
Inverse Problems

PAPER • OPEN ACCESS

Recovering the potential and order in one-dimensional time-fractional
diffusion with unknown initial condition and source*

To cite this article: Bangti Jin and Zhi Zhou 2021 Inverse Problems 37 105009

 

View the article online for updates and enhancements.

This content was downloaded from IP address 144.82.114.152 on 10/09/2021 at 16:02

https://doi.org/10.1088/1361-6420/ac1f6d
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsuYRTbLw9sIe1h5jOVgwiU336aEj38F47AxSeA6UjXPn96RWUyBY_IThXAA-p3fmSKe2BAcGXmR06hBLwqctxn83tKmenaLIBKrFM-IeLm3q0T_4Uuk0YPSgM6D-K1g8fSGgUZ2NvlGGx4HeJiaArIKuv69_VfQaEvpQXFQk7fMPqPy45cdLNzdn-DePj0HSiKwlwwNS-w1MOUtI2tzVj9Lval25WuNLAjWsxurHYVtseaUq-IGXvuhn4hdud0mzZMoq5Q3gyySSKFJnkpz_gatT4_YZA-4ZlE&sig=Cg0ArKJSzNMRUq9cNqXB&fbs_aeid=[gw_fbsaeid]&adurl=http://iopscience.org/books


Inverse Problems

Inverse Problems 37 (2021) 105009 (28pp) https://doi.org/10.1088/1361-6420/ac1f6d

Recovering the potential and order in
one-dimensional time-fractional diffusion
with unknown initial condition and source

∗

Bangti Jin1,∗∗ and Zhi Zhou2

1 Department of Computer Science, University College London, Gower Street,
London WC1E 6BT, United Kingdom
2 Department of Applied Mathematics, The Hong Kong Polytechnic University,
Kowloon, Hong Kong Special Administrative Region of China

E-mail: b.jin@ucl.ac.uk and zhizhou@polyu.edu.hk

Received 31 May 2021, revised 26 July 2021
Accepted for publication 19 August 2021
Published 7 September 2021

Abstract
This paper is concerned with an inverse problem of recovering a potential
term and fractional order in a one-dimensional subdiffusion problem, which
involves a Djrbashian–Caputo fractional derivative of order α ∈ (0, 1) in time,
from the lateral Cauchy data. In the model, we do not assume a full knowl-
edge of the initial data and the source term, since they might be unavailable
in some practical applications. We prove the unique recovery of the spatially-
dependent potential coefficient and the orderα of the derivation simultaneously
from the measured trace data at one end point, when the model is equipped with
a boundary excitation with a compact support away from t = 0. One of the ini-
tial data and the source can also be uniquely determined, provided that the other
is known. The analysis employs a representation of the solution and the time
analyticity of the associated function. Further, we discuss a two-stage proce-
dure, directly inspired by the analysis, for the numerical identification of the
order and potential coefficient, and illustrate the feasibility of the recovery with
several numerical experiments.
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1. Introduction

This paper is concerned with an inverse problem associated with a one-dimensional time-
fractional diffusion equation. Let Ω = (0, 1) be the unit interval, and T > 0 be a fixed final
time. Consider the following time-fractional diffusion problem for the function u:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂α
t u −Au = f , in Ω× (0, T],

− a(0)∂xu(0, t) = g(t), in (0, T],

u(1, t) = 0, in (0, T],

u(0) = u0, in Ω,

(1.1)

where f ∈ L2(Ω) and u0 ∈ L2(Ω) are the (unknown) source term and initial data, respectively.
The second-order elliptic operator A is defined by

Au(x) = ∂x(a(x)∂xu(x)) − q(x)u(x), x ∈ Ω,

for a ∈ C2(Ω) and q ∈ L∞(Ω), and a � a0 > 0 and q � 0 in Ω. In the model, the notation ∂α
t u

denotes the Djrbashian–Caputo fractional derivative of order α ∈ (0, 1) in time, defined by
[16, 26, 35]

∂α
t u(t) =

1
Γ(1 − α)

∫ t

0
(t − s)−αu′(s)ds.

It is known that the Djrbashian–Caputo fractional derivative ∂α
t u(t) recovers the usual first-

order derivative u′(t) as α→ 1−, and accordingly the model (1.1) reduces to the classical
diffusion equation.

The model (1.1) has been studied extensively in the engineering, physical and mathematical
literature due to its extraordinary capability for describing anomalous diffusion phenomena. It
can be viewed as the macroscopic counterpart of continuous time random walk in which the
waiting time between consecutive particle jumps follows a heavy-tailed distribution with a
divergent mean, and the probability density function of the particle appearing at location x at
time t > 0 satisfies a model of the form (1.1), in analogy with the classical diffusion equation
for Brownian motion [30]. The model (1.1) inherits certain analytic properties of the latter, but
also differs considerably due to the presence of the nonlocal fractional derivative term ∂α

t u: it
has limited smoothing property in space and slow asymptotic decay in time [16, 38]. The list
of successful applications is long and still fast growing, including thermal diffusion in fractal
domains [33], dispersion in a heterogeneous aquifer [1] and transport in column experiments
[11] etc. See the comprehensive reviews [29, 30] for the derivation of relevant mathematical
models and many applications in physics and biology.

In this work, the inverse problem of interest is to recover the potential q ∈ Q := {q ∈
C(Ω) : q � 0 inΩ} in the elliptic operator A and the order α of derivation from the bound-
ary observational data at the left end point h(t) = u(0, t) for t ∈ [0, T]. Note that in the model
(1.1), besides the potential q and the order α, the space-dependent source term f and the initial
data u0 are both unknown. The situation that the initial data u0 is inaccessible arises natu-
rally, e.g. in heat conduction in high-temperature furnace [43]. To make the matter worse, only
one single boundary observation data (at the left end) is available, which makes the inverse
problem much more challenging both mathematically and numerically. The ability of choos-
ing the boundary excitation g(t) is indispensable for the unique recovery, without which the
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identifiability generally does not hold, as indicated by example 3.1 below. In theorems 3.1 and
3.2, we present a uniqueness result for recovering the potential q in the operator A and the
order α of derivation. The proof employs suitable solution representation in proposition 2.1,
analyticity in time in proposition 2.2 and Gel’fand–Levitan theory. Further, we discuss the
numerical reconstruction by a two-stage procedure inspired directly by the analysis: at stage
(i), we numerically continuate the boundary observation data h(t) by rational functions, and
at stage (ii), we perform a standard least-squares procedure to recover the potential q using
the conjugate gradient (CG) method (with proper early stopping). The simulation study with
exact data indicates that the recovery is feasible. The uniqueness result, the two-stage recovery
procedure and the numerical verification of the recovery represent the main contributions of
this work.

Next we situate the work in existing literature. The recovery of the space-dependent poten-
tial q in the classical diffusion equation from lateral Cauchy data has been extensively dis-
cussed, and several uniqueness results have been obtained [31, 34, 41]. The study on related
inverse problems for time-fractional models is of more recent origin, starting from [7] (see [19]
for an early tutorial) and there are a few works on recovering a spatially dependent potential
from lateral Cauchy data [22, 36, 37, 44]. Rundell and Yamamoto [36] showed that the lateral
Cauchy data can uniquely determine the spectral data when u0 ≡ f ≡ 0, and proved the unique-
ness of the potential q by the classical Gel’fand–Levitan theory. They also proposed a recovery
procedure based on Newton’s method and empirically studied the singular value spectrum of
the linearized forward map, showing the severe ill-posed nature of the inverse problem. Later,
they [37] relaxed the regularity condition on the boundary excitation g(t) (in a suitable Sobolev
space in time). Recently, Jing and Yamamoto [22] proved the identifiability of multiple param-
eters (including order, spatially dependent potential, initial value and Robin coefficients in the
boundary condition) simultaneously in the one-dimensional subdiffusion/diffusion-wave (i.e.
α ∈ (0, 2)) equation with a zero boundary condition and source, excited by a nontrivial ini-
tial condition from the lateral Cauchy data at both end points (cf remark 3.2 for details). See
also the work [44] for relevant results in the diffusion wave case; and [21] for the case of a
Robin boundary conditions. In all these existing works, the initial condition/source is assumed
to be fully known, so that the forward map is well defined, which differs from the current
work. There are two closely related inverse problems to the concerned one. (i) is to recover the
spatially dependent potential q from the terminal data u(T ) [20, 23, 47], which enjoys much
better stability estimates (e.g. local Lipschitz stability) and effective iterative algorithms for
numerical recovery, e.g. fixed point iterations. (ii) is to recover a time-dependent potential q(t)
from time-dependent observations [15] (or a time-dependent source from observation at one
point [28]), which behaves similarly to (i) due to the directional alignment of the unknown and
observations.

The rest of the paper is organized as follows. In section 2, we derive a crucial representation
of the solution to the direct problem (1.1). Then in section 3, we prove the unique recovery
of the order α and the potential q. In section 4, we describe a two-stage numerical algorithm
for recovering the potential q. Last, we present several numerical experiments to show the
feasibility of the simultaneous recovery in section 5. Throughout, the notation c denotes a
generic constant which may differ at each occurrence, and (·, ·) denotes the standard L2(Ω)
inner product (or duality pairing).

2. Well-posedness of the direct problem

In this section, we collect several preliminary results on the direct problem (1.1), especially
the solution representation, which will play an important role in the study.
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2.1. Preliminaries

First we describe several preliminary results that will be used in deriving the solution represen-
tation. We use extensively the two-parameter Mittag-Leffler function Eα,β(z) defined by (see,
e.g. [10] and [16, section 3.1])

Eα,β(z) =
∞∑

k=0

zk

Γ(kα+ β)
, z ∈ C.

It is an entire function of order 1
α

and type one. The following properties hold
[16, section 3.1].

Lemma 2.1. For any α ∈ (0, 2) and β ∈ R, the following statements hold.

(a) For any ϕ ∈ (α2 π, min(π,απ)), the following asymptotics hold

|Eα,β(z)| �
{

c(1 + |z|)−1, β − α /∈ Z− ∪ {0},

c(1 + |z|2)−1, β − α ∈ Z− ∪ {0},
ϕ � | arg(z)| � π.

(b) For any λ > 0, the following Laplace transform relation holds

L[tβ−1Eα,β(−λtα)](z) =
zβ−α

λ+ zα
, R(z) > 0.

(c) The following differentiation formula holds for any λ ∈ C

d
dt

Eα,1(−λtα) = −λtα−1Eα,α(−λtα).

Next, we introduce Bochner–Sobolev spaces Wα,p(0, T; X), for a UMD space X
(see [13, chapter 4] for the definition of UMD spaces, which include Sobolev spaces Ws,p(Ω)
with s � 0 and 1 < q < ∞). For any s � 0 and 1 � p < ∞, we denote by Ws,p(0, T; X) the
space of functions v : (0, T) → X, with the norm defined by complex interpolation. Equiva-
lently, the space is equipped with the quotient norm

‖v‖Ws,p(0,T;X) := inf
ṽ
‖ṽ‖Ws,p(R;X) := inf

ṽ
‖F−1

[
(1 + |ξ|2)

s
2 F (ṽ)(ξ)

]
‖Lp(R;X),

where the infimum is taken over all possible ṽ that extend v from (0, T) to R, andF denotes the
Fourier transform. In case that X = R, we denote Ws,p(0, T;R) by Ws,p(0, T) for convenience.
The next lemma provides a norm equivalence result [17, lemma 2.3].

Lemma 2.2. Let α ∈ (0, 1) and p ∈ [1,∞) with αp > 1.

(a) If v(0) = 0 and ∂α
t v ∈ Lp(0, T; X), then v ∈ Wα,p(0, T; X) and

‖v‖Wα,p(0,T;X) � c‖∂α
t v‖Lp(0,T;X).

(b) If v(0) = 0 and v ∈ Wα,p(0, T; X), then ∂α
t v ∈ Lp(0, T; X) and

‖∂α
t v‖Lp(0,T;X) � c‖v‖Wα,p(0,T;X).

4



Inverse Problems 37 (2021) 105009 B Jin and Z Zhou

2.2. Well-posedness of the direct problem

Now we study the direct problem (1.1), especially the solution representation. One distinct
feature of problem (1.1) is that it involves a nonzero Neumann boundary condition, which has
not been extensively studied in the literature ([25, 37] for relevant works). Following [37], we
exploit the one-dimensional nature of problem (1.1), and derive a series representation of the
solution u. The derivation is based on the standard separation of variable technique (see, e.g.
[38] and [16, section 6.2]). Specifically, let A be the realization of the elliptic operator −A in
L2(Ω), with its domain

D(A) := {v ∈ L2(Ω) : Av ∈ L2(Ω), v′(0) = v(1) = 0}.

Let {(λn,ϕn)}∞n=1 be the eigenpairs of the operator A, i.e.

{
−Aϕn = λnϕn, in Ω,

ϕ′
n(0) = 0, ϕn(1) = 0.

(2.1)

By the standard Sturm–Liouville theory [27], the spectrum of the operator A consists of a
strictly increasing sequence of positive eigenvalues {λn}∞n=1 and the associated eigenfunctions
{ϕn}∞n=1 can be chosen to form an orthonormal basis of the space L2(Ω). By means of Liouville
transformation, we deduce that the eigenvalues λn grow asymptotically as O(n2) [27] (also
known from Weyl’s law [45]):

λn =

(∫ 1

0
a(x)−

1
2 dx

)−1

(n − 1
2 )2π2 + O(1), n →∞.

The unnormalized eigenfunctions ϕn satisfy the following asymptotics [27, section 2 of
chapter 1]:

ϕn(x) =

(
√

2 cos

[ (
n − 1

2

)
π∫ 1

0 a(s)−
1
2 ds

∫ x

0
a(s)−

1
2 ds

]
+ O

(
1
n

))
a(x)−

1
4 , n ∈ N. (2.2)

This estimate implies that the L2(Ω)-orthonormal eigenfunctions are uniformly bounded.
Then we define the fractional power As, s � 0, by

Asv =
∞∑

n=1

λs
n(v,ϕn)ϕn,

with its domain {v ∈ L2(Ω) : Asv ∈ L2(Ω)}, and the associated graph norm ‖ · ‖D(As) given by

‖v‖D(As) =

( ∞∑
n=1

λ2s
n (v,ϕn)2

) 1
2

.

For s < 0, D(As) is identified with the dual space of D(A−s).
With these preliminaries, we can now study the direct problem (1.1). In view of the linearity

of the problem, we may split the solution u into two parts: u = ui + ub, with ui and ub solving
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respectively ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂α
t ui −Aui = f , in Ω× (0, T],

− a(0)∂xui(0, t) = 0, in (0, T],

ui(1, t) = 0, in (0, T],

ui(0) = u0, in Ω,

and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂α
t ub −Aub = 0, in Ω× (0, T],

− a(0)∂xub(0, t) = g, in (0, T],

ub(1, t) = 0, in (0, T],

ub(0) = 0, in Ω.

With the eigenexpansion {(λn,ϕn)}∞n=1, the solution ui can be represented by (see e.g. [38]
and [16, section 6.2])

ui(x, t) =
∞∑

n=1

(u0,ϕn)Eα,1(−λntα)ϕn(x) +
∞∑

n=1

∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)( f ,ϕn)dsϕn(x).

(2.3)

When the source f is time independent, by lemma 2.1(c), we have

ui(x, t) =
∞∑

n=1

(u0,ϕn)Eα,1(−λntα)ϕn(x) +
∞∑

n=1

λ−1
n [1 − Eα,1(−λntα)]( f ,ϕn)ϕn(x)

=

∞∑
n=1

(
[(u0,ϕn) − λ−1

n ( f ,ϕn)]Eα,1(−λntα) + λ−1
n ( f ,ϕn)

)
ϕn(x). (2.4)

Further, we have the following a priori estimate on the solution ui.

Lemma 2.3. If u0 ∈ D(Aβ) with β ∈ (0, 1) and f ∈ Lp(0, T; L2(Ω)) with αp ∈ (1, (1 − β)−1),
then there is a unique solution ui ∈ Wα,p(0, T; L2(Ω)) ∩ Lp(0, T; H2(Ω)) such that

‖ui‖Wα,p(0,T;L2(Ω)) + ‖ui‖Lp(0,T;H2(Ω)) � c
(
‖Aβu0‖L2(Ω) + ‖ f ‖Lp(0,T;L2(Ω))

)
. (2.5)

Proof. When f ≡ 0 and u0 ∈ D(Aβ), there holds (see e.g. [16, section 6.2])

‖∂α
t ui‖L2(Ω) + ‖Aui‖L2(Ω) � ct−α(1−β)‖Aβu0‖L2(Ω),

which further implies for p ∈ (0, (α(1 − β))−1)

‖∂α
t ui‖Lp(0,T;L2(Ω)) + ‖Aui‖Lp(0,T;L2(Ω)) � cT‖Aβu0‖L2(Ω).

Then the elliptic regularity theory implies ui ∈ Lp(0, T; H2(Ω)). Meanwhile, lemma 2.2(a)
leads to ui − u0 ∈ Wα,p(0, T; L2(Ω)), so is ui. For the case that u ≡ 0 and f ∈ Lp(0, T; L2(Ω)),
we refer to [16, theorem 6.11] for a detailed proof. �
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Next we turn to the a representation of the solution ub. We need the following identity.

Lemma 2.4. For α ∈ (0, 1) and g ∈ C1[0, T], there holds

∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)∂α

s g(s)ds = g(t) − g(0)Eα,1(−λntα)

−
∫ t

0
λn(t − s)α−1Eα,α(−λn(t − s)α)g(s)ds.

Proof. A variant of the identity can be found in [37, section 2], and we recap the proof only
for completeness. We denote the integral on the left-hand side by S. Then changing the order
of integration gives

S =
1

Γ(1 − α)

∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)

(∫ s

0
(s − ξ)−αg′(ξ)dξ

)
ds

=
1

Γ(1 − α)

∫ t

0
g′(ξ)

(∫ t

ξ

(t − s)α−1Eα,α(−λn(t − s)α)(s − ξ)−α ds

)
dξ

=
1

Γ(1 − α)

∫ t

0
g′(ξ)

(∫ t−ξ

0
ηα−1Eα,α(−λnη

α)(t − ξ − η)−αdη

)
dξ,

where the last line follows from the change of variables η = t − s. Moreover, by
the definition of Eα,α(−λntα) and applying termwise integration [16, (3.5)], we have

1
Γ(1−α)

∫ t
0η

α−1Eα,α(−λnη
α)(t − η)−α dη = Eα,1(−λntα). Thus, by integration by parts and

lemma 2.1(c), we obtain

S =

∫ t

0
g′(ξ)Eα,1(−λn(t − ξ)α)dξ

= [g(ξ)Eα,1(−λn(t − ξ)α)]ξ=t
ξ=0 −

∫ t

0
g(ξ)

d
dξ

Eα,1(−λn(t − ξ)α)dξ

= g(t) − g(0)Eα,1(−λntα) −
∫ t

0
λn(t − s)α−1Eα,α(−λn(t − s)α)g(s)ds.

This completes the proof of the lemma. �

Now we can derive a representation of the solution ub, corresponding to nonzero boundary
conditions. The derivation essentially exploits the one-dimensional nature of the problem.

Proposition 2.1. Let α ∈ (0, 1) and p > 4/(3α). Suppose g1 ∈ Lp(0, T), g2 ∈ Wα,p(0, T)
and g2(0) = 0. Then the solution u to the following initial boundary value problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂α
t u −Au = 0, in Ω× (0, T],

− a(0)∂xu(0, t) = g1(t), in (0, T],

u(1, t) = g2(t), in (0, T],

u(0) = 0, in Ω,

(2.6)

7
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can be represented by

u(x, t) =
∞∑

n=1

∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)g1(s)dsϕn(0)ϕn(x)

−
∞∑

n=1

∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)g2(s)ds a(1)ϕ′

n(1)ϕn(x).

(2.7)

Proof. The derivation proceeds by homogenizing the boundary conditions. First, we assume
g1, g2 ∈ C1[0, T], which will be relaxed below. Let

v(x, t) = u(x, t) − φ0(x)g1(t) − g2(t), with φ0(x) = (2a(0))−1(x − 1)2.

Clearly, φ′
0(0) = −a(0)−1. Then direct computation shows

∂α
t v = ∂α

t u(x, t) − φ0(x)∂α
t g1(t) − ∂α

t g2(t) = Av(x, t) + f̃ (x, t),

with

f̃ (x, t) = A(φ0(x)g1(t) + g2(t)) − φ0(x)∂α
t g1(t) − ∂α

t g2(t).

Next we evaluate the boundary conditions:

−a(0)v′(0, t) = −a(0)(u′(0, t) − φ′
0(0)g1(t))

= −a(0)u′(0, t) + a(0)φ′(0)g1(t) = g1(t) − g1(t) = 0,

v(1, t) = u(1, t) − g2(t) = 0.

Thus, the function v satisfies

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂α
t v −Av = f̃ , in Ω× (0, T),

− a(0)∂xv(0, t) = 0, in (0, T],

v(1, t) = 0, in (0, T],

v(0) = −φ0g1(0) − g2(0), in Ω.

By the construction, we have v(0) ∈ D(As) with s ∈ (0, 1
4 ) and f̃ ∈ L∞(0, T; L2(Ω)). Since the

function v satisfies homogeneous boundary conditions, by the standard separation of variable
technique (see e.g. [38] or [16, section 6.1]), it can be represented by

v(x, t) =
∞∑

n=1

Eα,1(−λntα)(ϕn, v(0))ϕn(x)

+
∞∑

n=1

∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)(ϕn, f̃ (s))dsϕn(x).

8
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Next we simplify the second term. By the definition of f̃ and using lemma 2.4, we deduce∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)(ϕn, f̃ (s))ds

=−
∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)[∂α

s g1(s)(φ0,ϕn) − g1(s)(Aφ0,ϕn)]ds

−
∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)[∂α

s g2(s)(1,ϕn) − g2(s)(A1,ϕn)ds]

=−
[

g1(t) − g1(0)Eα,1(−λntα)

−
∫ t

0
λn(t − s)α−1Eα,α(−λn(t − s)α)g1(s)ds

]
(φ0,ϕn)

+

∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)g1(s)ds(Aφ0,ϕn)

−
[

g2(t) − g2(0)Eα,1(−λntα)

−
∫ t

0
λn(t − s)α−1Eα,α(−λn(t − s)α)g2(s)ds

]
(1,ϕn)

+

∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)g2(s)ds(A1,ϕn)

=−
[
g1(t) − g1(0)Eα,1(−λntα)

]
(φ0,ϕn)

−
[
g2(t) − g2(0)Eα,1(−λntα)

]
(1,ϕn)

+

∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)g1(s)ds [λn(φ0,ϕn) + (Aφ0,ϕn)]

+

∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)g2(s)ds [λn(1,ϕn) + (A1,ϕn)] .

Next we evaluate the last two terms in the square bracket. By Green’s identity, for any φ ∈
H2(Ω),

λn(φ,ϕn) + (Aφ,ϕn) = −(φ,Aϕn) + (Aφ,ϕn) = aφ′ϕn|x=1
x=0 − aφϕ′

n|x=1
x=0.

Using this identity, the two terms in the square bracket can be evaluated as

λn(φ0,ϕn) + (Aφ0,ϕn) = −a(0)(−a(0)−1)ϕn(0) + a(0)(2a(0))−1ϕ′
n(0) = ϕn(0),

λn(1,ϕn) + (A1,ϕn) = −aϕ′
n|x=1

x=0 = −a(1)ϕ′
n(1).

Consequently, we arrive at∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)(ϕn, f̃ (s))ds

=−
[
g1(t) − g1(0)Eα,1(−λntα)

]
(φ0,ϕn)

−
[
g2(t) − g2(0)Eα,1(−λntα)

]
(1,ϕn)

9
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+

∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)g1(s)dsϕn(0)

−
∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)g2(s)ds a(1)ϕ′

n(1).

This identity and the representation of v lead to

v(x, t) =− φ0(x)g1(t) − g2(t)

+

∞∑
n=1

∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)g1(s)dsϕn(0)ϕn(x)

−
∞∑

n=1

∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)g2(s)ds a(1)ϕ′

n(1)ϕn(x).

Now the definition of the function u concludes the proof of the proposition for g1, g2 ∈
C1[0, T].

Next, we prove the assertion for g1 ∈ Lp(0, T), g2 ∈ Wα,p(0, T) by a density argument. First,
we assume that g1 ≡ 0 and g2 ∈ Wα,p(0, T). Since C1[0, T] is dense in Wα,p(0, T), for any
g2 ∈ Wα,p(0, T), there exists a sequence {g�

2}∞�=1 ⊂ C1[0, T] such that g�
2(0) = g2(0), and g�

2 →
g2 in Wα,p(0, T). Then by lemma 2.2 (b) we conclude ∂α

t g�
2 → ∂α

t g2 in L2(0, T). Then by the a
priori estimate in lemma 2.3, we have vg�2

→ vg2 in Wα,p(0, T; L2(Ω)) ∩ Lp(0, T; H2(Ω)). Then,

we assume that g2 ≡ 0 and g1 
= 0. By the expression of the function u, for any g1 ∈ C1[0, T],
there holds for arbitrarily small ε > 0 [17, theorem 5.2]

‖u‖
Wα,p

(
0,T;D

(
A− 1

4 −ε
)) + ‖u‖

Lp
(

0,T;D

(
A

3
4 −ε

)) � c‖g1‖Lp(0,T).

By means of the complex interpolation and the density of C1[0, T] in Lp(0, T), we deduce
that for any g1 ∈ Lp(0, T), the representation (2.7) provides a solution of problem (2.6), and
u ∈ Ws,p(0, T; L2(Ω)) with s < 3α

4 , which embeds compactly into C([0, T]; L2(Ω)) [3, theorem
5.2]. �

The following representation of the observation data h(t) = u(0, t) is direct.

Corollary 2.1. The observation data h(t) = u(0, t) to problem (1.1) can be represented by

h(t) =
∞∑

n=0

ρnEα,1(−λntα)

+

∞∑
n=1

∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α)ϕn(0)g(s)dsϕn(x),

with

λ0 = 0, ρ0 =

∞∑
n=1

λ−1
n ( f ,ϕn)ϕn(0),

ρn(x) = [(u0,ϕn) − λ−1
n ( f ,ϕn)]ϕn(0), n = 1, 2, . . .

10



Inverse Problems 37 (2021) 105009 B Jin and Z Zhou

Proof. The assertion is direct from proposition 2.1 and the identity (2.4). Indeed, we have

u(x, t) =
∞∑

n=1

Eα,1(−λntα)(ϕn, u0)ϕn(x)

+

∞∑
n=1

∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α) (( f ,ϕn) + ϕn(0)g(s)) dsϕn(x).

Then by lemma 2.1(c), we have
∫ t

0 sα−1Eα,α(−λnsα)ds = λ−1
n (1 − Eα,1(−λntα)). This directly

leads to the desired identity. �

Remark 2.1. Let the solution operators E(t) and F(t) be defined by

E(t)v =

∞∑
n=1

(v,ϕn)tα−1Eα,α(−λntα)ϕn and F(t)v =

∞∑
n=1

(v,ϕn)Eα,1(−λntα)ϕn.

Then the solution u can be formally represented with

u(t) = F(t)u0 +

∫ t

0
E(t − s)[δ0(x)g(s) + f ]ds,

where δ0(x) denotes the Dirac delta function concentrated at x = 0. Indeed, we can expand
δ0(x) in terms of the L2(Ω) orthonormal basis {ϕn}∞n=1 in D(A)′ (the dual space of D(A))
as δ(x) =

∑∞
n=1ϕn(0)ϕn(x). Then substituting the identity and collecting the terms lead to

the desired identity. Alternatively, the solution can also be represented concisely using the
fractional θ functions; see [16, section 7.1] for relevant discussions.

Next we study the convergence of the series in corollary 2.1. First, note that for f ∈ D(A−s)
with 0 � s < 3

4 , the constant ρ0 is well defined. Indeed, by (2.2) and the Cauchy–Schwarz
inequality, and asymptotics for the eigenvalues {λn}∞n=1, we have

|ρ0| � c

( ∞∑
n=1

λ−2s
n ( f ,ϕn)2

) 1
2
( ∞∑

n=1

λ−2(1−s)
n

) 1
2

� c‖ f ‖D(A−s)

( ∞∑
n=1

n−4(1−s)

) 1
2

< ∞.

For the remaining series, we give two analyticity results concerning the following two auxiliary
functions:

h1(t) =
∞∑

n=1

ρnEα,1(−λntα) and h2(t) =

∞∑
n=1

|ϕn(0)|2tα−1Eα,α(−λntα).

They arise naturally in the uniqueness proof, and the analyticity plays an important role in
section 3.

Proposition 2.2. For u0, f ∈ L2(Ω), the following statements hold.

(a) Both h1(t) and h2(t) are analytic in t on (0,∞).
(b) The Laplace transforms of h1(t) and h2(t) exist and are given respectively by

L[h1(t)](z) =
∞∑

n=1

ρnzα−1

zα + λn
and L[h2(t)](z) =

∞∑
n=1

ϕn(0)2

zα + λn
, ∀ R(z) > 0.

11
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Proof. By lemma 2.1(a), there exists a constant c and θ0 > 0 such that

|Eα,1(−λnzα)| � cλ−1
n |z|−α, ∀ n ∈ N and z ∈ Σ := {z ∈ C : | arg(z)| < θ0}.

By the asymptotic estimate (2.2) of the eigenfunctions {ϕn}∞n=1, we deduce |ϕn(0)| � c
uniformly in n. Consequently,

|Eα,1(−λnzα)ρn| � c|z|−αλ−1
n (|(u0,ϕn)|+ λ−1

n |( f ,ϕn)|), ∀ x ∈ Ω, z ∈ Σ,

and by Weyl’s asymptotics of the eigenvaluesλn and the Cauchy–Schwarz inequality, we have

|h1(z)| �
∞∑

n=1

|Eα,1(−λntα)ρn| � c|z|−α
∞∑

n=1

λ−1
n (|(u0,ϕn)|+ λ−1

n |( f ,ϕn)|)

� c|z|−α

( ∞∑
n=1

|(u0,ϕn)|2 + λ−2
n |( f ,ϕn)|2

) 1
2
( ∞∑

n=1

n−4

) 1
2

< c|z|−α, ∀ z ∈ Σ. (2.8)

Since Eα,1(−λnzα) is analytic in z ∈ Σ, we deduce that the series in analytic in t. The analyticity
of h2(t) follows similarly as h1(t), but with the following estimate from lemma 2.1(a): there
exists a constant c and θ0 > 0 such that

|Eα,α(−λnzα)| � c(1 + λ2
n|z|2α)−1, ∀ n ∈ N and z ∈ Σ := {z ∈ C : | arg(z)| < θ0}.

Then by Weyl’s asymptotics of the eigenvalues λn, for any γ ∈ ( 1
2 , 1),

|h2(z)| � c|z|α−1
∞∑

n=1

λ−γ
n |z|−γα � c|z|(1−γ)α−1

∞∑
n=1

n−2γ < c|z|(1−γ)α−1.

Since Eα,α(−λnzα) is analytic in z ∈ Σ, we deduce that the series in analytic in t. These dis-
cussions show assertion (a). Next, for any t > 0, both series converge uniformly in [t,∞), and
there holds

|e−tzh1(t)| � ce−tR(z)t−α

( ∞∑
n=1

|(u0,ϕn)|2 + λ−2
n |( f ,ϕn)|2

) 1
2
( ∞∑

n=1

n−4

) 1
2

� ce−tR(z)t−α, t > 0,

and the function e−tR(z)t−α is integrable in t over (0,∞) for any fixed z with R(z) > 0. By
Lebesgue dominated convergence theorem, we can take Laplace transform termwise and by
lemma 2.1(b), we obtain

∫ ∞

0
e−zt

∞∑
n=1

ρnEα,1(−λntα)dt =
∞∑

n=1

ρn

∫ ∞

0
e−ztEα,1(−λntα)dt

=

∞∑
n=1

ρnzα−1

zα + λn
, R(z) > 0.

12
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Thus, the Laplace transform of h1(t) exists. The Laplace transform of h2(t) follows similarly
from the estimate

|e−tzh2(t)| � ce−tR(z)t(1−γ)α−1
∞∑

n=1

n−2γ � ce−tR(z)t(1−γ)α−1,

and since γ < 1, the function e−tR(z)t(1−γ)α−1 is integrable in t over (0,∞) for any fixed z with
R(z) > 0. Then by Lebesgue dominated convergence theorem and lemma 2.1(b), we obtain
for R(z) > 0 ∫ ∞

0
e−zt

∞∑
n=1

|ϕn(0)|2tα−1Eα,α(−λntα)dt =
∞∑

n=1

|ϕn(0)|2

∫ ∞

0
e−zttα−1Eα,α(−λntα)dt =

∞∑
n=1

ϕn(0)2

zα + λn
.

This shows assertion (b), and completes the proof of the proposition. �

3. Uniqueness

In this section, we study the uniqueness of the inverse problem: given the observation h(t) =
u(0, t) at the left end point x = 0, can we uniquely determine the potential q and the order α?
Note that without any restriction on the boundary data g, the desired uniqueness result does
not hold. This is illustrated by the following example with a zero excitation g ≡ 0.

Example 3.1. Let g ≡ 0, a ≡ 1, and α ∈ (0, 1). Then consider the following two sets of
problem data:

(a) q ≡ 0, f (x) = π2

8 (cos πx
2 + 9 cos 3πx

2 ), u0(x) = 1
2 cos πx

2 + 3
2 cos 3πx

2 ;
(b) q̃ ≡ 5π2

4 , f̃ (x) = 9π2

4 cos πx
2 , ũ0(x) = 2 cos πx

2 .

Then the eigenvalues {λn(q)}∞n=1 and L2(Ω) orthonormal eigenfunctions {ϕn}∞n=1 are given
respectively by

λn(q) = (n − 1
2

)2π2 + q and ϕn(x) =
√

2 cos((n − 1
2

)πx), n = 1, 2, . . . .

By corollary 2.1, the solution u to the direct problem (1.1) is given by

u(x, t) =
∞∑

n=1

((u0,ϕn) − λn(q)−1( f ,ϕn))Eα,1(−λn(q)tα)ϕn(x)

+

∞∑
n=1

λn(q)−1( f ,ϕn)ϕn(x).

Thus the solutions u and ũ for cases (a) and (b) are given respectively by

u(x, t) =
1
2

cos
π

2
x +

1
2

cos
3π
2

x + Eα,1

(
−9π2

4
tα
)

cos
3π
2

x and

ũ(x, t) =

[
1 + Eα,1

(
−9π2

4
tα
)]

cos
πx
2
.

13
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Thus, in both cases, the boundary observation h is given by h(t) = 1 + Eα,1(− 9π2

4 tα), and it is
impossible to determine the potential q uniquely from h for t ∈ [0, T]. This shows the impos-
sibility of uniquely recovering the potential q in the operator A generally, even if it is assumed
to be a constant, and consequently, the desired identifiability result does not hold. Thus, we
excite the system by a nonzero boundary condition g in order to ensure that the data h contains
sufficient information to determine q uniquely.

Now we proceed to the uniqueness. The proof is split into two steps, and both steps rely
on the time analyticity result in proposition 2.2. The first step is concerned with the unique
recovery of the order α and partial information of the unknown initial data u0/source f . The
notation K denotes the set {k ∈ N : ρk 
= 0}, i.e. the support of the sequence (ρ0, ρ1, . . .), with
the constants ρk defined in corollary 2.1, and the set K̃ is defined similarly. It is worth noting
that the set K is not a priori known, since the elliptic operatorA is not q). The conditionK 
= ∅
holds as long as h(t) 
= constant on [0, T2], and thus it is very mild.

Theorem 3.1. Let (q, f , u0), (q̃, f̃ , ũ0) ∈ A× L2(Ω) × L2(Ω), and h, h̃ be the corresponding
observations. Let 0 � T1 < T2 < ∞, and the boundary excitation g = g̃ = 0 for t ∈ [0, T2].
Then the identity h(t) = h̃(t), t ∈ [T1, T2] implies ρ0 = ρ̂0, {(ρk,λk)}k∈K = {(ρ̃k, λ̃k)}k∈K̃ and
α = α̃, if K 
= ∅.

Proof. Since g ≡ 0 for t ∈ [0, T2], it follows from corollary 2.1 that h(t) admits a Dirichlet
representation

h(t) = ρ0 +
∑
k∈K

ρkEα,1(−λktα).

By proposition 2.2(a), h(t) is an analytic function in t > 0. By analytic continuation, the
condition h(t) = h̃(t) for t ∈ [T1, T2] holds implies h(t) = h̃(t) for all t > 0, i.e.

ρ0 +
∑
k∈K

ρkEα,1(−λktα) = ρ̃0 +
∑
k∈K̃

ρ̃kEα̃,1(−λ̃ktα̃).

Using the decay property of Eα,1(−η) in lemma 2.1(a), cf (2.8), we derive ρ0 = ρ̃0, λ0 = λ̃0

and hence ∑
k∈K

ρkEα,1(−λktα) =
∑
k∈K̃

ρ̃kEα̃,1(−λ̃ktα̃), ∀ t > 0.

Now by proposition 2.2(b), we obtain

∑
k∈K

ρkzα−1

zα + λk
=

∑
k∈K̃

ρ̃kzα̃−1

zα̃ + λ̃k
.

From this identity we shall deduce α = α̃ and {(ρ,λk)}k∈K = {(ρ̃k, λ̃k)}k∈K̃ First, we prove
α = α̃. Assuming that α > α̃, dividing both sides by zα̃−1 and setting η = zα, we have

∑
k∈K

ρkη
1− α̃

α

η + λk
=

∑
k∈K̃

ρ̃k

η
α̃
α + λ̃k

.

14
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Choosing arbitrary k0 ∈ K and rearranging terms, we derive

ρk0η
1− α̃

α =

⎛
⎝∑

k∈K̃

ρ̃k

η
α̃
α + λ̃k

−
∑

k∈K,k 
=k0

ρkη
1− α̃

α

η + λk

⎞
⎠ (η + λk0 ).

Letting η →−λk0 and noting that α > α̃, the right-hand side of the identity tends to zero (not-

ing that all λ̃k are all real and positive, and arg((−λk0 )
α̃
α ) = α̃π

α ∈ (0, π), and hence ρk0 = 0,
which contradicts the assumption k0 ∈ K. Therefore, we deduce α � α̃. The identical argu-
ment yields α � α̃, so we conclude α = α̃. The preceding discussion yields∑

k∈K

ρk

η + λk
=

∑
k∈K̃

ρ̃k

η + λ̃k
. (3.1)

In view of the asymptotics of the eigenvalues λn and λ̃n, i.e. λn = O(n2) and λ̃n = O(n2), both
sides of the identity converge uniformly in any compact subset in C\({−λk}k∈K ∪ {−λ̃k}k∈K̃)
and are analytic in C\({−λk}k∈K ∪ {−λ̃k}k∈K̃). Assume that λ j /∈ {λ̃k}k∈K̃ for some j ∈ K.
Then we can choose a small circle C j centered at −λ j and {−λ̃k}k∈K̃ is not included in the disk
centered at −λ j enclosed by C j. Integrating on C j and applying the Cauchy theorem, we obtain
2πiρ j
λ j

= 0, which contradicts the assumption ρ j 
= 0. Hence, λ j ∈ {λ̃k}k∈K̃ for every j ∈ K.

Likewise, λ̃ j ∈ {λk}k∈K for every j ∈ K̃. Consequently, we have proved {λk}k∈K̃ = {λ̃k}k∈K̃,
and from (3.1), we obtain∑

k∈K

ρk − ρ̃k

η + λk
= 0, ∀ η ∈ C\{−λk}k∈K.

By selecting j ∈ K, and integrating over C j, we obtain 2πi(ρ j−ρ̃ j)
λ j

= 0, which directly implies
ρ j = ρ̃ j. This completes the proof of the theorem. �
Remark 3.1. If f ≡ 0, and (u0,ϕn) 
= 0, n ∈ N, then theorem 3.1 implies that the sequence
{(λn, (u0,ϕn))}∞n=1 is uniquely determined by the lateral Cauchy data on [T1, T2]. However,
this does not imply that u0 is uniquely determined yet, since the potential q and also the
eigenfunctions ϕn are still unknown. A similar observation can be made when u0 ≡ 0 and
f 
= 0.

The next result gives the unique recovery of the potential.

Theorem 3.2. Suppose that (q, f , u0), (q̃, f̃ , ũ0) ∈ A× L2(Ω) × L2(Ω). Fix 0 � T1 < T2 <
T < ∞, and suppose that the boundary condition g ∈ L∞(0, T) satisfies g = 0 on [0, T2] and
g 
= 0 on [T2, T]. Then the identity h(t) = h̃(t), t ∈ [T1, T] implies q = q̃.

Proof. In view of the linearity of problem (1.1), we can decompose the data h(t) into

h(t) = u(0, t; 0, f , u0) + u(0, t; g, 0, 0), t ∈ (0, T],

with the components u(0, t; 0, f , u0) and u(0, t; 0, f , u0) given by

u(0, t; 0, f , u0) =
∑
k∈K

ρkEα,1(−λktα),

u(0, t; g, 0, 0) =
∞∑

n=1

∫ t

0
(t − s)α−1Eα,α(−λn(t − s)α−1)u(s)ds|ϕn(0)|2,

15
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respectively, which solves problem (1.1) with g ≡ 0 and f = u0 ≡ 0, respectively, cf
proposition 2.1. According to the boundary excitation g, the interval [0, T] can be divided
into two subintervals: (0, T2] and [T2, T1]. For t ∈ (0, T2), it follows directly from theorem
3.1 that {(ρk,λk)}k∈K = {(ρ̃k, λ̃k)}k∈K̃ and α = α̃, from which we have u(0, t; 0, f , u0) =
ũ(0, t; 0, f̃ , ũ0) for all t > 0. For t ∈ [T2, T], this and the identity h(t) = h̃(t) lead to
u(0, t; g, 0, 0) = ũ(0, t; g̃, 0, 0). This leads to

∞∑
n=1

∫ t

T2

(t − s)α−1Eα,α(−λn(t − s)α−1)g(s)ds|ϕn(0)|2

=

∞∑
n=1

∫ t

T2

(t − s)α−1Eα,α(−λ̃n(t − s)α−1)g(s)ds|ϕ̃n(0)|2, t ∈ [T2, T]

Since g ∈ L2(T2, T) is nonzero for almost all t ∈ (T2, T) and the kernel belongs to L1(0,∞), it
follows from Titchmarsh convolution theorem [42, theorem 7] that

∞∑
n=1

tα−1Eα,α(−λntα−1)|ϕn(0)|2 =
∞∑

n=1

tα−1Eα,α(−λ̃ntα−1)|ϕ̃n(0)|2, t ∈ [0, T − T2].

Now by the analyticity of the functions on both sides, cf proposition 2.2(a), we have

∞∑
n=1

tα−1Eα,α(−λntα−1)|ϕn(0)|2 =
∞∑

n=1

tα−1Eα,α(−λ̃ntα−1)|ϕ̃n(0)|2, t ∈ (0,∞).

Note that ϕn(0) 
= 0 for all n ∈ N, similar to the proof of theorem 3.1, one can show

{(λn, |ϕn(0)|)}n∈N = {(λ̃n, |ϕ̃n(0)|)}n∈N.

Finally by the classical Gel’fand–Levitan theory [9, 27], we deduce q = q̃. �

Corollary 3.1. If one of the functions u0 and f is zero, then the other can be uniquely
determined from the observation h(t), t ∈ [0, T].

Proof. We consider the case f ≡ 0, and the other case u0 ≡ 0 follows similarly. By theorem
3.2, the potential q is uniquely determined by h(t), t ∈ [T1, T], and thus also the eigenfunctions
ϕn(x) associated with the corresponding elliptic operatorA. Then by theorem 3.1, the sequence
{(u0,ϕk)}k∈K is uniquely determined, which directly gives the unique recovery of the initial
data u0. �

Remark 3.2. There have been several works on identifying multiple parameters from one
single observation [22, 24, 46]. The recent work [22] is closest to the current one in some sense,
which is concerned with the following model on Ω = (0, 1), with α ∈ (0, 2),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂α
t u −Au = 0, in Ω× (0, T],

a(0)∂xu(0, t) − hu(0, t) = 0, in (0, T],

a(1)∂xu(1, t) + H(1, t) = 0, in (0, T],

u(0) = u0, in Ω,

u′(0) = u′
0, in Ω, if α ∈ (1, 2).
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The inverse problem is to recover u0, q, α, h and H from two boundary observations, i.e. u(0, t)
and u(1, t). They proved the uniqueness of the recovery under the following condition (for
α ∈ (0, 1)): (u0,ϕn) 
= 0, for all n ∈ N [22, theorem 1]. This condition assumes that all the
eigenmodes of the initial value u0 should be nonzero, which is generally restrictive, and can be
relaxed using multiple initial conditions [22, theorem 1′]. In contrast, theorem 3.2 relies on the
nonzero boundary excitation g(t) for the potential recovery, and thus avoids this assumption.

Remark 3.3. There are several potential extensions of the stated uniqueness results. (1)
The results hold also for the multi-term time-fractional model, which involves multiple time
fractional derivatives, i.e. the term ∂α

t u in the model (1.1) is replaced by
∑N

i=1ri∂
αi
t u, with ri >

0 and 0 < α1 < . . . < αN < 1. Then the weights ri and αi are uniquely determined, provided
that h(0) 
= 0. (2) One can uniquely determine the diffusion coefficient a when the potential q
is known, by a different version of Gel’fand–Levitan theory [7]. (3) The boundary conditions
can be of more general Sturm–Liouville form. Then the Robin coefficients in the boundary
conditions can also be determined uniquely from lateral Cauchy data [22], cf remark 3.2.

The preceding analysis indicates that the both steps rely essentially on unique continuation,
which is well known to be severe ill-conditioned. A natural question is how the fractional
paradigm actually affects the degree of ill-conditioning, measured in terms of the asymptotic
decay rate of the singular value spectrum of the associated (linearized) forward map. This issue
has been numerically studied for several inverse problems in [19]; see also [36] for the inverse
potential problem. However, a theoretical analysis in the context of potential recovery from
lateral Cauchy data is still unavailable.

4. Reconstruction algorithm

Now we describe an algorithm for simultaneously recovering the potential q, the order α, and
also u0, under the assumption f ≡ 0 (or also f , if u0 ≡ 0). The procedure is directly inspired
by the uniqueness proof, and consists of two steps.

4.1. Step 1: order determination and numerical continuation

In the first step, we determine the fractional order α and numerically continuate the trace data
h(t) from [0, T1] to the whole interval [0, T] (to assist the recovery of the potential q). We
discuss the two issues separately. The recovery of the order α cannot be carried out in the
usual manner by means of least-squares fitting, since the problem data in the direct problem
(1.1) over the interval [0, T1] is not fully known. The next result suggests one possible recovery
formula for the order α from the small time asymptotics of the observation h(t), under suitable
smoothness condition u0 and f , if the function Au0 + f does not vanish at x = 0.

Proposition 4.1. If u0 ∈ D(A1+s) and f ∈ D(As) with s ∈ ( 1
4 , 5

4 ], then for any ε ∈ (0, s − 1
4 ),

h(t) = u(0, t) satisfies the following asymptotic

h(t) = u0(0) − (Au0(0) + f (0))tα + O

(
t
(

1− 1
4−

ε
2+s

)
α
)

, as t → 0+.

Proof. By the definition of the Mittag-Leffler function Eα,1(z), we have

Eα,1(−λntα) = 1 − λntα + λ2
nt2αEα,1+2α(−λntα).

17



Inverse Problems 37 (2021) 105009 B Jin and Z Zhou

This and the solution representation from corollary 2.1 lead to

u(x, t) =
∞∑

n=1

(
[(u0,ϕn) − λ−1

n ( f ,ϕn)]Eα,1(−λntα) + λ−1
n ( f ,ϕn)

)
ϕn(x)

=

∞∑
n=1

(u0,ϕn)ϕn(x) −
∞∑

n=1

(
[(u0,ϕn) − λ−1

n ( f ,ϕn)]λntαϕn(x)

+

∞∑
n=1

[(u0,ϕn) − λ−1
n ( f ,ϕn)]λ2

nt2αEα,1+2α(−λntα)ϕn(x).

We denote the last sum by I. Since the eigenfunctions {ϕn}∞n=1 forms an orthonormal basis in
L2(Ω), by integration by parts, we have

∞∑
n=1

λn(u0,ϕn)ϕn(x) =
∞∑

n=1

(u0,−Aϕn)ϕn(x) =
∞∑

n=1

(−Au0,ϕn)ϕn(x) = −Au0(x)

and
∑∞

n=1( f ,ϕn)ϕn(x) = f (x). By lemma 2.1(a), we bound the sum I by

‖I‖L2(Ω) � ct4α
∞∑

n=1

λ
1
2+ε+2−2s
n

[
λ2+2s

n (u0,ϕn)2 + λ2s
n ( f ,ϕn)2Eα,1+2α(−λntα)2

� ct
(

2− 1
2−ε+2s

)
α

∞∑
n=1

(λntα)
1
2+ε+2−2s

(1 + λntα)2
× [λ2+2s

n (u0,ϕn)2 + λ2s
n ( f ,ϕn)2]

� ct
(

2− 1
2−ε+2s

)
α

∞∑
n=1

[λ2+2s
n (u0,ϕn)2 + λ2s

n ( f ,ϕn)2]

= ct
(

2− 1
2−ε+2s

)
α[‖A1+su0‖2

L2(Ω) + ‖As f ‖L2(Ω)],

where the last inequality follows from the conditions s ∈ ( 1
4 , 5

4 ] and ε ∈ (0, s − 1
4 ). Combining

the preceding estimates with the Sobolev embedding theorem directly shows the assertion. �
By proposition 4.1, under mild conditions, the trace data h(t) satisfies

h(t) = c0 + c1tα + o(tα), as t → 0+.

This motivates a simple procedure: minimize over α (and c0 and c1) the following objective

J(α, c0, c1) =
1
2
‖c0 + c1tα − h(t)‖2

L2(0,t0),

for some t0 > 0 sufficiently close to zero. The minimization can be carried out by any stand-
alone algorithms, e.g. gradient descent, and Newton method. Note that it is important to take
t0 sufficiently close to zero so that the term o(tα) is indeed negligible.

Next, we numerically continuate the given data h(t) from the interval [0, T1] to [T1, T],
in order to extract the combined information on u0 and f . Mathematically, this amounts to
recovering {(ρk,λk)}k∈K (with the index set K defined in section 3) from h:

h(t) =
∑
k∈K

ρkEα,1(−λktα), t ∈ [0, T1].
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By theorem 3.1, {(ρk,λk)}k∈K can indeed be uniquely determined by h(t), t ∈ [0, T1]. This
problem is also known as an infinite-dimensional spectral estimation problem for α = 1, for
which the issue is to recover (ρk,λk) of an exponential family [4] and there are several efficient
methods for recovery, e.g. matrix pencil method [12] and MUSIC (MUltiple SIgnal Classifi-
cation) [39]. However, for α 
= 1, to the best of our knowledge, there is no known analogue of
these methods. This is essentially due to the inequality Eα,1(−tα1 )Eα,2(−tα2 ) 
= Eα,1(−(t1 + t2)α)
for α ∈ (0, 1), t1, t2 ∈ (0,∞). Instead, we resort to the classical rational approximation for
numerical continuation, i.e.

h(t) ≈ p0 + p1t + · · ·+ prtr

q0 + q1t + · · · qrtr
:= hr(t), t ∈ [0, T1],

where r ∈ N is the polynomial order. The approximation hr(t) can be constructed effi-
ciently when h(t) is accurate using the AAA algorithm [32], despite the well-known ill-posed
nature of analytic continuation. This choice is in part motivated by the fact that the func-
tion Eα,1(−λtα) admits excellent rational approximations [16, theorem 3.6]. Our numerical
experiments indicate that the procedure is indeed viable for exact data.

4.2. Step 2: recovering q (and u0) by iterative regularization

With the analytic continuation in step 1, we can proceed to the reconstruction of the potential
q, as in the proof of theorem 3.2. Specifically, let

h̄(t) =

{
0, t ∈ [0, T1],

h(t) − hr(t), t ∈ [T1, T],

which represents the reduced data for the boundary excitation g only (supported on the interval
[T1, T], by construction). This naturally motivates approximately minimizing

J(q) :=
1
2
‖F(q) − h̄‖2

L2(T1,T), (4.1)

with F(q) = u(q)(0, t), where u(q) denotes the solution to the direct problem (1.1) correspond-
ing to the elliptic operator A, with u0 ≡ f ≡ 0 and given g. The map F is nonlinear, and
one may apply standard iterative regularization methods [8, 14], e.g. (nonlinear) CG method.
In the numerical experiments, we employ the CG method [2], which generally enjoys fast
convergence.

Once the potential q is determined, one can also attempt recovering the initial data u0 from
the observation h(t) over the interval [0, T1], if f ≡ 0. This can be achieved by approximately
minimizing

J(u0) =
1
2
‖F(u0) − h(t)‖2

L2(0,T1),

with F(u0) = u(0, t), where u denotes the solution to the direct problem (1.1) corresponding
to the elliptic operator A with the recovered q, and f ≡ 0 (over the interval (0, T1)). The
optimization can be carried out efficiently by standard gradient type methods.

In practice, the gradients of the functionals J(q) and J(u0) can be computed efficiently by
the adjoint technique. We provide relevant details in the appendix.
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Table 1. The recovered order α based on least-squares fitting.

(a) Case (a)

t0

α

0.3 0.5000 0.7000 0.9000

1 × 10−3 0.2488 0.6239 0.8641 1.0000
1 × 10−4 0.3208 0.6256 0.8110 0.9647
1 × 10−5 0.3631 0.6027 0.7626 0.9000
1 × 10−6 0.3760 0.5747 0.7315 0.9000
1 × 10−7 0.3737 0.5495 0.7000 0.9000
1 × 10−8 0.3665 0.5306 0.7000 0.9000
1 × 10−9 0.3570 0.5000 0.7000 0.9000
1 × 10−10 0.3468 0.5000 0.7000 0.9000

(b) Case (b)
1 × 10−3 0.0008 0.2723 0.6274 0.8829
1 × 10−4 0.0271 0.4126 0.6850 0.8980
1 × 10−5 0.1214 0.4700 0.6969 0.9000
1 × 10−6 0.1932 0.4897 0.6992 0.9000
1 × 10−7 0.2398 0.4960 0.7000 0.9000
1 × 10−8 0.2667 0.4980 0.7000 0.9000
1 × 10−9 0.2813 0.5000 0.7000 0.9000
1 × 10−10 0.2888 0.5000 0.7000 0.9000

5. Numerical results and discussions

Now we present some numerical results to illustrate the feasibility of simultaneously recov-
ering the coefficient q and the fractional order α, without fully knowing the direct problem
(1.1). The domain Ω is taken to be the unit interval Ω = [0, 1], and the final time T = 1, and
T1 = 0.5. The direct and adjoint problems are all discretized by the standard continuous piece-
wise linear Galerkin method in space, and backward Euler convolution quadrature in time [18].
The domainΩ is divided into M subintervals each of width 1/M. For the inversion step, we take
M = 200 and N = 2000. The exact data h† on the lateral boundary (0, T) is obtained by solving
the direct problem (1.1) on a finer mesh. It is known that due to the severe ill-conditioning of
the inverse problem, the numerical recovery in the presence of data noise is very challenging.
Indeed, for the inverse potential problem, it was observed numerically in [36] that there are
only a few significant singular values, and this is also partly confirmed by [40]. This is further
complicated by the unknown problem data in the present context. Thus, our experiments below
focus on exact data. We illustrate on the following two settings, with u0 and f being unknown:

(a) a ≡ 1, q† = x(1 − x), u0 = x2(1 − x) + cos( π2 x) and f ≡ 0, and g = χ[T1,T];
(b) a ≡ 1, q† = min(x, 1 − x), u0 = cos( 3π

2 x) and f ≡ 0, and g = χ[T1,T],

where χS denotes the characteristic function of the set S. The initial condition u0 is taken to be
in D(A) so that the asymptotic expansion in proposition 4.1 is indeed valid. Case (a) involves
a smooth potential, and case (b) a nonsmooth potential.

First we study the recovery of the fractional orderα using a least-squares fitting as described
in section 4. This procedure relies on the validity of the asymptotic expansion in proposition
4.1. The recovered orders are presented in table 1, where the minimization is carried out
by the L-BFGS-B [5], with the box constraint α ∈ [0, 1], using the public implementation
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Figure 1. The analytic continuation hr of the true data h∗ from [0, T1] to [T1, T] by
rational approximation, and its pointwise error for cases (a) (top) and (b) (bottom).

https://ww2.mathworks.cn/matlabcentral/fileexchange/35104-lbfgsb-l-bfgs-b-mex-wrapper
(last accessed on May 20, 2021). Note that the least-squares functional is fraught with many
local minimum, and a good initial guess for α is needed in order to recover the correct order. It
is observed that the accuracy of the recovery tends to improve as the interval (0, t0) used in the
least-squares formulation shrinks, since the model function in proposition 4.1 represents an
increasingly better approximation as t → 0+. Further, as α increases, the size of the interval
(0, t0) can be increased without sacrificing the accuracy of the recovery since the asymptotic
expansion is then valid in a larger neighborhood. Thus one may conclude that with the interval
(0, t0) chosen properly (and of course only for very accurate data), the order α can indeed be
recovered reliably by the least-squares fitting. These observations hold for both cases (a) and
(b), and thus the smoothness of the potential q does not seem to influence much the recovery
of the order α.

One step of the recovery procedure is analytic continuation, extending the observation data
h by a rational model hr from the interval [0, T1] to [T1, T]. This step extracts relevant informa-
tion from unknown initial condition u0 (and source f ), and plays a central role in formulating
the optimization problem for recovering the potential q. This is illustrated in figure 1 for the two
cases at α = 0.5, where the rational approximation hr is constructed by the AAA algorithm
[32] using the MATLAB implementation given therein with a tolerance 1 × 10−9, with the
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Figure 2. The reconstructions of the potential q and the convergence behavior of the CG
method in terms of the error e and residual r for cases (a) (top) and (b) (bottom).

Table 2. Numerical results for recovering q (with different δα).

(a) Case (a)

T0

δα = 0 δα = 0.001 δα = 0.005

e∗ k∗ r∗ e∗ k∗ r∗ e∗ k∗ r∗

0.3 1.73 × 10−2 98 2.44 × 10−5 3.33 × 10−2 5 2.35 × 10−4 5.40 × 10−2 2 1.04 × 10−3

0.5 1.78 × 10−2 104 2.64 × 10−5 2.24 × 10−2 4 2.63 × 10−4 5.21 × 10−2 3 1.04 × 10−3

0.7 1.86 × 10−2 6 5.87 × 10−5 3.68 × 10−2 41 8.60 × 10−5 2.00 × 10−2 5 1.04 × 10−3

0.9 2.04 × 10−2 7 2.62 × 10−5 2.26 × 10−2 41 1.59 × 10−4 2.36 × 10−2 11 1.04 × 10−3

(b) Case (b)
0.3 2.54 × 10−2 151 9.52 × 10−5 2.60 × 10−2 8 3.09 × 10−4 4.66 × 10−2 5 9.99 × 10−4

0.5 2.62 × 10−2 8 2.40 × 10−5 3.21 × 10−2 39 1.17 × 10−4 1.10 × 10−1 2 1.34 × 10−3

0.7 2.62 × 10−2 78 8.91 × 10−5 2.73 × 10−2 3 4.67 × 10−4 2.78 × 10−2 3 1.23 × 10−3

0.9 2.71 × 10−2 163 2.90 × 10−5 2.92 × 10−2 56 1.77 × 10−4 3.76 × 10−2 73 8.15 × 10−4

resulting hr of degree r = 11. The pointwise error is evaluated against the ground-truth h∗

(i.e. h∗ = u(0, t), t ∈ [0, T], u being the solution of the direct problem (1.1) with g ≡ 0) over
the interval [T1, T]. (Numerically, larger tolerances, e.g. 1 × 10−6, can still give an accurate
approximation.) Clearly, hr does give a fairly accurate approximation to h∗, and the accuracy
degrades as one moves away from the interpolating interval [0, T1]. It is noted that the contin-
uation results for other cases exhibit very similar behavior. Thus, the rational approximation is
a very effective approach for analytic continuation when exact data is available.

The reconstructions of the potential q by the CG method, based on the reduced data h̄(t), are
shown in figure 2 (with exact order) and table 2. The maximum number of CG iterations is fixed
at 200, and it is stopped so that the error is smallest possible. Throughout, for a reconstruction
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Table 3. Numerical results for recovering u0 (inversion with recovered q).

T0

Case (a) Case (b)

e∗ k∗ r∗ e∗ k∗ r∗

0.3 1.89 × 10−2 45 3.07 × 10−6 8.67 × 10−3 200 1.13 × 10−8

0.5 1.51 × 10−2 17 2.97 × 10−5 4.59 × 10−3 200 7.55 × 10−8

0.7 1.05 × 10−2 22 7.17 × 10−5 1.10 × 10−2 200 2.97 × 10−6

0.9 7.26 × 10−3 99 4.14 × 10−5 8.20 × 10−3 200 4.24 × 10−6

q̂, we measure the residual r(q̂) and the L2 error e(q̂), defined respectively by

r(q̂) = ‖F(q̂) − h̄‖L2(T1,T) and e(q̂) = ‖q̂ − q†‖L2(Ω),

where q† denotes the exact potential. The accuracy of the reconstructions actually does not
depend on very much on the order α, and all the reconstructions represent a reasonable but not
perfect approximation to the true potential q†. This observation is consistent with prior numer-
ical results for similar problems [36, 40], and might be attributed to severe ill-conditioning
of the inverse problem. The CG method can steadily decreases the value of the objective (i.e.
the residual r), with the first few steps converging fairly rapidly and then slowing down con-
siderably. Nonetheless, the error e trajectory exhibits an unusual oscillating pattern during the
iteration: the error e first decreases, and then increases and then further decreases again, and
there is also a flat region for which the error e stays nearly constant. This behavior differs
drastically from the typical steady error convergence observed for other inverse problems,
e.g. inverse source problems [17]. The precise mechanism of the behavior remains elusive.
It is worth noting that all these changes occur after the residual r reaches a relatively small
magnitude (and flat region), indicating a potential numerical ‘identifiability’ issue, despite the
uniqueness in theorem 3.2. This also indicates that in the presence of data noise, the magnitude
of the noise has to be very small so that not to wash away these tiny transitions in order to have
a fair recovery.

In the current context, the order α is numerically recovered, which incurs inevitable errors.
This error can potentially impact the subsequent inversion of the potential q. To examine the
influence, we perturb the order α in the optimization problem (4.1) by δα, and repeat the
numerical experiments with α+ δα. The results are summarized in table 2, where k∗ denotes
the iteration index at which the error is smallest, and e∗ and r∗ denote the corresponding error
and residual. The presence of perturbation δα does not affect very much the attainable accuracy,
although the error e∗ increases steadily with the perturbation δα; and generally it takes fewer
iterations to reach the optimal accuracy. This observation is largely valid for both cases with
all fractional orders under consideration.

Last, we examine the recovery of the initial data u0, using the recovered potential q by the
CG method (terminated after 200 iterations). The related numerical results are summarized
in table 3 and figure 3, where we have assumed that the order α has been estimated reliably.
Interestingly, despite the inaccuracy of the recovered potential q, the initial data u0 can still
be recovered with a good accuracy, for all fractional orders. Further, the convergence behavior
of the CG method agrees well with that for other inverse problems (but contrasts sharply with
that for potential recovery): the method decreases the residual e steadily, and the reconstruction
error e exhibits a typical semiconvergence phenomenon, i.e. the iterates first converge and then
diverge, due to the inherent ill-posed nature of the inverse problem.
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Figure 3. The reconstructions of the initial data u0 and the convergence behavior of the
CG method in terms of the error e and residual r for cases (a) (top) and (b) (bottom).

In sum, the numerical experiments demonstrate the following empirical observations: (1) the
orderα can be recovered from the observation data by a least-squares procedure; (2) the rational
function approach represents a simple method for analytically continuate the data; (3) the CG
method can produce fair approximations to the potential q, even under small perturbations of
the order α, partly confirming the feasibility of the recovery, but the convergence behavior of
the algorithm exhibits an unusual oscillating feature that remains to be further examined; (4)
the CG method can produce good approximations of the initial data u0, based on the recovered
potential q. In particular, the experiments show that the simultaneous recovery of the order,
potential, and initial data (or source) is indeed feasible, provided that accurate lateral Cauchy
data is available, thereby corroborating the uniqueness results in section 3.

6. Concluding remarks

In this work, we have studied an inverse problem of simultaneously recovering the fractional
order and the space-dependent potential in a one-dimensional subdiffusion model from the
observation data at the end point, when the initial data/source is not fully known. We proved
that both order and potential can be uniquely determined, if the Neumann boundary condition
satisfies a mild condition. Further, one of the space-dependent source or initial condition can be
uniquely determined, if the other is known. The analysis lends itself to an effective two-stage
reconstruction algorithm. Numerical results also show the feasibility of the recovery.

There are many related theoretical and numerical issues awaiting further research. First,
it is of interest to extend the results to the case of a time-dependent potential. One obstacle
in the extension is that the time-dependence of the potential precludes a direct application
of the separation of variable technique, an important tool in the current analysis. Second, it
is natural to analyze more complex subdiffusion models, e.g. multi-term and variable orders
(e.g. α(t), α(x) or α(x, t)). We believe that the results remain largely valid for the multi-term
case. However, for variable-order models, the solution theory is still far from complete, and
substantially new analytical tools are needed. Third, the extension to the multi-dimensional

24



Inverse Problems 37 (2021) 105009 B Jin and Z Zhou

case is very challenging, and requires more data for a unique determination, e.g. restricted
Neumann-to-Dirichlet map [6] or one specially designed excitation [24]. Fourth and last, the
design and analysis of relevant reconstruction algorithms can depart enormously from the more
traditional (penalized) least-squares approach. The latter might not be directly applicable, due
to the presence of unknown problem data (and thus the very forward model in the least-squares
formulation is also unknown).

Data availability statement

The data that support the findings of this study are available upon reasonable request from the
authors.

Appendix A. The computation of the gradients J′(q) and J′(u0)

To apply the CG method, one has to compute the gradient. This can be done efficiently using
the adjoint technique. Below we give relevant computation details for completeness. We have
the following representations of the gradients J′(q) and J′(u0). Note that the adjoint problem
for v andw satisfies a nonlocal terminal condition. The notation tI

1−α
T v(t) and R

t ∂
α
T v are defined

by [16]

tI
1−α
T v(t) =

1
Γ(1 − α)

∫ T

t
(s − t)−αv(s)ds and

R
t ∂

α
T v(t) = − 1

Γ(1 − α)
d
dt

∫ T

t
(s − t)−αu(s)ds.

Proposition A.1. The gradients J′(q) and J′(u0) are respectively given by

J′(q) = −
∫ T

0
u(q)v(q)dt and J′(u0) = −(tI

1−α
T1

w)(0) = − 1
Γ(1 − α)

∫ T1

0
t−αw(t)dt,

with v ≡ v(q) and w solving respectively

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R
t ∂

α
T v −Av = 0, in Ω× [0, T),

tI
1−α
T v(x, T) = 0, in Ω,

∂xv(0, �, t) = F(q) − h̄, in [0, T),

v(1, t) = 0, in [0, T),

and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R
t ∂

α
T1
w −Aw = 0, inΩ× [0, T1),

tI
1−α
T1

w(x, T1) = 0, in Ω,

∂xw(0, �, t) = F(u0) − h, in [0, T1),

w(1, t) = 0, in [0, T1].
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Proof. Let X = {v ∈ L2(0, T; H1(Ω)) : v(1, t) = 0, t ∈ (0, T)}. The directional derivative
J′(q)[δq] with δq ∈ L2(Ω) is given by J′(q)[δq] = (u′

q(q)[δq], F(q)− h̄)L2(0,T), where uδ =

u′q(q)[δq] satisfies uδ(0) = 0 and

∫ T

0

∫
Ω

(φ∂α
t uδ + a∇uδ · ∇φ+ quδφ)dx dt = −

∫ T

0

∫
Ω

δqu(q)φdx dt, ∀ φ ∈ X. (A.1)

Meanwhile, the weak formulation for the adjoint solution v is given by

∫ T

0

∫
Ω

(φ t∂
α
T v + a∇v · ∇φ+ qvφ)dx dt =

∫ T

0
(F(q) − h̄)φ(0, t)dt, ∀φ ∈ X. (A.2)

Then taking φ = v ∈ X in (A.1) and φ = uδ ∈ X in (A.2), using the following integration by
parts formula (see, e.g. [26, p 76, lemma 2.7] or [16, lemma 2.6])

∫ T

0
ψ ∂α

t φ dt = (φ tI
1−α
T ψ)|Tt=0 +

∫ T

0
φ R

t ∂
α
t ψ dt, (A.3)

and last subtracting the two identities give

−
∫ T

0

∫
Ω

δqu(q)v dx dt =
∫ T

0
(F(q) − h̄)uδ(0, t)dt,

from which we deduce the expression of J′(q). Similarly, J′(u0)[δu0] =
(u′

u0
(u0)[δu0], F(u0) − h)L2(0,T1), where uδ = u′

u0
(u0)[δu0] (slightly abused notation) satisfies

uδ(0) = δu0 and

∫ T1

0

∫
Ω

(φ∂α
t uδ + a∇uδ · ∇φ+ quδφ)dx dt = 0, ∀ φ ∈ X. (A.4)

Meanwhile, the space-time weak formulation for the adjoint solution w is given by

∫ T1

0

∫
Ω

(φ R
t ∂

α
T w + a∇w · ∇φ+ qwφ)dx dt =

∫ T1

0
(F(u0) − h)φ(0, t)dt, ∀ φ ∈ X. (A.5)

Then taking φ = w in (A.4) and φ = uδ in (A.5), applying the integration by parts formula
(A.3), and subtracting the two identities give

−
∫ T1

0

∫
Ω

δu0tI
1−α
T1

w(t)dx dt =
∫ T1

0
(F(q) − h)uδ(0, t)dt.

This gives the expression of J′(u0). �

Remark A.1. One can also derive the regularity of the gradients. For example, with g ∈
L2(0, T), we have u ∈ L2(0, T; D(As)), for any s ∈ ( 1

2 , 3
4 ), cf the proof of proposition 2.1. Simi-

larly for h̄ ∈ L2(0, T), there holds the adjoint v ∈ L2(0, T; D(As)). This and algebraic property
of the space D(As) imply uv ∈ L1(0, T; D(As)), and thus J′(q) ∈ D(As).
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