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Abstract

The capability to predict the modes of deformation of thin-walled structures is a

paramount safety concern in military, civil and industrial environments. Finite el-

ement analysis offers a valid, cost-effective alternative to experimental programs

when performing preliminary safety studies. This thesis investigates numerical pro-

cedures to study two typical safety-related problems of impulsively loaded thin-

walled structures.

When a pressurised pipe experiences a guillotine break, the sudden fluid re-

lease causes a rapid whip-like motion, with possible damage to nearby structures.

An element code is here developed to predict the pipe flexural and torsional be-

haviour, which adopts a corotational kinematic formulation for delivering reliable

results at a fraction of the computational cost of conventional FEA techniques. The

validated code, implemented with commercial FEA software, is employed in para-

metric studies leading to the discovery of new dimensionless groups that completely

characterise the flexural behaviour of pipes. With the newfound understanding,

simple empirical laws are established that predict the pipe response and the hazard

conditions.

A shell element numerical model is built to study the rupture mechanisms of

steel plates subjected to impulsive blast loadings. Tensile and shear experiments

on steel specimens were performed to characterise the parameters of a triaxiality-

dependent failure criterion, obtaining a mesh-size independent fracture model. The

numerical predictions allowed to establish a novel phenomenological criterion, pro-

viding an answer to the previously unsolved question on the transition between

different types of failure modes. Dimensionless failure maps are developed that



Abstract 4

elucidate the influence of plate topology and boundary conditions on the rupture

mechanisms. The study highlights the similarities in the response between simply-

supported plates, and fully-clamped plates exposed to localised blast loadings. A

new failure mode is discovered for simply-supported rectangular plates, where, un-

der certain loading conditions, rupture propagates in the central area of the plate,

rather than along the support.



Impact Statement

Thin-walled plates and pipes are ubiquitous structural elements. Thanks to their

workability and light weight they offer manifold fields of applications, from sim-

ple containers to large scale structures, both in stationary and moving components.

However, the high degree of deformability renders plates and pipes particularly sus-

ceptible to failure. Safety studies are therefore necessary to assess the conditions

that can lead systems employing thin-walled elements to fail, or to ensure that the

system is capable to withstand failure without catastrophic consequences.

Finite Element Analyses (FEA) are a fundamental tool for the safety assess-

ment of thin-walled structures, thanks to their ease of implementation and relatively

low cost, often replacing early experimental investigations, especially in the case

of studies involving explosive or impulsive loadings, which could be particularly

difficult to control and pose noteworthy safety concerns even in a controlled envi-

ronment. However, conventional FE analyses often employ oversimplified consti-

tutive models, severely limiting their reliability. Furthermore, leading-edge com-

puting technologies, like recently developed real-time simulation engines, are often

translated slowly to industrial level FEA, which usually requires noticeable com-

putational costs, depending on the desired level of precision and the complexity of

the system analysed. In light of these observations, FEA offers a great margin of

improvement in terms of computing efficiency and modelling accuracy.

The scope of our work is to tackle the aforementioned issues, whilst solving

two safety-related problems that are of interest to our industrial sponsor, working

in the defence field, and that can benefit many engineering sectors: (i) the dynamic

deformation of pipe whips, and (ii) the prediction of failure in metal plates hit by
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explosive blasts. Following a literature survey of state-of-the-art modelling tech-

niques, a beam element model was developed for the simulation of pipe whips,

based on the corotational kinematic formulation, which is currently used in parallel

research fields accomplishing fast-converging or even real-time numerical models.

Comparing the results of pipe simulations employing 80 corotational beam elements

to those obtained with a conventional FEA model employing up to 27360 shell ele-

ments, the corotational model proves to be up to 88 times faster than conventional

FEA techniques whilst giving satisfactory results (in terms of displacement of the

free end and localisation of cross-sectional collapse), and thanks to its ease of im-

plementation it is readily applicable to industrial use. Studies employing the devel-

oped model have also shed new light on the flexural behaviour of pipes, identifying

new dimensionless groups that completely characterise the physics of the problem.

These discoveries have led to the establishment of simple empirical laws that suc-

cessfully predict the pipe whip response and the hazard conditions, thus providing

effective tools for the design of pipe systems.

Regarding the second problem of interest, fracture models that are indepen-

dent of the characteristic element length are needed for the correct modelling of

the fragmentation of plates exposed to blast loadings. This need has led to the es-

tablishment of a detailed yet straightforward procedure for the calibration of the

model parameters which simultaneously minimises the demand for experimental

testing. The plate model was used to develop a novel phenomenological criterion,

based on the crack propagation velocity, to identify the transition between differ-

ent failure modes. This study has also led to the discovery of new failure modes

for simply-supported rectangular plates where, for high intensity blasts, the frac-

ture mechanisms deviate from the preferred path along the supports, propagating

towards the plate centre.

Notwithstanding the advancement made in this work and its importance in the

investigation of thin-walled structures deforming dynamically, our research leaves

many aspects worthy of further improvements, laying the foundations for future re-

search. The models developed for pipes and plates have highlighted the areas wor-
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thy of additional investigation, and further developments can be made to improve

the predicting capability and reduce the computational cost.
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Chapter 1

Background

1.1 Introduction

Accidents happen. Engineers follow safety measures in many steps of the structural

design process, from concept design to the actual construction, to take into consid-

eration the likelihood of accidents and their effect on the safety of the structure itself

and of any neighbouring personnel or apparatus. Following established guidelines,

preventive measures are introduced to control the operating conditions of a system,

ensuring they fall within safe limits, but also to reduce the extent of damage when

accidents occur.

Nevertheless, it is not always possible to prevent all form of accidents. For

this reason, part of the design process involves detailed testing aimed at investigat-

ing the structural behaviour once failure has occurred. The most straightforward

method of investigation consists of experimental studies attempting to reproduce

accidental dynamics in a controlled environment. However, experimental investiga-

tions are generally time consuming and expensive, posing a limit to their practical

application. Furthermore, even the experiment itself is susceptible to accidents, de-

spite its careful planning, and for this reason, precise guidelines must be adopted

to ensure the safety of the operators. A particularly hazardous experimental field

is the investigation of impulsively loaded structures. Some of the aspects that are a

common cause of concern for this type of experiments are: high-intensity loading,

large deformations, component failure and fragmentation, and accidental impacts.
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In the last two decades, recent advancements in computing technologies have

led to the development of numerical techniques capable of modelling physical

problems with incredible accuracy and continuously increasing processing speed.

Thanks to the numerical advancement, FE analyses have become a valid alternative

to elaborate and time consuming experiments, upon proper validation of the numer-

ical model. Nowadays, many industries employ FEA in tandem with experimental

testing in every phase of design, from early test plan to the final system certification.

FEA are particularly useful for the modelling of thin-walled structural ele-

ments. Characterised by their relatively light weight and high degree of deformabil-

ity, thin-walled structures are employed in a wide range of engineering fields, their

applications ranging from pressure vessels, vehicles, ships and pipelines to bridges,

industrial building and offshore platforms. The present research work deals with

the numerical analysis of two safety-related problems, usually encountered in the

fields of defence, nuclear and industrial production, involving thin-walled structural

components loaded impulsively: the inelastic deformation of pipe whips, and the

failure mechanisms of metal plates loaded impulsively.

In the first problem of interest, an initially intact pipe that transports pressurised

fluids starts to deform at high speed under the influence of an intense loading caused

by the accidental release of the internal fluid. The pipe whip motion constitutes a

serious hazard concern due to the likelihood of impact with nearby structures. A

novel finite element code is here developed to predict the deformation of the pipe

and its area of influence. The code consists of a beam element employing an oppor-

tunely developed constitutive law for the pipe flexural behaviour to correctly capture

the cross-sectional collapse typical of pipes in bending. The element incorporates

a corotational kinematic formulation to help reduce the computational cost. The

model, validated against experimental data for thick and thin pipe whips available

from the literature, is employed in parametric studies investigating the effect of the

pipe dimensions and of the loading intensity on the deformation mechanism, pre-

dicting the extent of the area of influence in a wide range of geometrical and loading

conditions. The study highlights the limitations of the currently available numeri-
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cal and analytical models that are commonly used for predicting the behaviour of

pipe whips, whilst demonstrating the applicability of the newly developed code for

industrial applications.

In the second problem of interest, a monolithic plate made of steel undergoes

large deformation and fragmentation due to the interaction with an intense blast

loading generated by a nearby explosion. A shell-element model is here devel-

oped to analyse the modes of deformation of the plate and the evolution of fracture

mechanisms when failure occurs. The model employs comprehensive triaxiality-

dependent failure criteria to characterise the synergetic effect of ductile damage

(due to void nucleation, growth and coalescence) and shear damage mechanisms

(due to shear band localisation). Experimental tensile and shear tests are performed

on mild steel specimens to calibrate the damage parameters and ensure mesh in-

sensitivity of fracture. The shell-element model successfully predicts the failure

mechanisms observed experimentally and is later employed in parametric studies

investigating the influence of the plate topology, loading intensity and boundary

conditions on the modes of failure. The data collected are used to establish dimen-

sionless failure maps that offer an effective engineering tool for the prediction of the

failure modes using readily available system parameters. Furthermore, the model

identifies previously unobserved failure modes in the case of simply-supported rect-

angular plates, where cracks propagate in the central area of the plate, rather than

along the support, laying the foundation of new experimental investigations.

The two case studies are closely linked by the following aspects: the physi-

cal processes involved, characterised by the large inelastic deformation of ductile

thin-walled structural elements, the application in industrial, military and civil en-

vironments, the numerical solving methodologies adopted, and the production of

dimensionless diagrams for the analysis of the numerical results. In both prob-

lems, finite element solution procedures are employed to investigate the deforma-

tion mechanisms. Special emphasis is put in implementing comprehensive material

and structural models, validated against experimental evidence. When multiple ap-

proaches were available, the study opted for those that would be of greater interest
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to the industry, researching a balance between accuracy, ease of implementation and

reduced computational costs.

Despite the many similarities, the two studies present some differences. The

analysis of pipe whips is interested in the post-failure deformation of pipes that have

suffered a guillotine break. Our research work successfully delivers a finite element

code that can be readily implemented into commercial FE software and applied

in a variety of engineering applications of pipes. On the other side, the second

study investigated the initiation and growth of fracture mechanisms in initially intact

plates. The study concludes with the production of failure maps that, through the

use of simple dimensionless numbers, provide a visual aid for the prediction of the

modes of failure of plate elements by knowing its dimension and loading conditions.
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1.2 Literature review

1.2.1 The flexural behaviour of pipe whips

The failure of pipes transporting high pressure fluids is a common safety issue en-

countered in chemical, nuclear and power plants. Although pipes are designed to

withstand normal operating conditions, pipe failure may result from several factors,

like pressure fluctuations, accidental damage or creep. In order to satisfy the safety

requirement set by regulatory authorities, the safety-compliant design of a piping

system must demonstrate the capability of the structure to withstand failure without

catastrophic consequences.

The failure of a pipe due to a guillotine break is schematised in Figure 1.1.

The sudden release of high pressure fluids from a broken section induces an intense

blow-down force on the pipe, causing a rapid whip-like motion that constitutes po-

tential hazard to nearby equipment [1]. To increase the safety of the system, pipe

whip restraint devices are installed, which absorb the kinetic energy of the pipe

before it damages neighbouring structures. Despite the improved safety, the instal-

lation of restraints can severely reduce the access to the system, thus compromising

the performance of maintenance operations.

Aiming at optimising the number of restraints, the designers of piping sys-

tems have studied the pipe whip motion in detail [2, 3]. In the past, the R3 Impact

Assessment Procedure [4, 5] and the code ANSI/ANS 58.8 [6] have been used to

assess the hazards of pipe rupture. Baum [7] conducted an experimental investi-

Figure 1.1: Guillotine break of pressurised pipes. Adapted from Lu and Yu [1].
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gation on steel pipes to understand the influence of pipeline geometry and fluid

pressure on in-plane pipe whips. The geometries investigated, illustrated in Fig-

ure 1.2, were initially straight cantilever pipes with an elbow bend at the free end

(where the fluid escapes) and cantilever pipes with multiple bends. Baum [7] found

that the maximum deformation is obtained when the bend at the free end has a 90◦

angle, and that the pipe behaviour is determined by a single dimensionless group,

φ = PAL/MP (where P is the fluid pressure, A the cross-sectional area, and MP the

plastic moment). In the case of straight pipes, L corresponds to the length of the

pipe, whereas, for a bent pipe, L = ∑
n
i=1 Li is a function of time, with Li being the

length of the members of the pipe involved in the motion (see Figure 1.2). For each

experiment, the study measured the hazard zone Z, which is the extent of the area

of influence of the pipe. It was found that when φ ≤ 4.6, the centre of the pipe ro-

tation lies at the fixed end, and the hazard zone reaches its maximum extent, Z = L.

Otherwise, when φ > 4.6, collapse mechanisms affect the pipe, and the centre of

rotation moves to a point along the pipe, reducing the extent hazard zone (Z < L).

Stronge and Yu [8] developed a theoretical model for predicting the point of

collapse of slender structures in bending, later applied to the analysis of in-plane

pipe whips [9, 10]. The study, based on the theory of rigid-perfectly plastic struc-

tures, treats the pipe as a rigid beam rotating about a plastic hinge. Solving the

equation of motion of the beam, the theoretical model identifies a lower limit value

Figure 1.2: Deformation mechanisms of pipe whips and maximum extent of the hazard
zone, Z. Geometries of an initially straight pipe (left) and of a pipe with multi-
ple bends (right). Adapted from [7].
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for the dimensionless group, φ = 3 [8], below which the pipe is stationary. Addi-

tionally, the model predicts with satisfying accuracy the hazard zone of pipe whips

when the mass of the bend is negligible. However, when the mass is significant, the

model grossly underestimates the hinge position and does not predict the pipe mo-

tion with accuracy. Subsequent upgrades to the model were made to include elastic

and strain-hardening effects, improving the prediction of the pipe motion [2].

Following the advancements of computing technology in the last two decades,

numerical models have been developed to analyse the deformation of pipe whips.

Reid et al. [2] developed a finite difference model for in-plane pipe whips, em-

ploying non-linear constitutive laws that simulate metal plasticity and the bending

behaviour of pipes. The model predicted with accuracy the deformation mechanism

and the development of plastic hinges in the case of relatively thick pipes, but was

less successful in the case of thin pipes, when the deformation is dominated by the

collapse of the cross-section.

Finite element analyses offer a valid alternative for the simulation of pipe

whips [11, 12]. Reid et al. [11, 13] employed a shell element model to assess the

deformation of out-of-plane pipe whips. In the case studied, an initially bent pipe

undergoes large deformation, rotation and twisting in space under the influence of

an out-of-plane force. Employing shell elements constitutes a straightforward ap-

proach to the analysis of pipe whips. Discretising the cross-section with shells

allows to model the collapse and predict the hazard zone with satisfying accuracy

[13], at the expense of long computational times, due to the need of a sufficiently

refined mesh. Micheli and Zanaboni [12] employed simulations of pipe whips using

pipe elements to obtain conservative predictions of the whip motion. Although the

makes several simplifying assumptions, neglecting cross-sectional ovalization and

assuming a bilinear kinematic hardening material behaviour, calculations of the ki-

netic energy based on the numerical predictions are useful for the design of restraint

devices.

Theoretical models have been proposed to analyse three-dimensional pipe

whips [14, 15]. Based on the same rigid, perfectly plastic approach of the 2D case
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[9, 10], the study determined new limit values for the dimensionless group φ that de-

limit several deformation mechanisms. Depending on the loading intensity and the

length of each member of the pipe, torsion and bending concur in the development

of multiple plastic hinges along the pipes or at the bend. However, the theoretical

model requires numerical solutions to evaluate the hinge position.

Recently, commercial finite element software have developed special struc-

tural elements suitable for the simulation of pipe whips. For example, pipe ele-

ments (sometimes referred to as elbow elements [16]) are capable of modelling

the collapse of pipes subjected to internal and external pressures [17], and beam-

general-section elements can reproduce the non-linear moment-curvature relation

of pipes in bending [16]. The two element types have limited applicabilities; the

former can only be used for the prediction of pipe collapse in static analyses, and

have demonstrated little reliability [17], showing significant discrepancies in terms

of ovalization modes and stress distribution around the pipe section compared to

results obtained with shell elements, while the latter element type gives unrealistic

results when modelling the collapse of thin pipes [16], displaying excessive col-

lapse.

Inspired by the aforementioned research, and to overcome the limitations of

the currently available elements, a novel beam element is here developed for mod-

elling thin pipes undergoing in-plane and out-of-plane deformations. Similarly

to the method presented by Reid et al. [2], the element employs an elastoplastic

hardening-softening constitutive model for bending, predicting with great accuracy

the pipe deformation, the hazard zone and the development of plastic hinges. The

model has a significantly reduced computational cost, compared to shell element

analyses, thanks to the use of the corotational formulation.

Reid et al. [2, 18] and Jialing and Reid [19] performed several bending exper-

iments to characterise the flexural behaviour of steel pipes with varying thickness.

When a cylindrical tube undergoes large bending, the large plastic deformation of

the tubes causes the ovalization of the initially circular cross-section, eventually

leading to structural collapse, in a phenomenon named Brazier effect [20]. The
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typical structural response, expressed in the form of a moment-curvature relation,

is illustrated in Figure 1.3. Following an initial linear-elastic stage, relatively thick

tubes display a hardening-softening relation. The behaviour derives from the com-

bination of two opposing mechanisms of strain and ovalization, which increase

or reduce the load-carrying capacity of the member, respectively. Comparing the

moment-curvature relations obtained experimentally for several pipes of varying

thickness, Reid et al. [18] observed that the critical value of curvature at the onset

of the softening stage is determined by the wall-thickness, H, and the mean cross-

sectional radius, R, through the formula

kc =C
H
R2 (1.1)

where C = 0.2–0.5 is a constant that depends on the material and the R/H ratio.

Following the experimental observation, a theoretical analysis was proposed, based

on the plastic shell theory [2, 21], to predict the moment-curvature behaviour. It

was observed that the theoretical model could only be solved approximately with

a numerical approach, concluding that experimental tests or numerical simulations

must be carried out case-by-case to obtain the moment-curvature relationship for

Figure 1.3: Typical flexural behaviour of pipes obtained from bending tests. Different
moment-curvature relations observed for thick and thin pipes (left). Progressive
collapse of the cross-section in bending (right).
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specific combinations of R and H.

In the present work, moment-curvature relations for thick and thin pipe were

generated using finite element analysis. The curves, validated against the experi-

mental data from [2] were applied as constitutive models in the corotational element

code here developed for the simulation of pipe whips. Comparing the relations ob-

tained from pipes with different combination of R and H, three dimensionless group

were identified that characterise the values of curvature and moment at the onset of

softening and allow to completely characterise the moment-curvature relations of

thick and thin pipes.

1.2.2 The corotational framework

There exists a significant body of literature on the theory of the corotational (CR)

formulation, the term being first introduced in 1960 (often spelled co-rotational) in

the field of continuum mechanics. The concept of the decomposition of motion into

a rigid-body and a pure deformational parts can be traced back to Cauchy and Biot

in the years 1827 and 1930, respectively, in the theory of continuum mechanics,

but only after World War II the idea received its first technological application, in

the field of aerospace industry, for the kinematic analysis of an entire aeroplane

structure [22].

The application of the CR framework to the kinematic description of finite

element is illustrated in Figure 1.4, where the separation of rigid body motion and

deformation is obtained through the introduction of a reference frame that follows

the rigid rotation of each element. Therefore, in the CR formulation there are three

reference frames, or configurations [22]:

1. The base configuration, C0, fixed at the beginning of the analysis and shared

by all the elements in the model. It serves as the basis for the definition

of the nodal coordinates and as the origin of all displacements. It takes the

name initial configuration when it coincides with the original position, and

undeformed when the body is at rest in its initial state;

2. The corotated configuration, CR, that is unique for each element, obtained
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through the rigid body motion of the element from its initial position;

3. The deformed configurations, CD, one for each element node, used to com-

pute the deformation of the element.

One of the first CR finite element models is attributed to Belytschko and Hsieh [23],

who developed beam and triangular shell elements for transient small-strain analy-

ses, employing a bi-linear elastoplastic material model. They noted that evaluating

the strains in the deformed frame greatly simplified the governing equations for the

computation of local forces, resulting in a significant advantage in computational

speed [23]. Later on, Belytschko and Glaum [24] developed a higher order CR el-

ement for analyses with moderate rotations. The new formulation required only a

slightly larger computational cost for each element, but was capable of converging

to the exact solution more rapidly, as the mesh is refined, compared to its lower

order equivalent. However, the authors commented that, in instances where a large

number of elements is required, the difference in results between the two formu-

lations becomes less significant, thus reducing the advantage of using higher order

elements [24].

Crisfield [25] observed that most of the previously-developed CR elements

Figure 1.4: Application of the corotational framework to finite elements.
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applied the correct transformation to the force vector whilst making simplifying

assumptions in the rotation of the stiffness matrix, leading to convergence issues,

especially in the case of buckling analysis. He then proceeded to develop a consis-

tent CR formulation for beam [25], shell and solid elements [26], where the stiffness

matrix transformation is consistent with that applied to the force vector. Battini [27]

and Battini and Pacoste [28] have expanded the work of Crisfield and Moita [26] de-

veloping consistent elastic [27] and elastoplastic [28] beam elements with warping

effects for the analysis of beams with open cross-sections in instability problems.

Felippa and Haugen [22] framed a unified small-strain theory for CR elements

in static analyses, noting that, depending on its exact expression, a consistent stiff-

ness matrix might also be equilibrated —a fundamental requirement for identify-

ing the correct equilibrium path in incremental iterative solution procedures— and

symmetrisable, thus allowing the use of Newton solvers without loss of quadratic

convergence.

The works mentioned thus far, with the notable exception of [23, 24] dealt

with static analyses. Crisfield et al. [29] discussed different types of implicit time-

integration algorithms for the dynamic analysis of spatial elastic beams undergoing

large rotations and translations, but small strains. Two main integration algorithms

are presented, namely the end-point algorithm (see Simo [30]), solved with the

Newmark and α-methods, and the mid-point algorithm first developed in Crisfield

and Shi [31] and Galvanetto and Crisfield [32], where the inertia force vector is

evaluated through the solution of the equation of motion and the introduction of

a constant mass matrix. It is shown that stability of the algorithms depends on

the time-step size, and even introducing numerical damping and dynamic time-

stepping, instability may occur with uncontrolled energy growth.

Le et al. [33, 34, 35] made further advancements framing the theory for elasto-

plastic CR beam elements in the 2D [33] and 3D [34, 35] dynamic analyses, study-

ing the effects that the approximations in the evaluation of the mass matrix have on

the solution. Employing a consistent mass matrix, they obtained higher levels of ac-

curacy and stability even with a coarse mesh, compared to the less accurate results
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obtained employing a constant mass matrix. Their extensive work has spawned a

considerable amount of 3D CR elements for the analysis of beams with open cross-

sections [36, 37, 38, 39, 40].

Other examples of corotational applications can be found in Areias et al. [41],

where triangular shell elements are applied to the fracture modelling of ductile

structures. Longva [42] has employed linear elastic CR beam elements for the dy-

namic analysis of multilayered subsea pipelines. Yaw et al. [43, 44] have used

the corotational framework for the development of a non-linear mesh-free model.

Parker and O’Brien [45] successfully employed tetrahedral CR elements for real-

time simulations in a videogame environment, were solid fracture was modelled

through the propagation of partially pre-rendered fracture surfaces. Courtecuisse

et al. [46] employed a corotational model for the real-time simulation of soft tis-

sue biomechanics. The model took advantage of Graphic Processing Units (GPU)

acceleration to solve an implicit solution algorithm in real time.

Figure 1.5 illustrates, as an example, the application of the corotational frame-

work to the kinematic description of a planar beam with two nodes. In the Total

Lagrangian framework, the element deformation vector, u, is defined by the dis-

placement and rotation of each node, with respect to the global reference frame, for

a total 6 degrees of freedom (as shown on the left-hand side of Figure 1.5).

Figure 1.5: Comparison of two kinematic descriptions for planar beams: Total Lagrangian
framework (left) and Corotational framework (right).
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In the CR framework, the rigid motion of the beam is evaluated through the

displacements of the CR frame, whilst its deformation is defined by just the two

nodal rotations (with respect to CR), and the element elongation. Therefore, the

local deformation vector, ū, has only 3 degrees of freedom. The differentiation of ū

with respect to u gives the transformation matrix B

B =
∂ ū
∂ u

. (1.2)

that allows to transform any tensor from the base to the deformed configuration.

The expression of the force vector, f, is then recovered by noting that the element

internal energy is independent of the reference frame. Equating the virtual work in

the two configurations leads to

U = δ ūTf̄ = δuTf . (1.3)

which gives

f = BTf̄ . (1.4)

In the expression above, f̄ is the local force vector and [ ]T indicates the transpose

operator.

The implementation of the CR framework to finite element static analyses re-

quires the definition of a stiffness matrix K [22] or, in the case of dynamic analysis,

a mass matrix M [34, 16]. In general, the stiffness matrix is obtained in the global

reference frame by differentiating the force vector with respect to u:

K =
∂ f
∂ u

. (1.5)

Taking into account equation (1.4) a consistent expression of K is obtained

K = BTK̄B+
∂ BTf̄
∂ u

∣∣∣∣
f̄
. (1.6)

The kinematic formulation for dynamic analysis requires the definition of a mass
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matrix. Most FEA solvers commonly use a constant mass matrix, evaluated once at

the beginning of the analysis, to reduce the computational cost [16]. A consistent

expression for M can be obtained from the evaluation of the kinetic energy, K,

[33, 34]:

K =
1
2

u̇TMu̇ , (1.7a)

M = TTM̄T , (1.7b)

where T is a rotation matrix. Le et al. [34] have investigated the effect of using

different approximations for the mass matrix on the solution, comparing the results

obtained using an approximated expression for the mass matrix, calculated at the

beginning of the analysis (namely the constant lumped mass matrix or the Timo-

shenko mass matrix, [34]), to those obtained with a consistent mass matrix calcu-

lated at each increment using the non-constant expression equation (1.7). The study

has shown with multiple examples that the consistent formulation requires more

computational time, but is able to capture the displacement history of beams with

satisfaction even with a significantly small number of elements. Nevertheless, as

originally noted in [26], the computational advantage is lost when performing anal-

yses that require a refined mesh, due to the computational cost added by solving

equation (1.7) for every element at every increment.

Following the approach of Felippa and Haugen [22] and Le et al. [34], a coro-

tational beam element is developed in this thesis for the numerical dynamic analysis

of pipe whips. The kinematic formulation here employed omits the calculation of

the stiffness matrix K and employs a constant lumped mass matrix M, which was

chosen in favour of a consistent mass matrix, with the objective or reducing the

computational cost. The present work presents significant advancement to [22, 34]

through the adoption of elasto-plastic hardening-softening constitutive model that

capture the change in bending moment when collapse occurs, eliminating the need

to perform computationally expensive integration of the cross-sectional stresses to

calculate the plastic moment during large deformations.
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1.2.3 Impulsive response of metal plates

Metal plates, usually made of steel or aluminium alloys, constitute common compo-

nents in civil, industrial and military structures, with a range of applications varying

from pressure vessels [47, 48] to ship superstructures [49, 50]. Structures must be

tested under a variety of loading conditions to assess the mechanical response and

the consequences of hazardous incidents. The analysis of their failure mechanisms,

especially under explosive loadings, is a topic of ongoing study [51, 52], which is

of fundamental importance to many fields, in particular to the defence sector, due

to its inherent complexity, owing to its short time scale, the occurrence of fracture

and the possibility of fragmentation.

The experimental investigations of Teeling-Smith and Nurick [51], Nurick et al.

[53, 54, 55] and Olson et al. [56] observed that metal plates subjected to uniformly

distributed blast loadings, generated by the detonation of an explosive charge, have

three typical responses. Ordered by increasing loading intensity, they are classified

as:

Failure mode I — characterised by large inelastic deformation, without fracture;

Failure mode II — where large inelastic deformation is accompanied by material

rupturing along the support due to tensile failure;

Failure mode III — where rupturing occurs along the support due to transverse

shear failure, with negligible deformation.

When modes II or III occur, the propagation of the fracture surface leads to the de-

tachment of part of the plate from its support, generating high speed fragments that

can impact on nearby bodies, causing safety concerns for the integrity of equipment

and personnel. Some studies [55, 57] have occasionally observed an additional

failure mode, in a range of loading intensity between mode I and II, characterised

by large inelastic deformation and partial rupturing along the support, but with-

out complete detachment, classified as failure mode II*. The sequence of failure

modes observed in the case of impulsively loaded quadrangular plates is illustrated

in Figure 1.6.
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(a) Mode I (b) Mode II*

(c) Mode II (d) Mode III

Figure 1.6: Failure modes of clamped square steel plates subjected to impulsive blast load-
ings. Adapted from [56].

Yuen et al. [52] reported a comprehensive review of numerous experimental

studies that investigated the impulsive behaviour of plates with various geometries

(i.e. circular [51, 58], square [56, 54, 55] or rectangular plates [57, 59, 50]), bound-

ary conditions [60, 57, 52], stiffener configuration [61, 62] and loading distributions

[61, 58, 63]. In the first investigation, Teeling-Smith and Nurick [51] studied the

deformation of circular clamped mild steel plates subjected to uniform blast load-

ing, giving the classification of the three main failure modes. They analysed the

change in permanent central deflection, W , with the blast intensity, I, observing that
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W initially increases with I in mode I, and that the maximum deflection is obtained

in mode II, when rupture occurs along the support. Further increasing the inten-

sity leads to the decrease of W , until it becomes negligible in mode III. The study

also noted that, whilst the mode I-II transition is clearly marked by the initiation of

rupturing at the support, it was not possible to identify with certainty a threshold

separating mode II and III.

Olson et al. [56] drew very similar conclusions when testing square plates un-

der the same loading conditions; the only difference was noted in the initiation of

the rupture mechanism which, in the case of a square plate, begins at the midpoint

of each side. Four cracks are formed that rapidly propagated along the supports. As

the cracks converge on the corners, they deviate towards each other and eventually

merge, causing the separation of the plate from its support. Following the detach-

ment, the deviated crack path takes the shape illustrated in Figure 1.7 (a). Nurick

and Shave [55] repeated the study on square plates for additional values of impulse

intensity, observing for the first time the occurrence of mode II*, at the transition

between mode I and II. In mode II*, rupture initiates at the midpoint of one or more

sides, but stops before it reaches the corner, without causing detachment. It was also

observed that, for the same value of I, different plates could display partial rupturing

(a) Mode II - detachment path (b) Mode II*- partial rupturing

Figure 1.7: (a) Crack path deviation, adapted from [64]. (b) Partial rupturing on two sides,
adapted from [55].
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on one or more sides due to the presence of material imperfections or the uneven

tightening of the clamping bolts, as depicted in Figure 1.7 (b). Furthermore, it was

noted that failure mode II could be separated in two regimes: an initial mode IIa,

where the central deflection increases with I, followed by mode IIb, where the de-

flection decreases with I. Finally, Nurick and Shave [55] remarked that rupture is

determined by the two concurring mechanisms of tensile failure, which prevails at

low impulse intensity, and shear failure, which becomes predominant as the loading

intensity increases.

More recently, Jacob et al. [58] have studied the effect of the stand-off dis-

tance of the explosive charge on the failure mode of clamped circular plates, whilst

keeping a constant explosive charge. When the stand-off distance is larger than the

plate radius, the plate is hit by a uniformly-distributed blast; the deformation profile

assumes a dome shape, with a maximum central deflection that rapidly decreases

as the stand-off distance increases. When the stand-off distance is smaller than the

radius, the plate is hit by a localised blast at its centre, causing a complex defor-

mation profile, composed by a central dome superimposed on a global dome (see

Figure 1.8 (a)). If the loading intensity is increased at a small stand-off distance,

the central portion of the plate undergoes complete detachment under the effect of

the localised load, in a failure mode named capping (or mode IIc). If the impulse is

increased further, multiple crack paths propagate radially from the central portion

(a) Mode I - (localised dome) (b) Petalling

Figure 1.8: Plates failure modes due to localised blasts: (a) double dome profile and (b)
petalling. Adapted from [58].
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in a fashion named petalling [58], as depicted in Figure 1.8 (b). A similar response

was observed by Langdon et al. [61] in the study of locally loaded quadrangular

plates.

The discussion of the experimental findings discussed here, along with the

observations on welded and stiffened plates presented in [52], can be summarised

as follows:

• The principal failure modes of impulsively loaded metal plates are, ordered

by loading intensity: mode I, mode II*, mode II (a and b), mode III;

• Under the same loading conditions, quadrangular and circular plates display

similar responses;

• The sole exception is the fracture propagation observed in mode II and III for

quadrangular plates, which initiates at the lateral midpoints and deviates at

the plate corners before detachment;

• Reducing the stand-off distance causes the localisation of the blast;

• The deformation profile of locally loaded plates has the shape of a central

dome sitting atop a global dome;

• In locally loaded plates, mode II and III are replaced by capping (mode IIc)

and petalling, respectively;

• Increasing the stiffness of the boundary (e.g. welded or machined supports)

increases the resistance to tearing, i.e. rupture initiates at higher loading in-

tensity;

• Ordered by increasing stiffness, possible type of supports are: clamped,

welded, machined supports;

• The welding of stiffeners reduces the amount of deformation;

• Rupturing and fracture initiate at lower impulse in the regions where the stiff-

ener is welded.

Jones [65] presented an extended survey of theoretical studies aimed at pre-

dicting the deformation profiles of plates subjected to uniform impulsive blasts in

mode I. With the hypothesis of rigid-perfectly plastic material, the models reported

in [65] are capable of predicting the permanent transverse deflection of circular and
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quadrangular plates with various boundary conditions. In particular, the maximum

transverse deflection at the centre of the plate, W , is completely determined by the

initial blast velocity v0, the surface area A, the plate thickness H, the material den-

sity ρ and the yield stress σY ,

W = f (v0,A,H,ρ,σY ) . (1.8)

For example, in the case of fully clamped square plates, the dimensionless central

deflection is evaluated as [65, equation 24 A]

W
H

=

(
1+

2λ

3

)1/2

−1 (1.9)

with

λ =
ρA
σY

(v0

H

)2
. (1.10)

More comprehensive models that take into account material strain-rate dependence

were also reported [65]. More recent models have been developed to successfully

predict the permanent deflection profile of plates subjected to centrally localised

blasts [66, 67].

The theoretical models are only capable of predicting the plate response in the

absence of fracture, and are therefore limited to the assessment of failure mode I.

However, finite element analyses employing constitutive models of material failure

and fracture mechanics are capable of predicting the permanent deformation when

rupture occurs, and also of analysing the propagation of the fracture surface.

A review of FE models of the failure of quadrangular steel plates is pre-

sented by the author in [68]. A model incorporating material and geometrical non-

linearities and material strain-rate sensitivity was employed by Rudrapatna et al.

[69, 62] to predict the post-failure response of a blast-loaded stiffened square plate

deforming in mode II and III. In their work, the plate was discretised using plate

elements, and the compliance of the clamped supports was modelled using spring

elements. The pressure loading from the explosive charge was assumed as a rectan-
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gular pulse uniformly distributed over the plate surface. The progression of fracture

along the boundaries was modelled with a node-release algorithm, and an interac-

tive failure criterion between membrane and transverse shear stress was proposed

to predict the transition between the two failure modes. The numerical results were

compared against a small number of experimental data, showing limited agreement.

Yuan and Tan [70] used a solid elements model to predict the through-the-

thickness propagation of the fracture surface in square and rectangular plates. The

model employed a strain-rate dependent material model with simplified damage cri-

teria that neglected the dependence of the failure parameters on the element size;

fictitious boundary conditions were used to guarantee stress convergence at the sup-

port, where failure occurs.

More recently, Aune et al. [71] used a shell elements model to reproduce the

experiments on plates with pre-formed holes subjected to a pressure wave in water

generated in a shock tube facility. The simulations assumed a constant value for the

initiation of damage, and crack propagation was modelled through element deletion

and mesh refinement. The study investigated the influence of the boundary compli-

ance on the dynamic response, noting that an excessive boundary mobility leads to

an overestimation of the central deflection, and that using fully-clamped boundary

conditions leads to predictions that are closer to the experimental data.

Aune et al. [64] used a temperature-dependent material model to analyse the

deformation of steel and aluminium plates exposed to airblast loading. The sim-

ulation modelled the propagation of cracks using an energy-based failure criterion

with element deletion. The results provided good agreement on the prior-to-failure

transient deformation profiles, compared with experimental data obtained from 3D-

DIC imaging [63], and on the effect of stand-off distance on the central deflection.

However, a less satisfying agreement was obtained when comparing the crack path

deviation at the plate corners when detachment occurs.

It must be noted that most of the numerical works here reported employed

oversimplified strain-based damage criteria that neglect the dependence of the fail-

ure parameters on the element size. In the present work, FE simulations are carried
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out with a shell element model implementing more comprehensive damage crite-

ria [72, 73], with the aim of examining the crack propagation (modelled through

element deletion) and the influence of impulse intensity and boundary compliance

on the failure modes of quadrangular plates. The damage parameters are extracted

from experimental tensile and shear tests performed on mild steel specimens; the

parameters are opportunely calibrated to ensure the mesh insensitivity of the failure

mechanisms [68].

It is worth mentioning here alternative approaches for the modelling of frac-

ture, in addition to the aforementioned damage mechanics approach with element

deletion. For instance, Imachi et al. [74] introduced a peridynamic model (i.e. a

non-local continuum mechanics formulation) employing dynamic stress intensity

factors to analyse crack propagation in brittle materials. Nguyen et al. [75] anal-

ysed the fracture mechanisms of quasi-brittle materials implementing an FE damage

model based on non-local strain gradient theory, coupled with elastic and progres-

sive softening constitutive laws. Wu et al. [76] proposed to simulate metal grind-

ing processes using a mesh-free particle Galerkin method. The model implements

a strain-based law and a bond-based failure criterion where fracture is simulated

through the disconnection of neighbouring particles upon reaching a critical strain

value.
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1.3 Motivation of work and objectives

Notwithstanding recent computational advancements, commonly employed FE

simulations for the failure analysis of thin-walled structures, due to structural col-

lapse or material fracture, implement oversimplified models that fail to address with

sufficient accuracy some fundamental phenomena. For example, FE simulations

aimed at modelling the behaviour of pipe whips are either computationally inef-

ficient, as in the case of shell-element models [11, 13], which require extremely

refined mesh throughout the model to predict the cross-sectional ovalization, or are

not capable of capturing successfully the intrinsic cross-sectional collapse mech-

anism (i.e. beam-element models, rigid-perfectly plastic finite difference models

[2]. Pipe and elbow elements exist that are able to model the pipe collapse only

in static analyses, and with limited accuracy regarding the stress distribution and

ovalization mode, compared to shell elements [17]. On a similar note, FE models

used in the failure analysis of impulsively loaded plates employ failure models that

neglect the sensitivity of damage on the characteristic element length [70, 71, 64].

The modelling of damage depends on the element size for geometrical and math-

ematical reasons: (i) when portraying the propagation of damage through element

deletion, the mesh must be sufficiently refined to simulate the formation of small

cracks [70], and (ii) the model parameters used in the calculation of the energy re-

quired for the element deletion depend on the characteristic element length [64].

The damage criteria employed in [70] and in [71, 64] neglect this second aspect by

calibrating the damage parameters on a single element size and are therefore not

suitable for an accurate study of the modes of deformation that are influenced by

the propagation of fracture. The scope of this thesis is to investigate the limitation

of currently used numerical models for thin-walled structures and research effective

methods to improve their predicting capabilities.

In the modelling of pipe whips, the approach chosen was to develop a com-

putationally efficient element code, employing ad-hoc constitutive models obtained

through the numerical testing of pipe collapse in bending. In the modelling of im-

pulsively loaded plates, a combination of experimental and numerical procedures
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was applied to the calibration of the damage parameters, leading to the establish-

ment of a procedure that is phenomenologically comprehensive yet easily imple-

mented. In the process of developing the aforementioned models, the main objec-

tives of this research work are:

1. To develop a computationally efficient beam element code to model the flex-

ural behaviours of pipe whips accurately.

2. To assess the influence of pipe geometry and loading conditions on the hazard

zone.

3. To derive empirical laws that predict the pipe response, useful for the design

of pipe systems.

4. To develop a mesh-size independent fracture model for shell elements.

5. To test the validity of the model by investigating the influence of plate topol-

ogy and boundary conditions on the failure modes of blast loaded plates.

6. To establish a criterion for identifying the impulse threshold between failure

modes II and III.

1.4 Outline of the thesis
The thesis is organised as follows. In Chapter 2, a two-dimensional element

(VUEL BM2D) is developed for the simulation of in-plane pipe whips. The ele-

ment employs a corotational description of the beam kinematic, based on the works

of Felippa and Haugen [22] and Le et al. [34], commonly used in fast-converging

algorithms, to reduce the computational costs. FE simulations of bending tests on

thick and thin pipes are performed to build a moment-curvature constitutive model

capable of capturing the cross-sectional collapse of pipes.

In Chapter 3, simulations implementing the VUEL BM2D code and the

moment-curvature model are used for the analysis of thick and thin in-plane pipe

whips, validated against the experimental data by Reid et al. [2]. The validated

model is then employed in parametric studies aimed at identifying the dependence
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of the deformation mechanisms of pipe whips on the structural geometry and load-

ing conditions. The hazard zone observed numerically is compared to analyti-

cal predictions obtained with a rigid-perfectly plastic beam model developed by

Stronge and Yu [8]. Finally, the VUEL BM2D model is benchmarked against shell

element simulations performed in Abaqus/explicit to assess the computational effi-

ciency of the code.

Chapter 4 presents the development of a three-dimensional element

(VUEL BM3D) for the simulation of out-of-plane pipe whips. The element em-

ploys the 3D corotational formulation of Battini [27] and Le [33] and the moment-

curvature law developed in Chapter 2, together with a constitutive law for torsion.

The VUEL BM3D code is then benchmarked against numerical simulations of out-

of-plane pipe whips performed in Abaqus/explicit using traditional shell and beam

elements, analysing its computational cost and the capability to capture collapse

mechanisms when bending and twisting of the pipe occur simultaneously.

In Chapter 5, a shell-element model is developed for simulating the large defor-

mation and fracture of steel plates loaded impulsively. The simulation employs two

constitutive models to describe material failure under tensile and shear conditions,

based on the triaxiality-dependent Modified Mohr-Coulomb criterion [72]. Exper-

imental tests on un-notched and pre-notched steel S235 dog-bone specimens were

performed to measure the material response in a wide range of loading conditions,

from pure shear to biaxial tension, and to calibrate the damage initiation parameters.

Numerical simulations reproducing the uniaxial tensile and pure shear experiments

were performed to calibrate the damage evolution parameters and ensure mesh in-

sensitivity of damage. The calibrated shell-element model was then employed in

simulations reproducing impulsive experiments on steel plates by Olson et al. [56]

and Nurick and Shave [55] and successfully validated. The simulations were used

to derive a phenomenological model for the prediction of the mode II-III impulse

threshold, based on the measurement of the crack propagation velocity.

In Chapter 6, the plate model is used to analyse the deviation of the crack path

observed experimentally. Parametric studies are then performed to investigate the
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effect of plate topology, loading intensity and boundary conditions on the failure

modes of square and rectangular plates. In particular, a novel failure mode was nu-

merically discovered for simply-supported rectangular plates where the crack path

deviation occurs in the central region of the plate, rather than close to the corners.

Chapter 7 presents a summary of the principal conclusions of this work and

future research topics.

1.5 Contribution to existing literature
Part of the research work reported in this thesis has appeared in the journal article:

D. Schiano Moriello, F. Bosi, R. Torii, P.J. Tan. Failure and detachment

path of impulsively loaded plates. Thin-Walled Structures, 155:106871,

oct 2020.



Chapter 2

Modelling of plastic deformation of

thin-walled pipes

2.1 Introduction

This chapter presents the development of a two-dimensional corotational element,

named VUEL BM2D, for the dynamic FE analysis of pipes undergoing large defor-

mations. The element, based on the corotational formulations of beams developed

by Felippa and Haugen [22] and Le et al. [34], present an improvement in the cur-

rently available simulation techniques by implementing two separate constitutive

models that describe the behaviour of metal pipes under tensile and bending load-

ings. The application of the VUEL BM2D element for the simulation of in-plane

pipe whips is discussed in Chapter 3; the development of a three-dimensional el-

ement, named VUEL BM3D and its application for modelling out-of-plane pipe

whips is the subject of Chapter 4.

A schematisation of the solution scheme employed in FEA to model dynamic

analyses is illustrated in Figure 2.1 (a). At the beginning of the simulation, the pre-

scribed initial and boundary conditions are applied to the elements that constitute

the discretisation of the body. At any increment, the nodal displacements computed

from the previous time step are used to evaluate the nodal forces, according to se-

lected material models.
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(a) (b)

Figure 2.1: (a) Schematisation of a dynamic FEA solution algorithm. (b) Schematisation of
a corotational element, VUEL, replacing the element module in the algorithm.

At the end of the increment, the nodal displacements u and accelerations ü

induced by the forces f are calculated by solving Newton’s law, f = Mü, where M

is the mass matrix. The procedure here described is explicit in the sense that the

solution at any increment is obtained via direct inversion of Newton’s law, with-
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out the use of an iterative algorithm, whereas implicit procedures employ Newton’s

method to obtain the solution as a series of increments, performing iterations to

obtain equilibrium within each increment. The advantage of the explicit scheme

consists in the simplicity and robustness of the solution procedure and the rela-

tively inexpensive cost of each increment compared to the increments in an implicit

scheme [16]. At each increment during the calculation of the body motion, geomet-

rical non-linearities may arise as a consequence of large rotations and translations,

which are taken into account in the derivation of displacements, velocities and ac-

celerations in the equation of motion, whilst material non-linearities may occur with

the development large deformations, which are taken into account with non-linear

material models.

Figure 2.1 (b) illustrates a corotational element, VUEL, replacing the element

module in the solution algorithm. The corotational framework is used at the begin-

ning of the element module to separate the deformation from the displacement, and

to transform the displacement vector from the global to the local reference frame,

u→ ū. The material module is called to evaluate the components of the local force

vector, f̄, then the corotational framework converts the forces back to the global

reference frame, f̄→ f. Using the corotational framework enforces material-frame

indifference and consents to use non-linear constitutive models for the relation be-

tween local rotations and cross-sectional moments based on experimental observa-

tions from bending tests performed on pipes [77]. Furthermore, the method involves

a reduction of the number of degrees of freedom when operating in the local frame,

which contributes to the model simplicity and has the potential to reduce the com-

putational cost. In the present work, non-linear material models are used for the

calculation of local forces. In particular, a non-linear constitutive model is devel-

oped that correlates the moment in bending to the beam curvature.

2.2 Bernoulli 2D corotational beam element

This section deals with the derivation of a two-dimensional beam element within the

corotational framework. The element code is developed in the language Fortran 75
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as a subroutine, suitable for the implementation within the dynamic solution scheme

of the commercial FE software Abaqus/explicit [16]. The formulation follows the

approach of Felippa and Haugen [22] in the definition of the local strains, and that

of Le et al. [34] in the definition of the mass matrix and a transformation matrix

that is not limited to small rotations. The novelty of the approach consists in the

application of constitutive models for metal plasticity and the flexural behaviour of

hollow beams, used for evaluating the local forces. The corotational element will

be used for the simulation of pipes with high slenderness ratios L/D ≈ 50 >> 15.

Under these conditions, transverse shear is negligible and it is possible to use the

Bernoulli beam theory for the formulation of the local kinematics, rather than the

more complex Timoshenko bean theory.

The derivation of an element subroutine for the explicit solution scheme is

achieved with the definition of just two quantities: the internal force vector f, which

depends on the definition of the degrees of freedom and appropriate constitutive

relations, and the mass matrix M, which is independent of the constitutive relations.

2.2.1 Corotational kinematics of 2D beams

The corotational framework for a planar beam with two nodes is presented visu-

ally in Figure 2.2. Each node is identified in the global reference frame by the

coordinates (xi,yi)i=1,2 and is assigned with three degrees of freedom: the two dis-

placements, ui and wi, and the rotation θi. The deformation vector is therefore

u = {u1,v1,θ1,u2,v2,θ2}T , (2.1)

to which corresponds the internal force vector

f =
{

Fx,1,Fy,1,M1,Fx,2,Fy,2,M2
}T

. (2.2)

The initial configuration of the beam is defined by the rotation angle β0 and

the element length L. After the initial state, the beam can move and deform in the

xy-plane due to the force applied. At any time increment, a corotated frame CR
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Figure 2.2: Reference frames for a planar beam element with two nodes. The Cartesian
coordinates (x,y) define the global reference frame, and C0 is the initial con-
figuration of the element. At any time increment, CR identifies the current
(corotated) reference frame, whereas CD

1 and CD
2 the deformed configuration at

each node.

is defined that moves rigidly with the element; its orientation β is identified by a

straight line connecting the two nodes.

To separate the pure deformational and rigid components of motion, the local

frames CD
1 and CD

2 are introduced that follow the rotation of each node, with local

orientation θ̄1 and θ̄2 with respect to the frame CR. The decomposition of motion

into its rigid and deformational components allows for arbitrarily large rotations at

each end, independent of the stress state, provided that a sufficiently small number

of elements is employed [34]. Based on the local frames, the local deformation

vector can then be defined as

ū =
{

ū, θ̄1, θ̄2
}T

. (2.3)

The first component of ū is the variation of the element length, calulated as
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follows:

ū = Ln−L , (2.4a)

L =

√
(x2− x1)

2 +(y2− y1)
2 , (2.4b)

Ln =

√
(x2 +u2− x1−u1)

2 +(y2 + v2− y1− v1)
2 . (2.4c)

The remaining components are the local rotation angles θ̄i, obtained from the com-

ponents of u through the rigid rotation α = β −β0, so that

θ̄i = θi−α = θi−β +β0 , i = 1,2 . (2.5)

The orientation of C0 and CR are evaluated from the nodal coordinates,

cosβ0 =
x2− x1

L
, sinβ0 =

y2− y1

L
(2.6a)

cosβ =
x2 +u2− x1−u1

Ln
, sinβ =

y2 + v2− y1− v1

Ln
, (2.6b)

which leads to

cosα = cosβ cosβ0 + sinβ sinβ0 (2.7a)

sinα = sinβ cosβ0− cosβ sinβ0 (2.7b)

and

cos θ̄i = cosθi cosα + sinθi sinα (2.8a)

sin θ̄i = sinθi cosα− cosθi sinα . (2.8b)

The following procedure is employed to obtain expressions of the local angles that
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are not limited in magnitude [34],



θ̄i = sin−1 (sin θ̄i
)

if sin θ̄i ≥ 0, cos θ̄i ≥ 0

θ̄i = cos−1 (cos θ̄i
)

if sin θ̄i ≥ 0, cos θ̄i < 0

θ̄i = sin−1 (sin θ̄i
)

if sin θ̄i < 0, cos θ̄i ≥ 0

θ̄i =−cos−1 (cos θ̄i
)

if sin θ̄i < 0, cos θ̄i < 0 .

(2.9)

which is required for analyses where large rotations occur. The vector ū corresponds

to a local force vector of the same length,

f̄ = {N̄,M̄1,M̄2}T (2.10)

where N̄ is the axial force, determined by the element elongation, and M̄i are the

bending moment associated with the angles θ̄i. By differentiating vector ū with

respect to u the transformation matrix B is obtained,

B =
∂ ū
∂ u

=


−c −s 0 c s 0

s/Ln −c/Ln −1 −s/Ln c/Ln 0

−s/Ln c/Ln 0 s/Ln −c/Ln 1

 , (2.11)

where c = cosβ and s = sinβ , that gives the expression of the internal force vector

in the global reference frame

f = BTf̄ . (2.12)

2.2.2 Local element formulation

Once the local deformation vector ū is defined, the components of the local force

vector f̄ can then be evaluated, based on the definition of the local strains. The

nominal strain is simply defined as

ε =
ū
L
. (2.13)
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from which the axial force can be evaluated as

N̄ = σAn (2.14)

where σ = σ(ε) is the stress acting on the cross-section along the longitudinal di-

rection, which depends on the opportune choice of a constitutive model, and An is

the current cross-sectional area which, with the hypothesis of element incompress-

ibility, is calculated from the initial area A as

An = A
L
Ln

. (2.15)

The corotational element employs the Euler-Bernoulli beam theory to evaluate the

curvature in the local reference frame, with the Hermitian shape functions [27, 34]

N1 = x̄
(

1− x̄
L

)2

, (2.16a)

N2 =−
(

1− x̄
L

)
x̄2

L
, (2.16b)

where x̄ is the local coordinate along the longitudinal axis. The curvature is then

expressed as a function of x̄ with

k(x̄) =
∂ 2

∂ x̄2

[
N1θ̄1 +N2θ̄2

]
. (2.17)

Substituting x̄ = 0, x̄ = L and x̄ = L/2 in the equation above leads to the curvature

values at the nodal positions and at the longitudinal midpoint [22, 27], respectively:

k(x̄ = 0) =
−2
L

(
θ̄2 +2θ̄1

)
= k1 , (2.18a)

k(x̄ = L) =
2
L

(
2θ̄2 + θ̄1

)
= k2 , (2.18b)

k
(

x̄ =
L
2

)
=

1
L

(
θ̄2− θ̄1

)
. (2.18c)
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The element formulation is completed by the specification of a constitutive law

relating the bending moment at the nodes, M̄1 and M̄2 to the curvature, as described

in Section 2.5.

2.2.3 Element mass matrix and stable time increment

The explicit solution algorithm employed in this work for dynamic analyses requires

the definition of a lumped mass matrix [16, 34]:

M =
ρAL

2



1 0 0 0 0 0

0 1 0 0 0 0

0 0 L2/12 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 L2/12


. (2.19)

The matrix M is a constant diagonal mass matrix; the first two terms on the diagonal,

corresponding to the displacement degrees of freedom, are obtained by dividing the

total mass of the element between the two end nodes, whereas the third term, which

corresponds to the rotational degree of freedom, is equal to the inertia of a rigid rod

that is rotating about its middle point.

Finally, the coding of the user elements requires the specification of a sta-

ble time increment, that is, the upper limit to the time increment in the solution

procedure. When employing an explicit time-integration algorithm, the numerical

solution is only conditionally stable and a sufficiently small time increment must

be selected to achieve stability [78]. Courant et al. [79] defined what is called the

Courant-Friendrichs-Lewy (CFL) condition for the stability of any explicit algo-

rithm. According to the CFL condition, a coefficient is defined,

CCFL =
v∆t
∆x

, (2.20)

where v is the local wave speed, ∆x a characteristic length, and ∆t the time incre-

ment. The algorithm is then stable and converges to the correct solution only if
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CCFL ≤ 1 [79]. The CFL condition imposes an upper limit on the minimum stable

time increment, expressed as [78]

∆t ≤CCFL
∆x
v
. (2.21)

When applying the CFL condition to one-dimensional elements, the wave propaga-

tion speed can be defined as v =
√

E/ρ , leading to

∆t ≤CCFL∆x

√
ρ

E
, (2.22)

where the characteristic length can be written as a function of the element length,

L. In the case of truss or beam elements, the stable time increment can be estimated

as [16]

∆t = f

√
ρLLn

E
, (2.23)

where f is a small multiplicative factor that ensures the satisfaction of the CFL

condition. In our simulations, the value of f that allows for stability is identified

through an iterative process when modelling the deformation of pipe whips. When

f is too high, the algorithm becomes unstable, which is evidenced by the element

distorting excessively with respect to the applied load. On the other side, when

f is too low, the algorithm is stable but the time to obtain the solution becomes

unfeasible for an explicit analysis. Therefore, an optimum range for f must be

found that ensures stability whilst maintaining a short solution time. It was found

that the algorithm was stable for values in the range of f = 0.2–0.01, whilst keeping

the solution time shorter than 2 min.

2.3 Constitutive models
The remaining step in the development of the element code is the evaluation of the

axial force and the bending moments that compose local force vector f̄. The work

here presented employs two constitutive laws to model the mechanical behaviour of

metal pipes. At the current stage, the model neglects the effect of the strain rate on

the material response and the effect of the interaction between tensile and flexural
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components of the stress tensor on yield surface; the inclusion of these two effects

being planned for future studies.

2.3.1 Strain hardening

The typical response of a ductile metal specimen under tensile loading is displayed

in Figure 2.3, where the nominal stress-strain relation is divided into three stages.

The material response is initially linear elastic (point from a to b), followed by

yielding (point b), and a strain-hardening stage (from b to c). Beyond point c, the

material undergoes a strain-softening stage characterised by a marked reduction of

load-carrying capacity until fracture (d). During this last stage, localisation and

necking occur.

In the present work, the material response is modelled through a piece-wise

linear approximation of the plastic stress-strain curve obtained from a uniaxial ten-

sile test. This simple approach, commonly employed in commercial FE software,

allows to model the mechanical response with great accuracy, provided that enough

material points are selected [16]. In the discretisation of the curve, the linear elastic

stage is modelled as

σ = Eε , ε ≤ εY (2.24)

where E is the elastic modulus, εY = σY/E the yield strain, and σY the yield stress.

Beyond the yield point, the definitions of true stress and true plastic strain must be

Figure 2.3: Schematics of a typical tensile response of a metal specimen.
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introduced,

σ̄ = σ(1+ ε) , (2.25)

ε̄ = ln(1+ ε)− εY . (2.26)

The piece-wise linear approximation of the strain-hardening and softening stages,

illustrated in Figure 2.4, is expressed in the σ̄ -ε̄ space as

σ̄ = σ̄
H(ε̄) =


σ̄i +

σ̄i+1− σ̄i

ε̄i+1− ε̄i
ε̄ , ε̄ ≥ 0 , ε̄ < ε̄U .

σ̄U , ε̄ ≥ εU .

(2.27)

In the previous equation, the index i denotes the i-th point of the curve discretisation,

σ̄U is the ultimate stress reached at necking, and ε̄U the corresponding strain. In

the study of pipewhips, the loading is constituted by a concentrated follower force

that is applied at the pipe’s free end, acting orthogonally to the longitudinal axis.

Under these conditions, each element is subjected to bending and the intensity of

the stresses acting in the axial direction is always smaller than the ultimate stress,

σ̄U . For this reason, the phenomenon of strain softening can be neglected and the

softening stage can be substituted by a horizontal segment [2].

(a)

Figure 2.4: Piece-wise linear approximation of the strain-hardening stage of the tensile
curve.
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To successfully model situations with dynamic loading conditions, the plastic

model of (2.27) must be modified to include the possibility of elastic unloading and

kinematic hardening, that is, the possibility to undergo secondary hardening due to

load reversal. The complete constitutive model, illustrated in Figure 2.5, is reported

in Appendix A.

Figure 2.5: Kinematic hardening constitutive model, as described in Listing A.

2.3.2 Moment-curvature relation

The response of beams and pipes in bending is usually measured performing three-

point or four-point bending tests, from which it is possible to obtain a curve correlat-

ing the bending moment to the change in curvature. The typical flexural behaviour

of circular pipes, and its approximation with a piece-wise linear model, are illus-

trated in Figure 2.6.

As in the case of the tensile response, the moment-curvature curve is charac-

terised by an initially linear elastic stage up to the yield point (MY ,kY ), followed

by a hardening stage up to the maximum point (MC,kC) and a softening stage up to

failure (MF ,kF). A piece wise linear approximation of the response is expressed as
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follows,

M(k) =


M∗(k) = EIk , |k|< kY

MHS(k) = sign(k)
(

Mi +
Mi+1−Mi

ki+1− ki
|k− kY |

)
, |k| ≥ kY , |k|< kF

MF(k) = sign(k)MF , |k| ≥ kF

(2.28)

where I indicates the second moment of area of the pipe cross-section and the index

i denotes the points of the curve discretisation. Following the point of failure, the

model assumes that the bending moment is constant for increasing values of cur-

vature. The complete flexural model, obtained combining the constitutive relation

(2.28) with a kinematic hardening law, is reported in Appendix B.

Figure 2.6: Schematics of the flexural constitutive model for the VUEL BM3D element
code, as described in Listing B. The linear elastic region has been shortened for
illustrative purposes.

2.4 VUEL BM2D architecture
The sequence of operations that compose the coding of the VUEL BM2D corota-

tional user element for the in-plane bending of hollow beams is here presented.

At any increment, for each finite element, the explicit solution algorithm pro-

vides the current nodal coordinates (xi,yi), and the translational and rotational de-
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grees of freedom associated with each node, ui, vi, θi, i = 1,2. The scope of the

code is then to evaluate the internal force vector f and the mass matrix M necessary

to solve Newton’s equation and evaluate the state of the element at the end of the

increment. The list of operations to be executed is summarised as follows:

1. Evaluate the initial and current element length, L, Ln, equation (2.4).

2. Evaluate the orientation β of the corotational frame, equation (2.6).

3. Compute the transformation matrix B, equation (2.11).

4. Evaluate the local rotation angles, θ̄i, equation (2.9).

5. Compute the local strains, equations (2.13), (2.18).

6. Apply the constitutive models, Section 2.3.

7. Assemble the local force vector f̄.

8. Obtain the global force vector f = BTf̄.

9. Build the mass matrix M, equation (2.19).

10. Estimate the stable time increment, ∆t, equation (2.23).

2.5 Numerical testing of circular pipes in bending
A series of numerical tests was performed in Abaqus/standard to simulate the bend-

ing of mild steel pipes, aimed at obtaining moment-curvature relations for a variety

of cross-sectional dimensions. As previously discussed in Section 1.2.1, the defor-

mation of a pipe in bending is a strongly non-linear problem due to the ovaliza-

tion and eventual collapse of the cross section as the rotation increases. The Riks

solution procedure [16] was chosen for its ability to simulate simultaneously geo-

metric and material non-linearities. The Riks method assumes that the loading is

quasi-static and proportional (that is, that the load magnitude and the displacement

depend on a single scalar parameter, the arc length) and that the structural response
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is reasonably smooth, without bifurcations. Under these conditions, finding the so-

lution corresponds to finding the static equilibrium path in the load-displacement

space as a function of the arc length. The Riks procedure, as it is implemented in

Abaqus [16], employs the basic iterative Newton algorithm. The increment size is

regulated by increments in the arc length, and is limited by moving a given distance

on the load-displacement space along the line that is tangent to the current solution

point and then searching for equilibrium in the plane that passes through the current

point and is orthogonal to the tangent line.

Under the hypothesis of pure bending and the assumption that plane sections

remain plane, the static collapse of a pipe in bending can be studied using a gener-

alised plane strain model. The model asssumes that the strain is constant in the third

direction, which is suitable for the analysis of the cross-section of slender structures

that are subjected to axial loading [16].

Figure 2.7 (a) illustrates a unit length of a pipe bounded by two rigid walls.

In the initial configuration, the bounding walls are parallel to each other and the

pipe has no curvature. The prescription of a rotation between the two walls causes

strain in the direction normal to the planes that varies linearly with respect to the in-

plane position, which corresponds to a constant curvature. The pipe cross-section is

Figure 2.7: Simulation setup used for the numerical bending tests. (a) Boundary conditions
and (b) example of discretisation of the cross-section with generalised plane-
strain elements [16].
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discretised using 4-nodes generalised plain strain elements with reduced integration

(type CPEG4R) as in Figure 2.7 (b). The elements are allowed to distort in plane,

and have an additional degree of freedom in the out-of-plane direction tied to the

relative rotation of the walls with respect to the reference point A. Bending loading

is obtained applying a prescribed rotation about the x-axis in point A, and symmetry

conditions are prescribed along the y-axis. The motion of point A in the y-direction

is fixed remove the possibility of rigid body motion in plane. The elements have

aspect ratio 1, and a minimum of 6 elements is used along the thickness to correctly

model the deformation of the cross-section.

The cross-sectional geometries considered are reported in Table 2.1. Several

combinations of external diameter D and wall thickness H were analysed, based on

the standards ASTM A312M, ASME B36.19M-2004, ASTM A106M and ASME

B36.10M-2004. Mariotte’s formula for cylinders under pressure allows to distin-

guish between thick and thin pipes through the ratio

πC =
D
H

∣∣∣∣
C
= 20 . (2.29)

When D/H ≤ 20, a pipe is considered relatively thick, and an overall uniform oval-

ization in bending is expected. On the contrary, when D/H > 20 the pipe is con-

sidered thin, and it is expected to display a pronounced cross-sectional collapse. Of

Table 2.1: Typical values of outside diameter D and wall thickness H for stainless steel and
carbon steel pipes, based on the standards ASTM A312M, ASME B36.19M-
2004, ASTM A106M and ASME B36.10M-2004.

Pipe Schedule D H D/H
(mm) (mm)

P1 Sch10 48.3 2.77 17.4
P2 Sch40 48.3 3.68 13.1
P3 Sch80 48.3 5.08 9.5
P4 Sch10 42.2 2.77 15.2
P5 Sch10 33.4 2.77 12.1
P6 Sch30 48.3 3.18 15.1

TP1 Sch5 48.3 1.65 29.3
TP2 Sch5 42.2 1.65 25.5
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Table 2.2: Material properties used in the numerical bending tests on mild steel pipes [2].

ρ E ν σY a b n
(kg/m3) (GPa) - (MPa) (MPa) (MPa) -

7850 200 0.33 295 266.1 530.5 0.5608

the pipes analysed, those labelled Pi, i = 1,6 in Table 2.1 are therefore considered

thick, and those labelled TPi, i = 1,2 are considered thin.

The material considered was mild steel, following the experimental investiga-

tion of Reid et al. [2, 18], with the material properties reported in Table 2.2. Metal

plasticity was modelled using the Johnson-Cook power law model

σ̄ = a+bε̄
n . (2.30)

The disadvantage of the Riks method is its inability to model strain-rate dependent

material behaviours; any numerical results can only be compared to static or quasi-

static experimental data. Future studies, aimed at obtaining rate dependent moment-

curvature relations, must therefore use a dynamic solution procedure.

The results of a mesh convergence study for the numerical bending test of a

thick pipe (P1) using the Riks method are shown in Figure 2.8, where the curva-

ture and the bending moment calculated on the cross-section are plotted against the

number of elements in the direction of the thickness.

The cross-sectional deformation of the pipes P1 and TP1 is shown in Fig-

ure 2.9. Despite the small difference in wall thickness, the pipes display completely

different behaviours when subjected to the same loading, with the geometry TP1

exhibiting a noticeable collapse.

2.5.1 Moment-curvature master curve

The moment-curvature relations extracted from the simulation of bending tests are

displayed in Figure 2.10. The moment was extracted by integrating the stresses

acting in the third direction on the cross-section, whereas the curvature is obtained

from the relative rotation of the bounding planes. The differences between the sev-

eral curves are dictated by the position of the yield and maximum points, which
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Figure 2.8: Mesh convergence study of a thick pipe (P1) in bending using the Riks proce-
dure. Plots of curvature k (left axis) and bending moment M (right axis) against
the number of element along the thickness.

determine the length of the hardening region. The curves obtained from thick pipes,

labelled Pi, are characterised by an extended hardening region, followed by negligi-

ble softening, whereas the curves for thin pipes, labelled TPi, are distinguished by

a short hardening region, followed by a lengthy softening branch.

The curves in Figure 2.10 show that the moment-curvature curve is not mono-

tonically related to the ratio D/H. The curves P4 and P6, despite having similar

values of the ratio, have very different values of yielding and maximum bending

moment. The curves P5 and TP2, with D/H = 12.1 and 25.5, respectively, have al-

most overlapping hardening regions. Therefore, a dimensional analysis using Buck-

ingham’s theorem was performed to identify the parameters affecting the shape of

the moment-curvature curves. It was found that the flexural behaviour of the pipes
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(a) (b)

Figure 2.9: Numerical predictions of cross-sectional collapse for a thick pipe (a) and a thin
pipe (b), corresponding respectively to the cases P1 and TP1 reported in Ta-
ble 2.1. The initial undeformed cross-sections are shown on top, and deformed
cross-section at the bottom.
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Figure 2.10: Bending moment-curvature relations from the numerical bending tests on mild
steel pipes. Solid lines indicate thick pipes (labelled Pi) and dashed lines
indicate thin pipes (labelled TPi). The cross-sectional geometries are reported
in Table 2.1.

is completely identified by three dimensionless groups

π1 =
D
H

, (2.31a)

π2 =
Mc

σY HD2 , (2.31b)

π3 =
kcD2

H
(2.31c)

where the parameters Mc and kc identify the maximum point in the M-k curves. By

inverting the relations (2.31), the two parameters can be expressed as a function of
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just one material constant and two dimensions:

Mc = Mc (σY ,D,H) , (2.32a)

kc = kc (σY ,D,H) . (2.32b)

Manipulating the M-k curves of Figure 2.10 with the dimensional groups π2 and

π3, it is possible to obtain relations of dimensionless moment, M/(σY HD2), ver-

sus dimensionless curvature, kD2/H, as shown in Figure 2.11. It can be seen that

the dimensionless curves tend to overlap in the elastic and hardening phase, up to

the maximum point. Beyond this point, two different behaviours can be distin-
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0.5

0.75
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Figure 2.11: Dimensionless moment-curvature relations from the numerical bending tests
on mild steel pipes. Solid lines indicate thick pipes (labelled Pi) and dashed
lines indicate thin pipes (labelled TPi). The cross-sectional geometries are
reported in Table 2.1.
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guished, where thin pipes exhibit a more pronounced softening phase compared to

thick pipes. Based on these observations, two characteristic curves are defined, here

named master curves, illustrated in Figure 2.12. Being defined in dimensionless

units, the master curves do not depend on the yield strength or the cross-sectional

dimensions, and can be used to univocally represent the response of think and thin

pipes in the dimensionless space of M/(σY HD2) versus kD2/H.

To the best of the author’s knowledge, the definition of the dimensionless

groups π2 and π3 and of the master curves for describing the behaviour of pipes

in bending have no precedents in the literature. The experimental investigation of

Reid et al. [18] and Jialing and Reid [19] had confirmed that kc is related to the

σY H D2
M

0
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0.75

1

1.25

H
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0 1 2 3 4 5

Master Thick
Master Thin

Figure 2.12: Dimensionless bending moment-curvature master curves for thick (—) and
thin (– -) pipes obtained from numerical testing.
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cross-sectional dimensions through the formula

kc = 0.2–0.5
H
R2 (2.33)

where R is the mean radius. Further experiments [2] had evidenced the difference in

behaviour between thick and thin pipes, and considerable effort was spent trying to

predict the moment-curvature relations trough analytical [18] or numerical means

[21, 80]. However, the studies concluded that, for each combination of D and H,

ad hoc experimental or numerical bending tests needed to be carried out to obtain

a moment-curvature relationship. The dimensional analysis here presented contests

the aforementioned claim, showing that the behaviour of thick and thin pipes in

bending can by described using the two characteristic master curves defined in the

dimensionless moment-curvature space.

From the master curves, the M-k curves necessary for the use of the

VUEL BM2D element can be obtained multiplying the dimensionless moment

and curvature by the appropriate values of σY , D and H. In Figure 2.13, the M-k

curves obtained for mild steel pipes with the dimensions reported in Table 2.3 are

compared with the experimental curves obtained from four-point bending tests by

Reid et al. [2]. In the case of the thickest pipe (D/H = 20), the curves obtained

numerically (– –) and experimentally (—) display overlapping elastic regions; how-

ever, there is a considerable difference in the value of yield moment (45%) and

maximum moment (10%). It must be noted that the experimental test reports a no-

ticeably small yield moment which is 21% smaller than that predicted theoretically

MY =
σY π

4Rext

(
R4

ext−R4
int
)
= 1332 MPa (2.34)

where Rext and Rint are the external and internal pipe radius, respectively. In a sub-

sequent study [21], Reid and Yang reported that the yield moment should coincide

with that predicted by equation (2.34), and that the maximum bending moment, Mc,

should only be slightly smaller than the fully plastic moment. No explanation was

given in [2] and [21] for the significant deviation from the theory they observed for
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Figure 2.13: Comparison of the numerical M-k curves for mild steel (– –) with those ob-
tained from four-point bending tests (—) by Reid et al. [2].

the thick pipe (D/H = 20).

On a different note, in the case of the thin pipes (D/H = 28 and 32) the experi-

ments observed a much lower slope in the elastic region compared to that predicted

numerically, which instead coincides with that predicted theoretically, given by

EI = E
π

4
(
R4

ext−R4
int
)
. (2.35)

Reid et al. [2] did not give an explanation for this discrepancy. It must be noted from

Reid et al. [18] that four-point bending test was altered to ensure that cross-sectional

collapse would occur only at the mid-length. Two solid blocks were inserted in the

tubes from the free ends up to the cross-sections where the external loads were

applied. This approach ensured that collapse would not occur between the free ends
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Table 2.3: Cross-sectional dimensions of the mild steel pipes investigated by Reid et al. [2].

D/H D (mm) H (mm)

20 50.8 2.60
28 50.8 1.80
32 50.8 1.58

and the loading points [18], but undoubtedly altered the rigidity of the system in the

elastic phase. Beyond the elastic region, a good agreement is observed between the

predicted and measured values of maximum bending moment, with an error of less

than 1.5% for both geometries.

In light of the comparison with the experimental measurements, it is advisable

to perform additional bending experiments on pipes to better characterise the flex-

ural behaviour. In the next chapter, where the VUEL BM2D code will be used in

the simulation of pipe whips, the experimental curve obtained by Reid et al. [2] for

thick pipes (D/H = 20) will be adopted when modelling a pipe of the same dimen-

sions, whereas numerical curves obtained for the master curves here developed will

be adopted in the modelling of thin pipes.

2.6 Summary
This chapter has presented the development of a corotational beam element,

VUEL BM2D, for the numerical analysis of in-plane pipe whips. The VUEL BM2D

element employs a constitutive model for the description of the flexural behaviour

of thin-walled pipes in bending, implemented as a moment-curvature relation. The

element code is based on a corotational kinematic description, to ensure the algo-

rithm has a reduced computational cost.

Numerical experiments of pipes in bending were performed to collect the data

necessary for building the flexural constitutive model. A parametric analysis helped

to define three dimensionless groups, equation (2.31), that completely identify the

flexural behaviour, leading to the definition of dimensionless master M-k curves

for thick and thin pipes. To the best of the author’s knowledge, the dimensionless

groups found and the master curves have no prior mention in the literature; these
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novel findings allow to effectively describe the flexural behaviour of steel pipes

with few commonly available parameters and, offering an approach that is readily

implementable for industrial applications.



Chapter 3

Simulation of in-plane pipe whips

3.1 Introduction
Numerical analyses reproducing the pipe whip experiments performed by Reid et al.

[2] are used herein for the validation of the VUEL BM2D code developed in Sec-

tion 2.4. The validated code is then employed in parametric studies investigating

the effect of the pipe geometry and blow-out force intensity on the deformation

mechanisms of pipe whips. The results are compared against a theoretical model

proposed by Stronge and Yu [8] for the prediction of the formation of plastic hinges,

and against numerical prediction obtained from simulations performed in Abaqus/-

explicit using shell elements.

3.2 Validation of the VUEL BM2D code
A schematisation of the experimental apparatus used by Reid et al. [2] for testing

the flexural behaviour of in-plane pipe whips, presented in Section 1.2.1, is illus-

trated in Figure 3.1. A straight pipe is connected at one end to a pressure reservoir,

and its free end terminates with a 90◦ elbow flange. The flange is initially occluded

by a membrane which is suddenly ruptured by an explosive charge. The release of

the high-pressure fluid induces an intense force that acts orthogonally to the longi-

tudinal axis, causing it to deform in a vertical plane.

The initial intensity of the force is determined by the internal cross-section of

the pipe and the fluid pressure. The intensity then gradually decreases during the

motion of the pipe due to its progressive collapse.
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In the numerical model aimed at reproduce the experimental apparatus, the

pipe is discretised as a cantilever beam with a concentrated mass at its tip that ap-

proximates that of the flange. The connection to the pressure reservoir is modelled

with fully constrained boundary conditions, and the blow-down force exerted by the

escaping fluid is reproduced as a follower force concentrated on the free end of the

beam. The loading intensity varies over time following the force pulse shown in

Figure 3.2 that reproduces the experimental observations measured from pressure

transducers [2].

The simulations were carried out in Abaqus/explicit using VUEL BM2D el-

ements. Mesh convergence study were performed, based on measurements of the

maximum displacement of the free end, demonstrating that a discretisation of the

pipe with 20 elements was sufficient to capture the deformation of the pipes with

a maximum error of 2% with respect to the reference solution obtained with 100

elements.

The model was used in the simulations of two pipe geometries, as reported in

Table 3.1, where D is the external diameter, H the wall thickness, L the pipe length,

F0 the initial force intensity, and m the mass of the flange. The pipes were made of

mild steel, with the material properties reported in Table 3.2, where ρ is the density,

Figure 3.1: Schematisation of the experimental apparatus used by Reid et al. [2] for testing
in-plane pipe whips (left), and simulation setup of the FE model reproducing
the experiment (right).
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Figure 3.2: Blow-down force pulse measured by Reid et al. [2] in the test of in-plane pipe
whips.

Table 3.1: Values of pipe dimensions, initial force intensity and flange mass used in the
experimental tests on in-plane pipe whips performed by Reid et al. [2].

Test case D H D/H L F0 m
(mm) (mm) - (m) (kN) (kg)

V 1 50.8 2.60 19.5 3.00 11.25 1.80
V 2 50.8 1.58 32.2 2.73 11.25 1.04

Table 3.2: Material properties for mild steel, as reported by Reid et al. [2], used in the
modelling of in-plane pipe whips.

ρ E ν σnom
Y σnom

U εnom
U

(kg/m3) (GPa) - (MPa) (MPa) -

7850 200 0.33 279 393 0.17

E the elastic modulus, ν is Poisson’s ratio, σnom
Y the nominal yield stress, σnom

U the

ultimate stress and εnom
U the corresponding strain.

Metal plasticity is modelled in the simulation following the approach described

in Section 2.3.1; the strain-hardening behaviour is included in the analysis as tabular

data discretising the plastic stress-strain curve of the material reported in Figure 3.3.

Similarly, the constitutive relation between bending moment and curvature, which

depends on the cross-sectional dimensions of each pipe, is included as tabular data

discretising the M-k curves shown in Figure 3.4, following the approach presented

in Section 2.3.2.



3.2. Validation of the VUEL BM2D code 79

Figure 3.3: True plastic and nominal stress-strain curves from uniaxial tensile tests on mild
steel [2] used in the simulation of pipe whips.
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Figure 3.4: Moment-curvature curves used in the simulation of in-plane pipe whips. The
cross-sectional dimensions are reported in Table 3.1.
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Reid et al. [2] have observed that the axial stress due to bending developed

during the deformation of the pipe was negligible with respect to the yield stress;

therefore, the simulations can safely neglect the effect of strain-softening and the

interaction between axial forces and bending moment. In the numerical study in

[2], the effect of material strain-rate dependence was originally neglected; the same

approximation is considered here, and the inclusion of the effect is programmed for

future studies.

3.2.1 Thick pipe case

Figure 3.5 shows the deformation history of the relatively thick pipe of the test

case V 1 (D/H = 19.5 < 20) as predicted by the simulation using VUEL BM2D

elements. The results are compared with the experimental (label Exp) and numerical

(label Num) results of Reid et al. [2]. In the experiment, a high-speed camera was

used to capture the instantaneous deflection of the pipe. Once the rupture device

was activated, the pipe started bending instantaneously, with a motion that can be

approximated with a rotation of part of the pipe about a point located at a distance

of 1.5 m from the fixed end. Afterwards, the bending process progresses and the

rotation point moves forward toward the fixed end. As stated in the experimental

observations [2], the pipe undergoes continuous bending, and there is no discernible

kinking of the pipe (i.e. localised cross-sectional collapse). Both numerical models

predict well the instantaneous deformation profile of the pipe.

The maximum relative error for the position of the free end, between our simu-

lation and the experimental data, is observed at the 60 ms time frame and is smaller

than 3.5%. The agreement with the experimental data confirms that both numerical

models are suitable for the simulation of large plastic deformation of thick-walled

pipes. The VUEL BM2D simulation employs the same pulse defined in the original

study [2] with which good agreement is observed. The small discrepancy in the

deformation profiles between both numerical solutions and the experimental results

at early time frames might be attributed to the approximation of the initial part of

the force pulse.
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Figure 3.5: Deformed shapes of the pipe whip from the test case V 1 at several time frames.
The simulations results obtained with the VUEL BM2D element code are com-
pared with the experimental results (Exp) and numerical predictions (Num)
from Reid et al. [2].

3.2.2 Thin pipe case

The results of the study on the thin pipe of the test case V 2 (D/H = 32) are presented

in Figure 3.6. According to the experimental observations, this pipe demonstrated

greater flexibility than the previous case. Most of the deformation was localised in

a small region at x≈ 1.7 m, where complete cross-sectional collapse was observed

starting at 30 ms. Subsequently, the deformation progresses with the rotation of the

pipe about the fixed end.

A very similar behaviour was observed with the VUEL BM2D simulation.

In the first 20 ms the pipe starts bending, with the centre of rotation located at

x ≈ 1.7 m. In the following time frames, the pipe continues to bend around this

point, while a second centre of rotation forms at x = 0. In the last time frame, the

pipe appears divided into an almost straight region, going from the free end to the

first centre of rotation, a small curved region with an angle of about 90◦, and a
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Figure 3.6: Deformed shapes of the pipe whip from the test case V 2 at various time frames.
The simulations results obtained with the VUEL BM2D element code are com-
pared with the experimental results (Exp) and numerical predictions (Num)
from Reid et al. [2].

final region of negligible curvature up to the fixed end. The comparison with the

experimental measurements in Figure 3.6 shows that the VUEL BM2D simulation

captures successfully the time point and the position where the localisation of the

collapse mechanism occurs, and maximum relative error for the position of the free

end measured the 40 ms time frame is smaller than 5%.

It must be noted that the numerical study by Reid et al. [2] predicts with less

accuracy the evolution of the deformation profile. The localisation of the collapse

mechanism is still predicted after 20 ms, but in a position that is much closer to the

free end and the profile starts deviating significantly from that observed experimen-

tally in the following time frames.

As previously mentioned, the current version of the element codes makes sim-

plifying assumptions on the constitutive behaviour, neglecting the interaction be-

tween axial forces and bending moment, the hardening effect of strain-rate. An im-
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provement on the model’s predictive capabilities might be possible through the as-

sumption of more comprehensive constitutive relations and an interactive yield sur-

face. Nevertheless, small discrepancies between numerical and experimental results

must be expected, remembering that, whilst experimental measurements taken from

high-speed photograph encompass the whole pipe section, the numerical model is

only capable of predicting the deformation of the pipe central axis.

3.2.3 Discussion

The agreement with the experimental data currently available confirms that the user

element VUEL BM2D here developed is suitable for the large deformation analysis

of thin-walled pipes.

The code is capable of accurately predicting the deformation profile of the

pipes and the points of maximum curvature that correspond to localised mechanisms

of cross-sectional collapse observed experimentally. In the following sections, the

VUEL BM2D code will then be used in parametric studies aimed at analysing the

effect of the pipe dimensions, the load intensity and the flange mass on the collapse

mechanisms.

Currently, the element library of the FEA software Abaqus does not offer an

equivalent element capable of modelling the pipe collapse in a dynamic analysis.

An alternative strategy aimed at reach the same level of accuracy in Abaqus would

require the use of shell of solid elements to discretise the whole geometry.

FE analyses that reproduced the pipe whip experiments employing the

VUEL BM2D code, modelling the pipe with 20 elements, required a computa-

tion time of less than 1 minute, similar to that of analyses employing the standard

beam elements available in Abaqus (Timoshenko element with two nodes), de-

pending on the time increment chosen. In our simulations, a relatively small time

increment was employed (0.02 times smaller than the stable time increment of a

rigid rod, following equation (2.23)), to ensure stability of the solution even when

softening in the moment-curvature relation occurs.

Two factors must be taken into account when considering in detail the com-

putational cost of the user element. Firstly, at any increment the program’s solver
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calls an external subroutine, rather than an internal subroutine, and secondly, the

code requires the writing of the requested element outputs in a dedicated comma-

separated file for post processing. The first factor has a negligible effect on the

overall computational cost, not directly dependent on the number of elements used,

but that could increase significantly when reducing the time increment or when in-

creasing the number of iterations. The latter factor has a predominant effect, due

to the inherent cost of executing the Fortran input/output commands and the open-

ing/closing commands directed to the results file at any increment. Despite these

factors, the VUEL BM2D performs well compared to traditional beam elements,

and even increasing the number of elements, the simulation time was of approxi-

mately 1 minute (computational cost of a simulation with 80 elements, and a total

step time of 0.2 s).

3.3 Analytical plastic beam model
Stronge and Yu [8] proposed an analytical model for predicting the deformation

mechanism of a rigid-perfectly plastic (RPP) cantilever beam with a concentrated

force applied at its tip. The model is presented graphically in Figure 3.7, with a force

that is initially oriented orthogonally to the beam’s longitudinal axis and follows its

rotation. Depending on the force intensity F , the beam exhibits three behaviours:
F < FC , stationary beam

F ∈ [FC,3FC] , Rotation about the fixed end

F ≥ 3FC , Rotation about a plastic hinge .

(3.1)

In the previous relations, FC = MP/L is the plastic collapse force of a beam, which

is determined by the beam length L and the plastic moment MP of the cross-section.

A dimensionless force can thus be defined as

f =
F
FC

, (3.2)

and the relations reduce respectively to f < 1, f ∈ [1,3] and f > 3.
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(a) F < FC - Stationary beam (b) F ∈ [FC,3FC] - Rotation about root

(c) F > 3FC - Rotation about plastic hinge

Figure 3.7: Deformation mechanisms for plastic beams featured by the RPP model. Dif-
ferent mechanisms are predicted depending on the force intensity F . The hinge
position Λ and the hazard zone Z are highlighted.

When f > 1 the beam deforms dynamically with a mechanism that is influ-

enced by the loading intensity and pulse shape. By solving the translational and

rotational equations of motion for the system of Figure 3.7, assuming that the force

has constant intensity F = F0, Stronge and Yu [8] demonstrated that a plastic hinge

forms at a distance Λ from the beam free end that only depends on the loading
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intensity

Λ =
3
F0

FCL , (3.3)

or, in a dimensionless form

λ =
Λ

L
=

3
f0
, (3.4)

where f0 = F0/FC. The simplicity of equation (3.3) stems from the approximation

of the beam to a rigid-perfectly plastic body (thus neglecting elastic effect), and

the reduction of the geometry to the longitudinal axis. Equation (3.4) implies that

the plastic hinge develops at the fixed end (λ = 1) when f0 ≤ 3. Using the rigid-

perfectly plastic model, the beam’s hazard zone (i.e. the maximum extent of the area

of influence of the pipe, indicated with Z in Figure 3.7) is completely determined

by the hinge position Λ. When the beam rotates about the fixed end, the free end

describes a circular arc of radius L. When a plastic hinge forms, the hazard zone

has a smaller radius, which is approximated by the length Λ or, in dimensionless

form

ζ =
Z
L
≈ λ . (3.5)

Solving the equations of motion for the case of a loading intensity that changes

over time, f = f (t), leads to [8]

λ =
3τ

p(τ)
, (3.6)

where τ = t/t0 is the dimensionless time, t the time in seconds, t0 = L
√

ρ/FC a

characteristic time and p(τ) the pulse intensity

p =
∫

τ

0
f (τ̃)dτ̃ . (3.7)

From equation (3.7) it can be deduced that, once formed, a plastic hinge will move

towards either end of the beam with velocity

λ̇ =
dλ

dτ
=

3
p(τ)2 [p(τ)− τ f (τ)] . (3.8)



3.3. Analytical plastic beam model 87

The evolution of the tip force f (τ) determines the sign of λ̇ . The hinge will be

stationary for λ̇ = 0, it will move towards the free end for λ̇ < 0 — when the

loading decreases over time — and will move towards the fixed end for λ̇ > 0 —

when the loading is increasing.

Stronge and Yu [8] further studied the RPP model in the case of a cantilever

beam hit by a falling object of mass m. The study assumed the coefficient of resti-

tution is null, that is, the mass would stay attached to the beam after the impact.

Indicating with γ = m/(ρAL) its weight in dimensionless form, ρ the material den-

sity of the beam, A the cross-sectional area and v0 its initial dimensionless velocity,

solving the equation of motions leads to [8]

λ =
1

2γv0

(
3τ +

√
9τ2 +24γ2v0τ

)
. (3.9)

Stronge and Yu [8] did not investigate the case of beams that are loaded with

a concentrated tip force and simultaneously hit by a travelling mass at the free end.

The expansion of the RPP model to analyse this particular case is obtained below

through the incorporation both effect into the equilibrium equations of the system.

The translational and rotational equations of motion, in dimensionless form, of the

system composed by a cantilever beam loaded ad its tip and and a mass travelling

at speed v are 
1
2

λv = γ(v− v0)+ p ,

1
6

λ 2v = τ .

(3.10)

Solving the system of equations gives the hinge position λ = (τ,γ,v0) as a function

of time, the relative mass and initial velocity,

λ =
1

2(γv0 + p)

(
3τ +

√
9τ2 +24γ2v0τ +24γ pτ

)
. (3.11)

Substituting v0 = 0 gives the hinge position for a cantilever beam loaded with a
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concentrated force and an initially static mass at its tip

λ =
1

2p

(
3τ +

√
9τ2 +24γ pτ

)
. (3.12)

In the limit of τ → 0, equation (3.12) gives the initial hinge position

λ0 =
1

2 f0

(
3+
√

9+24γ f0

)
. (3.13)

The formulas above were here obtained for a generic pulse shape p(τ). The

RPP model can be applied to the case of pipe whips, where the loading is generated

by the sudden release of a jet of high pressure fluid. The intensity of the blow-out

force is initially determined by the reservoir’s pressure, and gradually decays over

time as the pipe deforms. According to the experimental observations from [2],

the force is extinguished when cross-sectional collapse causes the obstruction of

the fluid flow, otherwise, the force decays to a stationary value. The works [2] and

[8] suggest that in the case of pipe whips the force pulse can be substituted with a

linearly decaying pulse of the type

f =


f0

(
1− τ

τD

)
τ < τD ,

0 τ ≥ τD

(3.14)

where τD is the pulse duration in dimensionless unit. The pulse intensity then be-

comes

p =


f0τ

(
1− τ

2τD

)
τ < τD ,

f0τD/2 τ ≥ τD .

(3.15)

Substituting the relations above in the formulas (3.6) and (3.12), it is possible to

obtain an explicit expression for the variation of the hinge position over time in

pipe whips

λ (τ) =
3

f0(1− τ/2τD)
, (3.16)
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and in the case of a pipe with a concentrated tip mass

λ (τ,γ) =
3+
√

9+24γ f0(1− τ/2τD)

2 f0(1− τ/2τD)
. (3.17)

The curves predicted by the models (3.16) and (3.17) are plotted in Figure 3.8

for a linearly decaying pulse. A pulse duration of tD = 0.68 s (τD = 3.97) was

chosen to reflect the typical pulse duration observed in the experimental studies on

pipe whips, as reported in [2]. In the figure, solid lines represent the hinge location

predicted at τ = 0, whereas dashed lines indicate the hinge position at t = 0.2 s

(τ = 1.17). The concentrated mass of γ = 0.2 was used, which corresponds to that

of the pipe whip experiments from Reid et al. [2].

λ0
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λ(τ,γ)

λ
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Figure 3.8: Theoretical predicitons of plastic hinge position, λ , for pipe whips subjected to
a linearly decaying force pulse of initial intensity f0. The black lines labelled λ0
and λ (τ) indicate the hinge position at the time t = 0.0 s and 0.2 s, respectively.
The green lines λ0(γ) and λ (τ,γ) indicate the response predicted at the same
instants for pipe whips with a concentrated mass at the tip (γ = 0.2).

3.4 Parametric studies on pipe whips
The VUEL BM2D code is here employed to investigate the effect of the pipe geom-

etry and load intensity on the dynamic response. The analytical RPP model shows

that the dimensionless hazard zone, ζ , and plastic hinge location, λ , are expected

to depend on two dimensionless groups: the loading intensity f0 = F0L/MP and the
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mass ratio γ =m/(ρAL). Assuming a linearly decaying pulse shape with τD = 3.97,

parametric studies were here conducted to analyse individually the effect exerted by

the parameters F0,L,m and MP. In the simulations presented hereafter, the loading

pulse is modelled with a linearly decaying force, as expressed by equation (3.14).

It was shown in Section 3.2 that a mesh of 20 beam elements is sufficient to

capture successfully the free-end displacement of the pipe whips. However, a finer

mesh of 80 elements is employed hereafter to analyse in more detail the location

and extension of plastic hinges. As in the previous sections, the simulations were

performed in Abaqus/explicit employing the VUEL BM2D elements. The elements

employ the bending moment-curvature relationships obtained in Section 2.5 and

validated in Section 3.2, and the same material properties there described.

The pipes have fully-constrained boundary conditions at the fixed end, referred

to as the pipe’s root, and are loaded at the opposite end, or tip, with a concentrated

follower force that is initially orthogonal to the pipe’s longitudinal axis, as previ-

ously depicted in Figure 3.7.

Hereafter, D will indicate the external diameter and H the wall thickness. For

each cross-section, the plastic moment MP is defined as [13, 7]

MP =
4
3

[(
D
2

)3

−
(

D
2
−H

)3
]

σY α , (3.18)

with

α =

(
1− σU

σY

)
D

80H
+

σU

σY
(3.19)

where α is a strain-hardening factor depending on the yield stress σY = 279 MPa

and the ultimate stress σU = 392 MPa.

3.4.1 Effect of load intensity and cross-sectional geometry

The first parametric study analyses the deformation of pipes with different combi-

nations of cross-sectional dimensions subjected to linearly-decaying force pulses.

The initial force intensity falls within the range f0 ∈ [3,30]. Three sets of cross-

sectional dimensions were chosen, as reported in Table 3.3, to investigate the differ-
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Table 3.3: Values of pipe dimensions, plastic moment and collapse force for the first para-
metric study on pipe whips, in which the load intensity varies in the range
f0 ∈ [3,30].

Test case D H D/H L MP FC
(mm) (mm) (m) (kNm) (kN)

#1 50.8 2.60 20 3.00 0.220 0.733
#2 50.8 1.58 32 2.73 0.133 0.486
#3 508.0 12.70 40 10.0 1046 104.6

ent responses of thick and thin pipes. The first two sets of dimensions correspond to

those of the pipe whips from the experimental investigation reported in [2]. The set

of dimensions of the test case #3 corresponds to the typical dimensions of a pipeline

employed for petrochemical applications [81].

The deformation profiles of the pipe whips, and their time history, are pre-

sented in Figure 3.9 and Figure 3.10. The dimensionless plots on the left-hand side

correspond to thick pipes (test case #1), and on the right-hand side to thin pipes.

Similar behaviours were observed between the test cases #2 and #3, therefore only

the plots belonging to case #2 are reported. The reference frame is positioned on

the initial position of the tip, which is located on the right-hand side of each plot.

As predicted by the RPP model, when f0 = 3, the pipes rotate about the root

and the hazard zone reaches the maximum range allowed, equal to the pipe length.

When f0 > 3, a different deformation mechanism is observed, which is interpreted

with the formation of plastic hinges. In these cases, the deformation range is re-

duced and is comparable to the extent of hazard zone ζ as predicted using equa-

tion (3.5). Diverse mechanisms were observed numerically, depending on the load-

ing intensity and the relative thickness of the pipe. In order of increasing load

intensity they are:

Cantilever mode — when a stationary hinge develops at the root.

Double-hinge mode — when a plastic hinge develops along the pipe, followed by

the formation of a secondary hinge at the root.

Triple-hinge mode — similar to the previous mode, characterised by the formation



3.4. Parametric studies on pipe whips 92

x/L
00.20.40.60.81

120 ms
100 ms

80 ms

60 ms

40 ms

20 ms

0 ms

y/
L

0

0.2

0.4

0.6

0.8

1

(a) D/H = 20, f0 = 3
x/L

00.20.40.60.81

100 ms

80 ms

40 ms

110 ms

60 ms

20 ms

0 ms
y/
L

0

0.2

0.4

0.6

0.8

1

(b) D/H = 32, f0 = 3

x/L
00.20.40.60.81

ζ=3/f070 ms
50 ms

30 ms

80 ms

60 ms

40 ms

20 ms

0 ms

y/
L

0

0.2

0.4

0.6

0.8

1

(c) D/H = 20, f0 = 5
x/L

00.20.40.60.81

ζ=3/f0

70 ms 60 ms
50 ms

20 ms

40 ms

30 ms

0 ms

y/
L

0

0.2

0.4

0.6

0.8

1

(d) D/H = 32, f0 = 5

Figure 3.9: Deformation profiles of thick and thin pipe whips (D/H = 20 and 32, respec-
tively), subjected to orthogonal follower forces of initial intensity f0 = 3 (a, b)
and 5 (c, d). The vertical displacement is compared with the hazard zone pre-
dicted by the RPP model, ζ . A circular arc with radius equal to the pipe length
and centred in the fixed end is used to represent the maximum deformation
range allowed.
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Figure 3.10: Deformation profiles of thick and thin pipe whips (D/H = 20 and 32, respec-
tively), subjected to orthogonal forces of initial intensity f0 = 6 (a, b) and 10
(c, d). The vertical displacement is compared with the hazard zone predicted
by the RPP model, ζ . A circular arc with radius equal to the pipe length and
centred in the fixed end is used to represent the maximum deformation range
allowed.
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of three plastic hinges, the last being formed at the root. This mechanism is

observed only for thin pipes.

Self-intersecting mode — when the pipe collapses on itself forming a loop. Three

or more plastic hinges develop along the pipe, but there is negligible rotation

about the fixed end.

The last collapse mechanisms is of particular interest in the petrochemical field.

Although a self-intersecting pipe produces a significantly reduced hazard zone (thus

decreasing the probability of impacting with external bodies), the curvature is not

always high enough to cause complete obstruction of the fluid flow [2, 18], lead-

ing to the uninterrupted release of the internal fluid, increasing the hazard of the

system (e.g. temperature increase, release of chemicals, risk of explosion). When

modelling the case of self-intersecting collapse, the simulation was stopped at the

moment of self-contact, to avoid the use of a computationally expensive contact

model. Loading intensities in the range f0 > 30 are not considered here, as they are

expected to cause deformations with a small hazard zone (ζ < 0.1).

A more precise analysis of the formation and growth of plastic hinges is con-

ducted by looking at the distribution of curvature along the pipe, as presented in

Figure 3.11 and Figure 3.12. It can be seen that, for all values of f0, the segment ad-

jacent to the free end stays in elastic conditions throughout the simulation. After no

more than 20 ms the remainder of the pipe starts deforming plastically, and the cur-

vature goes above the yield value (ky/kc = 0.03 for thick pipes and ky/kc = 0.08 for

thin pipes, according to the hardening-softening moment-curvature relation used,

that was obtained in Section 2.5.1 and validated in Section 3.2). It is here assumed

that plastic hinges form when the curvature exceeds the critical value k/kc ≥ 1.

Figure 3.11 (a) and (b) show that, for f0 = 3, as the deformation progresses,

a plastic hinge forms at the pipe’s fixed end, in accordance to the cantilever mode

identified in Figure 3.9 (a) and (b). As the force is increased ( f0 = 5), the double

hinge mode is observed, with the first hinge forming at a distance x/L ≈ 0.5 from

the free end, and the second hinge forming at the root.

As the loading is increased further (Figure 3.12), we assist at the formation of
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Figure 3.11: Time history of curvature distributions along the pipes, in dimensionless form,
k/kc, for loading intensity f0 = 3 and 5. Black lines (—) indicate the yield
point, red lines (—) indicate the critical point k/kc = 1. Solid lines of different
colours (—) indicate curvature distributions from the time t = 0 ms up to the
moment of formation of a plastic hinge, and dashed lines (- -) are used in the
following time frames.
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(d) D/H = 32, f0 = 10

Figure 3.12: Time history of dimensionless curvature distribution along the pipes for load-
ing intensity f0 = 6 and 10. Black lines (—) indicate the yield point, red lines
(—) indicate the critical point k/kc = 1. Solid lines of different colours (—)
indicate curvature distributions from the time t = 0 ms up to the moment of
formation of a secondary plastic hinge, and dashed lines (- -) are used in the
following time frames.
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three or more hinges, eventually leading to the self-intersecting mode. Figure 3.12

(c) and (d) highlight a fundamental difference in the collapse mechanism of rel-

atively thick and thin pipes. In Figure 3.12 (c) consecutive hinges are connected

by regions with high levels of curvature, resulting in the formation of an extended

plastic region, as observed in Figure 3.10 (c). In Figure 3.12 (d) plastic hinges are

instead separated by regions of low curvature, resulting in the localised collapse

mechanism of Figure 3.10 (d). These observations are coherent with what was ob-

served experimentally in [2].

The two self-intersecting collapse mechanisms of Figure 3.10 (c) and (d) are

schematically represented in Figure 3.13. We observe that thick pipes tend to col-

lapse following the mechanism represented in Figure 3.13 (a). The mechanism

takes place with the separation of the pipe in three sections: a relatively-straight

elastic part at the free end, followed by a plastic region, followed by a section with

low curvature. The plastic region is limited on either side by a plastic hinge (see

Figure 3.12 (c)). Following a simple geometrical analysis, we determine that the

dimensionless distance of the first plastic hinge from the tip, λ1, falls in the range

1
3
≤ λ

thick
1 ≤

√
3

2π
. (3.20)

The self-intersecting deformation mode observed for thin pipes in Figure 3.10

(a) D/H ≤ 20 (b) D/H > 20

Figure 3.13: Schematic representation of self-intersecting collapse mechanisms for thick
(a) and thin (b) pipe whips.
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(d) is schematically represented in Figure 3.13 (b). Considering the curvature dis-

tributions in Figure 3.12 (d), it is observed that the collapse of thin pipes occurs

with the sequential formation of several plastic hinges along the pipe, separated by

relatively straight segments. Using a similar geometrical analysis, the following

relationship is found
1
4
≤ λ

thin
1 ≤

√
2

2π
. (3.21)

Both relationships are in good agreement with the numerical observation from the

parametric study.

The hinge position predicted by the RPP model at t = 0 s and t = 0.2 s (pre-

viously depicted in Figure 3.8 with λ0 and λ (τ), respectively), are compared with

the numerical predictions in Figure 3.14. Here, different symbols are used to point

at primary (λ1), secondary (λ2) or tertiary (λ3) plastic hinges, wherease error bars

indicate the length of the plastic region that is observed in the case of thick pipes.

Figures 3.14 (a, b, c) show that the theoretical RPP model of equations (3.4)

and (3.16) tends to over predict the λ1 length, especially for the thick pipe. This phe-

nomenon can be attributed to several causes. The RPP model allows rotation only at

a single plastic hinge (a travelling hinge in the case of a decaying pulse), which is in

disagreement with the observation of multiple hinges and extended plastic regions

obtained numerically and from previous experiments [2, 18]. Furthermore, the RPP

model fails to take into account elastic effects. Nevertheless, the RPP model is in

excellent agreement with numerical predictions for the extent of the hazard zone, ζ ,

as reported in Figure 3.14 (d) and previously observed in Figures 3.9 and 3.10.

The grey bands in Figures 3.14 (a, b, c) corresponds to the geometrical crite-

ria (3.20) and (3.21) for the initiation of the self-intersecting mode. In the case of

thick pipes, the phenomenon first occurs for f0 = 7, when the measured hinge po-

sition is λ1 = 0.29 ≈
√

3/(2π). A transition between double-hinge mode and self-

intersection occurs for f0 = 6 with λ1 = 0.32≈ 1/3. For thin pipes, self-intersection

first occurs at f0 = 9 with λ1 = 0.24≈
√

3/(2π).
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Figure 3.14: Numerical predictions of the hinge position λi and of the hazard zone ζ (d)
from the first parametric study on pipe whips. D/H = 20,32,40, f0 ∈ [3,30].
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3.4.2 Effect of concentrated mass

The second parametric study investigates the change in the modes of deformation

when the pipes of Table 3.3 are additionally loaded with a concentrated mass at the

free end. The mass aims to simulate the weight of a flange or connector. The values

of concentrated mass for the test cases #1m and #2m, reported in Table 3.4, are

taken from [2]. The mass for test case #3m corresponds to that of a typical flange

for high-pressure pipelines [81].

The numerical results of the second parametric study are reported in Fig-

ure 3.15. It is observed that the presence of the concentrated tip mass has the effect

of extending the range of f0 in which the cantilever deformation mode occurs. In

particular, this was the mode of deformation observed for the test case #3m in the

Table 3.4: Values of pipe dimensions for the second parametric study on pipe whips, where
each pipe has a concentrated mass m at its tip. All other parameters are unvaried
from Table 3.3.

Test case D/H m (kg) γ = m/(ρAL)

#1m 20 1.8 0.2
#2m 32 1.4 0.2
#3m 40 1700 1.1
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(b) D/H = 32

Figure 3.15: Numerical predictions of the hinge position λi and the hazard zone ζ from the
first parametric study on thick (a) and thin (b) pipe whips.
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whole range of f0 considered. For this reason, the plot of the case #3m results is here

omitted. In the test case #1m (Figure 3.15 (a)), a singular deformation mode takes

place for f0 = 14, in which the first plastic hinge forms at the fixed end (λ = 1),

followed by the formation of a secondary hinge at λ ≈ 0.42. At f0 = 15, an abrupt

transition between cantilever mode and self-intersecting mode with λ1 <
√

(3)/2π

is observed, as predicted by equation (3.20).

Numerical predictions of ζ for the two cases are shown in Figure 3.15 (a)

and (b) as white circles and triangles, respectively. The results are compared with

those obtained with the RPP model using equations (3.13) and (3.17) reported in the

figure with green lines. In both cases, the theoretical model provides a considerable

underestimation of the plastic hinge position, compared to numerical observations.

For this reason, the parametric study is repeated for different values of γ .

The plot points in Figure 3.16 indicate the hazard zone predicted for a pipe

with D/H = 32 in the force range f0 ∈ [3,30], loaded with a variable concentrated

mass at its free end. The value of γ is increased from 0.1 until the only deformation

mode observed in the force range is the cantilever mode. The theoretical model of

equation (3.13) is not capable of predicting accurately the hazard zone, therefore

a parametric relation is employed to fit the numerical data when departure from

cantilever mode occurs,

ζ =
3

f0−a1γ a2
+b1γ

b2 . (3.22)

The best-fit parameters found are a1 = 10.44,a2 = 0.6968,b1 = 1.057,b2 = 0.8102.

The parametric model reduces to ζ = 3/ f0 when γ = 0, which successfully pre-

dicts the hazard zone for both thick and thin pipes, as already demonstrated in Fig-

ure 3.14 (d).

3.4.3 Effect of pipe length

The third parametric study investigates the effect of pipe length on the deformation

whilst keeping all the other parameters constant (load intensity, cross-sectional ge-

ometry). The study employs the cross-sectional dimensions reported in Table 3.3
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Figure 3.16: Numerical predictions of hazard zone ζ for thin pipe whips with γ ∈ [0.1,0.8].
Solid lines represent the fitting curves using the parametric model of equa-
tion (3.22).

for the test case #3. Figure 3.17 shows that the predicted hazard zone, ζ , is in good

agreement with the predictions of the RPP model.

This result is of particular relevance for the study of pipelines. Assuming that

ζ = λ0, it follows from equation (3.4) that

ζ =
Z
L
= λ0 =

3
f0
. (3.23)

By substituting the definition of the dimensionless force f0 = F0L/MP in the previ-

ous equation, one obtains an explicit expression for the vertical tip displacement Z

Z =
3MP

F0
=

3MP

cT P0A
, (3.24)

where cT is the thrust coefficient [2]. It can be noted that all the terms on the

right-hand side of equation (3.24) depend solely on quantities related to the pipe’s

material, cross-sectional dimensions and internal pressure P0, but are independent



3.4. Parametric studies on pipe whips 103

λ0

ζ, L=const
ζ, F0=const

λ,
 ζ

0

0.2

0.4

0.6

0.8

1

f0

0 3 5 10 15 20 25 30

Figure 3.17: Numerical predictions for thin pipes of increasing length. The cross-sectional
dimensions correspond to those of the test case #3 reported in Table 3.3.

of the pipe length L. Therefore, considering that P0 is an input datum in a pipeline

system, it can be deduced that the hazard zone of a pipeline is constant once the

cross-sectional geometry is fixed.

3.4.4 Comparison with shell elements

To complete the analysis, the numerical results of the model of a thin pipe employ-

ing VUEL BM2D elements are compared with those obtained using an equivalent

model in in Abaqus/explicit employing standard shell elements (type S4R). In order

to discretise the geometry appropriately, 40 shell elements with aspect ratio 1 were

used to partition the cross-sectional circumference and the pipe length. The final

mesh is composed of 27360 shell elements.

Figure 3.18 (a) and (c) show that there is reasonably good agreement between

the two models in terms of λi and ζ (the maximum relative difference for λ1 was 6%

measured at f0 = 15 in Figure 3.18 (a), and for ζ was 35% at f0 = 10 Figure 3.18

(d)), and the two models have similar deviations from the theoretical predictions.
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Figure 3.18: Comparison of numerical predictions of λi and ζ from pipe whips simulations
using VUEL BM2D elements (labelled VUEL) and shell elements (labelled
SHELL). The plots on the right-hand side show the numerical results for shell
elements using a strain-rate dependent material model. D/H = 32, f0 ∈ [3,30].
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When comparing the results from the two models, one must take into account the

limitations of the beam model, which is only able to capture the deformation of the

longitudinal axis of the pipe, whilst the cross-sectional collapse is modelled through

a constitutive relation. On the other hand, the usage of shell elements allows for

a structural representation of the cross-section, which can directly influence the

deformation profile.

The results from a third model employing shell elements and a strain-rate de-

pendent material model are plotted in Figure 3.18 (b) and (d). There is in general

negligible difference in results when strain-rate effects are considered, especially

when comparing the hazard zone. The only substantial deviation was observed for

λ2 at f0 = 20, where the high strain-rate causes an increase in the distance of the

secondary plastic hinge from the free end.

3.4.5 Discussion

The theoretical RPP model predicts with satisfying accuracy the hazard zone of pipe

whips in the absence of heavy flanges. It also offers a conservative prediction for

the formation of plastic hinges, which is in turn useful for making kinetic energy

calculations aimed at the correct design of pipe whip restraint devices.

The advantage of using the VUEL BM2D code was discussed in Section 3.2.3.

Compared to traditional beam elements, the VUEL BM2D allows to successfully

model the dynamic collapse mechanisms of pipes with a negligible increase of the

computational cost. Therefore, the code is ideal for industrial applications thanks

to its computational efficiency and ease of use, requiring only information of the

cross-sectional dimensions to characterise the moment-curvature relationship.

In order to capture the dynamic collapse with similar accuracy in Abaqus/ex-

plicit, one would need to employ shell elements to discretise the whole pipe. Using

the setup mentioned in Section 3.4.4, the completion time for two simulations with

a timestep of 45ms and the same output frequency are: 31 s with VUEL BM2D el-

ements, 45 min and 36 s with shell elements, or 4 min and 39 s with shell elements

when 12 parallel units are used to speed-up the simulation. Therefore, a simulation

employing VUEL BM2D elements is reportedly 88 times faster than an analogous
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shell-elements simulation, and 9 times faster than the same simulation employing

12 parallel units.

3.5 Summary
The VUEL BM2D code developed in Chapter 2 was here used in FE simulations

modelling the in-plane deformation of thick and thin pipe whips investigated ex-

perimentally by Reid et al. [2]. The code was then employed in parametric studies

investigating the effect of the cross-sectional dimensions and loading conditions on

the pipe deformation. Predictions of the hazard zone and the mechanism of col-

lapse through the development of plastic hinges were compared against analytical

predictions from a rigid-perfectly plastic beam model [8], and against numerical

predictions from benchmark models in Abaqus using shell elements. It has been

proven that simulations using the VUEL BM2D code are up to 88 times faster than

the benchmark, whilst giving a reliable prediction of the deformation profile. The

improved computational efficiency derives in the first place from the usage of one-

dimensional beam elements, rather than two-dimensional shells, and in the second

place from the adoption of the corotational formulation.

The parametric studies have led to the development of simple phenomenolog-

ical equations useful in the design of piping systems. Equations (3.20) and (3.21)

can be used to predict the initiation of self-intersecting collapse mechanisms in thick

and thin pipe whips, respectively. Equation (3.22) predicts the extent of the hazard

zone (in dimensionless form) for thin pipes bearing a heavy flange on the free end,

and equation (3.24) allows to predict the pipe hazard zone with the knowledge of

few system parameters, such as the fluid pressure, the cross-sectional dimensions

and the strength of the pipe material.



Chapter 4

Simulation of out-of-plane pipe whips

4.1 Introduction
Similarly to the approach used in the 2D space, the objective of the corotational

formulation in the 3D space is to introduce a local reference frame that follows the

motion of each element, decomposing it into its rigid body and pure deformational

parts. Within this framework, the deformational part is captured at the local frame,

whereas the geometric non-linearity deriving from large rigid-body rotations is cap-

tured by the transformation tensors relating the local and global reference frames.

When the element type and the number of nodes are fixed, the transformation

tensors depend only on geometrical relations, and do not depend on the formulation

employed for the evaluation of local strains [22]. Assuming the change in defor-

mation between subsequent increments is sufficiently small, linear theories can be

used for the evaluation of strains in the local frame [27, 33].

The 3D corotational framework is presented visually in Figure 4.1. Let e1, e2,

e3 be the unit vectors identifying the global Cartesian coordinate system,

e1 = {1,0,0}T , e2 = {0,1,0}T , e3 = {0,0,1}T , (4.1)

and e0,1, e0,2, e0,3 the vectors identifying the initial configuration of a beam element

in the 3D-space. It is possible to rotate between the two configurations using the

rotation tensor R0:

e0,i = R0ei , i = 1,2,3 . (4.2)
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Figure 4.1: Coordinate systems for a beam element in space. The unit vectors ei identify
the global Cartesian coordinate system, and e0,i the initial configuration of the
beam element. At any time increment, ri identify the current (corotated) con-
figuration, and t( j)

i the deformed configuration at the j-th node. The rotations
R0, R( j)

g and Rr are highlighted.

Figure 4.2: Corotational framework for a beam in space. At each node, the local config-
uration vectors t( j)

i are obtained from the current configuration ri through the
rotations R( j)

l .
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At any time increment a corotated frame is defined, indicated by the vectors

r1,r2,r3, that moves rigidly with the element. With respect to the global coordi-

nates it is obtained through the rotation Rr:

ri = Rrei . (4.3)

To separate the element motion between the rigid body and pure deformational

parts, two local reference frames are introduced that follow the rotation of each

node ( j), indicated in Figure 4.1 as t( j)
i . The local frames are obtained from the

initial configuration through the rotations R( j)
g :

t( j)
i = R( j)

g e0,i = R( j)
g Rrei , j = 1,2 , i = 1,2,3 . (4.4)

In the previous expression, subscript [ ]g is used to indicate that the tensor is evalu-

ated with respect to the global reference frame. It is also possible to obtain the local

frames from the corotated configuration, as illustrated in Figure 4.2, with

t( j)
i = R( j)

l ri , j = 1,2 , i = 1,2,3 . (4.5)

Here, subscript [ ]l indicates that the tensor is evaluated with respect to the local

corotated frame. By equating the local and global expressions for t( j)
i , the local

rotation matrices R( j)
l are obtained [27, 33],

R( j)
l = RT

r R( j)
g R0 , j = 1,2 . (4.6)

that determine the deformed configuration and are needed to compute the degrees

of freedom and the local forces in the 3D corotational framework.

4.1.1 Parametrisation of finite rotations in 3D

There exist several notations to represent rotations in space, which can all be de-

scribed in terms of three independent parameters. The simplest notation relies on
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the definition of a rotation vector θθθ , expressed as

θθθ = {θ1,θ2,θ3}T = θn . (4.7)

According to equation (4.7), any finite rotation in space can be represented by a

rotation of an angle θ =
√

θ1
2 +θ2

2 +θ3
2 about an axis identified by the unit vector

n, as illustrated in Figure 4.3. In the previous section, finite rotations are expressed

through the tensor R, which is related to the rotation vector by Rodrigues’s formula

[25],

R = exp(Θ̃ΘΘ) = I+
sinθ

θ
Θ̃ΘΘ+

1− cosθ

θ 2 Θ̃ΘΘΘ̃ΘΘ , (4.8)

where Θ̃ΘΘ is a skew-symmetric matrix, defined as

Θ̃ΘΘ =


0 −θ3 θ2

θ3 0 −θ1

−θ2 θ1 0

 . (4.9)

Using this notation, the rotation of a vector x0 is computed through the product

x = Rx0 (4.10)

and consecutive rotations are obtained through a sequence of matrix products. The

relationship (4.8) employs a matrix exponential to obtain the rotation tensor R from

Figure 4.3: Finite rotation of a vector in space.
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the matrix Θ̃ΘΘ. If the rotation angle is non-null, the inverse function is defined

Θ̃ΘΘ = log(R) , (4.11)

which allows to obtain the rotation angles θi from the tensor R.

4.1.2 Variation of finite rotations

The evaluation of strains and local forces will require calculating the admissible

variations of rotation tensors, δR. Suppose at a certain increment the element is per-

turbed from the configuration ri = Rei to the new configuration r′′i = Rεei. Apply-

ing the same approach of equation (4.4) for compound rotations and equation (4.8)

gives

Rε = exp
(
εδW̃

)
R (4.12)

where εδW̃ is the skew-symmetric matrix describing the infinitesimal rotation be-

tween ri and r′′i . If R is fixed, the variation δR is then calculated as [33]

δR =
∂Rε

∂ε

∣∣∣∣
ε=0

= δW̃R . (4.13)

From a physical point of view, equation (4.13) implies a change of variables from

the infinitesimal rotation vector δθθθ to the spin variables δW̃ [27]. The change of

variables is operated through the formulas

δW = TSδθθθ or δθθθ = T−1
S δW (4.14)

with the transformation matrices

TS =
sinθ

θ
I+
(

1− sinθ

θ

)
θθθθθθ

T +
1
2

(
sinθ/2

θ/2

)2

Θ̃ΘΘ , (4.15)

T−1
S =

θ/2
tanθ/2

I+
(

1− θ/2
tanθ/2

)
θθθθθθ

T− 1
2

Θ̃ΘΘ . (4.16)

The details pertaining to how to obtain the equations (4.14) to (4.16) are discussed

in [27]. It must be noted that the relations above are not defined for angles θ =±nπ ,
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which limits the angular variation between consecutive increment and, as a conse-

quence, the size of time increments.

4.2 Corotational kinematics in 3D space

The scope of this section is the derivation of the internal force vector and the mass

matrix that define the kinematics of a two-node beam element using the corotational

formulation.

The vector of degrees of freedom of a beam element in space, with respect to

the global reference frame, u, is characterised by 6 components for each node, 3

displacements and 3 rotations,

u = {u1,u2,u3,θ1,θ2,θ3}( j)T
, j = 1,2 , (4.17)

to which corresponds a force vector, f, of the same length,

f = {N1,N2,N3,M1,M2,M3}( j)T
, j = 1,2 . (4.18)

Using the corotational framework, the deformation vector expressed in the local ref-

erence frame, ū, and the local force vector, f̄, have only 7 components, respectively

ū =
{

ū, θ̄ (1)
1 , θ̄

(1)
2 , θ̄

(1)
3 , θ̄

(2)
1 , θ̄

(2)
2 , θ̄

(2)
3

}T
, (4.19)

f̄ =
{

N̄, T̄ (1),M̄(1)
2 ,M̄(1)

3 , T̄ (2),M̄(2)
2 ,M̄(2)

3

}T
. (4.20)

In the previous equations, the symbol ¯[ ] indicates quantities expressed in the

local frame, ū = Ln−L0 is the variation in element length and N̄ the force acting

along the longitudinal axis. For each node, the angles of twist θ̄
( j)
1 about the local

axes t( j)
1 correspond to the twisting moments T̄ ( j), and the rotation angles θ̄

( j)
2 and

θ̄
( j)
3 correspond to the local bending moments M̄( j)

2 and M̄( j)
3 .

As in the 2D case, the local and global deformation vectors are related through
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the transformation matrix B

δ ū = Bδu . (4.21)

At any time increment, the components of the local force vector, i.e. the axial force,

the twisting moment and the bending moments, are evaluated through appropriate

constitutive relations that depend on the local deformation and strains

f̄ = f (δ ū) . (4.22)

Then, the expression of the global force vector is obtained by equating the internal

virtual work evaluated in the local system to that evaluated in the global system

U = δ ūTf̄ = δuTf . (4.23)

Substituting (4.21) into (4.23) gives

f = BTf̄ . (4.24)

4.2.1 Transformation matrix B

The approach proposed by Battini [27] to obtain an expression for B in the 3D space

involves an intermediate change of variables from local to spin variables, δθ̄θθ→ δ w̄,

followed by a change from spin to global variables, δ w̄→ δθθθ . With this approach,

the transformation matrix is decomposed in two components, leading to:

B = BaBg (4.25)

and

δ ū = BaBgδu . (4.26)
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4.2.1.1 Change of variable Ba : δθ̄θθ → δ w̄

Remembering the definition of the rotation vector θθθ , the variation of the degrees of

freedom in local components may be written as

δ ū =
{

δ ū,δθ̄̄θ̄θ
(1),δθ̄̄θ̄θ

(2)
}T

, (4.27)

whereas its equivalent in spin variables is

δ ūa =
{

δ ū,δ w̄(1),δ w̄(2)
}T

. (4.28)

Remembering the variational principle (4.14),

δθ̄̄θ̄θ
( j) = T−1

S
( j)

δ w̄( j) . (4.29)

The change of basis is then obtained with

δ ū = Baδ ūa , (4.30)

where

Ba =


1 /01×3 /01×3

/03×1 T−1
S

(1) /03×3

/03×1 /03×3 T−1
S

(2)

 . (4.31)

Here, /0n×m represent zero matrices, whereas the matrices T−1
S

( j) were defined in

equation (4.16).

4.2.1.2 Change of variable Bg : δ w̄→ δθθθ

The second change of variables requires finding the matrix Bg that transforms ūa

into the global deformation vector δu,

δu =
{

δu(1)1 ,δu(1)2 ,δu(1)3 ,δθθθ
(1),δu(2)1 ,δu(2)2 ,δu(2)3 ,δθθθ

(2)
}
. (4.32)
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The first row of Bg, relating the change in length of the element to the nodal dis-

placements, is simply evaluated as

bg =
{
−rT

1 , /01×3,rT
1 , /01×3

}
(4.33)

where r1 is the axial vector of Figure 4.1. The expression for the remaining rows of

Bg is obtained in Battini [27] by differentiating δ w̄/δθ̄θθ . The complete expression

is

Bg =

 bg

PET

 , (4.34)

with

E =


Rr /03×3 /03×3 /03×3

/03×3 Rr /03×3 /03×3

/03×3 /03×3 Rr /03×3

/03×3 /03×3 /03×3 Rr

 , (4.35)

where Rr is the rotation matrix of equation (4.3) and

P =



0 0 −η

L
1− η12

L
η11

2
0 0 0

η

L
−η22

2
η21

2
0

0
1
L
−1

L
0 1 0 0 0

1
L

0 0 0

0 0 0 0 0 1 0 −1
L

0 0 0 0

0 0 −η

L
−η12

L
η11

2
0 0

η

L
0 1− η22

2
η21

2
0

0
1
L
−1

L
0 0 0 0 0

1
L

0 1 0

0 0 0 0 0 0 0 0 −1
L

0 0 1



. (4.36)

The terms η and ηhk in the equation above are coefficients that depend on the local

vectors ri [27], whose expressions will be explained in Section 4.4.
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4.3 Local element formulation

The formulation for the local strains and forces of the corotational beam element

in the 3D space follows largely that of the 2D beam element, with the addition of

the twisting motion about the beam longitudinal axis and a second bending mo-

ment along the extra perpendicular axis. The new element, named VUEL BM3D,

employs the Euler-Bernoulli formulation for evaluating the local strains, with the

hermitian shape functions [33]:

N1 = 1−ξ , N2 = ξ , (4.37)

N3 = ξ L(1−ξ )2 , N4 =−ξ
2L(1−ξ ) , (4.38)

where ξ = x1/L is the dimensionless coordinate along the r1 axis. The local strains

are then evaluated as

εnom =
∂

∂ξ
ū , (4.39)

k1(ξ ) =
∂ 2

∂ξ 2

[
N1θ̄

(1)
1 +N2θ̄

(2)
1

]
, (4.40)

ki(ξ ) =
∂ 2

∂ξ 2

[
N3θ̄

(1)
i +N4θ̄

(2)
1

]
, i = 2,3 (4.41)

which leads to

εnom = Ln/L−1 , (4.42)

k1 =
(

θ̄
(2)
1 − θ̄

(1)
1

)
/L , (4.43)

k2(ξ ) =
[
−2
(

θ̄
(2)
2 +2θ̄

(1)
2

)
+6ξ

(
θ̄
(2)
2 + θ̄

(1)
2

)]
/L , (4.44)

k3(ξ ) =
[
−2
(

θ̄
(2)
3 +2θ̄

(1)
3

)
+6ξ

(
θ̄
(2)
3 + θ̄

(1)
3

)]
/L . (4.45)

Substituting ξ = 0 and ξ = 1 in the equations above allows to evaluate the strain at

the first and second node of the element, respectively.
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4.3.1 Constitutive assumptions and internal force vector

The corotational beam element developed by Battini [27] for static analyses em-

ployed a bi-linear elastoplastic law, whereas the element developed by Le [33] for

dynamic analyses employed a linear-elastic constitutive law.

The VUEL BM3D element here developed presents an improvement on the

formulations of [27] and [33], by employing the same constitutive assumptions of

The VUEL BM2D element for evaluating the internal forces, with the addition of

a constitutive model for torsion. The relationship between axial strains and ax-

ial forces is modelled through a piece-wise linear elasto-plastic model with strain

hardening and softening, as described in Section 2.3. The relationship between the

curvature along the axes 2,3 and the corresponding bending moment follows the

model presented in Section 2.5, employing the M–k master curves obtained through

numerical testing for thick and thin pipes.

Lastly, the VUEL BM3D element adopts a bi-linear approach to model the

behaviour of the pipe in torsion, in which the initially linear stage is followed by a

strain-hardening stage, as follows

T (k1) =


T ∗(k1) = GIpk1 , |k1|< kp

T H(k1) = sign(k1)(Tp +GU Ip|k1|) , |k1| ≥ kp

(4.46)

where G is the shear modulus, Tp the plastic twisting moment and Ip the second

polar moment of area so that, for a pipe of circular cross-section,

Tp =
2πσY

3
√

3

(
R3

ext−R3
int

)
, (4.47)

kp =
Tp

GIp
, (4.48)

GU =
1√
3

σU −σY

εU − εY
. (4.49)

This approach is relatively simpler than that employed for the bending moment, and
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future studies are required to obtain a more comprehensive characterisation of the

torsional behaviour. The final torsional model, obtained combining the constitu-

tive relation (4.46) with a kinematic hardening law, is reported in Appendix C and

schematised in Figure 4.4.

The inclusion of a more realistic constitutive model for torsion, which will

require the execution of experimental and numerical tests for pipes in torsion, will

be the object of future studies.

Figure 4.4: Schematics of the torsional constitutive model for the VUEL BM3D element
code, as described in Listing C.

4.3.2 Element mass matrix and stable time increment

The final step in the construction of the corotational kinematics is the definition

of the mass matrix. The solution algorithm employed in the present work requires

the use of a lumped mass matrix, M, to reduce the computational cost. Taking

into account the order of the degrees of freedom in the global frame, the matrix is
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defined as

M =



m0

m0

m0

Mr

m0

m0

m0

Mr



(4.50)

where m0 = ρAL/2 is the translational inertia term — it corresponds to half of the

element mass for a beam element with two nodes — and Mr is the matrix given by

Mr = Rr


m2

m1

m1

Rr
T (4.51)

where m1 = m0L2/12 is the flexural inertia term and m2 = ρLIp/6 is the torsional

inertia.

The dynamic solution algorithm requires the specification of a stable time in-

crement. The same formulation of the VUEL BM2D code is here used, given by

∆t = f

√
ρLLn

E
. (4.52)

with f = 0.2–0.01.

4.4 VUEL BM3D architecture
The sequence of operations that compose the coding of the VUEL BM3D element

is here presented. At any increment, for each finite element, the explicit solution al-

gorithm provides the current coordinates of the j-th node, x( j), and the translational

and rotational degrees of freedom associated with it, u j and θθθ ( j). The scope of the

code is then to evaluate the internal force vector f and the mass matrix M necessary

to solve Newton’s equation and evaluate the state of the element at the end of the
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increment. The list of operations to be executed is summarised as follows:

1. Evaluate the initial and current element length, L, Ln

L = x(2)−x(1) , L = ||L|| (4.53)

Ln = x(2)+u(2)−x(1)−u(1) , Ln = ||Ln|| . (4.54)

2. Identify the initial reference frame R0, equation (4.2)

R0 =
[
e0,1 e0,2 e0,3

]
(4.55)

e0,1 =
L
L
, e0,3 =

e1× e0,1

||e1× e0,1||
, e0,2 =

e0,3× e0,1

||e0,3× e0,1||
. (4.56)

3. Build the skew-symmetric global rotation matrices Θ̃ΘΘ
( j), equation (4.9)

4. Obtain the global rotation matrices R( j)
g , equation (4.8)

R( j)
g = exp

(
Θ̃ΘΘ

( j)
)
, j = 1,2 . (4.57)

5. Identify the current orientation Rr, equation (4.3)

Rr =
[
r1 r2 r3

]
(4.58)

r1 =
Ln

Ln
, r3 =

r1×p
||r1×p||

, r2 =
r3× r1

||r3× r1||
(4.59)

where p is an auxiliary vector defined as

p =
1
2
(p1 +p2) (4.60)

pi = R( j)
g e0,2 , j = 1,2 . (4.61)

6. Evaluate the local rotation matrices R( j)
l , equation (4.6).

7. Use equation (4.11) to obtain the skew-symmetric local rotation matrices Θ̃ΘΘ
( j)
l
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and the local rotation vectors θ̄θθ
( j)

Θ̃ΘΘ
( j)
l = log

(
R( j)

l

)
. (4.62)

8. Compute the transformation matrix B, equation (4.25). This step requires the

definition of the coefficients encountered in equation (4.36). Based on the

auxiliary vectors, they are defined as [33]

η =
p1

p2
, η11 =

p11

p2
, η12 =

p12

p2
, η21 =

p21

p2
, η21 =

p22

p2
(4.63)

where the terms p1, p2, p11, p12, p21, p22, are derived from the relations
p1

p2

0

= RT
r p ,


p11

p12

p13

= RT
r p1 ,


p21

p22

p23

= RT
r p2 . (4.64)

9. Compute the local strains, equations (4.42)–(4.45).

10. Apply the constitutive models, Section 4.3.1.

11. Compute the local force vector f̄, equation (4.20).

12. Obtain the global force vector f = BTf̄, equation (4.24).

13. Build the mass matrix M, equation (4.50)

14. Estimate the stable time increment ∆t, equation (4.52).

4.4.1 Matrix exponential and logarithm

The steps 4 and 7 in the element coding requires the computation of matrix expo-

nentials and logarithms. Battini [27] and Le [33] evaluate the exponential using a

Taylor series expansion:

R = exp(Θ̃ΘΘ)≈ I+Θ̃ΘΘ+
1
2

Θ̃ΘΘ
2
. (4.65)
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The approximation has a truncation error of magnitude o(θ 2) that is negligible at

any increment. However, the solution algorithms employed in dynamic analyses

generally require 104–106 increments in a simulation, resulting in a non-negligible

accumulated error. For that reason, the current work employs Rodrigues’s formula

to compute the exact matrix exponential. Similarly, it is possible to calculate the

exact matrix logarithm. Rodrigues’s formula (4.8) can be rewritten as

R = cosθI+
sinθ

θ
Θ̃ΘΘ+

1− cosθ

θ 2 θθθθθθ
T . (4.66)

Therefore, for any orthogonal matrix it is possible to directly derive the correspond-

ing rotation vector and skew-symmetric matrix

θ = arccos
(

trR−1
2

)
, (4.67)

Θ̃ΘΘ =
θ

2sinθ

(
R−RT) . (4.68)

The above equation requires that θ 6= 0, in which case the result of the matrix log-

arithm is simply a zero matrix, and that θ 6= ±nπ , in which case equation (4.66)

gives

θ1 =

√
R(1,1)+1

2
θ

n
, θ2 =

√
R(2,2)+1

2
θ

n
, θ3 =

√
R(3,3)+1

2
θ

n
. (4.69)

4.5 Model validation and implementation

This section deals with the results of numerical simulations carried out to validate

the VUEL BM3D code. Despite the importance for many industries of accurately

predicting the deformation mechanisms of out-of-plane pipe whips [1], and the nu-

merical studies on the subject [11, 13], there is a lack in the literature of experi-

mental data detailing the extent of the hazard zone and the formation of collapse

mechanisms for this particular problem.

To compensate for the lack of experimental data required for the proper vali-

dation of the element code, we adopted the following approach: in the first step, a
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numerical model for in-plane pipe whips is built using the VUEL BM3D code. The

results were compared with those obtained with the VUEL BM2D code to ensure

the correctness of the element coding in the case of pure bending. In the second

step, the simulation of an out-of-plane pipe whip using VUEL BM3D is bench-

marked against a model built in Abaqus using shell and beam elements, comparing

its capability to model the effect of torsion on the pipe deformation.

4.5.1 Simulation of in-plane pipe whips with VUEL BM3D

The simulation setup previously described as test case #2 in Table 3.3 (Sec-

tion 3.4.1) is here reproposed using the VUEL BM3D code. The pipe has dimen-

sions D = 50.8 mm, H = 1.58 mm (D/H=32), L = 2.73 m and is loaded with a

linearly decaying force of initial intensity f0 = 10 and pulse duration tD = 68 s. The

simulation results are presented in Figure 4.5 (a, b) and benchmarked against an

homologous simulation using the VUEL BM2D.

It can be seen from the Figures 4.5 (a) and (c) that the two simulations present

the same results, in terms of deformed shape and hazard zone, in the time frame of

interest. The results only start differing at 30 ms, after self impact has occurred. Our

models do not consider the effect of self-contact. For this reason, the results from

this point onward are not analysed. Figures 4.5 (b) and (d) show the distribution of

curvature along the beam with the two models. The plot show analogous evolution

for the distribution in the two cases. Plastic hinges form in the same position at

the same time, and the difference between the two distributions becomes noticeable

only at the root of the pipe, following the point of self-intersection. It must be

noted that the measurement of the curvature is much more time-sensitive than that

of the deformation profile. The software is only capable to provide the results at

approximate times, and the temporal resolution is influenced by the time-stepping

procedure employed by Abaqus. When an element enters into the plastic stage

(k > ky), evolves very rapidly, thus justifying the small discrepancies in curvature

between the two models.
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Figure 4.5: Simulation of an in-plane pipe whip with D/H = 32, f0 = 10, using the pipe
elements VUEL BM3D (top) and VUEL BM2D (bottom). Comparison of the
deformation profile (plots a, c) and of the curvature distribution (plots b, d).
Black lines (—) indicate the yield point (k = ky) and red lines (—) indicate the
critical point (k = kc).
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4.5.2 Simulation of out-of-plane pipe whips

Figure 4.6 illustrates the geometry of an initially bent cantilever pipe used for the

simulation of out-of-plane pipe whips, taken from Reid et al. [13]. The segment

AB, connecting the free end (A) to the elbow (B) has length L1 = 1.26 m and the

segment BC, connecting the elbow (B) to the root (C) has length L2 = 2.4 m. The

two segments are connected through a 90◦ elbow of radius r = 0.1 m. The circu-

lar thin-walled pipe has cross-sectional dimensions D = 50.8 mm, H = 1.58 mm

(D/H=32). The system is subjected to a concentrated follower force of constant in-

tensity F0 = 8 kN, applied at A and originally acting in the z-direction. The weight

of a flange at the free end is modelled with a concentrated mass m = 1 kg. The sys-

tem is constrained in C with an encastre, modelled with fully-constrained boundary

conditions.

The geometry was discretised in Abaqus/explicit using 96 beam elements of

length L = 0.039 m. The results obtained with the model using VUEL BM3D

element were benchmarked against those obtained in Abaqus using 96 Timo-

shenko B31 elements, and also against the results of an additional model using

shell S4R element. In the latter, the shell elements had in-plane dimensions of

0.004 m×0.004 m, using 40 elements along the external cross-sectional circumfer-

ence, for a total of 38552 elements. In the all the models, convergence was checked

by measuring the free-end displacements and the position of the first plastic hinge.

Figure 4.6: Geometry of the bent cantilever pipe with a 90◦ elbow used for the study of
out-of-plane pipe whips. F0 is a follower force, and m represent the pass of the
tip flange. All dimensions are in m.
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In each case, the element size satisfies the criterion of a relative error on the two

quantities smaller than 3%.

4.5.3 Results and discussion

Figure 4.7 illustrates the modes of deformation of the pipe, as obtained from the

benchmark simulation using shell elements. In the first 20 ms, Figure 4.7 (a), the

loading causes the pipe to twist about the segment BC, which results in the rota-

tion of segment AB in the xz-plane about the point B. At 30 ms, the pipe motion

shows the initiation of a collapse mechanism (point D in the figure), evidenced by

the deformation of the cross-section, that results from a combination of torsion and

bending. The contour plot of the rotation magnitude, UR, shows that a second col-

lapse mechanism has occurred at the elbow (point B), highlighted by the disconti-

nuity of UR in that point. At 40 ms, the deformation of the cross-section shows that

the first collapse mechanism has progressed from D towards the fixed end (point

C), whereas the second collapse mechanism has localised at point B, leading to the

complete occlusion of the cross-section.

The following time increments up to 80 ms, Figure 4.7 (c-f), show that point

D has reached the fixed end, where it eventually causes complete cross-sectional

collapse, while an additional collapse point arises at about 60 ms along the segment

BC, as evidenced by the deformation of the member. The simulation was stopped

at 100 ms due to the pipe undergoing a 360◦ rotation about the fixed end.

Figure 4.8 shows the deformation of the same pipe when modelled with

VUEL BM3D elements. In the plot, the cartesian coordinates are divided by the

total length L of the pipe. At each time frame, arrows point at the position of the

elbow B. The deformation mechanism duplicates that observed with shell elements:

the twisting and collapse about the elbow, a distributed collapse that starts along

BC and progresses towards the root C, and a localised collapse in a point along BC

starting from 60 ms. Visually similar results were obtained in the simulation using

beam B31 elements, and are not reported here for brevity.

A thick dotted line illustrates the path of the free end of the pipe, where the

loading is applied. At the beginning of the simulation, this path follows closely a
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(a) t = 0–40 ms

(c) t = 50 ms (d) t = 60 ms

(e) t = 70 ms (f) t = 80 ms

Figure 4.7: Deformation of a out-of-plane pipe whip with D/H = 32, F0 = 8kN, concen-
trated tip mass m= 1 kg modelled in Abaqus/explicit using shell S4R elements.
Colours are used to indicate the rotation magnitude UR.
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Figure 4.8: Deformation a of out-of-plane pipe whip with D/H = 32, F0 = 8 kN, con-
centrated tip mass m = 1 kg modelled in Abaqus/explicit using VUEL BM3D
elements. Arrows point at the position of the elbow at each time frame. A thick
dotted line shows the path of the pipe tip, which is compared against a circular
motion about the elbow, shown with a thin dotted line.

circular arch in the xz-plane of radius L1, depicted with a thin dotted line in the

figure, centred in the elbow. As the deformation progresses and the pipe collapses

in several points, the tip motion deviates from the circular path and approaches the

root. It is of interest noting that, despite the elbow being straightened at approxi-

mately 80 ms (as observed also for the shell elements simulation), the hazard zone

of the pipe remains contained in a region of dimensions that are smaller than the

total length of the pipe.

The tip displacement predicted with VUEL BM3D is compared in Figure 4.9

against that predicted with beam and shell elements. Although all the elements

display similar evolutions of the displacements up to 40 ms, the beam element

model shows an evident phase delay (∆t ≈ 5 ms) and a slightly amplified magni-
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Figure 4.9: Comparison of the tip displacement in the simulation of the out-of-plane pipe
whip modelled respectively with shell (◦◦◦), beam (− −) and VUEL BM3D el-
ements (—). Colours are used to differentiate among the three displacement
components.

tude (∆U ≈ 15%), caused by the reduced ability of beam elements to model the pipe

collapse, compared to shells. The results predicted with VUEL BM3D show a no-

ticeable improvement in both terms, with the curves passing between those obtained

with beam and shell elements. The improved prediction, compared to the standard

beam elements, is due to the capability of the VUEL BM3D code of representing

the collapse mechanisms through the hardening-softening moment-curvature rela-

tion. Nevertheless, compared to shell elements, the VUEL BM3D code makes sim-

plifying assumptions in the modelling of the torsional behaviour and neglects any

interaction between axial forces, bending and twisting moment.

A more thorough analysis of the mode of deformation of the L-shaped pipe

whips is obtained by looking at the time history of the curvature and twisting angle

along the pipe, as predicted with the three element types. In Figure 4.10, results are

compared in terms of the quantity kn =
√

k2
2 + k3

2, which represents the change in
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Figure 4.10: Distribution of curvature kn along the pipe for out-of-plane pipe whips mod-
elled in Abaqus/explicit with (a) shell, (b) beam and (c) VUEL BM3D ele-
ments. Vertical dotted lines highlight the elbow segment of the pipe, in the
range of (dimensionless) axial coordinates 0.33 < x̂/L < 0.38.

curvature due to bending, divided by the maximum curvature kc. On the horizontal

axis, the symbol x̂/L is here used to represent the dimensionless axial coordinate,

measured from the free end, and vertical dotted lines denote the extremities of the

elbow segment, in the range 0.33 < x̂/L < 0.38.

Figure 4.10 (a) shows the curvature distribution predicted with shell elements

up to 35 ms. At 10 ms, it is observed that kn has already reached the yield value
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(ky, identified by a horizontal black line) at the elbow and in a point close to the

tip (x̂/L ≈ 0.15). In the following time frames it is observed that kn > kc in the

whole elbow region, which corresponds to the formation of a plastic hinge, whereas

the curvature distribution stays fixed in the segment AB. This corresponds to the

behaviour observed in Figure 4.7 (a) with the collapse of point B, while the segment

AB is seemingly straight.

Afterwards, the formation of two plastic hinges is observed at x̂/L = 1 and

x̂/L≈ 0.55 at 30 ms and 35 ms, respectively. After this point, the last plastic hinge

grows to envelop the whole segment BC, which is coherent with the intense defor-

mation and collapse observed in Figure 4.7 (c-f).

It must be noted that the plot of the curvature for shell elements is afflicted with

heavy noise in the region adjacent to the tip. This is due to the way by which the

cross-sectional curvature is measured by the software when using shell elements,

which requires the averaging of the curvature values extracted from all the elements

belonging to a cross-section.

The results obtained with beam elements are shown in Figure 4.10 (b). The

results agree with those obtained with shell elements in terms of position of the

plastic hinges, but perceptible disagreement is observed in terms of kn/kc and time

response. The hinge at x̂/L ≈ 0.55 forms with a delay of 5 ms, which corresponds

to the phase delay observed in the U plot in Figure 4.9; the curvature at x̂/L≈ 0.15

reaches values much higher than those observed in Figure 4.10 (a), whereas the val-

ues are much lower at x̂/L = 1. The slower development of the hinge is interpreted

as the cause of the phase delay in Figure 4.9 which, combined with the curvature

variation, contributes to the different tip displacement. Nevertheless, considering

the limitations of beam elements —that is, the inability to capture softening mech-

anisms in bending— the model achieves acceptable results, especially if one con-

siders the extreme simplicity and computational inexpensiveness of such a model,

compared to one using shell elements.

Lastly, the curvature distribution obtained with VUEL BM3D elements are

shown in Figure 4.10 (c). In this model, the plastic hinges are successfully predicted
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at x̂/L ≈ 0.35, x̂/L ≈ 0.55, x̂/L = 1, improving on the results obtained with beam

elements. However, the model overpredicts the curvature magnitude at x̂/L ≈ 0.15

with the formation of a plastic hinge at 20 ms. This behaviour corresponds to what

observed in Figure 4.8 which shows a relatively small bend between the elbow and

the free end.

Plots of the distributions of dimensionless twist angle, k1/kp, are shown in

Figure 4.11 (a-c). According to the shell model, Figure 4.11 (a), three plastic hinges

form simultaneously at x̂/L= 0.33, 0.65 and 1, which then propagate over time. The

beam model, Figure 4.11 (b), predicts the formation of a single hinge at x̂/L = 0.7,

followed by two more hinges at the ends of the member. The VUEL BM3D model,

Figure 4.11 (c), predicts instead the simultaneous formation of many hinges in the

region x̂/L = 0.33–1. It must be noted that the plot in Figure 4.11 (a) is affected by

extreme levels of noise, especially in the region x̂/L = 0–0.35 which compromises

the reliability of the shell model. As previously discussed, this phenomenon is the

result of the way Abaqus evaluates the value of k1 at each cross-section from those

of the elements that compose it.

The study is completed by comparing the computational costs of the three mod-

els. The simulation with beam elements runs in less than 1 min, whereas the one

with VUEL BM3D elements, mainly due to the cost of writing the results on an

external file at any time increment, has a completion time of 11 min. Lastly, the

completion time of a simulation with shells runs longer than 1 hour, and can only be

reduced when using multiple parallel units (for example, its cost reduces to 12 min

when using up to 40 units).

The simulation with VUEL BM3D is therefore up to 5 times faster than the

shell element analogous. Although the cost reduction is relatively small, with re-

spect to the 88 times reduction measured in the 2D case, the new model constitutes

a valid alternative to the benchmark model, thanks to its ease of application.

In the case examined, the beam model was able to achieve good results in pre-

dicting the twist and the location of plastic hinges. However, the limitation of the el-

ement in modelling the deformation in bending leads to less accurate predictions of
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Figure 4.11: Distribution of dimensionless twist angle k1 along the pipe for out-of-plane
pipe whips modelled in Abaqus/explicit with (a) shell, (b) beam and (c)
VUEL BM3D elements. Vertical dotted lines highlight the elbow segment of
the pipe, in the range of (dimensionless) axial coordinates 0.33 < x̂/L < 0.38.
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the tip displacement, which is necessary for a correct estimation of the hazard zone.

The VUEL BM3D element, in its current state, presents a noticeable improvement

in the results. Taking in consideration the achievement of the VUEL BM2D in the

in-plane simulations, additional modifications to the constitutive models employed

in the VUEL BM3D have the potential of further improving the results, whilst op-

timisations of the code can further reduce the computational cost.

Additional studies, aimed at improving the accuracy of the model, should be

dedicated to including an interactive yield criterion between axial forces, bending

moments and twisting moment. Contrary to the 2D case, where the axial forces

were negligible and did not affect the results, it has been observed that in 3D the

axial stress reaches up to 60% of the yield strength. A general interactive criterion

can be represented by the yield surface

(
N
NP

)a

+

(
M
MP

)b

+

(
T
TP

)c

= 1 , (4.70)

where the values of the exponents need to be found. In the absence of torsion, a= 2,

b = 1 and the last term on the left-hand side vanishes [8]. In the presence of tor-

sion, however, the term cannot be neglected and, at each increment where plasticity

occurs, the above equation must be solved iteratively to find the combination of N,

M and T that respects the yield surface.

The model could be improved further by implementing the effects of softening

and the dependence of the torsional constitutive relation on the strain rate. All of the

aforementioned modifications must be subjected to thorough testing and validated

against purposely obtained experimental data.

4.6 Summary
In this chapter, the corotational beam element VUEL BM2D, previously applied to

the simulation of planar pipe whips, has been modified to study the deformation

in space of out-of-plane pipe whips. The upgraded element code, VUEL BM3D,

required the implementation of a constitutive relation for torsion, and a more com-

prehensive kinematic formulation capable of manipulating three-dimensional ro-
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tation tensors. A numerical model employing the VUEL BM3D element has been

benchmarked against simulations of out-of-plane pipe whips performed in Abaqus/-

explicit using traditional shell and beam elements, demonstrating its capability to

predict the pipe hazard zone and the development of hinges when bending and twist-

ing occur simultaneously. At the current stage, the VUEL BM3D element displays

a significant increase in computational cost compared to its 2D counterpart. The

code offers the potential to be enhanced by employing faster algorithms for many

of its subroutines, in particular those dedicated to the constitutive relations and the

input/output of data.



Chapter 5

Modelling of plastic deformation and

failure of thin-walled plates

5.1 Introduction

The previous chapters have dealt with the development of numerical models for

the investigation of the dynamic response of thin-walled pipes. In the present and

following chapters, a shell-element model is developed for the simulation of thin

metal plates deforming under the influence of explosive loadings.

As previously discussed in detail in Section 1.2.3, impulsively loaded plates

show three typical failure modes, depending on the loading intensity, characterised

by large inelastic deformations, the development of fracture surfaces, and detach-

ment from the support. It has been determined that fracture and detachment are

dictated by two competing damage mechanisms of ductile failure (induced on a mi-

croscopic level by the nucleation, growth and coalescence of imperfections in the

material) and shear failure (caused by shear band localisation) [68]. Due to the

complexity of the problem, theoretical models are not capable of assessing in detail

the failure modes, and numerical analyses using advanced FE models are required

[70].

The shell-element model here developed employs comprehensive damage cri-

teria for predicting the failure modes of impulsively loaded plates. Experimental

tensile and shear tests on steel specimens are performed to calibrate the damage



5.2. Material characterisation and failure models 137

parameters, and numerical simulations reproducing the empirical tests are carried

out to ascertain the element-size independence of the fracture mechanisms.

The plate model is validated against experimental data on steel plates by Olson

et al. [56] and Nurick and Shave [55]. Based on the numerical results obtained, a

new theoretical model is presented for predicting the loading threshold that sepa-

rates the ductile-dominated and shear-dominated failure modes.

5.2 Material characterisation and failure models

The shell-element model employs strain-based failure criteria developed in the con-

text of continuum damage mechanics. The initiation of failure is assumed to take

place when the strain reaches a critical value, corresponding to the onset of necking.

In FE modelling, this point is identified with the definition of a damage variable,

D(ε̄), so that 
D(ε̄) = 0 before necking ,

0 < D(ε̄)< 1 after necking ,

D(ε̄) = 1 at rupture .

(5.1)

In the numerical model, the development of damage is represented by the gradual

reduction of the element stiffness, based on the value of D(ε̄), followed by the

deletion of the element when D(ε̄) = 1.

Two different damage variables, DD and DS need to be defined to capture sep-

arately the initiation and evolution of damage due to ductile and shear failure, re-

spectively. The definition of these variables based on phenomenological criteria is

discussed in the following paragraphs. The effect of the two damage variables is

then combined as follows

D(ε̄) = DDDS . (5.2)

5.2.1 MMC damage initiation criterion

The initiation of ductile damage is represented by a function that correlates the true

plastic strain at necking, ε̄0 (also called equivalent von Mises strain), with the stress
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triaxiality, η [72, 73],

ε̄0 = ε̄0 (η) . (5.3)

Stress triaxiality is a variable that describes the loading conditions within a body,

defined as the ratio of hydrostatic pressure, p, to the von Mises stress, σ̄ , [82, 83]

η =− p
σ̄
. (5.4)

In particular, η = 0 indicates pure shear loading conditions, η = 1/3 and η = 2/3

identify uniaxial and equibiaxial tensile states, whilst η = −1/3 and η = −2/3

denote uniaxial and equibiaxial compression states, respectively.

Several phenomenological models are available in the literature to characterise

equation (5.3) (see for example [84, 85]). The Modified Mohr-Coulomb (MMC)

damage initiation criterion developed by Bai and Wierzbicki [72] and Li et al. [82]

is here chosen for its proven effectiveness in a wide range of triaxiality, especially

around η = 0 [83], which will be necessary in the modelling of plates for an accurate

prediction of failure mode III, which is dominated by shear.

According to the MMC criterion, under the assumption of plane stress, equa-

tion (5.3) is expressed as [82]

ε̄0 =

{
A
c2

[
c3 +

√
3

2−
√

3
(1− c3)

(
1

cos fη

−1
)]
×

×

cos fη

√
1+ c2

1
3

+ c1

(
η +

sin fη

3

)
−1/m

,

(5.5)

where

fη =
1
3

arcsin
[
−27

2
η

(
η

2− 1
3

)]
. (5.6)

Equation (5.5) defines a fracture locus that depends on five material parameters, A,

m, c1, c2, c3 that need to be calibrated on experimental values of ε̄0 measured in a

wide range of loading conditions. The fracture locus is then univocally determined

once 5 material points of (ε̄0,η) are known.
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Table 5.1: List of experimental tests for the characterisation of the fracture locus of equa-
tion (5.3) [83].

Test type Specimen Type Triaxiality
Prismatic Round bar η

Tensile, uniaxial dog-bone cylinder 1/3
Tensile, biaxial flat with cut-outs notched cylinder (1/3,2/3)
Tensile, equibiaxial punch disk - 2/3

Pure shear simple shear - 0
Combined shear and tension butterfly - (0,1/3)
Compression, uniaxial - cylinder −1/3
Compression, equibiaxial - notched cylinder (−2/3,−1/3)

The list of experimental tests originally indicated by Luo and Wierzbicki [83]

for the calibration of the model parameters is reported in Table 5.1. The experi-

ments involve complex specimen geometries (e.g. butterfly specimens) and require

multiple machines for testing (tensile, punching and dual actuators loading frames)

and measuring purposes (DIC). The original calibration process was therefore quite

lengthy and expensive, severely limiting its practicality. However, Brünig et al. [84]

and Driemeier et al. [86] observed that any series of tests that gives 5 combinations

of (ε̄0,η) can be used to characterise the fracture locus. Therefore, they proposed

an alternative procedure solely based on the tensile testing of notched prismatic

coupons, with the geometries reported in Figure 5.1 [87]. In the figure, R0 indi-

cates a typical prismatic dogbone specimen, whilst R1.25, R2.5 and R.5 indicate

prismatic specimens with a central notch radius R = 1.25, 2.5, 5 mm, respectively.

Depending on the notch radius, the values of triaxiality η = 0.58, 0.50, 0.43 are

obtained during the tensile tests in the central region of each specimen, where neck-

ing occurs [87, 68]. The last specimen (S) presents a special geometry that, when

loaded under tension, allows to obtain pure shear conditions (η = 0) in the central

region at the onset of fracture [84, 86].

5.2.2 Experimental tensile and shear tests

Following the procedure of Driemeier et al. [86], tensile experiments were carried

out in the present work on mild steel specimens, grade S235. Five tests were per-
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Figure 5.1: Geometries of un-notched (R0), pre-notched (R1.25, R2.5 and R5), and shear
(S) specimens. The specimens have thickness 6 mm and initial gauge length of
50 mm. All dimensions are in mm. Reproduced with the author’s permission
from Faralli [87].

formed for each geometry (Figure 5.1) using an electromechanical testing machine

(Instron, model 5985) at a constant cross-head speed of 0.05 mm/s. The first test

performed was a uniaxial tensile test (geometry R0), carried out to measure the

strain at necking ε̄0(η = 1/3), the strength coefficient A and the strain hardening

exponent n. The remaining MMC parameters, c1, c2, c3, are then calibrated by

fitting the experimental data of ε̄0(η) obtained from the other geometries through

equation (5.5).

The force-elongation (F-∆) curves obtained from the experiments on steel

S235 specimens for each notch radius are presented in Figure 5.2, where the la-

bels R0, Rx and S follow the nomenclature introduced in the previous section. The

measured values of nominal stress and strain are reported in Table 5.2, and the val-

ues of ε̄0 are reported in Table 5.3. Fitting equation (5.5) to the five material points

of (ε̄0,η), each corresponding to the necking point in one of the tensile tests (i.e.

to the maximum point in the force-displacement curves of Figure 5.2) defines the

fracture locus plotted in Figure 5.3, where the best-fit parameters for the MMC

model were obtained as A = 774.9 MPa, m = 0.274, c1 = 0.033, c2 = 273.6 MPa

and c3 = 1.016.
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Table 5.2: Nominal values of stress and strain for steel S235 obtained from uniaxial tensile
tests.

Yield Necking Rupture Failure

σ (MPa) 242 411 302 0
ε (mm/mm) 1.15 ·10−3 0.29 0.46 0.47

Table 5.3: Values of true plastic strain at necking ε̄0 and stress triaxiality η from the exper-
imental tests on steel S235.

Test type η notch radius (mm) ε̄0

S 0 - 0.16
R0 0.33 - 0.25
R5 0.43 5.00 0.18
R2.5 0.50 2.50 0.15
R1.25 0.58 1.25 0.14

Figure 5.2: Experimental force-elongation curves (F-∆) from the experimental tests on
steel S235. R0 indicates tensile experiments on dumb-bell specimens, Rx rep-
resents tensile tests on notched samples, where x is the notch radius in mm, and
S denotes the response of the shear specimen.
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Figure 5.3: Fracture locus for steel S235 according to the MMC criterion, equation (5.5).

5.2.3 Calibration of damage evolution parameters

5.2.3.1 Ductile damage evolution model

Pavlović et al. [73] developed a phenomenological model to describe the evolution

of the ductile damage after necking, used in FE analysis [16]. The model is based

on the definition of a function correlating the element plastic elongation, ū, to the

damage variable, DD, evaluated from uniaxial tensile tests data using the following

relation

DD(ε̄) =


1.5

1−
σ̄

σ̄ ′

 before rupture

1 after rupture

(5.7)

with

σ̄
′ =

σ̄ = σ (1+ ε) before necking

σN (1+ ε) after necking
(5.8)

where σ and ε are the nominal stress and strain, respectively, σN the value of stress

at necking, σ̄ is the true stress, and σ̄ ′ the hypothetical value of true stress in the

absence of damage [73, 88]. In the tensile tests, the point of rupture is defined as the

last point in a nominal stress-strain curve before the complete loss of load-carrying

capacity. It can be noted that before necking DD = 0. After necking, the damage

variable increases with the straining of the material, until the rupture point, where
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DD = 1 and the element is deleted from the FE model [16].

For the second part of the phenomenological model, the post-necking element

plastic elongation, ū, is evaluated as [73]

ū =
ε̄− ε̄N

ε̄F− ε̄N
ūF , (5.9)

with

ūF = λSλELE (ε̄F− ε̄N) , (5.10)

where LE is the characteristic element length and the subscripts N and F are used to

indicate values of true plastic strain at the points of necking and failure, respectively.

Equation (5.10) introduces two extra parameters to remove the dependence of the

plastic elongation at fracture, ūF, on the element size [16, 88]: the element-type

factor λE and the mesh-refinement factor λS. The former is a constant that depends

only on the element type, while the latter is a function of LE with respect to a

reference value LE,0m,

λS =

1 for LE = LE,0 ,

f (LE) for LE 6= LE,0 .

(5.11)

The two parameters are calibrated following an iterative procedure, developed by

Pavlović et al. [73] for solid elements, perfected by Faralli et al. [88], and here

adapted to shell elements, which involves FE simulations that reproduce the uniaxial

tensile tests.

5.2.3.2 Simulation of tensile tests

Numerical simulations modelling the tensile tests of the specimen type R0 were

performed in Abaqus/standard to calibrate the ductile damage evolution parame-

ters λE and λS. The material, steel S235, had the following properties: density

ρ = 7850 kg/m3, elastic modulus E = 210 GPa, Poisson’s coefficient ν = 0.33.

Metal plasticity was modelled in Abaqus using a piece-wise linear approximation

of the true stress strain curve obtained from the force-displacement curve extracted
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from the tensile experiment (curve R0 in Figure 5.2) with 31 discretisation points

[68, 88]. Other material properties are reported in Table 5.2. Strain-rate dependence

of the material was implemented by using the Cowper-Symonds model

σ̄(ε̄, ˙̄ε) = σ̄0(ε̄)

(
1+
∣∣∣∣ ˙̄ε
ε̇0

∣∣∣∣1/q
)
, (5.12)

where ˙̄ε represent the true plastic strain rate, σ̄0 the true stress measured in quasi-

static condition, ε̇0 = 40.4 s−1 and q = 5 are the commonly accepted value of the

strain-rate dependence parameters for mild steel [55]. The ductile damage model,

equations (5.7)-(5.9), was implemented in Abaqus in the form of tabular data of

(DD, ū).

The R0 specimen had the dimensions reported in Figure 5.1, initial gauge

length of 50 mm and thickness of 6 mm. The specimen had fully-clamped bound-

ary conditions at one end and a prescribed displacement with constant velocity of

0.05 mm/s at the other end. The displacement in the direction of the thickness was

constrained for the whole specimen. The sample was modelled using a uniform

distribution of small square shell elements (element type S4R [16], aspect ratio 1),

with no less than 8 elements discretising the smallest dimension (the gauge width

of 10 mm). The simulations were carried out several times with different degrees of

mesh refinement to verify the mesh insensitivity of the damage models. Although

the body was loaded under plane stress conditions, shell elements needed to be used

for the simulation of the tensile tests for the calibration of the model parameters nec-

essary required by the damage model employed in the simulation of plate fracture

under explosive blasts.

The parameters λS and λE were calibrated with the following iterative proce-

dure. In the first step, the reference element size LE = LE,0 = 0.5 mm is chosen.

Following equation (5.11), λS = 1 is fixed and the value of λE is found iteratively.

The initial guess value λE = 2.5 [73] is used to evaluate the ductile damage evo-

lution law (DD, ū), equations (5.7)-(5.9), which is employed in the first simulation

run. The predicted nominal stress-strain curve is then compared with the exper-
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imental data. The guess value of λE is considered satisfactory if the percentage

difference between the numerical and experimental rupture strain, δ (εR) is lower

than 3%; otherwise λE is modified by ±0.1. The law (DD, ū) is re-evaluated, based

on the new λE value, and the simulation is repeated.

Once the value λE is found that satisfies δ (εR)< 3%, the simulation is repeated

using a new mesh with element size LE = LE,1. In this second step, λE is fixed,

and the value of λS is found iteratively. The first guess value is assumed as λS =

(LE,0/LE,1)
1/3 [73]. The simulation is performed again and the predicted rupture

strain is compared to the experimental data. The value of λS is modified by ±0.01

until δ (εR)< 3%.

After the first two steps are completed and λE and λS are identified for the

reference element size, the simulation and the calibration procedure are repeated for

a new model with a refined mesh. The second step is reiterated for five element sizes

LE,i until five values of λS are found. A second order polynomial is then used to

correlate λS to LE . The element size considered in this study are LE,0 = 0.5 mm and

LE,i = [1.25, 1.00, 0.20, 0.10] mm. The calibrated damage parameters are λE = 2.8

and λS = 0.118LE
2−0.4768LE +1.2126.

The nominal stress-strain curve measured experimentally and the curves pre-

dicted for different values of LE are compared in Figure 5.4. The mesh sensitivity

of the ductile damage model is satisfactory in the entire range of LE analysed, as

testified by the percentage error on the strain at rupture, εR, which resulted always

Figure 5.4: Comparison between the experimental nominal stress-strain curve (labelled
EXP) from the uniaxial tensile test on steel S235, and the numerical predic-
tions for the element sizes LE = 0.1, 0.5, 1.25 mm.
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smaller than 3%.

5.2.3.3 Shear damage evolution model

The model for the initiation of shear damage assumes that the strain at the onset of

damage depends on the shear stress ratio, τS, which is defined as a function of stress

triaxiality [16]

τS = (1− kSη)
σ̄

τmax
(5.13)

where kS = 0.1 is a material constant [89]. The value of true plastic strain measured

at the onset of damage in pure shear (test type S) is ε̄0,S = 0.56, to which corre-

sponds τS = 1.732 [68]. Similarly to the ductile model, the shear damage evolution

is modelled through a function correlating the additional damage variable DS to the

element elongation ū. The softening branch of the test curve S, reported in Fig-

ure 5.2, shows that damage evolves more rapidly in shear, compared to the slow

evolution of ductile damage attributed to the softening branch of the tensile curve

R0. For this reason, a linear damage evolution law (DS, ū) was assumed in shear:

DS = 0, ū = 0 at necking ,

DS = 1, ū = ūF,S at failure .
(5.14)

In the expression above, the element elongation at failure in shear, ūF,S, is a param-

eter that depends on the element size and needs to be calibrated iteratively through

the simulation of the shear test.

5.2.3.4 Simulation of shear tests

The shear test simulations use the same material model described earlier in this

section. The central region of the S specimen was discretised using square shell

elements. Due to the extremely small width of the central region (≈ 3 mm,

Figure 5.1), the model required a more refined mesh (LE ≤ 0.13 mm). The pa-

rameter ūF,S was calibrated with the following iterative procedure. In the first step,

LE = LE,0 = 0.13 mm is fixed, and the guess value of ūF,S is estimated as

ūF,S = LE,0(ε̄F,S− ε̄N,S) (5.15)
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where ε̄F,S and ε̄N,S are the values of true plastic strain at failure and at necking

measured in shear, respectively. The actual value of ūF,S is found iteratively when

the condition δ (εF,S)≤ 3% is satisfied. The process is then repeated for different

element sizes, LE = [0.13, 0.12, 0.10, 0.09, 0.07] mm, and the fitting curve obtained

is ūF,S =−1.1564LE
2 +0.1636LE +0.0055.

Figure 5.5 shows the comparison between the numerical and experimental

force-displacement curves, demonstrating that the shear damage model is mesh

size independent in the range of element dimensions analysed. It must be noted

that the two damage evolution models due to shear and ductile mechanisms neglect

the effect of the rate of deformation. In all the simulations, the strain-rate effect is

incorporated through the Cowper-Symonds law of (5.12) applied to the undamaged

material behavior.

5.3 Modelling of metal plates
The material models used in the simulation of the tensile and shear tests, employing

the calibrated damage parameters, were implemented in FE analyses, carried out in

Abaqus/explicit, aimed at analysing the transient deformation of steel square plates

subjected to impulsive loadings, which reproduced the experiments performed by

Figure 5.5: Comparison between experimental and numerical force-displacement curves
for shear specimen (type S) made of steel S235. Numerical results are shown
for the element sizes LE = 0.13, 0.10, 0.07 mm.
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Olson et al. [56] and Nurick and Shave [55]. In the experiments, thin square plates

(width L = 89 mm, thickness H = 1.6 mm) were clamped between two rigid frames

by means of high-strength bolts and exposed to blasts waves of various intensity

generated by the detonation of explosive strips.

In the FE model here developed, the plate is discretised with a uniform dis-

tribution of square S4R shell elements (aspect ratio 1) with five integration points

through the thickness. Based on the study of the deformation modes observed ex-

perimentally, it is assumed that the maximum deformation occurs at the plate centre,

and that in the absence of local imperfection fracture should occur simultaneously

along the four sides. Under this conditions the configuration is symmetrical and

only one-quarter of the plate needs to be modelled. Based on the observations of

Aune et al. [71], the supports were modelled with fully-clamped boundary condi-

tions applied along the external edges, whilst symmetry conditions were imposed

along the internal edges, as reported in Figure 5.6.

Previous studies [56, 70] have shown that the explosive blast duration, 15 µs,

is much smaller than the average time necessary for the plate to reach maximum

deformation, 120 µs. Under these conditions, the loading pulse can be idealised as

Figure 5.6: Side (left) and top (right) views of a thin square plate of length L and thickness
H. One quarter of the plate is modelled (highlighted in grey), constrained by
symmetry boundary conditions on the internal edges and fully-clamped sup-
ports on the exterior.
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an instantaneous velocity field of initial velocity v0 uniformly distributed across the

plate surface [70]. The corresponding impulse intensity, in dimensionless form, is

I∗ = v0

√
ρ

σY
, . (5.16)

The mesh sensitivity study performed in the simulation of shear and tensile

tests has shown that the damage model was independent of the characteristic ele-

ment length and the mechanisms of propagation of failure through element deletion

were mesh-size independent in a wide range of element size. A second mesh sen-

sitivity analysis was carried out in the simulation of the metal plates, accounting

for the convergence of strains at the mid-point along the plate edges (where strains

reach maximum values) and the sensitivity of fracture to the element size. Mesh-

size independence of the results is obtained for element lengths LE < 0.2 mm. The

final mesh size chosen is LE = 0.111 mm.

5.3.1 Model validation

The plate model was validated against experimental data for mild steel square plates

[55, 56]. The sequence of failure modes (mode I, II*, II and III) observed exper-

imentally was successfully reproduced in the numerical model by varying the im-

pulse intensity in the range I∗ = 0.5-3, as depicted in Figure 5.7.

For each value of I∗, the permanent deflection measured at the centre of the

plate, W (see Figure 5.8) was compared to experimental data. The results are plotted

in dimensionless form (W/H) in Figure 5.9. For mode I, very good agreement is

observed with the experimental data [55, 56] and also with analytical predictions

using a strain-rate dependent, rigid-perfectly plastic model from Jones [65, equation

23 C]:
W
H

=

(
1+

2λ

3λ0

)1/2

−1 (5.17)

with

λ =
ρA
σY

(v0

H

)2
(5.18)
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(a) mode I - large inelastic deformation (b) mode II* - partial tearing

(c) mode II - tensile tearing (d) mode III - transverse shear failure

Figure 5.7: Numerically observed failure modes of fully-clamped square plates under im-
pulsive loads.

Figure 5.8: Measurements of permanent central deflection, W , lateral pull-in displacement,
d, and tear length, T , in the plate simulations.
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Figure 5.9: Maximum dimensionless central deflection W/H plotted as a function of di-
mensionless impulse I∗. Numerical predictions are compared against experi-
mental data from Nurick et al. [55, 56] (labelled Exp.) and analytical predic-
tions from Jones [65] (labelled Analyt). Vertical lines indicate the transition
between failure modes predicted nomerically.

and

λ0 = 1+
(

4
2ρ

σY

v2
0

3πLε̇0

)1/q

. (5.19)

Using a linear regression for the central deflection measured experimentally in

modes I and II* as reference, and comparing it to numerical predictions and the

theoretical model of equation (5.17), the relative error was smaller than 2.7% in the

range of impulse I∗ = 0.5–1.0.

The FE model predicts a reduction of W/H for mode II with increasing I∗.

In a previous numerical study, Yuan and Tan [70] suggested that the discrepan-

cies between the numerical and experimental values of W/H can be explained by

noticing that the central deflection is measured at different times in the experiments

and FE models. The maximum deflection in FEM was evaluated at the moment of

fracture, whereas the experimental values were obtained a posteriori, after the plate

had hit a target. Rudrapatna et al. [69] have previously shown that, after complete
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detachment, the plate deformation progresses as a result of the release of residual

stored kinetic energy, highlighting the importance of the time of measurement of

the central deflection.

Due to the difference in rupture strain between our model (εR = 0.46, steel

S235) and the values reported in the experimental studies [55, 56] (εR = 0.31, mild

steel), an increase in the critical impulse at the mode I-II* transition was observed,

as expected.

Other quantities measured in the experiments [55, 56] were the tear length T

(i.e. the length of cracks along the plate edge) in mode II*, and the pull pull-in

displacement d in mode II (i.e. the inward in-plane displacement of the mid-side).

The comparison with the numerical prediction is reported in Table 5.4, showing a

general good agreement in terms of T and d in their respective failure modes.

5.3.2 Impulse threshold at the mode II-III transition

Nurick and Shave [55] and Olson et al. [56] observed that the onset of mode III

occurs when the plate detaches from the support with a negligible central deflec-

tion, accompanied by a small value of pull-in displacement (d ≤ 1 mm). However,

Rudrapatna et al. [69, 62] suggested that the failure modes II and III are not indi-

vidually dominated by tensile or shear failure, respectively; instead they observed

an overlap of the two effects, with shear failure becoming predominant as the im-

pulse intensity increases. Furthermore, they observed that mode III is also charac-

Table 5.4: Comparison between numerical results and experimental data [55, 56] of the tear
length T for mode II*, and of pull-in displacement d for mode II.

TEXP (mm) TFEM (mm)

Average 66 61
Median 61 66

Maximum 80 80

dEXP (mm) dFEM (mm)
mode IIa mode IIb mode IIa mode IIb

Average 5.8 3.5 5.4 2.9
Median 6.0 3.5 5.4 3.1
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terised by instantaneous complete detachment and earlier failure times, compared to

mode II [69]. For this reason, they came to the conclusion that a criterion for the on-

set of mode III based purely on the amount of deformation is highly subjective, and

a more rigorous criterion must account for the time-evolution of the failure mecha-

nism. This consideration is in agreement with our numerical results, which predict

a gradual transition between modes II and III, as evidenced by the slow decrease of

the central deflection at high impulses in Figure 5.9.

In light of these observations, a more rigorous definition of the critical impulse

at the mode II-III transition is necessary, based on time-dependent quantities. In the

simulations, the crack propagation velocity can be defined as the ratio between the

crack length and the time interval from the initiation of fracture (identified by the

deletion of the first element) to the moment of detachment.

In our FE results, it is observed that the numerically measured crack propaga-

tion velocity increases monotonically with I∗, varying from subsonic to supersonic

values in the range of impulses where the transition is supposed to occur. Therefore,

we propose a phenomenological criterion for determining the threshold value I∗II−III

based on the definition of the dimensionless crack speed

v∗ =
vcrack

c
, (5.20)

where

c =

√
E(1−ν)

ρ(1+ν)(1−ν)
(5.21)

is the propagation velocity of pressure waves in solids. When v∗ ≥ 1, the plate

response is categorised as mode III. The proposed criterion satisfies the conditions

of d ≤ 1 mm and of negligible W/H.

The corresponding predicted critical impulse for the analysed square plate is

I∗II−III,FEM = 2.10, which is in close agreement with the value established experi-

mentally, I∗II−III,EXP = 2.39 [55].
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5.4 Summary
In this chapter, a finite element model has been presented for the prediction of the

inelastic response of impulsively loaded quadrangular plates made of steel. The

model incorporates two comprehensive failure criteria, based on a continuum dam-

age mechanics approach, to capture the concurring ductile and shear failure mech-

anisms. The damage parameters were calibrated with a combined empirical and

numerical procedure based on experimental data obtained from tensile and shear

tests, ensuring the mesh insensitivity of the fracture mechanisms.

The plate model developed is then validated against experimental data for thin

square plates [55, 56], showing a good agreement in the comparison of the perma-

nent central deflection, the length of tears along the support and the edge displace-

ment. Based on the numerical results, a novel criterion is proposed for predicting

the critical impulse at the threshold between mode II and III, I∗II−III . The criterion,

based on the definition of the dimensionless crack speed, v∗, predicts that mode III

initiates at I∗II−III,FEM = 2.10, when v∗≥ 1, in agreement with previous experimental

findings. Further empirical studies measuring the crack propagation velocity with

the use of optical techniques, such as high-speed digital image correlation (DIC),

are required to demonstrate the accuracy of the criterion.



Chapter 6

Simulation of failure of metal plates

6.1 Introduction
This chapter deals with the numerical analysis of square and rectangular plates sub-

jected to impulsive blast loading. The plate model, developed and validated in

Chapter 5, is firstly employed to analyse the propagation of the detachment path and

investigate the causes of its inward deviation observed experimentally in mode II

and III [56, 55, 63]. The plate model is then employed in parametric studies aimed at

investigating the impulsive response of fully-clamped square and rectangular plates

of various size, and the failure modes of quadrangular plates constrained by simply-

supported boundary conditions.

6.2 Prediction of the detachment path
The propagation of the crack path and the evolution of the stress triaxiality distribu-

tion in a square plate deforming in mode II (I∗ = 1.08) is illustrated in Figure 6.1.

As seen in Figures 6.1 (a) and 6.1 (b), in the FE model rupturing always initiates si-

multaneously at the midpoint of each boundary and propagates along the edges (this

is in contrast to what was occasionally observed in [55, 57], where imperfections

of the material or of the experimental apparatus induced rupture on less than four

sides in some instances). Subsequently, the cracks rapidly propagate through most

of the side; as time increases, the crack tips approach the corner, and the region

under equibiaxial tension, which previously enveloped most of the plate, becomes

smaller (Figure 6.1 (c)).
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The instants immediately before and after complete detachment are displayed

in Figures 6.1 (d, e, f), showing that the cracks deviate from their path, avoiding the

region of equibiaxial tension, and propagate towards areas where η ≈ 0.5. When

two propagating cracks meet, the plate detaches from its support and flies away

in the direction of the blast. It is of interest noticing that, in all simulations of

square plates, the cracks deviation follows a diagonal path, similar to that observed

experimentally [63].

Measurements of the dimensionless tear length, T/L, will be used in the fol-

lowing sections to determine the position at the crack deviation. The residual plate

material that remains connected to the support after detachment can be identified

by the residual length: a = (T −L)/2. It is possible to explain the deviation phe-

nomenon by looking at the damage initiation curve of Figure 5.3: ε̄0 is maximum in

uniaxial (η = 1/3) and equibiaxial tensile conditions (η = 2/3) and has local min-

imum points in shear (η = 0) and for η ≈ 1/2. The material suffers a decrease in

ductility in the areas of the plate where ε̄0 is reduced due to the loading conditions;

therefore, lower energy is required for the propagation of the crack through regions

where η ≈ 0 or η ≈ 1/2 [68]. A similar evolution of the η distribution is observed

for mode III at high impulses. At lower values of I∗, corresponding to mode II*, the

impulse intensity is not sufficient to cause complete detachment of the plate from

its support, and the final state becomes similar to that shown in Figure 6.1 (c).

6.3 Parametric studies on square plates

Two parametric studies were performed to assess the effect of the plate thickness

H and volume V on the inelastic response. In the first study, the thickness was

varied in the range H = 1.6–6 mm whilst keeping the width constant (L = 89 mm)

whereas, in the second study, H was varied in the same range whilst keeping the

volume constant. The second study was repeated for several values of volume in

the range V = 12674–47526 mm3; the effect of the surface area A was then inferred

by analysing the results obtained from plates with different V and the same H.

According to the Kirchoff-Love theory, the aspect ratio L/H can be used to identify
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(a) Prior to rupture, t = 1.8e−5 s (b) Rupture, t = 3.4e−5 s

(c) Propagation, t = 7.30e−5 s (d) Deviation, t = 11.2e−5 s

(e) Deviation (detail) (f) Detachment, t = 11.4e−5 s

Figure 6.1: Top view of square plates deforming in mode II under the dimensionless im-
pulse I∗ = 1.08. The images report the evolution of the stress triaxiality η

distribution and of the tear length T .
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a plate as thin or thick. In our studies, we focused on the analysis of thin plates,

with values of the ratio selected in the range L/H = 20–56, and on few examples

of relatively thick plates, with L/H = 15–20. The study did not consider thicker

plates (L/H < 15), because an accurate analysis would require a model using solid

elements, rather than shells.

The results of the first parametric study, in which the thickness varies in the

range H = 1.6–6 mm whilst the width is kept constant (L = 89 mm) are presented

in Figure 6.2. For all the cases analysed, the initiation of mode II* always coin-

cided with the deviation of linearity between the dimensionless central deflection,

W/H, and the dimensionless impulse, I∗, whereas the maximum deflection always

corresponded to the initiation of mode II. As expected, increasing H reduces the

capability of the plate to deform, thus decreasing significantly the central deflection

Figure 6.2. This effect is more evident for relatively thick plates (L/H ≤ 20), which

show a pronounced flattening of the peak of W/H.

Figure 6.2: Numerical predictions of W/H for square plates from the first parametric study
(H = 1.6–6 mm, L = 89 mm).
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Dimensionless diagrams, named failure maps, are introduced in Figure 6.3 to

analyse the boundaries between failure modes. The dimensionless variables L/H

and I∗ define a 2-D space which is divided into four regions, each corresponding to a

different failure mode. Observing the failure map gives the combinations of loading

intensity and aspect ratio that are safe (mode I) or expected to rupture (mode II*) or

would, otherwise, incur into complete detachment (modes II and III). Figure 6.3 (a)

shows that the boundaries between mode I-II* and mode II*-II are mostly unaffected

by changes in thickness, since the initiation of damage depends only on the amount

of strain accumulating along the support. On the contrary, the region belonging to

mode III becomes smaller with H because, as the thickness increases, the plate is

capable of absorbing more energy against the development of cracks, and the crack

propagation velocity decreases(see equation (5.20)). The results of Figure 6.2 are

then overlaid on the failure map in Figure 6.3 (a) as isolines of W/H.

Failure maps displaying the effect of the geometry on the tear length, as iso-

lines of T/L, are shown in Figure 6.3 (b) for the first parametric study and in Fig-

ures 6.4 (a) and (b) for the second parametric study, in which H = 1.6–6 mm and

V = 12674, 47526 mm3.

An almost perfect correspondence is observed between the mode I-II* tran-

sition and the isoline T/L = 0.34, indicating that the minimum tear length at the

onset of mode II* is independent of H and V . In the narrow range of impulses

where mode II* occurs, T/L varies from 0.34 to 0.90. This implies that small incre-

ments in the impulse intensity correspond to large variations of the tear length for

mode II*. It is worth noting that the isoline T/L = 0.98 passes through the mode III

region, indicating that the crack deviation occurs even at high impulses, and a small

amount of material remains connected to the support.

Numerical predictions have been compared in Section 5.3.1 with experimental

data for a square plate of thickness H = 1.6 mm [55, 56]. Further comparisons

against analogous data for plates of different thickness are required for the complete

validation of the model and the failure maps, which could then be proposed for the

use in plate design.



6.3. Parametric studies on square plates 160

(a)

(b)

Figure 6.3: Failure maps for the first parametric study (H = 1.6-6 mm, L = 89 mm) dis-
playing the boundaries between failure modes, overlaid with isolines of W/H
(a) and T/L (b). Colours indicate, from left to right, the sequence of failure
modes I , mode II* , mode II , and mode III .
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(a) V = 12674 mm3
//

(b) V = 47526 mm3

Figure 6.4: Failure maps of predicted T/L from the second parametric study, in which
H = 1.6-6 mm, V = 12674 mm3 (a) and V = 47526 mm3 (b). Colours indicate
failure mode I , mode II* , mode II , and mode III .
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6.4 Parametric studies on rectangular plates

A numerical study was conducted to assess the response of fully-clamped rectan-

gular plates loaded with impulsive blasts, adopting the plate setup illustrated in

Figure 6.5. The rectangular plates have the same thickness H = 1.6 mm and surface

area A = 7921 mm2 of the square plates analysed in Section 5.3. The aspect ratio γ

between the longer and the shorter side was varied in the range γ = LA/LB = 1-5.

The simulated rectangular plates display mostly the same sequence of failure

modes as the square plates. The only difference is observed in mode II* where, at

low I∗, failure occurs only on the longer edge. The propagation of the crack path and

the evolution of the stress triaxiality distribution in a rectangular plate deforming in

mode II (I∗ = 2.7) is illustrated in Figure 6.6.

When failure mode II or III occur, the crack propagation velocity is initially

faster on LA and slower on LB. The two cracks propagate at different speed until the

residual length on the long edge matches that on the short edge, a≈ b. Afterwards,

the two cracks propagate at the same speed until detachment occurs. It is worth

noting that the crack deviation follows a diagonal path with a/b≈ 1 for all combi-

nations of γ and I∗ studied, as illustrated in Figure 6.6. In the case of square plates,

Figure 6.5: Top view of a thin rectangular plate with fully-constrained boundary condi-
tions. One quarter of the plate is modelled, constrained with symmetry bound-
ary conditions on the internal edges. The tear lengths on the longer and shorter
sides are indicated with TA and TB, respectively.
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(a) Prior to rupture, t = 0.4e−5 s

(b) After rupture, t = 0.8e−5 s

(c) Detachment, t = 2.8e−5 s

Figure 6.6: Time evolution of stress triaxiality η distribution for a rectangular plate with
γ = 2 deforming in mode II (I∗ = 2.7).
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a and b were obviously equal because of the symmetry of the geometry. The reason

why a ≈ b for rectangular plates is found by looking at the distribution of ε̄ and

η before fracture. It can be seen from Figure 6.6 that, because of the deformation

profile assumed by rectangular plates [90, 91], the distribution’s axis of symmetry

does not coincide with the plate diagonal, but with a line inclined at 45◦ from the

plate corner.

The predictions of permanent dimensionless deflection W/H for rectangular

plates are shown in Figure 6.7. In mode I, W/H depends linearly on I∗ for any γ , as

expected, and decreases with increasing γ . The onset of mode II* occurs at I∗ ≈ 1,

as in the case of the square plates, marking a sharp deviation from linearity. The

deviation reaches maximum values at the onset of mode II (I∗ ≈ 1.1). In the figure,

the failure modes are not marked on the curves to reduce cluttering on the plot.

When γ increases, the peak height raises and its position shifts rightward to slightly

higher values of impulse. A further increase of I∗ corresponds to a rapid decrease

of W/H, and the plates tend to the same amount of final deflection, regardless of

the aspect ratio, for higher impulses, until negligible deflection is observed.
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Figure 6.7: Numerical predictions of W/H for rectangular plates with fully-constrained
boundary conditions and different aspect ratios γ = 1-5.
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Figure 6.8: Failure map of predicted W/H for fully-constrained rectangular plates with
different aspect ratios γ . Colours indicate failure mode I , mode II* ,
mode II , and mode III .

The boundaries between failure modes are displayed in the failure map of Fig-

ure 6.8. The narrow region of mode II* has almost vertical boundaries, which means

γ has a negligible effect on the impulse threshold at the mode I-II* and II*-II transi-

tion. Furthermore, changing the aspect ratio shows no effect on the measured time

to rupture and time to detachment, which remain constant. However, increasing γ

correspond to increasing LA, which determines a growth of the crack propagation

velocity measured on LA and, therefore, an enlargement of the mode III region. Fig-

ure 6.9 shows the failure map of the residual length on the long edge, TA, divided by

LA. For all instances where detachment occurs (modes II and III), TA/LA > 0.93 and

the residual length is negligible on both edges. Then, since TA ≈ LA and TB ≈ LB, it

is found that TA/TB ≈ γ .

6.5 Failure of simply supported plates

Previous studies demonstrated that the failure modes can be affected significantly by

changes in the boundary conditions [52]. For instance, Bonorchis and Nurick [57]
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Figure 6.9: Failure map of predicted TA/LA for fully-constrained rectangular plates with
different aspect ratios γ . Colours are used to identify failure mode I ,
mode II* , mode II , and mode III .

and Thomas [60] showed that plates with built-in or welded boundaries experience

earlier failure, compared to fully-clamped plates, due to the increased rigidity of the

boundary, which limits the in-plane displacement of the plate at its supports. In the

literature, little attention has been given to the case of less rigid boundary condi-

tions. For this reason, numerical studies were conducted to analyse the response of

impulsively loaded metal plates with simply-supported boundary conditions, when

the rotation of the plate at the supports is allowed.

It is expected that the additional rotational degrees of freedom affect the se-

quence of failure modes of quadrangular plates, influencing the impulse range for

each mode, the amount of deformation, and the position of rupture. Starting from

mode I, Figures 6.10 (a, b) compare the deformation profiles predicted numerically

for square plates with different boundary conditions. In the case of fully-constrained

boundary conditions, the profile resembles a uniform dome shape, whereas a more

complex profile is observed for simply-supported boundary conditions, with a small

central dome superimposed atop the global dome, joined by an inflection point. This
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(a) Fully-constrained plate (b) Simply-supported plate

Figure 6.10: Comparison of the deformation profiles of square plates subjected to blast
loadings deforming in mode I: (a) fully-constrained boundary conditions and
(b) simply-supported boundary conditions.

behaviour resembles that observed experimentally for plates subjected to localised

blast loadings [92, 52, 58, 61] which are characterised by a similar profile, as a

consequence of a non-uniformly distributed velocity field.

The other failure modes found for simply-supported square plates are depicted

in Figure 6.11. Increasing the impulse intensity, mode I is followed by a failure

mode, different from the mode II* of fully clamped plates, characterised by partial

tearing in the central region, labelled as mode II*c in Figure 6.11 (a). This is then

followed by complete tearing in the central area, labelled as mode IIc Figure 6.11

(b), a response that is also known as ‘capping’ [52], which is normally observed for

locally loaded plates. The amount of deformation and the capping area grow with

the impulse intensity. Increasing the impulse further, complete tearing occurs along

crack paths that run parallel to the plate edges, resembling failure mode II and III,

respectively.

A different sequence of failure modes was observed for simply-supported rect-

angular plates (γ = 2–5), as displayed in Figure 6.12. By increasing the impulse

intensity, mode I is followed by mode II*A, where partial tearing occurs on a path

that runs parallel to the long edge, but no rupturing is observed along the short edge.

At higher impulses, the rupture mechanism deviates from its original path with

a sharp angle and propagates towards the opposite edge, rather than towards the

corner. Complete failure occurs when two crack path from opposite edges meet,

causing the detachment of a large section of the plate. To the best of the authors’
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(a) mode II*c - partial central tearing (b) mode IIc - capping

(c) mode II (d) mode III

Figure 6.11: Failure modes of simply-supported square plates. Contour plots of true plastic
strain ε̄ are used to highlight regions of maximum strain, where failure occurs.

knowledge, this failure mode has not been described previously in the literature

and will be here referred to as mode IIr or ‘ripping’. In the range of impulses where

mode IIr is observed, partial or complete detachment can be encountered, depending

on whether the crack stops in its propagation.

At higher I∗, mode IIr is followed by modes II and III, where rupture occurs

simultaneously on four paths parallel to the plate edges. It is observed that the

distance of the crack path from the support is negligibly affected by the aspect ratio

γ and the impulse intensity. One distinguishing feature of the detachment path for

simply-supported plates consists in the multiple ramifications that form along the

tears, compared to the straight fracture without ramifications that characterises the
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(a) mode II*A - partial tearing along long edge (b) mode IIr - ripping

(c) mode II (d) mode III

Figure 6.12: Failure modes of simply-supported rectangular plates with γ = 2. Contour
plots of true plastic strain ε̄ are used to highlight regions of maximum strain,
where failure occurs [68].

fully-constrained plates.

The measured dimensionless central deflection W/H and the sequences of fail-

ure modes are reported in Figure 6.13. It is observed that the increased mobility of

the boundaries reduces the strain in the peripheral regions, and mode I occurs in a

wider range of impulses, compared to fully-constrained plates. Consistently with

previous studies, deviation from linearity coincides with the initiation of rupture

mechanisms: mode II*c for square plates (Figure 6.13a), and mode II*A for rect-

angular plates (Figure 6.13b). Peak values of deflection are always reached at the

onset of mode II, followed by a rapid drop at higher impulses. Based on the cri-

terion proposed on the crack propagation velocity, equation (5.20), the transition

between mode II and III occurs at impulses higher than I∗ = 3.5, although the hor-

izontal asymptote typical of fully-constrained plates was not observed in the range
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(a) Square plates

(b) Rectangular plates

Figure 6.13: Comparison of dimensionless deflection W/H for plates with simply sup-
ported (SS) or fully-constrained (FC) boundary conditions: (a) square plates
and (b) rectangular plates. Symbols are used to highlight failure modes as fol-
lows: mode II*, mode II and mode III; (a) mode II*c, mode IIc - cap-
ping and interposition of capping and mode II; (b) mode II*A and mode IIr
with partial ripping and complete ripping [68].
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of impulses analysed.

The measurements of tear lengths TA for rectangular plates from this study is

reported in the failure map of Figure 6.14. Analogously to the fully-constrained

plates, the greatest variation of TA occurs in the impulse range of mode II*. The

variation of TA increases slowly with the impulse in the ranges of mode II and

III. Furthermore, even for simply-supported rectangular plates it was observed that

a≈ b and that TA/TB ≈ γ , for any value of γ and I∗.

Figure 6.14: Dimensionless tear length TA/LA failure map for simply-supported rectangular
plates. Different colours identify failure mode I , mode II*A , mode II
and IIr , and mode III .

6.6 Summary
The numerical model established in Chapter 5 has been employed in the prediction

of the dynamic response of quadrangular plates with fully-constrained or simply-

supported boundary conditions. The new results indicate that simply-supported

plates subjected to uniform blast loading display failure modes that are different

from those of fully-clamped panels. The observed behaviour is similar to that of

plates subject to localised blast, with the development of a non-uniform deforma-
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tion profile and ‘capping’ failure [58, 61]. In addition, a previously unobserved

‘ripping’ failure mode has been discovered numerically for simply-supported rect-

angular plates, where detachment occurs due to the joining of crack paths propagat-

ing from opposite sides, rather than from contiguous edges.

Finally, dimensionless failure maps have been developed, elucidating the influ-

ence of plate topology, boundary conditions and amount of material on the inelastic

response. The maps represent a valid aid in the design of impulsively loaded plates

since they indicate the correlation between failure modes, the tear length and the

residual lengths, and the maximum expected deformation as a function of the im-

pulse intensity.



Chapter 7

Conclusions and future research

7.1 Conclusions

Numerical analyses offer an invaluable tool for solving engineering problems.

Thanks to the capability to predict the behaviour of materials and structures, finite

element models are useful in the study of problems involving structural failure. The

research work discussed in this thesis presents the development and validation of

two FE models for investigating the mechanical behaviour of thin-walled pipes and

plates undergoing large deformation and failure under dynamic loading conditions.

Firstly, a beam element code was developed to study the response of pres-

surised pipes deforming in a whip-like motion under the influence of an intense

force generated by the escape of fluids following a sudden guillotine break. The

element employs a corotational kinematic formulation to obtain a low computa-

tional cost, and a constitutive relationship that idealises the cross-sectional collapse

mechanisms of tubes in bending.

Secondly, a shell element model was developed to investigate the failure modes

of steel plates hit by explosive blasts. The model employs comprehensive constitu-

tive laws to capture accurately the damage mechanisms of metal components due to

ductile and shear failure. A thorough approach was followed, combining numerical

analyses with experimental tests (tensile and shear tests on steel specimens, grade

S235), to achieve mesh insensitivity of the damage mechanisms. The main findings

from these two investigations are summarised below.
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Moment-curvature master curves for pipes

In Chapter 2 numerical tests of pipes in bending were performed to obtain moment-

curvature relations for steel pipes with various combinations of external diameters

and wall thickness. The simulations had the scope of identifying for each com-

bination the values of bending moment and curvature corresponding to the initia-

tion of cross-sectional collapse, which were necessary for developing a comprehen-

sive constitutive law for pipe whips. Through a dimensional analysis, it was found

that the M-k relations obtained were completely identified by three dimensionless

groups of equation (2.31):

π1 =
D
H

,

π2 =
Mc

σY HD2 ,

π3 =
kcD2

H
.

The group π1 allows to distinguish between relatively thick D/H < 20 and thin

D/H > 20 pipes. The groups π2 and π3 allow to manipulate the M-k relations,

obtaining two dimensionless master curves, unique for thick and thin pipes, reported

in Section 2.5. These findings, which shed new light in understanding the flexural

behaviour of thin-walled structural elements, has no prior mentions in the literature.

Thanks to their simplicity, the master curves and the dimensionless groups hold

a great potential for any future study aimed at analysing the response of pipes in

bending. Future studies should be considered to analyse members with different

profiles (e.g. square tubing, I sections or T sections) and experimental bending tests

should be performed for validation purposes.

Prediction of the hazard zone for pipe whips

In Chapter 3, the beam element code developed in Chapter 2 has been used to in-

vestigate the effect of cross-sectional dimensions and loading conditions on the col-

lapse mechanism and on the extent of the hazard zone in pipe whips. The numerical
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results, collected in dimensionless diagrams, have led to the development of phe-

nomenological equations to predict the pipe behaviour. Equations (3.20) and (3.21),

here reported,

1
3
≤ λ

thick
1 ≤

√
3

2π
,

1
4
≤ λ

thin
1 ≤

√
2

2π
,

allow to identify the initiation of self-intersecting collapse in thick and thin pipes,

respectively. Their use in the design of a piping system would permit to predict if the

pipes are likely to fail with this particularly hazardous mechanism. Equation (3.22)

ζ =
3

f0−a1γ a2
+b1γ

b2 .

can be used to predict the hazard zone of pipe whips bearing a heavy flange on the

free end, whereas equation (3.5)

Z =
3MP

F0
=

3MP

cT P0A
,

requires the knowledge of the cross-sectional dimensions, the fluid pressure and

the strength of the pipe material to predict the hazard zone of pipe whips. These

equations, together with the diagrams developed in Chapter 3, are useful assets in

the design of piping systems.

Computational efficiency of corotational elements

The simulations performed in the Chapters from 2 to 4 employ element codes here

developed in the corotational framework. Simulations employing the VUEL BM2D

code for the simulation of in-plane pipe whips had a significantly increased com-

putational speed (up to 88 times faster) than analogous simulations employing shell

elements, without sacrificing any accuracy.

Simulations using the VUEL BM3D code, developed for the simulation of

out-of-plane pipe whips, proved to be only 5 times faster than their shell element
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analogous. However, the VUEL BM3D element presents still noticeable improve-

ments when compared to traditional beam elements, and the optimisation of the

code subroutines offers the potential to achieve smaller computational costs.

Plates failure mode II-III threshold

As discussed in Chapter 5, despite the numerous efforts made in previous research

works, the physical phenomenon leading to the transition between failure modes II

and III in impulsively loaded metal plates is still poorly understood. Analysing

our numerical predictions, we believe that the transition point can be identified by

comparing the crack propagation speed with the propagation velocity of pressure

waves in the plate. Predictions based on this criterion are in close agreement with

the limited experimental observations available, and further investigations are rec-

ommended, employing digital image correlation techniques to monitor in detail the

crack growth.

Ripping failure modes of plates

In Chapter 6, the numerical investigation on simply-supported rectangular plates

has led to the discovery of a previously unobserved failure mode, named ‘ripping’,

where fracture initiates at the centre point of the longer sides, but then propagates

toward the interior of the plate, rather than along the supports. This phenomenon

has no precedent in the literature, and further experimental studies are required

to verify this novel finding, with the combinations of loading intensity and plate

topology suggested by the dimensionless diagrams presented.

7.2 Future research
The research work presented in this thesis has addressed several aspects of the in-

vestigation of the modes of deformation and failure of pipe whips and impulsively

loaded plates, leading to advancements in their modelling techniques. During the

research, some aspects were identified worthy of further investigation, paving the

way to future research works as follows:

1. Force pulse subroutine for pipes — Simulations using the VUEL BM2D
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and VUEL BM3D element codes employed a pre-determined pulse shape to

model the dynamic load generated by the escape of pressurised fluids in pipe

whips. Experimental evidence suggests that the intensity of the load pulse is

tightly connected to the deformation of the pipe, and that the loading reduces

drastically when the cross-section collapses. Therefore, a natural improve-

ment to the element code would be the development of a force pulse subrou-

tine where the transient load intensity is determined by the current inner area

of the cross-section, which in turn is a function of the curvature.

2. Interactive yield surface for pipes — The completion of the VUEL BM3D

code requires the implementation of a more realistic constitutive model for

torsion and an interactive yield surface between axial forces, bending moment

and twisting moment. Numerical studies have shown that the deformation of

in-plane pipe whips has a negligible dependence on the strain rate. Similar

conclusion in the case of out-of-plane pipe whips have yet to be reached, and

we anticipate that the rate of deformation might greatly influence the pipe

response when simultaneous tension, bending and twisting occur, due to the

well-known sensibility of the tensile strength to the strain rate.

3. Damage model for plates — Despite its numerous features, the damage

model employed in the simulation of plates makes several simplifying as-

sumptions, for example neglecting the dependence of damage initiation on

the Lode angle [72], the decrease in plasticity at high strain rate, and the effect

of the heat generated by the explosion. More comprehensive versions of the

MMC criterion exist, which take into account the Lode angle [82], requiring

the execution of tensile and shear test of specimens with varying thickness.

Furthermore, performing experiments at different strain rate is necessary to

successfully incorporate this phenomenon in the material model.

4. Blast experiments on plates — As previously discussed, repeating the exper-

iments on blast loaded plates while measuring the crack propagation velocity

(for example using novel digital image correlation techniques) is necessary
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to completely verify the soundness of the criterion here developed to iden-

tify the mode II-III threshold. Moreover, new experimental investigations are

required to confirm the discovery of the ‘ripping’ failure mode predicted nu-

merically for simply-supported rectangular plates for certain combinations of

loading and topology.



Appendix A

Kinematic hardening subroutine for

VUEL BM2D and BM3D

Subroutine for the kinematic hardening constitutive model employed in the

VUEL BM2D and VUEL BM3D element codes for the analysis of pipe whips.

In the application of the plastic model σ̄H , the conversion between nominal and

plastic quantities through (2.26) is implied.�
% initialise

σmax = 0, εmax = 0, σ0 = 0

if sign(ε)(ε− εmax)≥ 0

% evaluate

σ∗ = Eε

if |σ∗|−σY ≤ 0 % elastic loading

σ = σ∗

else % plastic loading

σ̄ = σ̄H(ε̄)

end

% update

σmax = σ, εmax = ε

else

% evaluate

σ∗ = σmax+E(ε− εmax)
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σ−Y = |σmax−2sign(ε)σY |

if |σ∗−σmax|− |σmax|−σ−Y ≤ 0 % elastic unloading

σ = σ∗

else % kinematic plasticity

ε0 = εmax−sign(ε)εY

σ0 = σmax+E(ε0− εmax)

σ̄ = σ̄0 +σH(ε̄− ε̄0)

end

end
� �



Appendix B

Moment-curvature subroutine for

VUEL BM2D and BM3D

Subroutine for the hardening-softening moment-curvature (M-K) constitutive

model employed in the VUEL BM2D and VUEL BM3D element codes for the

analysis of pipe whips.�
% initialise

Mmax = 0, kmax = 0, M0 = 0

if sign(k)(k− kmax)≥ 0

% evaluate

M∗ = EIk

if |M∗|−MY ≤ 0 % elastic loading

M = M∗

else % plastic loading

M = MHS(k)

end

% update

Mmax = M, kmax = k

else

% evaluate

M∗ = Mmax+EI(k− kmax)

M−Y = |Mmax−2sign(k)MY |
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if |M∗−Mmax|− |Mmax|−M−Y ≤ 0 % elastic unloading

M = M∗

else % kinematic plasticity

k0 = kmax−sign(k)kY

M0 = Mmax+EI(k0− kmax)

M = M0 +MHS(k− k0)

end

end
� �



Appendix C

Torsional subroutine for VUEL

BM3D

Subroutine for the torsional constitutive model employed in the VUEL BM3D ele-

ment code for the analysis of pipe whips.�
% initialise

Tmax = 0, kmax = 0

if sign(k1)(k1− kmax)≥ 0

% evaluate

T ∗ = GIpk1

if |T ∗|−Tp ≤ 0 % elastic loading

T = T ∗

else % plastic loading

T = T H

end

% update

Tmax = M, kmax = K

else

% evaluate

T ∗ = Tmax+GIp(k1− kmax)

T−p = |Tmax−2T p|

if |T ∗−Tmax|−2Tp| ≤ 0 % elastic unloading
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T = T ∗

else % kinematic plasticity

k0 = kmax−sign(k1)kp

T0 = Tmax+GIp(k0− kmax)

T = sign(k1− k0)(T0 +GU Ip|k1− k0|)

end

end
� �
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Systèmes, Providence, RI, 2016.

[17] L. Zeng, L. G. Jansson, Y. Venev. On Pipe Elbow Elements in ABAQUS and

Benchmark Tests. In Proc. ASME 2014 Press. Vessel. Pip. Conf., number 10.

American Society of Mechanical Engineers, jul 2014.



BIBLIOGRAPHY 187

[18] S. R. Reid, T. Yu, J. L. Yang. Hardening-softening behaviour of circular pipes

under bending and tension. Int. J. Mech. Sci., 36(12):1073–1085, dec 1994.

[19] Y. Jialing, S. R. Reid. Approximate estimation of hardening-softening be-

haviour of circular pipes subjected to pure bending. Acta Mech. Sin., 13(3):

227–240, aug 1997.

[20] T. Wierzbicki, M. V. Sinmao. A simplified model of Brazier effect in plastic

bending of cylindrical tubes. Int. J. Press. Vessel. Pip., 71(1):19–28, apr 1997.

[21] S. R. Reid, J. L. Yang. Pipe Whip: In-Plane Whipping of Bent Cantilever

Pipes. J. Press. Vessel Technol., 120(2):170, 1998.

[22] C. A. Felippa, B. Haugen. A unified formulation of small-strain corotational

finite elements: I. Theory. Comput. Methods Appl. Mech. Eng., 194(21-24

SPEC. ISS.):2285–2335, jun 2005.

[23] T. Belytschko, B. J. Hsieh. Non-linear transient finite element analysis with

convected co-ordinates. Int. J. Numer. Methods Eng., 7(3):255–271, 1973.

[24] T. Belytschko, L. W. Glaum. Applications of higher order corotational stretch

theories to nonlinear finite element analysis. Comput. Struct., 10(1-2):175–

182, 1979.

[25] M. A. Crisfield. A consistent co-rotational formulation for non-linear, three-

dimensional, beam-elements. Comput. Methods Appl. Mech. Eng., 81(2):131–

150, aug 1990.

[26] M. A. Crisfield, G. F. Moita. A unified co-rotational framework for solids,

shells and beams. Int. J. Solids Struct., 33(20-22):2969–2992, aug 1996.

[27] J.-M. Battini. Co-rotational beam elements in instability problems. PhD thesis,

KTH Royal Institute of Technology, Stockholm, Sweden, 2002.

[28] J.-M. Battini, C. Pacoste. Plastic instability of beam structures using co-

rotational elements. Comput. Methods Appl. Mech. Eng., 191(51-52):5811–

5831, dec 2002.



BIBLIOGRAPHY 188

[29] M. A. Crisfield, U. Galvanetto, G. Jeleni? Dynamics of 3-D co-rotational

beams. Comput. Mech., 20(6):507–519, nov 1997.

[30] J. C. Simo. A finite strain beam formulation. the three-dimensional dynamic

problem. part i. Computer methods in applied mechanics and engineering, 49

(1):55–70, 1985.

[31] M. Crisfield, J. Shi. A co-rotational element/time-integration strategy for non-

linear dynamics. International Journal for Numerical Methods in Engineer-

ing, 37(11):1897–1913, 1994.

[32] U. Galvanetto, M. Crisfield. An energy-conserving co-rotational procedure for

the dynamics of planar beam structures. International journal for numerical

methods in engineering, 39(13):2265–2282, 1996.

[33] T.-N. Le. Nonlinear dynamics of flexible structures using corotational beam

elements. PhD thesis, KTH Royal Institute of Technology, Stockholm, Swe-

den, 2013.

[34] T.-N. Le, J.-M. Battini, M. Hjiaj. Efficient formulation for dynamics of coro-

tational 2D beams. Comput. Mech., 48(2):153–161, aug 2011.

[35] T.-N. Le, J.-M. Battini, M. Hjiaj. A consistent 3D corotational beam element

for nonlinear dynamic analysis of flexible structures. Comput. Methods Appl.

Mech. Eng., 269:538–565, 2014.

[36] R. Alsafadie, M. Hjiaj, J.-M. Battini. Corotational mixed finite element for-

mulation for thin-walled beams with generic cross-section. Comput. Methods

Appl. Mech. Eng., 199(49-52):3197–3212, dec 2010.

[37] R. Alsafadie, J.-M. Battini, M. Hjiaj. Efficient local formulation for elasto-

plastic corotational thin-walled beams. Int. J. Numer. Method. Biomed. Eng.,

27(4):498–509, apr 2011.

[38] R. Alsafadie, M. Hjiaj, H. Somja, J.-M. Battini. A comparative study of

displacement and mixed-based corotational finite element formulations for



BIBLIOGRAPHY 189

elasto-plastic three-dimensional beam analysis. Eng. Comput., 28(7):939–982,

oct 2011.

[39] R. Alsafadie, J.-M. Battini, H. Somja, M. Hjiaj. Local formulation for elasto-

plastic corotational thin-walled beams based on higher-order curvature terms.

Finite Elem. Anal. Des., 47(2):119–128, feb 2011.

[40] R. Alsafadie, M. Hjiaj, J.-M. Battini. Three-dimensional formulation of a

mixed corotational thin-walled beam element incorporating shear and warping

deformation. Thin-Walled Struct., 49(4):523–533, apr 2011.

[41] P. Areias, J. Garção, E. B. Pires, J. I. Barbosa. Exact corotational shell for

finite strains and fracture. Comput. Mech., 48(4):385–406, oct 2011.

[42] V. Longva. Formulation and Application of Finite Element Techniques for

Slender Marine Structures Subjected to Contact Interactions. PhD thesis,

Norvegian University of Scinece and Technology, 2015.

[43] L. L. Yaw. Co-rotational Meshfree Formulation For Large Deformation In-

elastic Analysis Of Two-Dimensional Structural Systems. Technical report,

1992.

[44] L. L. Yaw, N. Sukumar, S. K. Kunnath. Meshfree co-rotational formulation

for two-dimensional continua. Int. J. Numer. Methods Eng., 79(8):979–1003,

aug 2009.

[45] E. G. Parker, J. F. O’Brien. Real-time deformation and fracture in a game envi-

ronment. Proc. 2009 ACM SIGGRAPH/Eurographics Symp. Comput. Animat.

- SCA ’09, page 165, 2009.

[46] H. Courtecuisse, H. Jung, J. Allard, C. Duriez, D. Y. Lee, S. Cotin. GPU-

based real-time soft tissue deformation with cutting and haptic feedback. Prog.

Biophys. Mol. Biol., 103(2-3):159–168, dec 2010.

[47] N. Jones. Structural Impact. Cambridge University Press, Cambridge, 1990.



BIBLIOGRAPHY 190

[48] C. Yong, Y. Wang, P. Tang, H. X. Hua. Impact characteristics of stiffened

plates penetrated by sub-ordnance velocity projectiles. J. Constr. Steel Res.,

64(6):634–643, 2008.

[49] J. N. Marinatos, M. S. Samuelides. Towards a unified methodology for the

simulation of rupture in collision and grounding of ships. Mar. Struct., 42:

1–32, jul 2015.

[50] B. C. Cerik. Damage assessment of marine grade aluminium alloy-plated

structures due to air blast and explosive loads. Thin-Walled Struct., 110

(October 2016):123–132, 2017.

[51] R. G. Teeling-Smith, G. N. Nurick. The deformation and tearing of thin circu-

lar plates subjected to impulsive loads. Int. J. Impact Eng., 11(1):77–91, jan

1991.

[52] S. Yuen, G. N. Nurick, G. S. Langdon, Y. Iyer. Deformation of thin plates

subjected to impulsive load: Part III – an update 25 years on. Int. J. Impact

Eng., 107:1339–1351, sep 2017.

[53] G. N. Nurick, J. B. Martin. Deformation of thin plates subjected to impulsive

loading-A review. Part I: Theoretical considerations. Int. J. Impact Eng., 8(2):

159–170, jan 1989.

[54] G. N. Nurick, M. D. Olson, J. R. Fagnan, A. Levin. Deformation and tearing

of blast-loaded stiffened square plates. Int. J. Impact Eng., 16(2):273–291,

1995.

[55] G. N. Nurick, G. C. Shave. The deformation and tearing of thin square plates

subjected to impulsive loads - An experimental study. Int. J. Impact Eng., 18

(1):99–116, jan 1996.

[56] M. D. Olson, G. N. Nurick, J. R. Fagnan. Deformation and rupture of blast

loaded square plates-predictions and experiments. Int. J. Impact Eng., 13(2):

279–291, jan 1993.



BIBLIOGRAPHY 191

[57] D. Bonorchis, G. N. Nurick. The effect of welded boundaries on the response

of rectangular hot-rolled mild steel plates subjected to localised blast loading.

Int. J. Impact Eng., 34(11):1729–1738, nov 2007.

[58] N. Jacob, G. N. Nurick, G. S. Langdon. The effect of stand-off distance on

the failure of fully clamped circular mild steel plates subjected to blast loads.

Eng. Struct., 29(10):2723–2736, oct 2007.

[59] K. Ramajeyathilagam, C. Vendhan. Deformation and rupture of thin rectangu-

lar plates subjected to underwater shock. Int. J. Impact Eng., 30(6):699–719,

jul 2004.

[60] B. M. Thomas. The effect of boundary conditions on the failure of thin plates

subjected to impulsive loading. PhD thesis, University of Cape Town, 1995.

[61] G. S. Langdon, S. C. K. Yuen, G. N. Nurick. Experimental and numerical

studies on the response of quadrangular stiffened plates. Part II: Localised

blast loading. Int. J. Impact Eng., 31(1):85–111, jan 2005.

[62] N. S. Rudrapatna, R. Vaziri, M. D. Olson. Deformation and failure of blast-

loaded stiffened plates. Int. J. Impact Eng., 24(5):457–474, 2000.

[63] V. Aune, E. Fagerholt, K. O. Hauge, M. Langseth, T. Børvik. Experimental

study on the response of thin aluminium and steel plates subjected to airblast

loading. Int. J. Impact Eng., 90:106–121, apr 2016.

[64] V. Aune, G. Valsamos, F. Casadei, M. Larcher, M. Langseth, T. Børvik. Nu-

merical study on the structural response of blast-loaded thin aluminium and

steel plates. Int. J. Impact Eng., 99:131–144, jan 2017.

[65] N. Jones. Dynamic inelastic response of strain rate sensitive ductile plates due

to large impact, dynamic pressure and explosive loadings. Int. J. Impact Eng.,

74:3–15, dec 2014.



BIBLIOGRAPHY 192

[66] T. Mirzababaie Mostofi, H. Babaei, M. Alitavoli. Theoretical analysis on the

effect of uniform and localized impulsive loading on the dynamic plastic be-

haviour of fully clamped thin quadrangular plates. Thin-Walled Struct., 109:

367–376, dec 2016.

[67] T. Mirzababaie Mostofi, A. Golbaf, A. Mahmoudi, M. Alitavoli, H. Babaei.

Closed-form analytical analysis on the effect of coupled membrane and bend-

ing strains on the dynamic plastic behaviour of fully clamped thin quadrangu-

lar plates due to uniform and localized impulsive loading. Thin-Walled Struct.,

123:48–56, feb 2018.

[68] D. Schiano Moriello, F. Bosi, R. Torii, P. Tan. Failure and detachment path of

impulsively loaded plates. Thin-Walled Struct., 155:106871, oct 2020.

[69] N. S. Rudrapatna, R. Vaziri, M. D. Olson. Deformation and failure of blast-

loaded square plates. Int. J. Impact Eng., 22(4):449–467, 1999.

[70] Y. Yuan, P. Tan. Deformation and failure of rectangular plates subjected to

impulsive loadings. Int. J. Impact Eng., 59:46–59, sep 2013.

[71] V. Aune, G. Valsamos, F. Casadei, M. Langseth, T. Børvik. On the dynamic

response of blast-loaded steel plates with and without pre-formed holes. Int.

J. Impact Eng., 108:27–46, 2017.

[72] Y. Bai, T. Wierzbicki. Application of extended Mohr-Coulomb criterion to

ductile fracture. Int. J. Fract., 161(1):1–20, jan 2010.
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