

player games is to allow individuals to sum or average over the payoffs from all

games in which they participate, including those for which their direct neighbours

are the focal player. See for example [144]. This approach is more appropriate

for social, rather than cellular interactions [36]. However, it could result in non-

negligible impact from incorporating variation in group size, e.g. it has been found

that heterogeneity in graph structure can promote cooperation [145].
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Figure 5.4: Comparing the critical benefit-to-cost ratio (b/c)∗1 at which ρC > ρD, for a sig-
moid benefit function. For a well-mixed population with group size N = 7
(WM), (b/c)∗1 is highest, and independent of the inflection point h and steep-
ness s. For the Voronoi tessellation model with decoupled update rule (VT) and
fixed hexagonal lattice with death-birth update rule (HL), (b/c)∗1 varies with h
and s. For small s the benefit function approaches linearity and we regain the
results for an NPD. For all values of s and h, (b/c)∗1 is lowest for the VT model
with decoupled update rule.

We can also use Equation (5.32) to determine (b/c)∗1 for a sigmoid benefit

function. We use a normalised logistic function, defined by Equation (2.44), con-

sistent with previous studies [36, 38, 40]. This function has two parameters: the

steepness s ∈ (0,∞), and the inflection point h ∈ [0,1]. Figure 5.4 compares the

predicted values of (b/c)∗1 for the VT model, with those for a well-mixed (WM)
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population with group size 7, and hexagonal lattice (HL) with death-birth update

rule. These are obtained from Equation (5.32) by using the relevant structure coef-

ficients in each case (structure coefficients for death-birth update on regular graphs

are derived in [15]).

Values of (b/c)∗1 are symmetric across h = 0.5 for all three cases, and min-

imised at h = 0.5 for the hexagonal lattice and VT model. For the well-mixed

population, (b/c)∗1 does not vary with either s or h. Furthermore, it is clear for all

population types, that as the NPD is approached, i.e. s→ 0, (b/c)∗1 becomes in-

dependent of h. We will show in Section 5.3.3 that (b/c)∗1 is in fact minimised at

h = 0.5, so long as the structure coefficients increase with j for 0≤ j < k.

In all parameter regimes, (b/c)∗1 is highest for the well-mixed population. Both

the VT model with decoupled update and HL with death-birth update show similar

variation with s and h; however, (b/c)∗1 is always lower for the VT model. There-

fore, in terms of thresholds for favourability, we can determine that cooperation is

most successful in the VT model with decoupled update, followed by the HL with

death-birth update. Cooperation does least well in the well-mixed population. This

is consistent with our results for pairwise games in Chapter 4, suggesting that both

local interactions and global updating promote cooperation.

Figure 5.5 (right panel) shows the variation of (b/c)∗1 with h and s for the VT

model. As we have discussed, these results are based on the approximation that

f C
j (n,k) and gk are fixed. To verify the accuracy of this approximation, we compare

Equation (5.32) with simulation results in Figure 5.6. Simulated values of (b/c)∗1

were obtained for each parameter set (s,h) as follows. We calculated ρC (ρD) for

various b/c values, by running 104 simulations of the VT model to fixation, starting

with a single C (D) mutant and population size Z = 100. In all simulations, we use

small selection strength, δ = 0.025, and set c = 1. Thus, (b/c)∗1 is determined by

the point at which ρC = ρD.

There is a decent fit between simulation and theory. It is possible this could be

improved by running larger numbers of simulations, however the model is compu-

tationally expensive. In any case, the qualitative behaviour is consistent. For a fixed
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Figure 5.5: Critical benefit-to-cost ratios for the Voronoi tessellation model with decoupled
update rule. Cooperation is beneficial when b/c > (b/c)∗0 (left) and favoured
when b/c > (b/c)∗1 (right). These are given by Equations (5.32) and (5.39),
respectively, for a public goods game with sigmoid benefit function, defined by
Equation (2.44). Parameters s and h correspond to the steepness and inflection
point of the benefit function, respectively.
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Figure 5.6: Critical benefit-to-cost ratio (b/c)∗1 above which ρC > ρD, for a sigmoid benefit
function. The solid line plots Equation (5.32). Circles correspond to simulation
data, with each point calculated from 104 indiviudal simulations. For both
s = 5 and s = 10 there is symmetry across h = 0.5, at which point (b/c)∗1 is
minimised. We have set Z = 100, c = 1 and δ = 0.025.

steepness s, (b/c)∗1 is minimised at h = 0.5 and (near) symmetric across this value.

The values of (b/c)∗1 are highest when h = 0 and h = 1, where the benefit function

provides diminishing returns or increasing returns respectively.
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5.3.3 Minimising the critical benefit-to-cost ratio at which coop-

eration is favoured

In Section 5.3.2 we considered conditions for cooperation to be favoured for a sig-

moid benefit function β (x;h), as defined by Equation (2.44). Here, we have made

explicit the dependence on the inflection point h. It is clear from Figure 5.4 that

the critical benefit-to-cost ratio (b/c)∗1, at which ρC = ρD, is minimised at h = 0.5,

and symmetric across that point. This appears to hold for both the VT model with

decoupled update, and for the death-birth update on a fixed hexagonal lattice. In

this section, we show that this is indeed true for any system where 0 < s < ∞ and

the structure coefficients σ j are increasing for 0≤ j < k.

We rewrite Equation (5.32), defining (c/b)∗1, such that cooperation is favoured

for c/b < (c/b)∗1:

(c
b

)∗
1
=

1
Z−1

k

∑
j=0

σ j

[
β

(
j+1
k+1

;h
)
−β

(
k− j
k+1

;h
)]

. (5.34)

We have assumed that the number of neighbours k is fixed, however the results are

easily generalisable to variable k. Defining

ζ j(h) = β

(
j+1
k+1

;h
)
−β

(
k− j
k+1

;h
)

(5.35)

we obtain (c
b

)∗
1
=

1
Z−1

[
σk + ∑

k> j≥k/2
(σ j−σk− j−1)ζ j(h)

]
. (5.36)

By taking derivatives with respect to h we show that for k/2 ≤ j < k, ζ j(h) is

maximised when h = 0.5. In order that this corresponds to a unique maximum of

(c/b)∗1, and thus a minimum of the critical benefit-to-cost ratio, certain conditions

on σ j must be satisfied.

First, we show that ζ j(h) has one extremum at h = 0.5 for s ∈ (0,∞). We

substitute Equation (2.44) into Equation (5.35) and take the first derivative with
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respect to h, letting r = j+1
k+1 . Thus we obtain

dζ j

dh
=

d
dh

[
(1+ es(h−r))−1− (1+ es(h+r−1))−1

(1+ es(h−1))−1− (1+ esh)−1

]

=
d
dh

[
es(r−1)− e−sr

1− e−s · (1+ es(h−1))(1+ esh)

(1+ es(h−r))(1+ es(h+r−1))

]

= s · e
s(r−1)− e−sr

1− e−s · e
sh(1+ e−s− e−sr− es(r−1))(1− es(2h−1))

(1+ es(h+r−1))2(1+ es(h−r))2
.

(5.37)

Setting dζ j/dh = 0, gives one root at h = 0.5 for 0 < s < ∞. This is a unique

stationary point of (c/b)∗1 so long as there is at least one value of j ∈ [k/2,k) for

which (σ j−σk− j−1) 6= 0. We can show that this is a maximum by considering the

second derivative at h = 0.5:

d2ζ j

dh2

∣∣∣∣
h= 1

2

=−2s2 · e
s/2(1+ e−s− e−sr− es(r−1))(es(r−1)− e−sr)

(1− e−s)(1+ es(r−1/2))2(1+ e−s(r−1/2))2
, (5.38)

which is negative given that 1/2 < r < 1. This corresponds to (k− 1)/2 < j < k,

encompassing all the values of j which we sum over in Equation (5.36). Therefore,

in order that (c/b)∗1 is maximised when h = 0.5, we require that (σ j−σk− j−1)≥ 0

for k/2≤ j < k and non-zero for at least one value of j in the range. This condition

is guaranteed if σ j is an increasing, but not constant, function for 0≤ j < k.

It is clear from Figure 5.3 that σ j+1,k > σ j,k ∀ j,k for the VT model with decou-

pled update, therefore h = 0.5 maximises (c/b)∗1 in this case. For k-regular graphs

with death-birth update rule, we can verify whether this is true by using the approx-

imate expressions for the structure coefficients derived in [15]. These are plotted

for various k values in Figure 5.7. For smaller values of k, we can see that σ j is

strictly increasing for 0 ≤ j < k. However, as k increases, a growing region ap-

pears for which σ j is constant. So long as there is at least one value of j < k for

which (σ j−σk− j−1)> 0, (c/b)∗1 is maximised at h = 0.5. However, as k→ ∞, we

approach the case where σ j are constant for j < k, and we regain the well-mixed

population result that (c/b)∗1 is independent of h.

Thus far we have limited ourselves to cases where 0 < s < ∞. In the limit
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Figure 5.7: Structure coefficients, σ j, for k-regular graphs with death-birth update rule [15].
It is clear that σ j is increasing (or constant) for j < k.

s→ 0, we obtain an NPD game with a linear benefit function which is independent

of h. The value of (c/b)∗1 therefore does not depend on h either, as can be seen in

Figure 5.4. In the limit s→ ∞, the VD game is approached and the benefit function

ceases to be continuous. In this case the unique maximum at h = 0.5 is maintained

only if σ j are strictly increasing, and therefore (σ j − σk− j−1) > 0. This is true

for the VT model with decoupled update and for k-regular graphs with death-birth

update, if k is sufficiently small. On the other hand, if (σ j−σk− j−1) = 0 for some

values of j ∈ [k/2,k), h = 0.5 ceases to be an isolated maximum, and there is a

region of h values, around h = 0.5, which maximise (c/b)∗1.

5.3.4 Beneficial cooperation

Thus far, we have considered conditions for cooperation to be favoured, i.e. where

ρC > ρD. We can also define the critical benefit-to-cost ratio (b/c)∗0 above which

cooperation is beneficial, i.e. ρC > ρ0. From Equation (5.22) this is given by

(
b
c

)∗
0
=

Z(Z−1)

2∑
Z−1
k=1 ∑

k
j=0

[
θC

j,k β

(
j+1
k+1

)
−θ D

j,k β

(
j

k+1

)] , (5.39)
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where θ
C/D
j,k are calculated from the distributions fC/D

j (n,k) and gk according to

Equations (5.19) and (5.20) (recall that we have relabelled A→C and B→ D).

Figure 5.5 (left panel) plots (b/c)∗0 against s and h. We can see that for large

s, (b/c)∗0 is maximised at h = 1 and has a minimum at h ≈ 0.35. For smaller s

this minimum moves towards h = 0. As s decreases further, the logistic function

approaches linearity and there is negligible variation in (b/c)∗0 with h. In the limit

s→ 0 the game becomes an NPD, with (b/c)∗0 = (b/c)∗1 ≈ 2.2. Figure 5.8 com-

pares the simulated values of (b/c)∗0 with the theoretical prediction, finding good

agreement between the two for a range of s and h values.

0 1
h

2

3

4

(b
/c

)* 0

s = 1

0 1
h

s = 5

0 1
h

s = 10

Figure 5.8: Critical benefit-to-cost ratio (b/c)∗0 above which ρC > ρ0, for a sigmoid benefit
function. The solid line plots Equation (5.39). Circles correspond to simulation
data, with each point calculated from 104 individual simulations. For small
s the sigmoid benefit function becomes near linear and the game approaches
an NPD, thus there is little variation in (b/c)∗0. For larger s there is strong
dependence on the inflection point, h, particularly for h > 0.5. We have set
Z = 100, c = 1 and δ = 0.025.

We saw in Figure 5.4 that the critical benefit-to-cost ratios for cooperation to be

favoured (b/c)∗1 are lower in the VT model compared to the well-mixed population.

Figure 5.9 plots (b/c)∗0 for a well-mixed population with N = 7 and the VT model

with decoupled update rule, showing clearly that the critical benefit-to-cost ratios

for cooperation to be beneficial are also lower for the VT model. Thus, under both

measures, cooperation is promoted by the VT model. In contrast to (b/c)∗1, which

was independent of the shape of the benefit function for the well-mixed population,

(b/c)∗0 is an increasing function of h, so long as s is sufficiently large.
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Figure 5.9: Comparing the critical benefit-to-cost ratio (b/c)∗0 at which ρC > ρ0, for a pub-
lic goods game with sigmoid benefit function. The critical ratio is always higher
for the well-mixed population with N = 7 (WM), than for the Voronoi tessel-
lation model with decoupled update (VT). For small s the benefit function be-
comes near linear and variation of (b/c)∗0 with h is small. For WM, (b/c)∗0
increases with h, taking its minimum value at h = 0. By contrast, for VT, there
is a minimum of (b/c)∗0 at h≈ 0.35 when s is sufficiently large. For both WM
and VT, (b/c)∗0 is maximised at h = 1, for any given s.

5.3.5 Beneficial vs. favourable cooperation

In general, the conditions for cooperation to be beneficial are not equivalent to the

conditions for cooperation to be favoured. This is evident from Figure 5.10, where

we plot (b/c)∗0 and (b/c)∗1 for the sigmoid benefit function. These critical benefit-

to-cost ratios are plotted against h, for various values of s. The parameter space can

be divided into regions where cooperation is both favoured and beneficial, favoured

but not beneficial, beneficial but not favoured, and neither favoured nor beneficial.

As s is decreased, the regions where cooperation is beneficial but not favoured, and

favoured but not beneficial, get smaller. For sufficiently small s, it appears that

(b/c)∗0 ≈ (b/c)∗1 for all values of h. This holds for both the VT model and well-

mixed population.

We can show that (b/c)∗0 = (b/c)∗1 in the limit s→ 0. Recall from Section 5.2.3

that the conditions for cooperation to be beneficial and favoured are equivalent if

the payoffs satisfy antisymmetry-of-invasion. When s→ 0 we approach the NPD,

which has a linear benefit function, given by Equation (2.42). The cooperator and
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defector payoffs are thus

a j = b ·
(

j+1
k+1

)
− c and b j = b ·

(
j

k+1

)
, (5.40)

respectively. We therefore obtain

a j +bk− j = b− c . (5.41)

As b− c is a constant independent of j, this satisfies the antisymmetry-of-invasion

property, defined by equation (5.30). The critical benefit-to-cost ratio above which

cooperation is favoured must, therefore, be equal to the critical benefit-to-cost ratio

above which cooperation is beneficial.

It also appears from Figure 5.10 that, for both the VT model and well-mixed

populations, (b/c)∗0 = (b/c)∗1 when h = 0.5. We can again show that this satisfies

the antisymmetry-of-invasion property. When h= 0.5, the sigmoid benefit function,

defined by Equation (2.44), has the symmetry property β (x) = 1−β (1− x). The

cooperator and defector payoffs are, therefore, given by

a j = b ·β
(

j+1
k+1

)
− c = b ·

[
1−β

(
k− j
k+1

)]
− c

b j = b ·β
(

j
k+1

)
,

(5.42)

respectively. Once again, we find that a j+bk− j = b−c; thus, there is antisymmetry-

of-invasion when h = 0.5.

Figure 5.10 shows that h = 0.5 divides the parameter space into two regimes.

Behaviour where cooperation is beneficial but not favoured, occurs only when h <

0.5. Conversely, behaviour where cooperation is favoured but not beneficial occurs

only when h > 0.5.

We can understand this intuitively by considering the extreme cases (h = 0,1)

of the VD game. Recall the benefit function for a VD game is a step function, and

it can be obtained as a limiting case of the sigmoid public goods game, by letting

s→ ∞. When h = 0, a cooperator always receives the full benefit, even if it has no
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cooperator neighbours. Defectors require a single cooperator neighbour to obtain

the benefit. Thus, both cooperators and defectors have higher than average fitness

early in the invasion process, when they are most vulnerable to extinction. It is

therefore possible, depending on the benefit-to-cost ratio, that both perform better

than a neutral invader, and therefore both are beneficial mutations. However, one

can still be favoured over the other if its fixation probability is higher.

The converse is true when h = 1: defectors will never receive any benefit, and

cooperators only obtain the benefit when surrounded by other cooperators. Thus

when the number of cooperators/defectors is small, they have lower than average

fitness, and there is a high chance they die out early in the invasion process. There-

fore, it is possible that neither performs better than a neutral invader.
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Figure 5.10: Success of cooperator mutants in the Voronoi tessellation model (VT, left) and
well-mixed population (WM, right), for a public goods game with sigmoid
benefit function. The solid line corresponds to (b/c)∗0, where ρC = ρ0. The
dashed line corresponds to (b/c)∗1, where ρC = ρD. We have set Z = 100,
c = 1 and δ = 0.025.

Blue region (top): C is beneficial and favoured (ρC > ρD and ρC > ρ0).
Green region (left): C is beneficial but not favoured (ρD > ρC > ρ0).
Pink region (right): C is favoured but not beneficial (ρ0 > ρC > ρD).
Orange region (bottom): C is neither beneficial not favoured (ρC < ρD and
ρC < ρ0).
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5.3.6 Gradient of selection

We can obtain more insight into what is happening in the different parameter re-

gions by looking at the gradient of selection G(n) = T+(n)−T−(n). The transition

probabilities are defined by Equation (5.1), thus in the weak selection limit, δ � 1,

the gradient of selection becomes

G(n)≈ Z−n
Z

n
Z

δ

{
Z−1

∑
k=1

k

∑
j=0

gk( f A
j (n,k)a j,k− f B

j (n,k)b j,k)

}
. (5.43)

The sum essentially gives the difference in expected payoffs of A and B players.

Thus, the right-hand side is identical to the replicator equation, which describes the

deterministic dynamics in the large-population limit (recall Section 2.2.1).

The sign of G(n) indicates the direction of selection, and we can consider the

roots of G(n) as ‘fixed points’. Of course, for a finite population there are only

two absorbing states, n = 0 and n = Z; however, the location of fixed points is still

important. For example, the system may remain for a long time near a stable fixed

point, before reaching one of the absorbing states. We can classify the behaviour of

the system in different parameter regions based on the fixed points of the gradient

of selection.

Figure 5.11 plots G(n) for a sigmoid PGG with various values of h, s and

b/c, both for the VT model and well-mixed population. There are four dynami-

cal regimes, consistent with the deterministic results for the well-mixed population

[37]:

(i) Dominance: there are only two fixed points at n = 0 and n = Z. Defection

dominates if the n = 0 fixed point is stable, while cooperation dominates if the

n = Z fixed point is stable.

(ii) Coexistence: there is an internal stable fixed point, nR, along with two unstable

fixed points at n= 0 and n= Z. Selection pushes the system towards the stable

fixed point, thus it can take a long time to reach one of the absorbing states.

(iii) Coordination: there is an internal unstable fixed point, nL, along with two
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stable fixed points at n = 0 and n = Z.

(iv) Coexistence & coordination: In addition to the fixed points at n = 0 (stable)

and n = Z (unstable), there is both an unstable internal fixed point on the

left, nL, and a stable internal fixed point on the right, nR. Thus it resembles

coexistence, in that there is a stable mixed state; and coordination in that there

are two stable fixed points.

These regimes are all familiar in the evolutionary game theory literature for well-

mixed populations. The first three correspond to the behaviour of pairwise social

dilemma games, outlined in Section 2.2: (i) prisoner’s dilemma/harmony game, (ii)

snowdrift game, and (iii) stag-hunt game. The final type, coexistence & coordi-

nation, arises in both the N-player stag-hunt [146] and N-player snowdrift games

[147].

For the well-mixed population, we see dominance when s is sufficiently small,

and thus the sigmoid PGG is approximating an NPD. As expected, cooperation

is dominant when b/c is sufficiently high. For higher values of s there is a wide

range of behaviour. In a region around h = 0.5, if b/c is large enough, there are

coexistence & coordination dynamics. There is a large basin of attraction for nR

and if the system reaches this fixed point, it will spend a long time in the vicinity.

However, a single mutant invader must cross nL to reach this, against the selection

pressure. As b/c is increased, nL and nR move further apart, increasing the size of

the basin of attraction for nR. For h = 0.5, the gradient of selection is symmetric

(nL = Z−nR).

Decreasing h from 0.5, causes nL and nR to move to the left, eventually en-

tering the coexistence regime. The basin of attraction for the internal stable fixed

point is now 0 < n < Z. The system may spend a large amount of time near this

point, although it will ultimately end up in one of the absorbing states. In the co-

existence regime, as we discussed in Section 5.3.4 for the VD game with h = 0,

cooperators and defectors have a selective advantage when they are in sufficiently

small numbers. This can lead to the case where both are beneficial mutants, and

thus cooperation is able to be beneficial but not favoured.
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Figure 5.11: Gradient of selection G(n) for a public goods game with sigmoid benefit func-
tion in the Voronoi tessellation model with decoupled update (VT, top) and the
well-mixed population (WM, bottom). The qualitative behaviour is very simi-
lar between the two. However, it occurs at different values of the benefit, b/c.
Where G(n) > 0, selection is working to increase n, and where G(n) < 0 it
works to decrease n. The roots of G(n) = 0 can be considered as fixed points,
and we can use these to classify the behaviour in different parameter regions.
We have set Z = 100, c = 1 and δ = 0.025.
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Conversely, as h is increased from 0.5, nL and nR move to the right and the dy-

namics enter the coordination regime. This corresponds to the region in Figure 5.10

where very high values of the benefit-to-cost ratio are required for cooperation to

be beneficial, even when cooperation is favoured. We argued in Section 5.3.4, for

the VD game with h == 1, that this is due to the fact that both cooperators and

defectors are at a disadvantage when in small numbers. Indeed, this is the defin-

ing feature of the coordination regime, that n = 0 and n = 1 are stable fixed points.

Thus, any invader is at a disadvantage initially, as selection pushes it towards dying

out. Therefore it is possible that defectors and cooperators can be at an evolutionary

disadvantage compared to a neutral mutant.

The VT model behaviour is qualitatively very similar to that of the well-mixed

population. The major difference is that the full spectrum of behaviour is available

for a much smaller range of b/c values for the VT model. This means that coopera-

tion is successful at smaller benefit-to-cost ratios, as is consistent with our previous

findings. It should be noted, however, that these classifications are often approxi-

mate for the VT model. We observe, in a number of cases, additional fixed points

very close to n = 0 and n = Z. An example can be seen in Figure 5.12. It is also

clear from Figure 5.11 that the coexistence & coordination behaviour is much less

pronounced than it is for the well-mixed case, with the internal fixed points much

closer to the boundaries.

5.4 Discussion

This chapter has considered cooperative success in the VT model with spatially

decoupled birth and death, where cooperation is defined by a multiplayer public

goods game. This extends the work from Chapter 4, which was focused on pairwise

games.

We have demonstrated that, for a sigmoid PGG, cooperation is more successful

in the VT model compared to a well-mixed population. In both cases, the evolution-

ary outcomes depend on the parameters s and h of the sigmoid benefit function, as

well as the benefit-to-cost ratio. In general, a lower benefit-to-cost ratio is required
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Figure 5.12: Gradient of selection G(n) for a public goods game with sigmoid benefit func-
tion in the Voronoi tessellation model with decoupled update (VT) and the
well-mixed population (WM). The figure shows results reproduced from Fig-
ure 5.11 for s = 1 and h = 0.5, zooming in on the gradient of selection near
n = 0. It is clear for WM that the n = 0 fixed point can be stable or unstable
depending on b. By contrast, for VT, the n = 0 fixed point remains stable for
all values of b shown. However, for sufficiently high b there is an additional
unstable fixed point, close to n = 0.

for cooperative success for the VT model than for the well-mixed population. In

other words cells need a lower incentive to cooperate. This is consistent with our

expectations: both models use global updating, however the population structure in

the VT model allows for the positive assortment of cooperators.

Although cooperation is more successful in the VT model than in the well-

mixed population, the qualitative behaviour is very similar. We have characterised

the evolutionary dynamics by considering conditions for which cooperation is ben-

eficial and/or favourable, as well as calculating the gradient of selection.

As long as the steepness s is large enough, we tend to see coexistence be-

haviour when the inflection point h is less than half and coordination behaviour

when it is greater. These regimes are characterised by the fixed points of the gradi-

ent of selection. They also correspond to the regions in the parameter space where

cooperation is beneficial but not favourable (coexistence), and favourable but not

beneficial (coordination). For small steepness s, the game approaches an NPD and



5.4. Discussion 107

there is dominance behaviour. In this regime, conditions for cooperation to be ben-

eficial and favoured coincide.

Examining the gradient of selection enables us to identify an additional dynam-

ical regime: mixed coexistence & coordination, which occurs in a region around

h = 0.5, as long as s and b/c are sufficiently large. This regime is characterised by

two stable fixed points, one corresponding to all-defection, and the other to a het-

erogeneous, majority-cooperator state. This dynamic has been identified previously

for both well-mixed populations [37] and graph-structured populations with local

updating [40]. We have shown that it can also occur for the VT model, however the

internal fixed points tend to be much closer to the boundaries.

It is beyond the scope of this thesis to consider the full dynamics of an epithe-

lial population structure with local update rules. However, we have considered the

conditions for cooperation to be favourable on a hexagonal lattice with death-birth

update rule, using results from [15]. We found the critical benefit-to-cost ratios to

be intermediate between the well-mixed population and VT model. This is consis-

tent with previous results for pairwise games [138]. Taken together, these results

suggest not only that population structure is able to promote cooperation, but that

global updating also plays a crucial role. Thus, we propose a general rule that co-

operation prefers local game play, but global competition for offspring.

It is worth taking a moment to consider the implications of beneficial and

favourable mutations for invasion, and how we distinguish between the two con-

cepts. Whether or not a mutation is beneficial is perhaps the most relevant measure

for a single invasion event. It essentially tells us that the mutated cell has a higher

probability of invasion in a wild-type population, than a wild-type cell would have,

and therefore it has an evolutionary advantage. The significance of a mutation being

favourable is a little less clear, as it compares two different invasion processes: the

probability of invasion of a mutated cell in a wild-type population is higher than the

converse scenario, where a wild-type cell invades a population of mutants. How-

ever, the condition for a mutant to be favoured is also equivalent to the condition for

cooperation to dominate, if mutation is allowed.
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These results suggest that there are a number of important considerations

which need to be taken into account when modelling the evolution of cooperation in

an epithelium: population structure, update rule and benefit function. In particular,

the success of cooperation could easily be underestimated, either by ignoring pop-

ulation structure, or by including population structure, but considering only local

update rules. If birth and death are decoupled in real epithelia, our results suggest

that producers of growth factor can have an evolutionary advantage, even when the

cost to themselves is relatively high compared to the benefit.

These local and global update rules represent two extremes: absolute spatial

coupling of birth and death, or absolute decoupling, respectively. In reality, the

relationship between birth and death in an epithelium is likely somewhere in be-

tween the two. Regulatory processes such as contact inhibition [135] and crowding-

induced extrusion [136, 137] could lead to a weaker form of spatial coupling, some-

where in between local and global updating. In the following chapter we will intro-

duce contact inhibition into the VT model and consider how it affects the evolution-

ary success of cooperation.



Chapter 6

The effect of contact inhibition

6.1 Introduction

Throughout this thesis, we have demonstrated the important role which the update

dynamics play in determining evolutionary outcomes for structured populations.

There are substantive differences depending on whether a global or local update

rule is used, and for the latter, how birth and death are coupled. In particular, we

have found that using the decoupled update rule within the VT model promotes

cooperation compared to a death-birth update rule, which in turn promotes cooper-

ation compared to a birth-death update rule. This result holds for a large spectrum

of pairwise and multiplayer games (see Chapters 4 and 5 respectively).

It is therefore necessary to consider the update dynamics of a real epithelium,

in particular, the extent to which division and death are spatially coupled. The

global and local update rules we have considered thus far, present a binary view,

whereby the former has no spatial coupling, and the latter has very strong spatial

coupling. There is, however, a spectrum of possible behaviour between these two

cases. Furthermore, the update rules we have considered assume that a death is im-

mediately followed by a division, or vice versa, to maintain a fixed population size.

In this chapter, we consider how homeostatic population size can be maintained

by density-dependent processes within an epithelium, how these can lead to spatial

coupling, and how this can affect the evolution of cooperation.

As we discussed in Section 3.4, the regulation of tissue density is vital for
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homeostatic epithelia. An increase in density could lead to tumour formation, while

a fall could cause a loss of barrier function. Thus to maintain a near constant

population size, cell divisions must match cell deaths. It is thought that density-

dependence of proliferation and cell death could play an important role in mediat-

ing this population control [108, 136, 137]. Density-dependent control of division

or death is likely to result in a type of spatial coupling of the two processes. For

example if divisions occur only at low density, these are more likely to occur near a

recent death.

A recent study of homeostatic epidermal stem cells found that cell division

was a downstream result of cell differentiation [110]. This is in contrast to a num-

ber of results for immature, developing tissues, which found that population size

was controlled by cell delamination induced by overcrowding. The authors suggest

a difference in purpose in the two cases. In the developing tissue, proliferation is

primary, and cells are removed from the tissue to keep this under control. By con-

trast, proliferation in the homeostatic tissue is necessary only to replace cells lost

by apoptosis or differentiation, thus it could be considered secondary.

For our purposes, we are primarily concerned with homeostatic tissues and thus

choose to focus on contact inhibition as the primary mechanism for homeostasis.

It should be emphasised, however, that density-dependent apoptosis, extrusion, or

delamination may well play a role in homeostatic tissues.

Contact inhibition refers to the observation that cultured cells divide at slower

rates as population density increases, eventually leading to proliferative arrest

[135, 148]. Thus, it is an excellent candidate as a mechanism for preventing over-

population, indeed the loss of contact inhibition is one of the hallmarks of cancer

[28]. Contact inhibition is a reversible process: cells which are in mitotic arrest can

reenter the cell cycle if they are stretched or space becomes available [149, 150].

Due to contact inhibition and other density-dependent processes, there is likely

some level of spatial coupling of birth and death in epithelia. This could lead to a

type of intermediate update dynamic between a local and global update rule. To

examine the effect this has on the evolution of cooperation, we introduce contact
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inhibition into the VT model. This also allows us to temporally decouple division

and death, as contact inhibition acts to maintain homeostatic population size.

As we did in Chapter 4 for the decoupled update rule, we take the additive

prisoner’s dilemma (APD) as a starting point for our analysis, as it provides a simple

model for cooperation which can be described by a single parameter, the benefit-

to-cost ratio. We hypothesise that the success of cooperation in the VT model will

be dependent on the strength of contact inhibition. When contact inhibition is very

strong, we get closer to a death-birth update. Thus, cooperation is less successful

with a higher critical benefit-to-cost ratio. Conversely, when contact inhibition is

weak we move towards a decoupled update and cooperation should be promoted.

The remainder of this chapter is set out as follows. We start by outlining how

the VT model is extended to incorporate contact inhibition in Section 6.2, before

considering how the evolutionary game theory framework is applied within this ex-

tended VT model in Section 6.3. We then, in Section 6.4, look at how the success

of cooperation depends on the model parameters and compare the outcomes with

our previous results for death-birth and decoupled update rules. We find that while

stronger contact inhibition does lead to increased spatial coupling, this does not

necessarily result in a deleterious effect on cooperation. We consider how this can

be explained by differences in the distribution of non-contact inhibited cells. In

order to further understand this phenomenon, we introduce a one-dimensional ver-

sion of the VT model in Section 6.5. Finally, in Section 6.6, we discuss some of the

implications of our results for the evolution of cooperation in real epithelia.

6.2 The Voronoi tessellation model with contact inhi-

bition

6.2.1 Model overview

We use the VT model as described in Section 3.3, with the parameters given in

Table 6.1. The basic model is the same as has been used throughout Chapters 4

and 5. Here we outline how contact inhibition is incorporated.

Recall from Section 3.3, that the VT model represents cells as points in a fixed
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domain which exert spring-like forces on one another. The natural spring length, or

preferred cell separation, is given by the parameter sM. We take the preferred cell

area to be the area of a regular hexagon with diameter sM, such that A(0) =
√

3
2 s2

M.

Contact inhibition is implemented as an area-checkpoint. Cells are only able

to proliferate if they exceed a threshold area αA(0), where α is the quiescent area

fraction. Cells which satisfy Ai(t) > αA(0) divide with rate γ , such that in a small

time interval (t, t +∆t), the probability of cell i dividing is given by

Pdiv
i (t,∆t) = γ∆tΘ

(
Ai(t)−αA(0)

)
, (6.1)

where Θ(x) is the Heaviside step function. In simulations we implement this as fol-

lows. In each time interval (t, t +∆t) a division occurs with probability Zdiv(t)γ∆t,

where Zdiv(t) = ∑i Θ

(
Ai(t)−αA(0)

)
is the number of non-contact inhibited cells.

The dividing cell is then selected uniformly at random from the set of cells satisfy-

ing Ai(t)> αA(0).

Cell deaths occur with a per-cell rate λ , thus the probability of a cell i dying in

time interval ∆t is

Pdeath
i (∆t) = λ∆t . (6.2)

As with division, this is implemented in simulations by defining the probability of a

death occurring in the whole population to be Z(t)λ∆t, where Z(t) is the total num-

ber of cells at time t. If a death occurs the cell is chosen from the whole population

uniformly at random. Dead cells are immediately removed from the tissue. Cell

death could refer to a number of processes including apoptosis or differentiation.

This chapter uses a slightly different set of parameters for the VT model, com-

pared to those in Chapters 4 and 5. The original parameters were taken from [151],

and are defined in Table 4.1. Parameters for this chapter are defined in Table 6.1.

The main difference is that we now assume a smaller death rate, which we have

chosen to be in line with differentiation rates for epidermal stem cells [110]. We

have then rescaled the parameters µ and ∆t, so the resulting dynamics is the same.

However, the new death rate is significantly slower than our previous death rate,
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and as such we choose to ignore the initial growth phase and assume that tM = 0.

New offspring cells are still placed a distance ε apart, but they immediately have a

preferred separation of sM.

Table 6.1: Parameters for the Voronoi tessellation model with contact inhibition used in
Chapter 6. Space is measured in units of preferred cell diameter (CD). Explicit
units are not given for µ and η , as the dynamics depends only on their ratio
µ/η , which has units hour−1. Note that µ has dimensions [mass]/[time]2 and
η has dimensions [mass]/[time]. For values of α , λ/γ and W see Table 6.2.
Homeostatic population size depends on these three parameters. We choose W
to obtain the desired homeostatic population size, usually Z∗ = 100.

Symbol Description Value

µ Spring constant 6.25
η Drag coefficient 1.0
tM Growth time for new cells 0.0 hours
sM Natural separation of mature cells 1.0 CD
ε Initial separation of sibling cells 0.1 CD
∆t Time step 0.04 hours
λ Death rate 0.25 day−1

γ Division rate (no contact inhibition) (> λ )
α quiescent area fraction –
W Domain width –
Z∗ Homeostatic population size 100

6.2.2 Homeostasis

We initialise the simulations with a hexagonal lattice of L×L = Z0 cells, each with

diameter W/L. Once the simulation begins, cells are able to divide and die, and

the tissue quickly reaches an equilibrium density around which it fluctuates (Fig-

ure 6.1a). This homeostatic density decreases as we increase α and λ/γ , as can be

seen in Figure 6.1b.

The fraction λ/γ is equal to the expected proportion of proliferating cells.

Thus, when λ/γ is large only a small number of cells are expected to be contact

inhibited (not able to proliferate) at any given time, and we can interpret this as

weak contact inhibition. Conversely, when λ/γ is small, we expect a large number

of cells to be contact inhibited, and therefore we can consider that contact inhibi-

tion is strong. The strength of contact inhibition is therefore negatively correlated
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with λ/γ . Furthermore, stronger contact inhibition implies tighter regulation of

population size. It therefore follows that fluctuations in tissue density would be

correspondingly smaller. This is clear from Figure 6.1c, which shows the standard

deviation of the population density increasing with λ/γ . There is no clear depen-

dence on α .
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Figure 6.1: Tissue density in the Voronoi tessellation model with contact inhibition. Den-
sity is in units of cells per CD2. Simulations are started with Z0 = 196 cells
arranged in a hexagonal grid. Initially all cells have diameter equal to the nat-
ural separation sM = 1CD (domain width W = 14CD). Once the simulation
begins, cells are able to divide and die, and the tissue quickly reaches a home-
ostatic equilibrium density.

(a) Variation in the density over time; (b) and (c) mean and standard deviation,
respectively, in the homeostatic tissue density taken as an average over six sim-
ulation days, after the tissue has reached equilibrium. All data is taken as an
average over three simulated tissues.

We can use the homeostatic density to calculate the domain size required for

our desired homeostatic population size. In the remainder of this work, the domain
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width W is chosen such that the homeostatic population size is always Z∗ = 100.

These values can be found in Table 6.2.

Table 6.2: Values of domain width, W , for each combination of parameters λ/γ and α used
in simulations of the Voronoi tessellation model with contact inhibition. These
are chosen so that the homeostatic population size is Z∗ = 100.

α

λ/γ 0.8 1.0 1.2

0.01 8.402 9.253 10.022
0.02 8.444 9.298 10.074
0.06 8.527 9.400 10.222
0.10 8.596 9.488 10.305
0.20 8.706 9.645 10.501
0.30 8.796 9.780 10.663
0.50 8.948 10.016 11.005
0.70 9.177 10.373 11.447

Cell area distributions are dependent on the parameters α and λ/γ . Mean cell

area is the inverse of tissue density, thus it increases with both λ/γ and α . This

is clear from Figure 6.2, where we plot cell area for various α and λ/γ values.

We can also see in Figure 6.2 that both the standard deviation and coefficient of

variation of cell area also increase with both parameters. This leads to wider cell

area distributions as can be seen in Figure 6.3.

When the mean cell area is less than the preferred cell area, i.e. Ā/A(0) < 1, we

can consider that the tissue is under compression. This is because cells are exerting

spring-like forces on one another, and when they are crowded together the ‘springs’

are compressed. By contrast, when the mean cell area is greater than the preferred

area, i.e. Ā/A(0) < 1, the ‘springs’ are stretched, and thus the tissue is under tension.

Areas of the parameter space where the tissue is under tension or stretch can be seen

in Figure 6.4.

We see from Figure 6.5 that not all values of α lead to realistic cell shapes,

in particular under high compression (α = 0.4) we obtain many triangular looking

cells. Thus we choose to keep α reasonably close to one. For the remainder of this

work we consider α ∈ {0.8,1.0,1.2}, which gives us a range of behaviour including
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Figure 6.2: Cell area statistics for the Voronoi tessellation model with contact inhibition.
We plot the expected values of the (a) mean, (b) standard deviation and (c) coef-
ficient of variation. These are taken as an average over time, after homeostasis
is reached, in three distinct simulated tissues. Areas are expressed as a fraction
of the preferred area A(0). See Table 6.2 for values of domain width W .
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Figure 6.3: Cell area distributions for the Voronoi tessellation model with contact inhi-
bition. Distributions are taken as an average over time, after homeostasis is
reached, in three distinct simulated tissues. See Table 6.2 for values of domain
width W .

tissues under compression and stretch (see Figure 6.4). For the death-to-birth rate

ratio we select λ/γ ∈ {0.01,0.02,0.06,0.1,0.2,0.3,0.5,0.7}, again these are cho-

sen to give us a broad spectrum of values within a reasonable range. As a reference,

measurements on cultured Madin-Darby canine kidney cells1 have found prolifer-

ation rates of about 6.7×10−2 h−1 in non-contact inhibited cells and homeostatic

apoptosis rates of about 0.02 per cell per day [109]. These values correspond to

λ/γ = 0.012.

6.3 Evolution of cooperation
We wish to evaluate how the inclusion of contact inhibition in the Voronoi tessella-

tion model affects the success of cooperative mutants. Thus, we extend our frame-

work of evolutionary games within the VT model, as described in Section 4.2, so

that individual cell proliferation rates depend on cell fitnesses, with payoffs defined

by an APD game.

1Madin-Darby canine kidney cells are an immortalised cell line derived from the kidney epithe-
lium of an adult dog.
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Figure 6.4: Mean cell area as a fraction of preferred cell area for the Voronoi tessellation
model with contact inhibition. The figure shows parameter regions where cells
in the tissue are, on average, under tension or compression. The plotted circles
are simulated data, and correspond to the parameter values we use in simula-
tions of the additive prisoner’s dilemma. Lines are obtained by fitting a third
degree polynomial. See Table 6.2 for values of domain width W .

The population consists of two types of cells: cooperators and defectors. We

denote the type of cell i as si = 0 (defectors) or si = 1 (cooperators). Cells derive

a payoff through interactions with their neighbours. Cooperators pay a benefit b

at a cost c, while defectors pay no benefit and incur no cost. If we denote the

connectivity graph of cells as G(t) we can define the total payoff to a cell i as

πi(s,G) =−csi +b ∑
j∈G(t)

Ai js j

ki
(6.3)

where Ai j(t) is the adjacency matrix and ki(t) = ∑ j Ai j(t) is the degree of cell i. The

fitness of a cell is then defined as

Fi = 1+δπi (6.4)
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Figure 6.5: Snapshots of homeostatic tissues for the Voronoi tessellation model with con-
tact inhibition. Not all parameter regimes give realistic cell shapes. When α is
too small, the levels of compression are high, and the cell shapes are no longer
realistic. Decreasing λ/γ also leads to higher compression (see Figure 6.4),
hence cell shapes cease to be realistic for larger α values, when λ/γ is small.
See Table 6.2 for values of domain width W .
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where δ is the selection strength parameter. In the following we assume weak

selection, setting δ = 0.025. Proliferation rates are now dependent on fitness so

Equation (6.1) becomes

Pdiv
i (t,∆t) = Zdiv(t)γ∆tΘ

(
Ai(t)−αA(0)

)[ Fi

∑ j∈G Θ(A j(t)−αA(0))Fj

]
. (6.5)

This defines the probability that a cell i divides in (t, t +∆t), where ∆t� 1.

In order to quantify the success of cooperation we calculate the fixation proba-

bility ρC for a single initial mutant cooperator, varying b and keeping c= 1 constant.

This can then be compared with the neutral fixation probability ρ0 = 1/Z∗. The

critical benefit-to-cost ratio, (b/c)∗ occurs when ρC = ρ0. For b/c > (b/c)∗ coop-

eration is a beneficial mutation, thus lower values of (b/c)∗ imply that cooperation

is more successful. As we are using the APD game, which satisfies equal-gains-

from-switching, the condition for cooperation to be beneficial is equivalent to the

condition for cooperation to be favoured.

6.4 Results

6.4.1 Fixation probabilities

We chose 24 parameter sets (λ/γ,α), setting the domain width so that the equilib-

rium population size was Z∗ = 100 cells (see Table 6.2). For each parameter set

we ran simulations to determine how the fixation probability ρC varies with b/c.

Results are shown in Figure 6.6 and fitted with a linear regression from which we

can estimate the critical benefit-to-cost ratio (b/c)∗ for each parameter set. This is

the value of b/c for which ρC exceeds the neutral fixation probability ρ0 ≈ 1/Z∗,

shown by the dotted line on the plots.

The relationship between (b/c)∗ and the parameters α and λ/γ can be seen in

Figure 6.7 (see Appendix F.1 for consideration of the error in our (b/c)∗ estimates).

It is clear that (b/c)∗ increases with decreasing λ/γ for all α . This confirms our

expectation, that increasing the strength of contact inhibition reduces the success
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Figure 6.6: Fixation probabilities for the additive prisoner’s dilemma in the Voronoi tessel-
lation model with contact inhibition. In all cases, the homeostatic population
size is Z∗ = 100, therefore the critical benefit-to-cost ratio can be approximated
as the point at which ρC = 1/Z∗, shown by the dotted line. Individual data
points are calculated from 30,000 simulations, each of which starts with a sin-
gle cooperator mutant and is run until fixation. We set c = 1 and δ = 0.025.
See Table 6.2 for values of domain width W , chosen to ensure Z∗ = 100.
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of cooperation. Furthermore, (b/c)∗ increases with α for most values of λ/γ . The

full behaviour of (b/c)∗ and how it varies with the parameters, however, is non-

trivial. For larger values of λ/γ , the dependence on α appears to be negligible. In

particular, for λ/γ > 0.5, (b/c)∗ remains relatively constant for all α . Decreasing

λ/γ leads to an increasing divergence of the results for different values of α . For

α = 0.8, (b/c)∗ is relatively constant for λ/γ > 0.06. Reducing λ/γ below 0.06

leads to a rapid increase in (b/c)∗. For α = 1.2, if we reduce λ/γ , the increase in

(b/c)∗ is observed sooner, around λ/γ = 0.3. The α = 1.0 behaviour is intermediate

between the two.
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Figure 6.7: Critical benefit-to-cost ratios for additive prisoner’s dilemma in the Voronoi
tessellation model with contact inhibition. These depend on the quiescent area
fraction α and the death-to-birth rate ratio λ/γ . Contact inhibition increases
in strength with decreasing λ/γ . The death-birth and decoupled update rules
do not explicitly include area-dependent division, however a death-birth update
can be interpreted as strong contact inhibition and a decoupled update as no
contact inhibition. We set c = 1 and δ = 0.025. See Table 6.2 for values of
domain width W chosen to ensure Z∗ = 100.

It is clear from Figure 6.7 that there is a negative relationship between the

strength of contact inhibition and the success of cooperation. An intuitive explana-
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tion for this is that contact inhibition increases the spatial coupling between birth

and death events. When contact inhibition is very strong, we expect that a division

can only occur within some neighbourhood of a recent death, as these cells will tend

to have more space. Therefore cells are more likely to be competing with cells close

to them. As defectors have higher fitness when they neighbour cooperators, and co-

operators have lower fitness when they neighbour defectors, this is a disadvantage

to cooperators. Cooperators benefit when they are able to compete with distant de-

fectors. Therefore, we can understand how changing λ/γ can impact cooperative

success by introducing spatial coupling.

In the next section we will explore the role of spatial coupling, and consider

whether it also explains the role of α , or if there is a separate mechanism through

which α influences cooperation.

6.4.2 Spatial coupling and cooperative success

To consider the relationship between the spatial coupling of birth and death events,

and the parameters α and λ/γ , we calculate the background-corrected fate imbal-

ance (BCFI) [110]. The fate imbalance is given by the number of divisions minus

the number of deaths which have occurred within the neighbourhood of a fate event,

i.e. a death or division, as a function of time since the event. We correct for back-

ground fate imbalance, which is the total number of divisions minus deaths in a

given time period, thus obtaining the BCFI. The reason for this correction is to re-

move global effects. For example, if a death occurs in a tissue at low density, its

neighbours are more likely to divide than when a death occurs in a tissue at high

density, regardless of local coupling effects.

For a cell i, undergoing a fate event at time t f , the BCFI is given by

BCFIi(t) = ∑
j∈Ni(t f )

fate j(t)−
|Ni(t f )|

Z(t f )

Z(t f )

∑
j=0

fate j(t) (6.6)

where Ni(t) is the set of cells neighbouring i at time t. The quantity,

fate j(t) ∈ {−1,0,1}, is defined to be 0 if the cell j is still in the tissue at time

t. Otherwise, if j has undergone a fate event, it is given by +1 or −1 if the cell has
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divided or died, respectively. The second term is the background correction, and

the sum is over all cells in the tissue at time t f .

We find the BCFI around division and death by running a simulation with

neutral selection δ = 0, and averaging over BCFIi(t) for all cells which undergo

division and for all cells that undergo death, respectively. The BCFI depends on the

time past since a fate event has occurred. However, after sufficient time it reaches

a constant value, once all neighbours have undergone division or death, which we

refer to as the final BCFI.

For comparative purposes we first consider the BCFI for the death-birth and

decoupled update rules. For the decoupled update rule, divisions and deaths are

spatially independent, thus we expect the BCFI around death and division events

to be zero. Conversely, for the death-birth update, a death is immediately followed

by a neighbouring division event. Therefore, we expect that the BCFI around death

is one, while the BCFI around division is zero. These results are both shown to be

correct from simulation results in Figure 6.8. The BCFI is not time dependent for

these update rules, because the only spatial coupling is for the death-birth update

rule, and this occurs instantaneously.

In Figure 6.9 we plot the BCFI for deaths and divisions, averaged over a large

number of cells in three simulated tissues over 250 simulation days. In the absence

of contact inhibition, and thus spatial coupling, we would expect the BCFI to be

zero at all times around both death and division events. When contact inhibition is

present we expect a positive BCFI around deaths, which increases with time until

it reaches its final, constant value. It is clear from Figure 6.9 that the final BCFI is

reached approximately one day after the event, with some small fluctuations.

The final BCFI is plotted against λ/γ in Figure 6.10, averaging over the data

from day two onwards. As expected, the final BCFI around death is low when λ/γ is

high. Contact inhibition, in this case, is weak and therefore the regime is closer to a

decoupled update rule. As λ/γ decreases, and contact inhibition becomes stronger,

the final BCFI around death increases. It can be seen in Figure 6.11, that there is

positive correlation between (b/c)∗ and the final BCFI around death, however, this
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Figure 6.8: Background-corrected fate imbalance (BCFI) around a death (upper) or divi-
sion (lower) event for the decoupled and death-birth update rules. The BCFI is
calculated from Equation (6.6) using simulated data for the Voronoi tessellation
model with population size Z = 100 and neutral selection δ = 0.

For a death-birth update rule the BCFI is zero around a division, but one around
a death. This is consistent with the fact that a death is always followed by a
neighbouring division in the death-birth update rule. As expected, the BCFI
around death and division is zero for the decoupled update rule, as there is no
spatial coupling.

is dependent on α . The values of (b/c)∗ show strong dependence on α , particularly

for λ/γ < 0.2. While, the final BCFI around death is slightly lower for α = 0.8 in

this range of λ/γ , Figure 6.11 suggests it is not sufficient to explain the discrepancy

in (b/c)∗.

There is also clear dependence of the final BCFI around division on λ/γ and

α . It is possible that this is having an impact on (b/c)∗ and the success of cooper-

ation. Figure 6.10 shows that the final BCFI around division decreases with λ/γ ,

but increases with α (at least when λ/γ < 0.7). For large enough λ/γ , and small

enough α , the final BCFI around division is negative. As deaths occur uniformly at

random, this implies that a division is less likely to occur in the neighbourhood of a

division. Conversely, the final BCFI around division is positive for lower values of

λ/γ , when contact inhibition is stronger, meaning that divisions are more likely to
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Figure 6.9: Background corrected fate imbalance (BCFI) around a death (upper) or division
(lower) in the Voronoi tessellation model with contact inhibition. The BCFI is
calculated from Equation (6.6) using simulated data with homeostatic popula-
tion size Z∗ = 100 and neutral selection δ = 0. See Table 6.2 for values of
domain width W .

The BCFI around death or division quickly reaches a constant value which de-
pends on λ/γ , and to a lesser extent on α .

occur near a recent division. The former case could be explained if a division leads

to local competition for space, and therefore a lower likelihood, that neighbouring

cells have space to divide. The latter could possibly be explained by a death leading

to more than one neighbouring division.

We do not have strong evidence to explain the dependence of (b/c)∗ on α .

Clearly, the spatial coupling in the contact inhibition model is more complicated

than was the case for the death-birth or decoupled update rules. The effects are not

immediate, as birth and death are temporally decoupled in the contact-inhibition

model. Furthermore, there are downstream effects from divisions which are not

seen for the death-birth or decoupled update rule (see Figure 6.8.) However, it is

clear that decreasing λ/γ leads to an increase in the final BCFI around death, and

that there is a corresponding increase in (b/c)∗.

In Appendix F, we verify these results by considering an alternative measure
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Figure 6.10: Final values of background-corrected fate imbalance (BCFI) around a death
or division in the Voronoi tessellation model with contact inhibition. These
are calculated by averaging over the data shown in Figure 6.9, 2-7 days from
the fate event.

The final BCFI around death decreases quickly with λ/γ , while dependence
on α is small. It is always positive for the parameters shown, indicating that
division is more likely when a neighbouring cell has died. The final BCFI
around division tends to be smaller, but also decreases with λ/γ . When pos-
itive, it indicates that division is more likely when a neighbouring cell has
divided. Conversely, when negative, division is less likely. The largest value
of λ/γ plotted is 0.9.
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Figure 6.11: Critical benefit-to cost ratio (b/c)∗ plotted against the final background-
corrected fate imbalance (BCFI) around death, averaged over 2-7 days from
the fate event. It is clear that the relationship is dependent on α . The red
triangle corresponds to a decoupled update rule (no contact inhibition), while
the red diamond represents a death-birth update rule. Critical benefit-to-cost
ratios are for the additive prisoner’s dilemma with c = 1 and δ = 0.025.
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for the strength of spatial coupling, the expected distance between a death or divi-

sion and subsequent division events. Thus, we conclude that changes in the strength

of spatial coupling between death and subsequent division events can explain the re-

lationship between λ/γ and the success of cooperation. However, spatial coupling

does not provide a decisive explanation for the dependence of cooperative success

on α . This is evident from Figure 6.11 which plots (b/c)∗ against the final BCFI

around death (see also Figure F.3).

We therefore consider whether α has an effect on the fitness of cells, i.e. if co-

operators were more clustered for small α this could explain increased cooperative

success. We explore this possibility in Appendix F.3, comparing the α = 0.8 and

α = 1.2 regimes with λ/γ = 0.1. Although these have substantially different criti-

cal benefit-to-cost ratios (see Figure 6.7), the difference in expected cell fitnesses is

negligible. Thus, the dependence of cooperative success on α is not explained by

differences in cell fitness.

Some insight can be gained into α dependence by considering the reason for

which spatial coupling inhibits cooperative success. When birth and death are spa-

tially independent all cells compete to reproduce. By contrast, when there is spatial

coupling, only a subset of cells compete at any given time. In our contact inhibition

model, this subset consists of cells which exceed an area threshold. As cell death

reduces local cell density, it is likely that cells are able to proliferate if they are close

to the site of a recent death. This is especially true when contact inhibition is strong,

i.e. λ/γ is small, as demonstrated by Figure 6.9.

If a death occurs and all neighbouring cells cease to be contact-inhibited, they

compete with one another to replace the dead cell in a similar way to the death-birth

update rule. In contrast to the death-birth update rule, the division of a neighbour

is not immediate or guaranteed. Additionally, depending on the strength of contact

inhibition, there may be other non-contact inhibited cells which are also competing

to divide.

By contrast, if a cell dies and only one of its neighbours ceases to be contact

inhibited, there is no local competition between cells. The choice of neighbour
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here is not dependent on cell fitness, but on local geometry. Furthermore, this cell

will compete to reproduce with other non-contact inhibited cells in the population,

which are not necessarily in its close vicinity. Thus, competition occurs across the

population, although not all cells are involved at any given time. This situation

is closer to a global update. It is feasible in this scenario, therefore, that spatial

coupling is strong, but does not inhibit cooperation.

These are two extreme cases, however there is evidence that the latter be-

haviour is more likely when α = 0.8 and the former when α = 1.2. In Figure 6.12

we plot the expected number of non-contact inhibited cells which are isolated, i.e.

do not neighbour another non-contact inhibited cell. The figure shows that, for

0.06 < λ/γ < 0.3, there are more isolated non-contact inhibited cells for α = 0.8

than α = 1.2. This suggests that the situation where only one neighbour is non-

contact inhibited after a death, is more common when α = 0.8.

We know from Figure 6.2, that there is more variation in cell area within a tis-

sue when α = 1.2, compared to α = 0.8. This could explain the above observation,

that non-contact inhibited cells are less likely to be isolated when α = 1.2. If a

cell happens to die in an area of very high density, it could be that no neighbouring

cells reach the area-threshold and therefore they all remain contact inhibited. Con-

versely, in an area of low density they may all reach the threshold. For α = 0.8,

there is less variation in cell density and we could expect therefore for there to also

be less variation in the number of cells which cease to be contact-inhibited after a

death.

This also could explain the positive coupling between divisions and subsequent

divisions which was evident in the BCFI and normalised distance to division, for

sufficiently small λ/γ . This positive coupling implied that a death can sometimes

lead to two (or more) divisions. While the effect was very weak for α = 0.8, it was

significantly stronger for α = 1.2. This is consistent with the hypothesis that there is

an increased probability for higher α , that following a death, multiple neighbouring

cells become non-contact inhibited.
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Figure 6.12: Expected number of non-contact inhibited (proliferating) cells that are iso-
lated from other non-contact inhibited cells in the Voronoi tessellation model
with contact inhibition. These are obtained from simulations with neutral se-
lection δ = 0. For 0.06 < λ/γ < 0.3 it is clear that non-contact inhibited
cells are more likely to be isolated when α = 0.8 compared to α = 1.2. See
Table 6.2 for values of domain width W chosen to ensure Z∗ = 100.
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6.5 One-dimensional tissue model
To gain further insight into the effect of the parameters on the evolution of cooper-

ation we consider a simplification of the VT model to one dimension.

In this 1D VT model, cells are represented by points on a line, with periodic

boundary conditions, as can be seen in Figure 6.13. As with the VT model, these

cell centres are able to move, subject to damping, and exert spring like forces on

one another. The length of each cell is obtained by partitioning the domain into seg-

ments, whereby each cell boundary falls halfway between two neighbouring cells.

This is equivalent to performing a VT in one dimension. Every cell has exactly two

neighbours, and its length is equal to half the distance between those neighbours.

We take the spring constant, µ = 6.25, and other parameters to be the same as the

2D VT model (see Table 6.1).

Figure 6.13: Diagram of the one-dimensional Voronoi tessellation model. Cell-centres,
represented by circles, are able to move freely along the line and exert forces
on their neighbours. The length of a cell is given by half the distance between
its two neighbours. A cluster of mutant cells is shown in grey.

Several features of the 2D VT model are lost when we reduce to 1D. For exam-

ple, there is no longer any variation in neighbour number, nor is there the possibility

for rearrangement of neighbours. This means that the death-birth and decoupled up-

date rules in the 1D VT model are indistinguishable from the death-birth and shift

update rules on the cycle. We can thus use known results, outlined in Chapter 2, to

find the critical benefit-to-cost ratio in these cases.
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Although the APD is a pairwise game, it can be expressed as a multiplayer

game of the type discussed in Section 2.3, allowing us to use results from that

section to find the critical benefit-to-cost ratios. On the cycle, each cell derives

its payoff through an interaction with its two nearest neighbours. Thus, we can

consider the APD as a three-player game with payoffs:

a0 =−c a1 = b/2− c a2 = b− c (6.7)

b0 = 0 b1 = b/2 b2 = b. (6.8)

We can therefore use Equation (2.46) to express the critical benefit-to-cost ratios in

terms of structure coefficients. These are given by

(b/c)∗ =
σ0 +σ1 +σ2

σ2−σ0
. (6.9)

The structure coefficients σi, for the death-birth and shift update rules on a cycle,

are given by Equations (2.51) and (2.62), respectively. By plugging these into Equa-

tion (6.9), we obtain (b/c)∗= 2.02 for the death-birth update rule and (b/c)∗= 1.11

for the shift update rule, where we have used population size Z = 100.

Contact inhibition is implemented in the same way as for the 2D VT model.

We introduce a length-threshold, such that a cell i is only able to divide at time t

if its length exceeds the threshold, i.e. Li(t) > αL0. Here Li(t) is the length of the

cell and L(0) = sM is the preferred cell length, which is equal to the preferred cell

separation (natural spring length). The death-to-birth rate ratio is given by λ/γ .

As was the case for the 2D model, the tissue reaches a homeostatic density which

depends on α and λ/γ , so long as λ/γ < 1.

Length distributions for fixed domain size and varying α and λ/γ are shown in

Figure 6.14. We can see from the figure that the mean cell length increases with α

and λ/γ . The width of the distribution also increases with λ/γ , consistent with the

2D model (see Figure 6.3). However, in contrast to the 2D model, there is no clear

dependence of the width of the distribution on α . This is as expected, as the only

equilibrium state in the 1D model has all cell centres equidistant from one another.
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There is no force dependence on the natural spring length, therefore it does not

matter whether the tissue is under tension or compression. The observed variation

in length is not due to α , but to the difference in time scales over which forces relax

and fate events occur. The former is determined by the ratio µ/η , and the latter by

λ/γ .
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Figure 6.14: Cell length distributions for the one-dimensional Voronoi tessellation model
with contact inhibition. Cell lengths are expressed as a fraction of the pre-
ferred length L(0). Distributions are taken as an average over time, after home-
ostasis is reached, in three distinct simulated tissues. See Table 6.3 for values
of domain width W , chosen to ensure homeostatic population size Z∗ = 100.

This is verified in Figure 6.15, which shows the expected values for mean,

standard deviation and coefficient of variation of cell length. The mean and standard

deviation increase with α and λ/γ , consistent with the 2D model (see Figure 6.2).

However, for the 1D model, the coefficient of variation appears to be independent

of α , although it does increase with λ/γ .

We use the homeostatic density, equal to L̄−1, to calculate the required domain

size to obtain an equilibrium population size of Z∗ = 100. These are summarised

in Table 6.3, for a range of α and λ/γ values. We then run simulations to calculate

the fixation probabilities for each parameter regime and use these to find the critical

benefit-to-cost ratios for an APD game.
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Figure 6.15: Cell length statistics for a one-dimensional tissue. We plot the expected val-
ues of the mean, standard deviation and coefficient of variation. These are
taken as an average over time, after homeostasis is reached, in three distinct
simulated tissues. Cell lengths are expressed as a fraction of the preferred
length L(0). The mean and standard deviation both increase with α , however
the coefficient of variation remains relatively constant. This is in contrast to
the two-dimensional VT model, for which all three statistics increase with α

(see Figure 6.2). See Table 6.3 for values of domain width W chosen to ensure
homeostatic population size Z∗ = 100.
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Table 6.3: Values of domain width, W , for each combination of parameters λ/γ , α and
µ used in simulations of the one-dimensional Voronoi tessellation model with
contact inhibition.

µ = 6.25 µ = 62.5
α α

λ/γ 0.8 1.0 1.2 1.0

0.01 70.894 88.672 106.350 94.383
0.02 72.682 90.934 109.039 95.563
0.06 75.105 93.904 112.612 97.030
0.10 76.099 95.206 114.222 97.761
0.20 77.670 97.194 116.576 98.663
0.30 78.928 98.595 118.320 99.318
0.50 81.045 101.565 122.035 100.582
0.70 85.199 105.035 126.504 102.940

Figure 6.16 plots (b/c)∗ against λ/γ for different values of α . It is clear from

the figure that (b/c)∗ increases with decreasing λ/γ , however there is no variation

with α . Thus, the α dependence we observed for the 2D model (Figure 6.7), is

not present in 1D. Figure 6.16 also shows (b/c)∗ for the shift (decoupled) update

rule and death-birth update rule. The decoupled update rule seems to provide a

lower bound on (b/c)∗, as we would expect due to the fact that there is no spatial

coupling. Curiously, the value of (b/c)∗ for death-birth update rule is not an upper

bound, and is exceeded by the contact inhibition model, when λ/γ < 0.06. It is not

immediately obvious why this is the case and requires further investigation.

We argued in Section 6.4.2 that the decreased variation in cell area could ex-

plain why cooperation was more successful for smaller α in the 2D model, when

λ/γ was sufficiently small. The fact that α does not affect the coefficient of varia-

tion for cell lengths in the 1D model, and there is correspondingly no dependence

of (b/c)∗ on α in 1D, provides further evidence for this. We also plot the number

of isolated non-contact inhibited cells against the number of non-contact inhibited

cells in Figure 6.17. By contrast to the 2D case, plotted in Figure 6.12, there is no

clear relationship with α and λ/γ . In the 1D model, isolated non-contact inhibited

cells are rare in all cases, except when there is only a single non-contact inhibited

cell in the population.
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Figure 6.16: Critical benefit-to-cost ratios for the additive prisoner’s dilemma in the one-
dimensional Voronoi tessellation model with contact inhibition. These de-
pend on the death-to-birth rate ratio λ/γ , but not the quiescent area fraction
α . This is in contrast to the two-dimensional Voronoi tessellation model (see
Figure 6.7). The death-birth and decoupled update rules do not explicitly in-
clude size-dependent division, however a death-birth update can be interpreted
as strong contact inhibition and a decoupled update as no contact inhibition.
We set c = 1 and δ = 0.025. See Table 6.3 for values of domain width W
chosen to ensure Z∗ = 100

In Figure 6.18 we plot the BCFI, calculated according to Equation (6.6), for

deaths and divisions in the 1D VT model. Again we observe that, contrary to the 2D

model, there is no α dependence. Figure 6.19 plots (b/c)∗ against the final BCFI

around death. It is clear from the figure that (b/c)∗ increases with the final BCFI

around death, and this is independent of α . In other words, cooperative success

decreases as spatial coupling between death and division increases. Spatial coupling

in turn increases with the strength of contact inhibition, i.e. with decreasing λ/γ .

Figure 6.19 also plots results for the shift and death-birth update rules. There

is no spatial coupling for the shift update rule, thus the final BCFI around death

is zero. By contrast, the death-birth update rule always results in a neighbouring
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Figure 6.17: Expected number of non-contact inhibited (proliferating) cells that are iso-
lated from other non-contact inhibited cells in the one-dimensional Voronoi
tessellation model. These are obtained from simulations with neutral selec-
tion δ = 0. There is no clear relationship between α and the number of iso-
lated non-contact inhibited cells of the type we saw in the two-dimensional
model (see Figure 6.12). See Table 6.3 for values of domain width W chosen
to ensure Z∗ = 100
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Figure 6.18: Background corrected fate imbalance (BCFI) around a death (upper) or divi-
sion (lower) in the one-dimensional Voronoi tessellation model with contact
inhibition. The BCFI is calculated from Equation (6.6) using simulated data
with homeostatic population size Z∗ = 100 and neutral selection δ = 0. See
Table 6.3 for values of domain width W .

The BCFI around death or division quickly reaches a constant value which
depends on λ/γ , but not on α .
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Figure 6.19: Critical benefit-to cost ratio (b/c)∗ plotted against the final background cor-
rected fate imbalance (BCFI) around death, averaged over 1-3 days from the
fate event. It is clear that the relationship is independent of α . The red triangle
corresponds to a decoupled update rule (no contact inhibition), while the red
diamond represents a death-birth update rule. Critical benefit-to-cost ratios
are for the additive prisoner’s dilemma with c = 1 and δ = 0.025.
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division after a death, thus the final BCFI around death is one. Again, we can see

from this figure that the value of (b/c)∗ for the death-birth update does not fit into

the general trend.

As previously discussed, the 1D VT model has only a single equilibrium state

in which all cells are of equal length. This is in contrast to the 2D VT model,

and means that for a sufficiently high spring constant µ (or equivalently, low drag

coefficient η) the system will return to a state of equally spaced cells between death

and division events. The implication, as we discuss in more detail in Appendix F.4,

is that for high µ the variation in cell length is negligible, and thus the density-

dependence of proliferation will be global rather than local, as either all cells will

exceed the length-threshold or none will. Thus, increasing µ will move the system

closer to a decoupled update rule.

6.6 Discussion

This chapter has considered how contact inhibition is able to maintain homeostatic

population size within an epithelium, and in doing so leads to the spatial coupling of

death and division. The strength of this spatial coupling depends primarily on the

death-to-birth rate ratio λ/γ , with smaller values of λ/γ indicating both stronger

contact inhibition and spatial coupling. Results from Chapters 4 and 5 demonstrated

that the spatial coupling of death and division has a deleterious effect on coopera-

tion. Thus, we expected to see a decrease in cooperative success as the strength of

contact inhibition is increased.

We have indeed found that there is an inverse relationship between λ/γ and

the critical benefit-to-cost ratio (b/c)∗, indicating that stronger contact inhibition,

and thus spatial coupling, impedes cooperative success. However, we also found

that values of (b/c)∗ are affected by the quiescent area fraction α , and this depen-

dence cannot be explained by spatial coupling. In the higher α case, cooperation

is increasingly suppressed as spatial coupling becomes stronger. In the low α case,

spatial coupling must be much stronger for cooperation to be suppressed.

This result is curious, as it means that there is another mechanism promot-
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ing cooperation that we have not previously encountered, and that spatial coupling

does not necessarily have a strong deleterious effect on cooperation. The reason we

expect spatial coupling to oppose cooperation, is that it usually leads to local com-

petition for proliferation. We have, therefore, proposed that this does not always

hold, and it is possible in certain cases to have spatial coupling, but still maintain

some level of global competition.

This is plausible for smaller values of α , where we have seen that cell death

is more likely to result in only a single neighbour reaching the area threshold for

proliferation, compared to larger α . This is due to the fact that there is less variation

in cell area when α is smaller. The patterning of non-contact inhibited cells, thus,

consists more of isolated cells distributed across the tissue, compared to higher α

values, where cells tend to be more clustered. As competition for proliferation is

between non-contact inhibited cells, it can be characterised as more global when

α is smaller and more local when α is larger. The former situation is closer to a

decoupled update rule, and the latter to a death-birth update rule.

This phenomenon is likely due to the role α plays in determining the strength

of tension or compression within the tissue, which is connected to the distribution

of cell areas. Higher α leads to higher tissue tension and wider area distributions,

while lower α results in more compression and less variation in area. The depen-

dence of cooperative success on α is not observed in one-dimension, where α does

not affect the forces within the tissue or the length distribution of cells. It would

be useful to investigate the one-dimensional case more thoroughly, in particular to

consider how it is possible that strong contact inhibition leads to worse outcomes

for cooperation than the death-birth update rule, which we expect to be an upper

limit.

There are clearly important considerations for modelling evolutionary dynam-

ics in epithelia based on this result that contact inhibition, although it leads to spatial

coupling, does not necessarily have a detrimental effect on cooperative success. It

is worth, therefore, taking a moment to consider the biological significance, partic-

ularly with regard to the key parameters.
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In order to calculate λ/γ for a real epithelium, we need the proliferation rate

of freely dividing (non-contact inhibited) cells and either the proliferation rate or

rate of cell loss in a homeostatic tissue (these will be equal). As we discussed in

Section 6.2, data for kidney cells suggest a value of λ/γ = 0.012. This is on the

very low end of λ/γ values we have considered, suggesting contact inhibition, and

thus spatial coupling, is strong. Another experimental study has found strong spa-

tial coupling between cell differentiation (corresponding to “death” in our model)

and division in epidermal stem cells [110]. We cannot calculate λ/γ , as there are no

reported values for non-contact inhibited proliferation rates. The authors do, how-

ever, calculate the BCFI, which appears to reach values in the range 0.4–0.8. Within

our model, this corresponds to λ/γ < 0.3.

In general, we expect contact inhibition to be relatively strong to maintain

homeostasis within the epithelium. These examples show that this is true for kidney

epithelium and epidermal stem cells. We might naively assume, therefore, that this

implies poor conditions for cooperation. However, our results indicate that we can-

not fully understand the impact of contact inhibition without an estimation for α .

Recall that αA(0) is the minimum area at which a cell is able to proliferate. Deter-

mining this value for real epithelia would tell us how significant contact inhibition

is for the success of cooperation. If a direct measurement of α is difficult, it may be

possible to estimate it by considering its effect on the variation in cell area.

There are a number of considerations which could make this result more robust.

Firstly, a broader consideration of the parameter space is warranted. We consider,

in Appendix B, the implications of varying the spring constant µ for our original

formulation of the VT model, used in Chapters 4 and 5. However, it is possible

µ could play a more important role within the VT model with contact inhibition.

Essentially, µ determines how quickly the intercellular forces reach equilibrium. If

µ is sufficiently large, the forces will relax on a much faster time scale than division

and death occur. We have seen that this is particularly important for the 1D model

and that increasing µ brings the system closer to a decoupled update rule.

Another consideration is that the result depends on how the space occupied by
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a dead cell is redistributed amongst its surviving neighbours. Within the VT model,

we implement this simply by removing the dead cell, re-performing the VT, and

allowing the forces to relax over time. It would be useful to consider how closely

this redistribution of area matches the process in a real epithelium. It would also be

interesting to see if the results are repeatable using, for example, the vertex model,

which we outlined in Chapter 3.



Chapter 7

Conclusions

7.1 Discussion

Evolutionary game theory is increasingly used in cancer modelling [53, 55, 152],

both to elucidate tumorigenesis [32, 34, 40, 43, 52], and to inform potential treat-

ment strategies [48, 153–155]. Experimental evidence that malignant cells cooper-

ate to drive tumour growth has been found for breast cancer [156, 157] and glioblas-

toma [158]. Furthermore, evolutionary games have been explicitly quantified in

non-small cell lung cancer [159] and neuroendocrine pancreatic cancer cell cultures

[38]. These cancers both originate in epithelial cells, of the lung and pancreas,

respectively. Disrupting cooperation could therefore be important for improving

cancer treatment [160]. This thesis has sought to explore how the evolutionary

success of cooperation is affected by properties of an epithelium, in particular, the

population structure and update dynamics.

Game-theoretic cancer models usually rely on the assumption that cell popula-

tions are well-mixed or else represent structure as a fixed graph with a local update

rule. We have taken an alternative approach, by coupling evolutionary game theory

with an explicit model of an epithelium, the VT model. Using this framework we

have considered how realistic epithelial structure and update dynamics affect evo-

lutionary outcomes. One of the main restrictions of evolutionary graph theory is

that it usually requires local coupling of birth and death. Using the VT model has

enabled us to relax this restriction. Initially, in Chapters 4 and 5, we considered
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the case where birth and death were spatially independent. Later, in Chapter 6, we

incorporated contact inhibition into the VT model, which led to the reintroduction

of spatial coupling.

We have proposed that a general rule is that cooperators fare better if they in-

teract locally for game play, but compete for proliferation globally. We can class

all the models we have considered in terms of whether interactions and competition

are local or global. Thus, the VT model with decoupled update rule (local interac-

tion & global competition) promotes cooperation over the well-mixed population

(global interaction & global competition). It also promotes cooperation over the

death-birth and birth-death update rules, both within the framework of evolutionary

graph theory and when used in the VT model (local interaction & local compe-

tition). We have shown that this is true for both pairwise games and multiplayer

games in Chapters 4 and 5, respectively.

This rule can be understood intuitively. Local interactions allow cooperators

to interact preferentially with other cooperators, meaning a larger proportion of

the benefit is retained for the cooperator community. That local interactions, thus,

promote cooperation is an established result within evolutionary graph theory [6].

Local competition on the other hand, means that cooperators only directly com-

pete with defectors when they are close to one another. This gives an advantage to

the defectors, which have highest fitness when they have cooperator neighbours.

Cooperators have highest fitness when they are surrounded by other cooperators,

thus prefer competition to occur globally. Again, our result, that cooperators prefer

global competition is supported by previous findings for the shift update rule within

evolutionary graph theory [62, 63].

These results all consider a binary of local or global update rules, which re-

sult in local or global competition, respectively. However, our rule also holds for a

more realistic approach to the update dynamics of epithelia. In Chapter 6, we con-

sidered how contact inhibition affects cooperative success. We found that stronger

contact inhibition, as expected, tends to result in higher levels of spatial coupling

and consequently poorer outcomes for cooperation. However, we also uncovered
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a curious role for the quiescent area fraction, which affects the natural tension or

compression of the tissue, and thus the distribution of cell areas. In some cases

where the tissue is under compression and contact inhibition is strong, cooperation

can be more successful than in cases where the tissue is under tension, but contact

inhibition is weaker.

Although this seems to contradict our rule, it in fact highlights a more compli-

cated picture. It is true that stronger contact inhibition leads to the increased spatial

coupling of birth and death. However, as we discussed in Chapter 6, it is possible

for there to be a relatively high level of global competition in compressed tissues,

even when spatial coupling is strong. Thus, the rule still holds that cooperation

prefers local interaction and global competition. We must, however, be wary of the

fact that spatial coupling of birth and death does not always lead to correspondingly

local competition.

Our use of the VT model to consider evolutionary dynamics within an epithe-

lium has, thus, uncovered a much more nuanced picture of the connection between

spatial coupling, competition, and cooperative success. However, this comes with

the major drawback that the model is computationally expensive compared to evolu-

tionary graph theory or well-mixed population models. For most of our simulations,

we have kept the population size to a hundred cells. This is very small when we con-

sider that the human body is estimated to consist of three trillion cells [161]. Even

with this relatively small population size, the model is costly, especially when we

consider that to estimate a single fixation probability it is necessary to run tens of

thousands of simulations.

In the case where competition is fully global, due to the use of a decoupled

update rule, we have derived approximate analytical results for pairwise and mul-

tiplayer games, in Chapters 4 and 5, respectively. These give the conditions under

which a mutant is beneficial and/or favoured for any two-strategy game. These re-

sults rely on spatial statistics derived from the VT model by simulation, and could

be extended to larger population sizes. There are also known results from evolution-

ary graph theory, which allow us to predict evolutionary outcomes for birth-death
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and death-birth update rules [14, 15]. The VT model with contact inhibition how-

ever, is much harder to analyse, and thus, in Chapter 6, we have relied entirely on

simulation results.

It is useful, therefore, to use our insights from the VT model with contact

inhibition to consider when a death-birth or decoupled update rule can provide a

good approximation. For a compressed tissue, the decoupled update rule is a better

fit, except for very strong contact inhibition, when the death-birth update rule would

be more appropriate. When the tissue is under tension, the decoupled update rule is

the best approximation for weak contact inhibition, and the death-birth update rule

for strong contact inhibition. However, the transition between the two is less sharp,

meaning there is a significant intermediate regime, where neither is particularly

good.

Overall, we have seen that careful consideration of both population structure

and population updating is vital for predicting the evolutionary success of coop-

eration. Cancer models which utilise evolutionary games [54, 162] may therefore

underestimate the success of cooperative phenotypes, if they fail to account for pop-

ulation structure, or assume that death and division are more tightly coupled than is

realistic. For example, therapeutic strategies that aim to eliminate cooperation by

manipulating evolutionary dynamics, rely on accurate predictions of those dynam-

ics [35].

Interestingly, loss of contact inhibition is associated with malignancy [135],

suggesting that spatial coupling is weaker, and thus cooperation could be more suc-

cessful, than in healthy tissues. However, this could also depend on the mechanics

of the tumour or tissue. Understanding the nature of spatial coupling in real epithe-

lia, or in cancerous tumours, as well as the mechanical properties, i.e. whether cells

are under stretch or strain, could be crucial for predicting evolutionary outcomes.

Our general conclusion that local game play and global competition for off-

spring favour cooperation has implications beyond applications to cancer, where

cooperation unusually may be considered undesirable. In a societal context, where

cooperation is desirable, it may be promoted by engineering an environment rich
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in local social interactions, which nevertheless allows for imitation of successful

strategies more globally.

7.2 Future work

There are several promising avenues for future work following on from this the-

sis. Firstly, we consider extensions for the VT model with decoupled update rule,

analysed in Chapters 4 and 5. We have focused entirely on two-strategy games,

however, there are many examples of game-theoretic cancer models which involve

multiple strategies. Various studies have, for example, considered three or four strat-

egy games which represent the interdependence of glycolytic, angiogenetic and/or

invasive strategies [45, 47, 48]. These models have focused on the deterministic

dynamics of well-mixed populations. By considering extensions of the VT model

with decoupled update rule to multiple strategies, we could apply our analysis to

these types of scenarios.

For both pairwise and multiplayer games, we have assumed that cells inter-

act only with their direct neighbours. Whether this is a realistic assumption will

depend on the specific application. For example, for diffusible growth factors, it

will depend on their diffusion range. Unfortunately, these are often difficult to mea-

sure experimentally [92]. It would, therefore, be useful to consider different ranges

within our model, for example cells interacting in groups with their two- or three-

step neighbours. This would mean interactions become less local, thus we would

expect a detrimental effect on cooperation.

Another extension to our results for the decoupled update rule would be to

consider (i) whether our results are consistent with other two-dimensional tissue

models, such as the vertex model, and (ii) whether they can be extended to represent

three-dimensional tumours. Calculating fixation probabilities through simulation

is likely to be computationally infeasible for more complex models or in three-

dimensions. However, it should be possible to calculate spatial statistics and, thus,

use our approximate analytical results. It would also be possible to consider the

effect of explicit cell motility in the VT model.
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We have focused on relatively small population sizes, and the stochastic dy-

namics for which complete defection or complete cooperation are the only two

possible outcomes. However, tumours are known to exhibit heterogeneity, with

multiple clones coexisting [163]. Extending to larger population sizes would en-

able us to consider the existence of metastable mixed states, as has been done for

well-mixed [37] and graph structured populations [164].

For the VT model with contact inhibition we also propose a number of direc-

tions for future work. Firstly, we have touched on the possible importance of the

spring constant for the one-dimensional VT model, which determines how quickly

forces are relaxed. We suggest (i) considering this parameter in more detail for

the one-dimensional model, including the case where there are no forces, thus the

spring constant is effectively zero; and (ii) an analysis of the effect of varying the

spring constant in two dimensions. In one dimension, the only equilibrium state is

where all cells are of equal size, thus there is no spatial coupling if the forces relax

sufficiently quickly. This is unlikely to be true for two dimensions.

We also consider that we have used a very simple model of contact inhibition,

based on an area threshold for proliferation. It has been found that mechanical

measures, such as cell tension or energy, are better indicators for cell cycle duration

than geometric ones [165]. Furthermore, cell growth and realistic cell cycles could

be incorporated into the VT model.

Another proposal is to consider the evolutionary dynamics of a simple muta-

tion within the VT model with contact inhibition. By simple, we mean a mutation

with a given fitness that is independent of interactions with other cells. It is known

that population structure can amplify or suppress selection for simple mutations,

and that whether a particular graph is an amplifier or a suppressor depends on the

update rule [16, 83, 84]. Amplifiers tend to be more common for the birth-death

update rule, and suppressors for the death-birth update rule. We did not consider

simple mutations for the VT model with decoupled update rule, as it would result in

equivalent dynamics to the well-mixed population. For the VT model with contact

inhibition, however, there could be an effect in some regimes to suppress selection.
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Finally, there are several ways this work could be strengthened by experimental

data. This is particularly clear for the contact inhibition model, as we have a wide

range of behaviour, dependent on multiple parameters. Obtaining estimates for the

death-to-birth rate ratio and quiescent area fraction for different epithelia, could help

us understand which regimes are realistic, and to what extent simpler models, such

as the decoupled or death-birth update rules, can provide good approximations.



Appendix A

Abbreviations and symbols

A.1 Abbreviations

APD additive prisoner’s dilemma

BCFI background-corrected fate imbalance

CD cell diameter

DT Delaunay triangulation

HL hexagonal lattice

VT Voronoi tessellation

NPD N-player prisoner’s dilemma

PGG public goods game

VD volunteer’s dilemma

WM well-mixed
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A.2 Symbols
Symbols are listed in the order that they are first introduced within the thesis.

Chapter 2

R, S, T , P pairwise game payoffs

πX mean payoff to an individual of type X

πi payoff to individual i

π mean payoff for population

FX mean fitness of an individual of type X

F mean fitness taken for population

δ selection strength parameter

Z population size

x frequency of cooperators

n number of cooperators

T±n transition probabilities

γn ratio of transition probabilities T−n /T+
n

φn fixation probability for n initial cooperators

ρX fixation probability for a single initial X mutant

ρ0 neutral fixation probability

si type of an individual i

G neighbour connectivity graph

Ai j adjacency matrix for G

k number of neighbours or co-players

b benefit or maximum benefit

c cost paid by a cooperator

(b/c)∗ critical benefit-to-cost ratio (pairwise games)

(b/c)∗0 critical benefit-to-cost ratio at which ρC = ρ0

(b/c)∗1 critical benefit-to-cost ratio at which ρC = ρD

σ structure coefficient for a pairwise game

σ j j-th structure coefficient for a multiplayer game

N = k+1 group size for a multiplayer game
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a j, a j,k payoff to an A-player with j A-type co-players

b j, b j,k payoff to an B-player with j A-type co-players

Θ(x) Heaviside step function

β (x) normalised benefit function

α(x) logistic function

h inflection point of logistic function

s steepness of logistic function

Chapter 3

FS
i j force exerted on cell i due to j

FS
i total force on cell i

ri j displacement vector pointing from j to i

si j natural separation between cells i and j

sM natural separation between mature cells

ε initial separation between new sibling cells

tM time over which natural separation grows from ε to s

Ni set of cells which are neighbours of i

η drag coefficient

µ spring constant

∆t small time step

Chapter 4

λ per cell death rate

ΛCC
n expected proportion of cooperator neighbours for a cooperator

m probability of migration

Chapter 5

gk probability of having k co-players/neighbours

f A/B
j (n,k) probability that an A/B player interacts with j co-players of type A

G(n) gradient of selection
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Chapter 6

A(0) =
√

3
2 s2

M preferred cell area

α quiescent area fraction

Ai(t) area of cell i

Ā population mean cell area

γ per cell division rate of non-contact inhibited cells

λ/γ death to birth rate ratio

Zdiv number of non-cotact inhibited cells

Z∗ homeostatic population size

Z0 initial population size

Pdiv
i (t,∆t) probability cell i divides in (t,∆t)

Pdeath
i (t,∆t) probability cell i dies in (t,∆t)

W domain width

BCFIi(t) background-corrected fate imbalance for cell i

Li(t) length of cell i

L(0) preferred cell length



Appendix B

Varying the spring constant in the

Voronoi tessellation model with

decoupled update rule

In Chapters 4 and 5 we used parameter values for the Voronoi tessellation (VT)

model taken from [151] as shown in Table 2. Here we show that our main result of

Chapter 2, that the decoupling of birth and death promotes cooperation under the

additive prisoner’s dilemma (APD), is robust to changes in these values. In partic-

ular, we look at changes in the spring constant to drag coefficient ratio µ/η , which

determines how quickly relaxation occurs when the system is out of equilibrium

(i.e. birth or death has occurred). Varying this ratio while keeping the birth and

death rates λ constant, will alter the tissue dynamics and topology. This is clear

from Figure B.1, which shows the polygon (neighbour number) distributions for

different values of µ , while keeping η = 1 constant. Decreasing µ leads to more

variation in neighbour number.

To consider the effect of varying µ we calculate the fixation probability for

a range of values using the approximate analytical technique described in Sec-

tion 4.2.2 of the main text. We calculate ΛCC
n , defined by Equation (4.10), com-

putationally by running 500 simulations for each µ . The fixation probabilities are

then calculated using Equation (4.12) and the critical benefit-to-cost ratios, (b/c)∗,

using Equation (4.13). The critical benefit-to-cost ratios are plotted in Figure B.2.
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Figure B.1: Polygon distributions for various values of spring constant µ . In the main text
we use µ = 50. Decreasing µ below this value leads to increased variation
in side number around the mean. Each distribution is calculated from data
collected from three simulation runs of 100 hours simulation time.

We keep all other parameters constant, except for ∆t, which is set to be

∆t = 0.005×min
(

1,
50
µ

)
. (B.1)

This ensures that when µ is increased, ∆t remains small enough for numerical sta-

bility.

Figure B.2 shows that (b/c)∗ increases with µ . Increasing µ above 50 (the

value used in the main text) leads to small increases in (b/c)∗, but it remains well

below the values for death-birth updating (see Table 1). Decreasing µ below 50

leads to fast decreases in (b/c)∗, thus the success of cooperation is increased. It

is not possible without further investigation to ascertain whether this is due to the

changes in graph topology, or whether there are other effects to the tissue dynamics

which are promoting cooperation. Note that we do not claim this range of µ to be

biologically reasonable, indeed for low values of µ the forces will act so slowly that

it certainly is not realistic. We have chosen to show this large range of µ in order to

demonstrate the robustness of our result that decoupling birth and death promotes

cooperation in the Voronoi Tessellation model.
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Figure B.2: Critical benefit-to-cost ratio (b/c)∗ against the spring constant µ , for a coop-
erative mutant in the Voronoi Tessellation model with decoupled update rule.
The labelled point corresponds to the value of µ used in simulations in the
main text. Lower values of (b/c)∗ imply that cooperation is more successful,
thus cooperative success is decreasing with µ .



Appendix C

The additive prisoner’s dilemma with

strong selection

Throughout this thesis we have primarily analysed evolutionary games within the

limit of weak selection. This limit is commonly employed in order to obtain ana-

lytical results, e.g. [10, 14, 81]. Essentially, weak selection implies that the payoffs

obtained by playing the game are only a small contribution to overall fitness. It

allows expansion of fixation probabilities in powers of the selection strength pa-

rameter.

While analytical results are difficult to obtain for arbitrary selection strength,

we can use simulation to explore the behaviour of our models beyond weak selec-

tion. To do this we consider an exponential fitness mapping [166]:

Fi = exp{δπi}. (C.1)

This ensures that the fitnesses cannot be negative. For small δ we regain the lin-

ear fitness mapping: Fi ≈ 1+ δπi, which was introduced in Chapter 2, and used

throughout this thesis.

In Figure C.1 we plot the fixation probabilities ρC for a single initial cooper-

ator, playing the additive prisoner’s dilemma, for various non-small values of the

selection strength parameter δ . These are calculated by simulation for both the VT

model with decoupled update rule, and a fixed hexagonal lattice with death-birth
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update rule. We see from the figure that for arbitrary selection strength, the fixa-

tion probabilities are non-linear functions of the benefit-to-cost ratio b/c. We also

plot the theoretical results for weak selection (δ = 0.025) discussed in the main

text, i.e. Equation (4.12) for the VT model, which was derived in Chapter 4, and

Equation (2.37) for the hexagonal lattice [14], which we introduced in Chapter 2.

For the Voronoi tessellation model, we can see a range of behaviour in Fig-

ure C.1, depending on the value of δ . Firstly, for 0.025 < δ < 0.2, it appears that

increasing δ leads to higher fixation probabilities for all values of b/c we consider.

However, if we continue to increase δ beyond 0.2, we start to see the fixation prob-

abilities fall. This is particularly clear for higher values of b/c. For example, at

δ = 1 the fixation probability is maximised at b/c≈ 7.

Once δ is sufficiently large, e.g. for δ = 2 in Figure C.1, it appears that we

enter a regime where ρC < 1/Z for all b/c. This implies that if selection is too

strong, cooperation is never favoured.

We can understand this observation, because strong selection implies much

weaker stochasticity. Cells with high payoffs have a very high probability that they

are chosen to divide, compared to cells with low payoffs. Thus, this choice is near-

deterministic. As the system is always started with a single initial mutant coopera-

tor, which has lower payoffs than all other cells, there is a very low probability of

that cell dividing, and thus reaching a state which favours cooperators.
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Figure C.1: Fixation probability ρC for the additive prisoner’s dilemma game with varying
selection strength δ . Simulation results are shown for the Voronoi tessellation
model with decoupled update rule (A) and the hexagonal lattice with death-
birth update rule (B). In both cases population size is Z = 100. The dotted line
is the neutral fixation probability ρ0 = 1/Z and the solid line corresponds to
theoretical results for ρC calculated in the weak selection limit, where we have
set δ = 0.025. These are given by Equation (4.12) (A) and Equation (2.37)
(B).



Appendix D

Implications of the

antisymmetry-of-invasion property

In Section 5.2.3 we showed that the conditions for a mutant to be beneficial and

favoured are equivalent for games which satisfy the antisymmetry-of-invasion prop-

erty, defined by Equation (5.30). Here, we explore further some of the implications

of this property.

For games which satisfy antisymmetry-of-invasion, there is a fixed total payoff

which can be obtained when equal numbers of A and B co-players are distributed

between an A and B player. By this we mean that the A-player has j other A-players

in its group and k− j B-players, whilst the B-player has j other B-players, and k− j

A-players. Regardless of how the co-players are distributed (the value of j), the sum

of the payoffs to the A and B player are the same.

The implications of this property can be better understood if we consider sym-

metric invasion processes. Consider, for example an arbitrary evolutionary path

through the state space. This path can be represented by a sequence of states

S = (G0,s0)→ (G1,s1)→ ··· → (GL,sL) , (D.1)

where Gq are graphs representing the population structure at time tq and sq are Z-

dimensional vectors giving the type of each individual at time tq. Thus, [sq]i = 1

if the ith individual is an A-player and [sq]i = 0 if it is a B-player. Recall Z is the



161

population size. There are L transitions between states, each of which is caused by

an update event (i.e. a death and a division).

The symmetric invasion process S̃ is obtained by flipping the type of each

individual (A→ B and B→ A), as illustrated in Figure D.1. Thus

S̃ = (G0, s̃0)→ (G1, s̃1)→ ··· → (GL, s̃L) , (D.2)

where [s̃q]i = 1− [sq]i.

(a) Original state S. (b) Symmetric state S̃.

Figure D.1: Symmetric states. (a) a mutant clone of A-players is invading a population
of B-players. (b) a mutant clone of B-players is invading a population of A-
players. If the antisymmetry-of-invasion property holds a given A-player in
state (a) has payoff a j, the equivalent B-player in state (b) will have payoff
bk− j = Q−a j.

Given any evolutionary path S and a symmetric path S̃ we can show that, if the

antisymmetry-of-invasion property holds, the probabilities of each occurring are

related in the following way:

P(S)−P(S0) = P(S0)−P(S̃) , (D.3)

at least to O(δ ). Here, S0 is the evolutionary path with neutral selection δ = 0, i.e.

all individuals have the same fitness. Thus, if any given path has an advantage over

the neutral process, the symmetric path must have an equivalent disadvantage.

We can further show that the following relation between the fixation probability

for an A-player and the fixation probability of a B-player, denoted by ρA and ρB,
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respectively, must hold:

ρA−1/Z = 1/Z−ρB , (D.4)

again to O(δ ). Recall that ρ0 = 1/Z is the fixation probability for a neutral mutant.

Thus, antisymmetry-of-invasion ensures that ρA > ρ0 implies ρB < ρ0, and hence

that the conditions for A or B to be favourable are the same as to be beneficial.

Proof of Equation (D.3). Consider a path S as described by Equation (D.1). The

transition probability from state (Gq,sq) to (Gq+1,sq+1) is given by

P((Gq,sq)→ (Gq+1,sq+1)) = P(sq→ sq+1) ·P(Gq→ Gq+1|sq→ sq+1)

=
1

Z2

{
1+δ

[
πbirth(Gq,sq)−π(Gq,sq)

]}
·ψq ,

(D.5)

where πbirth is the payoff of the proliferating individual and π is the average payoff

in the population. The probabilities for transitions between graphs are given by

P(Gq→ Gq+1|sq→ sq+1) = ψq.

The probability of S occurring, given initial state (G0,s0), is given by multi-

plying the transition probabilities, i.e.

P(S) =
L−1

∏
q=0

P((Gq,sq)→ (Gq+1,sq+1)) , (D.6)

which in the weak selection limit δ → 0 becomes

P(S) =
1

Z2L (1+δX(S))Ψ(S)+O(δ 2) . (D.7)

Here,

X(S) =
L−1

∑
q=0

(
πbirth(Gq,sq)−π(Gq,sq)

)
(D.8)

and

Ψ(S) =
L−1

∏
q=0

ψq . (D.9)

The symmetric evolutionary path S̃ is equivalent to S, except that every individ-

ual has flipped its type. We assume that, in the weak selection limit at least, graph
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transitions do not depend on type, and thus, Ψ(S̃) = Ψ(S). The payoffs of course

do depend on type, thus we write

X(S̃) =
L−1

∑
q=0

(
πbirth(Gq, s̃q)−π(Gq, s̃q)

)
. (D.10)

If the antisymmetry-of-invasion property, defined by Equation (5.30), holds then

X(S̃) =
L−1

∑
q=0

(
(Q−πbirth(Gq,sq))− (Q−π(Gq,sq))

)
=−X(S) . (D.11)

Therefore, substituting into Equation (D.7), we obtain

P(S̃) =
1

Z2L (1−δX(S))Ψ(S)+O(δ 2) . (D.12)

Setting δ = 0 gives P(S0) = Ψ(S)/Z2L. Therefore, by summing Equations (D.7)

and (D.12), we obtain P(S)+P(S̃) = 2P(S0), from which Equation (D.3) follows.

Proof of Equation (D.4). The fixation probability for a single initial A-player is

obtained by summing P(Si) over all paths Si that start with a single initial A-player,

and end with fixation for A-players. Summing over Equation (D.7), we obtain

ρA = ∑
i

Ψ(Si)

Z2L(Si)
+∑

i

δΨ(Si)

Z2L(Si)
X(Si)+O(δ 2)

=
1
Z
+∑

i

δΨ(Si)

Z2L(Si)
X(Si)+O(δ 2) ,

(D.13)

where we have used the fact that the fixation probability for neutral selection (δ = 0)

is ρ0 = 1/Z. The fixation probability for B-players can similarly be obtained by

summing P(S̃i) over all paths S̃i that start from a single B-player and end with B-

player fixation. Thus,

ρB =
1
Z
−∑

i

δΨ(Si)

Z2L(Si)
X(Si)+O(δ 2) . (D.14)

Summing Equations (D.13) and (D.14) gives us ρA + ρB = 2/Z, and thus Equa-

tion (D.4).



Appendix E

Neighbour distributions in the

Voronoi tessellation model

In Sections 5.2.1 and 5.2.2 we derived conditions under which cooperation is

favoured and beneficial, given by Equations (5.16) and (5.22) respectively. These

derivations are based on the assumption that the frequency of cells with k neighbours

is a fixed distribution gk, independent of the cell type or the number of cooperators

in the population, n.

Figure E.1 plots neighbour distributions from simulations of the VT model

for cooperators and defectors at different values of n. It is clear from the plot that

the assumption is a reasonable one. The neighbour distributions are approximately

equal for different values of n and for the two cell types. The exception is when

there are either very few cooperators or very few defectors, i.e. near n = 1 and

n = 99 respectively. In the case where there is only one or very few cooperators,

the cooperator neighbour distribution becomes slightly more narrow. Similarly, the

defector neighbour distribution becomes more narrow when there are few defectors.
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Figure E.1: Neighbour distributions in the Voronoi tessellation model for cooperators (C)
and defectors (D), for varying cooperator population size n. Data is generated
from simulations with total population size Z = 100 and neutral selection δ =
0.



Appendix F

The Voronoi tessellation model with

contact inhibition

This appendix contains supplemental results for the Voronoi tessellation model with

contact inhibition, introduced in Chapter 6.

F.1 Error in the critical benefit-to-cost ratios
In Figure 6.7 we plotted the critical benefit-to-cost ratios (b/c)∗ for the Voronoi

tessellation model with contact inhibition for various values of λ/γ and α . Each

value of (b/c)∗ was obtained by running 3×104 simulations for a range of b/c

values, fitting a best fit line by linear regression, and finding the intersection with

b/c = 1/Z∗.

Ideally, to find a measure of the error we would repeat this process a number of

times and calculate the standard deviation of our predicted values of (b/c)∗. How-

ever, this is computationally unfeasible. Alternatively, we have divided our data

into ten separate batches, each of which contains the results of 3000 simulations.

For each batch, we have calculated (b/c)∗ by fitting a best fit line and finding the

intersection with b/c = 1/Z∗. We have then taken the mean and standard deviation

of these estimates and plotted the results in Figure F.1.

We find that the error bars are very large, particularly for small λ/γ . We at-

tribute this to the fact that 3000 simulations is not sufficient to obtain an accurate

estimate for the fixation probabilities which are in the order of 10−2. It is clear
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from Figure 6.6 that in some parameter regimes, fixation probabilities increase very

slowly with (b/c)∗. These cases, in particular, require large numbers of simulations

per data point, in order to obtain a reasonable estimate of the slope.
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Figure F.1: Error bars are plotted for the critical-benefit-to-cost ratios (b/c)∗. Data is the
same as for Figure 6.7 in the main text. However, here we have calculated
ten separate estimates for (b/c)∗ for each set of (λ/γ,α). Points are the mean
values and error bars show standard deviations.

F.2 Average distance between fate events
In Section 6.4.2 we considered the extent to which spatial coupling of death and

division events was dependent on key parameters of the Voronoi tessellation model

with contact inhibition by calculating the background corrected fate imbalance

(BCFI) around deaths and divisions. We found that spatial coupling between death

and division was stronger for smaller values of λ/γ , and that there was only a small

effect from varying α .

Here, we verify these results by considering the distance between a death or di-

vision and the n-th subsequent division. Average distances are plotted in Figure F.2.
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These are normalised to be in units of expected cell separation, which depends on

the parameters α and λ/γ . It is clear from the figure that the expected distance be-

tween a death and the next division decreases when λ/γ is decreased (upper panel),

as does the expected distance between a division and the next division (lower panel).

This is consistent with the results for the BCFI, as it implies that the level of spatial

coupling between death and a subsequent division is negatively correlated with the

value of λ/γ . Thus, stronger contact inhibition implies stronger spatial coupling.
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Figure F.2: Mean distance between the location of a death (upper panel) or division (lower
panel), and subsequent divisions, in the Voronoi tessellation model with contact
inhibition. Distances are normalised to be in units of the time-averaged mean
cell separation which is different for each parameter set. The dotted line is the
average distance between two cells. In the absence of contact inhibition or other
form of spatial coupling, this value would be the expected distance between a
division/death and any subsequent division.

There is also some small dependence on α , again consistent with the results

for the BCFI. However, this does not appear to be sufficient to explain the fact that

smaller α values promote cooperation (at least when λ/γ is sufficiently small). This

is clear from Figure F.3, which plots the critical benefit-to-cost ratio (b/c)∗ against
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the expected distance between death and the next division, for different values of α .
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Figure F.3: Critical benefit-to-cost ratio (b/c)∗ plotted against the average normalised dis-
tance between the location of a death and the next division. The value of (b/c)∗

is negatively correlated to the normalised distance, but also depends on the qui-
escent area fraction α . Critical benefit-to-cost ratios are for the additive pris-
oner’s dilemma with c = 1 and δ = 0.025.

F.3 Dependence of cell fitness on the critical area

fraction
In this section we consider whether the dependence of the critical benefit-to-cost

ratio (b/c)∗ on the critical area fraction α can be explained by differences in cell

fitness. We look at the case where λ/γ = 0.1 and compare α = 0.8 and α = 1.2,

which have (b/c)∗ = 3.8 and 4.8, respectively. For both regimes, we generate simu-

lation data with neutral selection δ = 0. Figure F.4a plots the proportion of cooper-

ator neighbours that are cooperators ΛCC
n , calculated for all cells in the population.

The higher the value of ΛCC
n for a given number of cooperators n in the population,

the higher the expected cooperator fitness. When birth and death are spatially de-

coupled, ΛCC
n can be used to calculate the fixation probabilities directly [138]. It is

clear there is negligible difference in the expectation and standard deviation of ΛCC
n

for α = 0.8 and α = 1.2. We also plot ΛCC
n calculated only for cells which are able

to proliferate (i.e. non-contact inhibited cells) in Figure F.4b. Again, there is neg-

ligible difference between the α = 0.8 and α = 1.2 cases. We therefore conclude

that the dependence of cooperative success on α cannot be explained by differences

in expected fitness.
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Figure F.4: Expected proportion of cooperator neighbours which are cooperators ΛCC
n and

the standard deviation σ , for the Voronoi tessellation model with contact inhi-
bition. Results are for λ/γ = 0.1 and show negligible difference for α = 0.8
and α = 1.2. Panel (a) takes the mean and SD over all cells in the tissue, while
panel (b) includes only cells which are able to proliferate, i.e. are not contact
inhibited. Results are calculated by running 500 tissue simulations to fixation,
with neutral selection δ = 0, and tracking clones which are defined as cells with
a common ancestor. Each clone gives us a potential cooperator cluster of size
n and we assume the cluster shapes are independent of the game.

F.4 Varying the spring constant in the one-dimensional

Voronoi tessellation model

The one-dimensional VT model, described in Section 6.5 has a single equilibrium

state. In this state all cells are of equal length. Therefore, if the ratio of spring

constant to drag coefficient (µ/η) is sufficiently high, the system will return to a

state of equally spaced cells on a faster time scale than death and division events
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occur. This can be seen in Figure F.5, where we plot the coefficient of variation for

cell length against µ , while keeping η = 1 constant. For high µ , there is very little

variation in the length of cells.
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Figure F.5: Coefficient of variation for cell lengths cv in the one-dimensional Voronoi tes-
sellation model varies with spring constant µ . The value of cv is taken as an
average over time, in three distinct simulations, with α = 1.0, λ/γ = 0.01 and
W = 88.672.

For larger values of µ the intercellular forces reach equilibrium on a much
faster time scale than division and death occur. The only equilibrium for the
one-dimensional spring system is the state with all cells of equal length, thus cv

is very small. For smaller µ relaxation is slower, thus we observe greater vari-
ation in cell lengths. Labelled values of µ indicate those used in simulations of
the additive prisoner’s dilemma.

When variation in cell length is very small, the density-dependence of prolif-

eration will be global rather than local, as either all cells will exceed the length

threshold or none will. Thus, we expect that increasing µ will move the system

closer to a decoupled update rule, with cooperation becoming increasingly suc-

cessful. For sufficiently high µ we expect (b/c)∗ to be independent of λ/γ . It is

computationally expensive to consider very high values of µ , because it requires a

correspondingly small timestep ∆t to maintain numerical stability when using the

forward Euler method (see Section 3.3). We have considered a value of µ = 62.5,

which is ten times larger than the original value and correspondingly set ∆t = 0.004.

Simulation results for (b/c)∗ with this increased value of µ are shown in Figure F.6.

As expected we see (b/c)∗ is reduced for all values of λ/γ and closer to the decou-
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pled update result, when compared with the results for µ = 6.25 in Figure 6.16.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

/

1.0

1.4

1.8

2.2

(b
/c

)*
death-birth update

decoupled update

Figure F.6: Critical benefit-to-cost ratios (b/c)∗ obtained for µ = 62.5 and α = 1.0 in the
one-dimensional Voronoi tessellation model, with those for death-birth and de-
coupled update rules. Values of (b/c)∗ increase with decreasing λ/γ , however
they remain smaller than the equivalent values for µ = 6.25 (see Figure 6.16).
Cooperation is, therefore, more successful when µ is higher.



Appendix G

Implementation of Voronoi

tessellation model

We have written bespoke code VTdyn to run simulations of the Voronoi tessellation

(VT) model in Python 2.7.15. The general code for running VT model simula-

tions is available at https://github.com/jessierenton/VTdyn. Spe-

cific code and data for Chapters 4 and 5 can be accessed at:

https://github.com/jessierenton/evo_epithelium and

https://github.com/jessierenton/pgg_epithelium, respectively.

The file structure is shown in Figure G.1. The main code is divided into two

subdirectories: structure and libs. Structure contains modules which define Tissue,

Mesh and Force objects. These store information for the tissue at a single timestep,

as defined by the VT model, and contain methods for updating the tissue, both ac-

cording to the force law at incremental time steps, and after a cell division or death.

The Mesh object contains all spatial information and is stored as an attribute of the

Tissue object. It also has methods for performing VT (or Delaunay triangulation)

when necessary to redetermine cellular neighbourhoods. The Force object deter-

mines the force law used to determine cell movement, and is also an attribute of the

Tissue. Other cell information, such as cell type, age and ancestry, can be stored as

Tissue attributes.

The libs subdirectory contains various modules with functions for running sim-

ulations, such as pd lib.py (used in Chapter 4), public goods lib.py (used in Chap-

https://github.com/jessierenton/VTdyn
https://github.com/jessierenton/evo_epithelium
https://github.com/jessierenton/pgg_epithelium
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ter 5) and contact inhibition lib.py in Chapter 6. For simulations with neutral selec-

tion, pd lib neutral.py is used.

In general these lib files contain a ‘run simulation’ function which sets up the

simulation and various ‘simulation . . . ’ functions which define different types of

simulations (e.g. for different update rules). These always take a Tissue object,

a (small) timestep, and a maximum number of steps as arguments. The simula-

tion loops through incremental timesteps, with the Tissue updating according to the

force law. Update events (or separate birth and death events) occur at each timestep

δ t, with probability λZδ t, where λ is the per cell event rate and Z is the population

size.

Also in the libs subdirectory are plot.py, which defines plotting functions

(torus plot and animate torus are the most useful), and data.py which contains help-

ful functions for data handling.

Finally, various files for running single simulations or multiple simulations are

in the main VTdyn directory. These import functions from a given lib file. We use

the python multiprocessing package to run simulations in parallel.

Most of the simulations in this thesis were run on a high performance com-

puting cluster. As an indicator of run time, it takes approximately 10 hours to run

10,000 simulations of the prisoner’s dilemma with decoupled updating on a cluster

machine, using 40 cores (i.e. running 40 simulations in parallel). These simulations

start with a single mutant and run to fixation. Note that this is a rough estimate, and

that the time will depend on the exact parameters.
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VTdyn

structure

init .py

cell.py

global constants.py

initialisation.py

mesh.py

libs

init .py

contact inhibition lib.py

data.py

density dep lib.py

pd lib.py

pd lib neutral.py

plot.py

public goods lib.py

run file1.py

run file2.py
...

Figure G.1: Directory tree for VTdyn code.
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[19] G. Szabó and G. Fáth, “Evolutionary games on graphs,” Physics Reports, vol.

446, no. 4-6, pp. 97–216, 2007.



BIBLIOGRAPHY 178

[20] P. D. Taylor, T. Day, and G. Wild, “Evolution of cooperation in a finite ho-

mogeneous graph,” Nature, vol. 447, no. 7143, pp. 469–472, 2007.

[21] H. Ohtsuki and M. A. Nowak, “Evolutionary stability on graphs,” Journal of

Theoretical Biology, vol. 251, no. 4, pp. 698–707, 2008.

[22] M. S. Krieger, A. McAvoy, and M. A. Nowak, “Effects of motion in struc-

tured populations,” Journal of the Royal Society Interface, vol. 14, no. 135,

p. 20170509, 2017.

[23] J. Tkadlec, A. Pavlogiannis, K. Chatterjee, and M. A. Nowak, “Population

structure determines the tradeoff between fixation probability and fixation

time,” Communications Biology, vol. 2, no. 1, pp. 1–8, 2019.

[24] A. Traulsen, M. A. Nowak, and J. M. Pacheco, “Stochastic dynamics of inva-

sion and fixation,” Physical Review E - Statistical, Nonlinear, and Soft Matter

Physics, vol. 74, no. 1, p. 011909, 2006.

[25] M. Archetti and I. Scheuring, “Review: Game theory of public goods in one-

shot social dilemmas without assortment,” Journal of Theoretical Biology,

vol. 299, pp. 9–20, 2012.

[26] S. Hummert, K. Bohl, D. Basanta, A. Deutsch, S. Werner, G. Theißen,

A. Schroeter, and S. Schuster, “Evolutionary game theory: Cells as players,”

Molecular BioSystems, vol. 10, no. 12, pp. 3044–3065, 2014.

[27] D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100,

pp. 57–70, 2000.

[28] D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: The next genera-

tion,” Cell, vol. 144, no. 5, pp. 646–674, 2011.

[29] E. Witsch, M. Sela, and Y. Yarden, “Roles for Growth Factors in Cancer

Progression,” Physiology, vol. 25, no. 2, pp. 85–101, 2010.



BIBLIOGRAPHY 179

[30] J. Jouanneau, G. Moens, Y. Bourgeois, M. F. Poupon, and J. P. Thiery, “A

minority of carcinoma cells producing acidic fibroblast growth factor in-

duces a community effect for tumor progression,” Proceedings of the Na-

tional Academy of Sciences of the United States of America, vol. 91, no. 1,

pp. 286–290, 1994.

[31] R. Axelrod, D. E. Axelrod, and K. J. Pienta, “Evolution of cooperation

among tumor cells,” Proceedings of the National Academy of Sciences of

the United States of America, vol. 103, no. 36, pp. 13474–13479, 2006.

[32] I. P. M. Tomlinson and W. F. Bodmer, “Modelling the consequences of inter-

actions between tumour cells,” British Journal of Cancer, vol. 75, no. 2, pp.

157–160, 1997.

[33] L. A. Bach, S. M. Bentzen, J. Alsner, and F. B. Christiansen, “An

evolutionary-game model of tumour-cell interactions: Possible relevance to

gene therapy,” European Journal of Cancer, vol. 37, no. 16, pp. 2116–2120,

2001.

[34] L. A. Bach, D. J. Sumpter, J. Alsner, and V. Loeschcke, “Spatial evolution-

ary games of interaction among generic cancer cells,” Journal of Theoretical

Medicine, vol. 5, no. 1, pp. 47–58, 2003.

[35] M. Archetti, “Evolutionarily stable anti-cancer therapies by autologous cell

defection,” Evolution, Medicine, and Public Health, vol. 2013, no. 1, pp.

161–172, 2013.

[36] M. Archetti, “Dynamics of growth factor production in monolayers of can-

cer cells and evolution of resistance to anticancer therapies,” Evolutionary

Applications, vol. 6, no. 8, pp. 1146–1159, 2013.

[37] M. Archetti, “Evolutionary game theory of growth factor production: Impli-

cations for tumour heterogeneity and resistance to therapies,” British Journal

of Cancer, vol. 109, no. 4, pp. 1056–1062, 2013.



BIBLIOGRAPHY 180

[38] M. Archetti, D. A. Ferraro, and G. Christofori, “Heterogeneity for IGF-II

production maintained by public goods dynamics in neuroendocrine pancre-

atic cancer,” Proceedings of the National Academy of Sciences of the United

States of America, vol. 112, no. 6, pp. 1833–1838, 2015.

[39] B. Allen, J. Gore, and M. A. Nowak, “Spatial dilemmas of diffusible public

goods,” eLife, vol. 2013, no. 2, 2013.

[40] M. Archetti, “Cooperation among cancer cells as public goods games on

Voronoi networks,” Journal of Theoretical Biology, vol. 396, pp. 191–203,

2016.

[41] O. Warburg, “On the origin of cancer cells,” Science, vol. 123, no. 3191, pp.

309–314, 1956.

[42] R. A. Gatenby, E. T. Gawlinski, A. F. Gmitro, B. Kaylor, and R. J. Gillies,

“Acid-mediated tumor invasion: A multidisciplinary study,” Cancer Re-

search, vol. 66, no. 10, pp. 5216–5223, 2006.

[43] D. Basanta, M. Simon, H. Hatzikirou, and A. Deutsch, “Evolutionary game

theory elucidates the role of glycolysis in glioma progression and invasion,”

Cell Proliferation, vol. 41, no. 6, pp. 980–987, 2008.

[44] I. Kareva, “Prisoner’s dilemma in cancer metabolism,” PLoS ONE, vol. 6,

no. 12, p. e28576, 2011.

[45] D. Basanta, J. G. Scott, R. Rockne, K. R. Swanson, and A. R. Anderson,

“The role of IDH1 mutated tumour cells in secondary glioblastomas: An

evolutionary game theoretical view,” Physical Biology, vol. 8, no. 1, 2011.

[46] M. Archetti, “Evolutionary dynamics of the Warburg effect: Glycolysis as a

collective action problem among cancer cells,” Journal of Theoretical Biol-

ogy, vol. 341, pp. 1–8, 2014.



BIBLIOGRAPHY 181

[47] M. Archetti, “Heterogeneity and proliferation of invasive cancer subclones in

game theory models of the Warburg effect,” Cell Proliferation, vol. 48, no. 2,

pp. 259–269, 2015.

[48] A. Kaznatcheev, R. Vander Velde, J. G. Scott, and D. Basanta, “Cancer treat-

ment scheduling and dynamic heterogeneity in social dilemmas of tumour

acidity and vasculature,” British Journal of Cancer, vol. 116, no. 6, pp. 785–

792, 2017.

[49] A. R. Anderson, M. Hassanein, K. M. Branch, J. Lu, N. A. Lobdell, J. Maier,

D. Basanta, B. Weidow, A. Narasanna, C. L. Arteaga, A. Reynolds, V. Quar-

anta, L. Estrada, and A. M. Weaver, “Microenvironmental independence

associated with tumor progression,” Cancer Research, vol. 69, no. 22, pp.

8797–8806, 2009.

[50] D. Basanta, J. G. Scott, M. N. Fishman, G. Ayala, S. W. Hayward, and A. R.

Anderson, “Investigating prostate cancer tumour-stroma interactions: Clin-

ical and biological insights from an evolutionary game,” British Journal of

Cancer, vol. 106, no. 1, pp. 174–181, 2012.

[51] I. P. M. Tomlinson, “Game-theory models of interactions between tumour

cells,” European Journal of Cancer Part A, vol. 33, no. 9, pp. 1495–1500,

1997.

[52] D. Basanta, H. Hatzikirou, and A. Deutsch, “Studying the emergence of in-

vasiveness in tumours using game theory,” European Physical Journal B,

vol. 63, no. 3, pp. 393–397, 2008.

[53] R. C. Rockne, A. Hawkins-Daarud, K. R. Swanson, J. P. Sluka, J. A. Glazier,

P. Macklin, D. A. Hormuth, A. M. Jarrett, E. A. Lima, J. Tinsley Oden,

G. Biros, T. E. Yankeelov, K. Curtius, I. Al Bakir, D. Wodarz, N. Ko-

marova, L. Aparicio, M. Bordyuh, R. Rabadan, S. D. Finley, H. Enderling,

J. Caudell, E. G. Moros, A. R. Anderson, R. A. Gatenby, A. Kaznatcheev,

P. Jeavons, N. Krishnan, J. Pelesko, R. R. Wadhwa, N. Yoon, D. Nichol,



BIBLIOGRAPHY 182

A. Marusyk, M. Hinczewski, and J. G. Scott, “The 2019 mathematical on-

cology roadmap,” Physical Biology, vol. 16, no. 4, p. 41005, 2019.

[54] R. A. Gatenby and J. S. Brown, “Integrating evolutionary dynamics into can-

cer therapy,” Nature Reviews Clinical Oncology, vol. 17, no. 11, pp. 675–686,

2020.

[55] B. Wölfl, H. te Rietmole, M. Salvioli, F. Thuijsman, J. S. Brown, B. Burg-
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[89] J. Penã, B. Wu, and A. Traulsen, “Ordering structured populations in multi-

player cooperation games,” Journal of the Royal Society Interface, vol. 13,

no. 114, p. 20150881, 2016.

[90] F. C. Santos, M. D. Santos, and J. M. Pacheco, “Social diversity promotes

the emergence of cooperation in public goods games,” Nature, vol. 454, no.

7201, pp. 213–216, 2008.

[91] A. Li, M. Broom, J. Du, and L. Wang, “Evolutionary dynamics of general

group interactions in structured populations,” Physical Review E - Statistical,

Nonlinear, and Soft Matter Physics, vol. 93, no. 2, pp. 1–18, 2016.

[92] M. Archetti, I. Scheuring, and D. W. Yu, “The non-tragedy of the non-linear

commons,” Preprints, 2020, 2020040226.

[93] L. A. Bach, T. Helvik, and F. B. Christiansen, “The evolution of n-player

cooperation - Threshold games and ESS bifurcations,” Journal of Theoretical

Biology, vol. 238, no. 2, pp. 426–434, 2006.

[94] M. Archetti, “The volunteer’s dilemma and the optimal size of a social

group,” Journal of Theoretical Biology, vol. 261, no. 3, pp. 475–480, 2009.

[95] M. Archetti, “Cooperation as a volunteer’s dilemma and the strategy of con-

flict in public goods games,” Journal of Evolutionary Biology, vol. 22, no. 11,

pp. 2192–2200, 2009.

[96] A. McAvoy and C. Hauert, “Asymmetric evolutionary games,” PLoS Com-

putational Biology, vol. 11, no. 8, 2015.

2020040226


BIBLIOGRAPHY 187

[97] T. Antal, A. Traulsen, H. Ohtsuki, C. E. Tarnita, and M. A. Nowak,

“Mutation-selection equilibrium in games with multiple strategies,” Journal

of Theoretical Biology, vol. 258, no. 4, pp. 614–622, 2009.

[98] N. Champagnat, R. Ferrière, and G. B. Arous, “The canonical equation of

adaptive dynamics: a mathematical view,” Selection, vol. 2, no. 1-2, pp. 73–

83, 2002.
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