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 22 

Abstract  23 

 24 

The nature and extent of immune cell infiltration into solid tumours are key determinants of 25 

therapeutic response. Here, using a novel DNA methylation-based approach to tumour cell fraction 26 

deconvolution, we report the integrated analysis of tumour composition and genomics across a wide 27 

spectrum of solid cancers. Initially studying head and neck squamous cell carcinoma, we identify two 28 

distinct tumour subgroups: ‘immune hot’ and ‘immune cold’, which display differing prognosis, 29 

mutation burden, cytokine signalling, cytolytic activity, and oncogenic driver events. We 30 

demonstrate the existence of such tumour subgroups pan-cancer, link clonal-neoantigen burden to 31 

hot tumours, and show that transcriptional signatures of hot tumours are selectively engaged in 32 

immunotherapy responders. We also find that treatment-naive hot tumours are markedly enriched 33 

for known immune-resistance genomic alterations and define a catalogue of novel and known 34 

mediators of active antitumour immunity, deriving biomarkers and potential targets for precision 35 

immunotherapy.  36 

 37 

Introduction 38 

The tumour microenvironment plays key roles in shaping tumour evolution and in determining 39 

treatment responses; prominent intratumoural lymphocyte infiltration is a favourable prognostic 40 

marker in multiple tumour types1-5, while a high stromal content of extracellular matrix-producing 41 

cancer-associated fibroblasts (CAF), is associated with poor outcomes6-8. The recent clinical success 42 

of immunotherapy in subpopulations of patients with previously intractable malignancies has also 43 

highlighted the importance of understanding the tumour microenvironment in order to identify 44 

those patients who will derive most benefit from targeted therapies9.  Although responses to 45 

immune checkpoint modulation (e.g. antibodies against PD-1 (programmed cell death protein 1), PD-46 
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L1 (programmed death-ligand 1 and CTLA-4 (cytotoxic T-lymphocyte-associated protein 4)) are seen 47 

across many  solid tumours, the proportion of patients that benefit varies widely by cancer type and 48 

we currently lack biomarkers with which to reliably predict immunotherapy response
10

. Emerging 49 

evidence from clinical trials indicates higher response rates in those cancer types that typically 50 

display greater lymphocyte infiltration (e.g. melanoma, lung cancer, head and neck cancer) and that 51 

the tumour neoantigen repertoire (a function of somatic mutation load) is a key determinant
11-14

. 52 

These observations point to a model in which, within any given cancer type, there are ‘immune hot’ 53 

and ‘immune cold’ tumours. Immune hot tumours display greater cytotoxic T-lymphocyte (CTL) 54 

infiltration, and reactivation of these tumour-resident CTLs by checkpoint inhibition can result in 55 

dramatic tumour regression. Conversely, immune cold tumours display minimal CTL infiltrates and 56 

typically fail to respond to checkpoint modulation. If one could accurately identify likely responders 57 

for patient stratification and devise strategies by which to convert cold tumours to hot tumours, 58 

these would be major steps forward in realising the full clinical potential of cancer immunotherapy.  59 

Applying a novel method to estimate tumour composition from DNA methylation data, we set out to 60 

address these questions by identifying immune hot and cold tumours across a broad spectrum of 61 

cancer types. We aimed to understand the differences in the cellular composition of these tumours 62 

and to uncover any common genomic and transcriptomic alterations that are associated with 63 

immune responses or immune evasion.  64 

 65 

Although flow cytometry of disaggregated tumour biopsies is commonly used for investigating 66 

cellular composition, this is often unfeasible for several reasons; difficulty in obtaining fresh tumour 67 

tissue; lack of defined markers for poorly characterised cell types (e.g. CAFs); and high cost of labour, 68 

reagents and equipment required for such analyses. Cellular disaggregation of collagen-rich tumours 69 

is also problematic, where cells are embedded in a dense extracellular matrix.  To overcome these 70 

difficulties, multiple reference-free or reference-based methods have recently been developed to 71 
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permit the in-silico deconvolution of complex cellular mixtures or to estimate tumour purity 15-22. For 72 

example, accurate deconvolution of complex cellular mixtures, including tumours, has recently been 73 

achieved by application of support vector regression modelling (CIBERSORT) to gene expression 74 

microarray data
21,23

. Notably, DNA methylation data are also suitable for deconvolution of tissue 75 

mixtures, although studies so far have focussed primarily on simple tissues such as blood, where cell 76 

type differences are a major confounder in Epigenome Wide Association Studies
17

.  77 

 78 

Here we apply CIBERSORT-based deconvolution to genome-wide DNA methylation data from whole 79 

tumour tissue (hereafter referred to as ‘MethylCIBERSORT’) which permits accurate tumour cell 80 

deconvolution of both fresh and archival samples. Notably, unlike other available methods, 81 

MethylCIBERSORT estimates the tumour cell content (tumour purity) of a sample, in addition to 82 

performing deconvolution, thus providing absolute rather than relative estimates of infiltrating cell 83 

fractions. Initially focussing on head and neck cancer (HNSCC), a tumour type where we have 84 

previously demonstrated the prognostic significance of tumour-infiltrating lymphocytes (TILs), 85 

particularly in those cancers driven by human papillomavirus (HPV)
1,24

, we extended our technique 86 

to 21 further solid malignancies. As expected, the proportion of immune hot tumours varies widely 87 

by cancer type, but immune hot tumours are found even among those malignancies that typically 88 

display very little immune infiltration, such as pancreatic ductal adenocarcinoma or prostate 89 

adenocarcinoma. We leverage both DNA methylation and gene expression based deconvolution to 90 

reveal differences in the phenotype, from Th1/M1 pro-inflammatory in hot tumours, to Th2/M2 pro-91 

fibrotic in cold tumours. Our genomic analysis reveals multiple copy number alterations enriched in 92 

cold tumours, including deletions in PTEN and amplifications in MYC and EGFR. We show that 93 

responses to PD1-blockade are associated with a transcriptional signature for hot tumours post-94 

treatment, while the cold signature, and specifically a gene expression module we previously linked 95 

to increased aerobic glycolysis downstream of EGFR in HNSCC25, is enriched in non-responders. 96 
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Importantly however, defining whether a tumour is hot or cold is not sufficient to accurately predict 97 

response to immune checkpoint blockade. By interrogating matched genomic data, we find that 98 

(presumably due to selective pressures imposed by the adaptive immune system during their 99 

evolution) treatment-naive hot tumours frequently display genomic alterations known to confer 100 

immunotherapy resistance.  Our findings provide an explanation for the failure of immune 101 

checkpoint blockade in a subset of well-infiltrated tumours and identify genomic biomarkers for 102 

patient stratification. Building upon recent analyses of immune infiltrates and tumour gene 103 

expression profiles20,23 or molecular correlates of cytolytic activity26, we reveal fundamental, cross-104 

cancer patterns of cellular infiltration and their relationships with genomic make-up with important 105 

implications for immunotherapy.  106 

 107 

Results 108 

Development and validation of methylation-based deconvolution using CIBERSORT.  109 

To develop a DNA methylation based deconvolution pipeline for application in tumours, we 110 

developed a custom R interface to develop basis matrices for use with CIBERSORT and generated a 111 

reference using fibroblasts and seven different immune cell types (see methods for details). We then 112 

evaluated the ability of our feature selection heuristic to accurately deconvolute mixtures of 113 

leukocytes using publicly available methylation data from mixtures of PBMCs with composition 114 

verified by flow-cytometry (gold standard). This showed extremely high correlation between the 115 

estimated and gold-standard fractions (Pearson’s R = 0.986, p < 2.2e-16, Figure 1A). We also carried 116 

out benchmarking against the performance of RNA-based CIBERSORT using the LM22 basis matrix 117 

against leukocyte mixtures of similar resolution originally profiled in Newman et al
21

. This revealed 118 

that MethylCIBERSORT estimates demonstrate higher correlations, both at the cell-type and the 119 

sample level (Figure 1B, C) and significantly lower absolute error (Figure 1D). Thus, methylation data 120 
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coupled to CIBERSORT is highly accurate and may offer distinct advantages relative to expression-121 

based CIBERSORT.  122 

 123 

To validate the method on real tumour samples, especially the tumour content in order to permit 124 

absolute quantification of tumour composition,  we applied our pipeline to generate an HNSCC 125 

specific basis matrix and applied it to the set of 464 HNSCCs that have both RNA-sequencing and 126 

DNA methylation profiles available from The Cancer Genome Atlas (TCGA) project 27. Upon 127 

comparing cancer cell proportion (purity) estimates derived using MethylCIBERSORT with estimates 128 

derived from ABSOLUTE 
28

 (which jointly estimates purity and ploidy using mutation and copy 129 

number data) relative to other previously published methods of estimating purity (LUMP
29

 and 130 

ESTIMATE
30

) with data aggregated in
29

, MethylCIBERSORT displayed the highest correlation (R=0.82) 131 

and better concordance with ABSOLUTE than other methods (Figure 1E). Analysis of residuals 132 

(method estimate – ABSOLUTE estimate) suggested close concordance with ABSOLUTE estimates for 133 

MethylCIBERSORT, with larger deviations only seen when samples were of very high purity (>80%), 134 

while other methods tended to overestimate tumour cell content in samples of low purity (Figure 135 

S1A), resulting in statistically significant differences in distributions (FDR < 2.2e-16). 136 

We also compared the mRNA expression of a panel of cellular lineage markers with 137 

MethylCIBERSORT estimates and found significant associations for multiple cell types (Figure S1B) 138 

even though they are derived from different samplings of the same tumour. Many of these marker 139 

genes demonstrated more variable expression in tumours with lower estimates of infiltrating cell 140 

fraction, suggesting that low coverage on either or both platforms (RNA-seq and methylation array) 141 

at the lower end of cellular abundance may result in poorer concordance. Taken together, these 142 

observations confirm that MethylCIBERSORT can accurately deconvolute the mixed cell populations 143 

in tumour samples using DNA methylation data. 144 

Detection of increased B- and T-lymphocyte infiltration in HPV-associated HNSCC 145 
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Having established the potential of MethylCIBERSORT to identify patterns of cellular infiltration in 146 

solid tumours, we tested its ability to detect the elevated TIL levels previously documented in HPV-147 

driven (HPV+) HNSCC
1
. MethylCIBERSORT detected not only the increased TIL levels in HPV+ HNSCC 148 

compared with HPV- HNSCC   (p= 2.167e-05 , Wilcoxon’s Rank Sum Test) but more specifically 149 

attributed this to increased numbers of B (CD19+) and cytotoxic T (CD8+) lymphocytes (CTLs, Figure 150 

1D), in agreement with observations made using other methods including immunohistochemistry 151 

and gene expression analysis
31

, potentially also helping to explain favourable prognosis displayed by 152 

this subgroup, independent of treatment modality32-34.  153 

Deep deconvolution highlights novel associations between infiltrating cell types and identifies two 154 

distinct patterns of infiltration in HNSCC  155 

Next, we extended our analysis to HPV-negative (HPV-) HNSCC, a heterogeneous, anatomically-156 

diverse group of tumours in which prognosis is typically much poorer than in HPV+ disease. Again, 157 

using TCGA data (available for 398 HPV- HNSCCs) we observed interesting relationships between 158 

multiple cell types, with 24/36 pairs of cell types showing significant correlations (Spearman’s rank 159 

correlations, FDR<0.01; Figure 1D). CTLs are associated with both CD14+ (monocytes / macrophages 160 

/ myeloid-derived suppressor cells) and B-lymphocytes (Rho =0.14 and 0.55). CD4+/FoxP3- T-161 

lymphocytes (CD4 + effector T-lymphocytes), meanwhile display inverse correlations with CTLs (R= -162 

0.27) and Tregs (R=-0.49). CD56+ Natural Killer (NK) cell abundance is also inversely correlated with 163 

CTLs (R=-0.48).  Of note, CTLs are inversely correlated with fibroblast abundance (R=-0.16 ) and to 164 

validate this latter finding, we analysed data from two large studies in which these parameters had 165 

been quantified in HNSCC1,7. In a pooled analysis of these data, TIL content and SMA expression (a 166 

CAF marker) are inversely correlated (r=-0.322 and -0.344 for CD8 and CD3 IHC in the Ward 167 

(oropharyngeal SCC) cohort (Figure 1E); -0.4 and -0.424 for TIL scoring of H&E sections in the Ward 168 

(oropharyngeal SCC) and Marsh (oral SCC) cohorts respectively). They are also strongly prognostic 169 

(Figure 1F; p<0.001, Log Rank Test).  170 
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Given the complex nature of associations between different cell types, we performed consensus 171 

PAM clustering on the estimated cellular fractions to define subgroups by infiltration patterns.  We 172 

derived two clusters (‘immune cold’ (C1) and ‘immune hot (C2)’ that show markedly different 173 

distributions of multiple cell types, most notably CTLs, CD4+ effector T-lymphocytes, CD19+ B-174 

lymphocytes and NK cells, all of which are implicated in antitumour immunity (Figure 2A). Consistent 175 

with our previous observations, estimates of fibroblast content are higher in the immune cold group 176 

(mean fold change 1.31, FDR < 1.8e-6, Wilcoxon’s Rank Sum Test) and in multivariate Cox regression 177 

analysis, controlling for stage and age at diagnosis, membership of the Immune-cold group is 178 

associated with significantly shorter overall survival (Figure 2B; HR=1.42, CI=1.04–1.96, p=0.03). To 179 

explore the functional significance of our observations, we tested for associations between 180 

individual cellular fractions or immune cluster and a recently defined measure of local cytolytic 181 

activity based on the expression of Granzyme A and Perforin 1 (GZMA and PRF1; markers of 182 

activated T-cells)26. All infiltrating cell fractions display significant correlations with cytolytic activity, 183 

with CD8+ cells showing the maximum positive correlation (Figure 2C, FDR < 0.05, Spearman’s Rank 184 

Correlation). Accordingly, the immune hot cluster displays significantly higher cytolytic activity 185 

(Figure 2D, p = 2e-16, Wilcoxon's Rank Sum test), and increased ratios of CTLs to Tregs (Figure 2E, p 186 

< 2e-16, Wilcoxon’s Rank Sum test); a metric that is prognostic in multiple settings35-37.  187 

Together, our analyses suggest a tilting of the balance towards CTL activity in the microenvironment 188 

of tumours from the immune hot cluster that may explain the increased overall survival in this 189 

subgroup. Integrated analysis of the impact of different cell populations on cytolytic activity using 190 

linear modelling identified CD8+ (coef = 0.12, p < 2e-16), CD14+ (coef = 0.11, p <3.3e-8), Tregs (coef 191 

= 0.06, p < 0.003) and CD56+ (coef = 0.18, p < 8.8e-10) cell abundance as positive predictors and 192 

fibroblast abundance as a negative predictor (coef = -0.07, p <1.9e-10).   193 
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Infiltrating cell patterns are associated with distinct transcriptional and proteomic profiles in 194 

HNSCC. 195 

Having established that these infiltrating cell patterns are of prognostic relevance in HNSCC we 196 

investigated if they are associated with different molecular profiles. Using limma-trend analysis, we 197 

identified 457 genes differentially expressed (DEGs) between the immune hot and immune cold 198 

clusters at a fold-change of greater than 2 (FDR<0.01, Table S1, genes highlighted in bold). Multiple 199 

DEGs are consistent with the MethylCIBERSORT-derived estimates of lymphocyte infiltration; CD8A, 200 

ZAP70 and CD3D (CD8 lymphocyte markers), CD79A and CD19 (B-lymphocyte markers), are all 201 

upregulated in the lymphocyte-enriched cluster, as are multiple chemokines and their receptors 202 

(CCL5, CCR5, CXCR2, CXCR6, CCL19, CXCL11)), immune checkpoint gene transcripts (LAG3, PD1, IDO1, 203 

CTLA4), immunosuppressive enzymes (ADORA2A, IDO1) and as expected, the cytolytic markers PRF1 204 

and GZMA. In extended analyses of all genes at FDR < 0.01 (Table S1), multiple other genes, 205 

including the Class 1 MHC gene B2M (FC = 1.3), PD-1 ligand CD274 (FC = 1.5) and ACTA2, which 206 

encodes SMA (FC = 0.71), are also differentially expressed between the two clusters, the latter 207 

validating fibroblast estimates from MethylCIBERSORT (Figure 2A). Of note, the increased expression 208 

of PD-1 ligand (PD-L1) the immune hot group suggests tumours of this subtype are more likely to 209 

respond to anti-PD1 checkpoint inhibition38.     210 

Ingenuity Pathway Analysis further confirmed observations made using MethylCIBERSORT estimates, 211 

identifying differential regulation of multiple canonical pathways associated with immune function 212 

and inflammatory conditions (Table S2), consistent with differential lymphocyte infiltration and 213 

activity. Diseases and functions ontology (Table S3) indicated that the top few pathways activated in 214 

the immune hot cluster were associated with leukocyte and lymphocyte migration. Upstream 215 

regulatory analysis implicated increased activation of the chromatin-modifying factors EHF and 216 

EZH2, and inhibition of Interferon-stimulated transcription mediated by IRF4, in the lymphocyte-rich 217 

tumours (Table S4). In addition, OX40/OX40L signalling is predicted to be upregulated in immune 218 

cold tumours (Table S2). OX40 is a co-stimulatory molecule expressed on T-lymphocytes and is one 219 
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of a number of targets currently under early clinical investigation for immune checkpoint modulation 220 

therapy
39

. OX40 signalling opposes differentiation of CD4+ cells into Tregs and antagonizes Treg 221 

function, potentially explaining its  reduction in Treg-rich immune hot tumours
40

. Finally, analysis of 222 

RPPA data identified 7 differentially abundant (FDR<0.1) proteins or phospho-proteins (Table S5). 223 

Higher levels of cleaved Caspase 7 (FC=1.46) in the immune hot subgroup indicates increased 224 

apoptosis, whereas Fibronectin and PAI1 upregulation in immune cold tumours indicate a distinct 225 

pattern of  TGFβ-driven extracellular matrix remodelling in what may be a CAF-linked phenomenon. 226 

 227 

Distinct mutations are associated with HNSCC immune cluster. 228 

  229 

Having established that immune cluster is associated with distinct transcriptional patterns, we then 230 

sought to identify individual mutations in driver genes (MutSig CV 41 q.value < 0.01) associated with 231 

immune cluster using Negative Binomial regression. This identified CASP8, NSD1, NOTCH1, EP300, 232 

HLA-A, RAC1, and RB1 as significantly more mutated in immune hot HNSCC and TP53 to be less 233 

mutated (Figure 2F).   234 

CASP8 mutations are implicated in subverting apoptosis induced by lymphocytes; they are enriched 235 

in tumours with high immune cytolytic activity and likely reflect an increased selective pressure 236 

exerted by the presence of adaptive immune cells
26,42

. Fas-ligand (FASLG), an upstream activator of 237 

pro-apoptotic signalling through Caspase 843 is also upregulated in the immune hot tumours, further 238 

highlighting the importance of this pathway (Table S1).  Identification of this lymphocyte-rich, good 239 

prognosis group displaying CASP8 mutations and a relative lack of TP53 mutations is striking, since 240 

TCGA previously identified a subset of good-prognosis oral cavity tumours bearing the same genomic 241 

hallmarks, which  were reported to co-occur with HRAS mutations27. 242 

  243 

Neoantigen burden has previously been identified as a predictor of anti-tumour immune 244 

responses26,44,45 and consistent with this, we identified significantly higher neoantigen burdens in the 245 
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immune hot cluster (OR = 1.54, p < 1.8e-6, Negative Binomial GLM) and a smaller increase in overall 246 

mutational burden (OR = 1.23, p = 0.008). Strikingly, the differentially mutated driver genes by 247 

themselves tended to encode predicted neoantigens significantly more often in the Immune-hot 248 

cancers (OR = 1.44, p = 0.01, Fisher’s Exact Test). Moreover, in 16 tumours from the immune hot 249 

cluster versus 4 in the immune cold cluster, CASP8 mutations themselves encoded at least one 250 

neoantigenic peptide (Figure 2F), demonstrating the existence of mutations that both contribute to 251 

the development of a potential selective constraint, and serve as an adaptive mechanism to evade it.  252 

Our findings provide new insight into the CASP8-mutant / TP53-WT / HRAS-mutant prognostic 253 

subgroup identified by TCGA and suggest increased CTL infiltration as a potential mechanism to 254 

explain the improved outcomes seen in these tumours. The ability of our approach to rediscover a 255 

prognostic subgroup previously defined by genomic profiles using an independent approach 256 

highlights the potential of DNA methylation based immune cell fraction deconvolution. We then 257 

sought to use our inferences in HNSCC as a tool for investigating the immune microenvironment 258 

pan-cancer, permitting analyses where variation between tumour types could be accounted for to 259 

produce a comprehensive molecular portrait of cancer immunosurveillance.  260 

 261 

HNSCC-derived immune clusters are reproducible across tumour types. 262 

To examine whether the relationships between tumour composition, genomic alterations and 263 

clinical behaviour we observed in HNSCC are generally applicable, we derived cancer-type specific 264 

basis matrices) and conducted deconvolution on 18 further tumour types for which cancer cell line 265 

methylation data have recently been published
46

. For 9 of these we were able to compare our 266 

predictions of tumour purity with ABSOLUTE estimates and observed strong correlations and 267 

significantly lower error margins compared to LUMP and ESTIMATE(Figure S2A, S2B). Further, we 268 

observed a robust preservation of positive correlations between MethylCIBERSORT and marker 269 

expression pan-cancer (Figure S2C), again with the caveat that the samples were taken from 270 
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different aliquots of the tumour. Taken together, these findings attest to the general pan-cancer 271 

applicability of MethylCIBERSORT.  An important potential advantage of DNA-methylation over gene 272 

expression-based deconvolution methods is the ease with which accurate DNA methylation profiles 273 

can be obtained from formalin-fixed, paraffin-embedded (FFPE) samples 
47-49

. We therefore 274 

compared estimates pertaining to fresh frozen and matched FFPE samples (n = 21 from 3 tumours)
50

 275 

and recorded very high correlations, indicating our method is applicable also to archival material 276 

(Figure S2D). 277 

We then trained an elastic-net classifier using 5-fold cross-validation for tuning on the HNSCC 278 

cellular abundance data, returning highly accurate recapitulation of clustering (Kappa = 0.9), and 279 

predicted immune cluster membership for the validation set of 7269 samples representing 21 280 

further tumour types from TCGA (Figure 3A).  As expected, we observed strong enrichment for CTLs, 281 

Tregs, and B-lymphocytes in immune hot tumours pan-cancer, while CD4-effectors, NK cells, 282 

eosinophils and CAFs were enriched in immune cold tumours (Figure 3B). Different tumour types 283 

also display markedly varying degrees of lymphocyte infiltration, with the majority of pancreatic 284 

ductal adenocarcinomas, colorectal, thyroid, uterine corpus endometrial, kidney, prostate, 285 

hepatocellular cancers and sarcomas belonging to the immune cold cluster (Figure 3A). We again 286 

observed increased CTL:Treg ratios in immune hot tumours (Figure 3C) and similar relationships 287 

between tumour composition and CYT to those seen in HNSCC.   288 

Immune hot tumours display greater evidence of immunoediting and are marked by Th1/M1  289 

responses.  290 

To further determine if the immune infiltrate was active in these tumours, we assayed 291 

immunoediting by testing for reductions from the expected ratio (as previously defined by Rooney et 292 

al
26

) of observed neoantigens to total nonsilent mutations per tumour and adapted this approach to 293 

derive the estimated number of neoepitopes lost through immune editing while controlling for 294 

tumour type. Accordingly, we found significant enrichment for editing in immune hot tumours 295 
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compared to immune cold tumours (OR = 1.23, p = 0.008, Negative Binomial GLM). Additionally, 296 

upon integration with T-cell receptor (TCR) repertoire data from Li et al
51

, we found more diversity 297 

(Number of TCR clones / Total number of TCR reads) in the immune hot tumours (Figure 3D, p < 298 

2.2e-16), suggesting that broader immune responses may underlie the greater depletion of 299 

neoantigens in this group.  300 

Given the evidence for divergent infiltration patterns and activity between the immune clusters 301 

across cancer types, we then investigated the determinants of this response by identifying 302 

differentially expressed genes after adjusting for tumour type. We identified 275 genes at FDR < 303 

0.01, 2FC and in pathway analysis, the top pathways were significantly associated with Th1 vs Th2 304 

responses (Figure 3E, Table S6). Multiple Th1 cytokines and downstream targets were 305 

overexpressed in hot tumours (IFNG, CCL4, CCL5, CXCL9, CXCL10), along with costimulatory and 306 

coinhibitory receptors, suggesting these tumours were marked by a state of lymphocyte activation 307 

and counter-responses thereto. We next scored proinflammatory (Th1, Th17) and suppressive (Th2)) 308 

CD4+ cell populations using RNA-seq reference profiles from purified cells to derive relative 309 

estimates using CIBERSORT
21

. Consistent with our inferences from pathway analysis, we found 310 

enrichment for Th1 and Th17 cells in immune hot and Th2 cells in immune cold cancers (Figure 3F) , 311 

translating to markedly elevated Th1/Th2 ratios in hot tumours (p < 2.2e-16, Wilcoxon’s Rank Sum 312 

Test), with smaller but significant increases in Th17/Th2 ratios (p = 1.2e-5, Wilcoxon’s Rank Sum 313 

Test). Importantly, T-helper 2 (Th2) cells have been linked to poor prognosis in multiple studies, 314 

while Th1 cells are associated with good prognosis and aiding CTL responses
52

. 315 

We also used expression-based CIBERSORT to derive estimates for different myeloid cell populations 316 

(n = 2346 tumours at deconvolution P < 0.05 ), and identified substantially higher fractions of M1 317 

relative to M2 macrophages in hot tumours (p = 2.2e-16, Wilcoxon’s Rank Sum Test, Figure  3G). 318 

Notably, M2-like polarisation is associated not only with Th2 immune responses but also with 319 

immune-suppressive Myeloid Derived Suppressor Cells (MDSCs)53. Taken together, our analyses 320 
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implicate Th1/Th17cytokine signalling programmes as responsible for establishing an immune-hot 321 

state and define MDSCs and Th2 programmes as targets for efforts to switch immune cold tumours 322 

to an immune hot state.  323 

 324 

Transcriptional correlates of immune clusters predict responses to checkpoint blockade and 325 

suggest TCGA hot tumour transcriptomes are linked to active antitumour immunity.   326 

We reasoned that if the signature for immune hot tumours represented active immunity, it would be 327 

applicable to the prediction of immunotherapy responses and evaluated this hypothesis using 328 

tumour gene expression data from three melanoma cohorts: post-sequential aCTLA4 and aPD1 329 

treatment54,55; pre-aCTLA4 treatment14 and post-aPD1 (Nivolumab) treatment56. Analysis of these 330 

transcriptional patterns indicated differential expression between responders and non-responders 331 

(Figure 4A), and accordingly, ssGSEA scores for the hot transcriptional signature showed significant 332 

enrichment in responders for the latter two datasets (Figure 4B, C). Moreover, a similar association 333 

emerged from comparing the probability of response to hot/cold class prediction, inferred using a 334 

logistic regression fit on TCGA hot/cold transcriptional signature ssGSEA scores (Figure 4D). Finally, 335 

we evaluated the ability of the hot-signature to stratify patients by response relative to mutational 336 

load and Class I neoepitope burden using elastic nets coupled to cross-validation for each dataset 337 

(Figure 4E). This showed that in the post treatment data, the immune-hot signature outperforms 338 

neoantigen and mutational burdens respectively, and for pretreatment aCTLA4 data, performs 339 

similarly to mutational burden and neoantigen burden. Notably, however, even in the post-340 

treatment setting, the presence of the hot signature does not translate to a guaranteed response, 341 

indicating potential prior selection for genetic and epigenetic alterations that confer resistance to T-342 

cell mediated killing in otherwise immunogenic tumours  343 

 344 
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 345 

Taken together, these findings establish the fundamental similarity between cancers responsive to 346 

immunotherapy and immune-hot tumours across a wide range of cancer types, and suggest that 347 

genomic features that determine immunotherapy response should also be enriched in immune hot 348 

TCGA tumours. We reasoned that the heterogeneity in responses to checkpoint blockade among hot 349 

tumours might be driven by intrinsic resistance to T-cell mediated destruction due to pre-existing 350 

genomic alterations within the tumour cells. We set out to test this hypothesis by constructing a 351 

pan-cancer catalogue of genomic alterations enriched in hot tumours, with the additional aim of 352 

finding those alterations enriched in cold tumours which might drive lymphocyte exclusion or reduce 353 

tumour immunogenicity. 354 

 355 

Genomic features of hot and cold tumours. 356 

Consistent with our observations in HNSCC, and with estimates from gene expression-based 357 

deconvolution20, immune hot tumours harboured higher overall mutation loads (OR = 1.4, p = 1.64e-358 

31, negative binomial GLM controlling for cancer type) and more predicted neoantigens than 359 

immune cold tumours (Figure 4A).  360 

Given the recent finding that in addition to the presence of neoantigens, their clonality (i.e. presence 361 

in all tumour cells as opposed to minor subclones) is associated with prognosis and response to 362 

Pembrolizumab in lung adenocarcinoma
12

, we analysed immune microenvironment composition as a 363 

function of neoantigen clonality (as denoted by The Cancer Immunome Atlas
57

). We found that the 364 

abundance of both CTLs and Tregs is correlated with clonal neoantigen load pan-cancer (Figure 4B), 365 

while the relationship is much weaker when subclonal neoantigens are considered. CD4+/FOXP3- 366 

effector lymphocytes display a striking inverse correlation with clonal neoantigens (Figure 4C). 367 

Consistent with our earlier observation they are enriched in CTL / Treg low immune cold tumours 368 

CAFs are inversely correlated with both clonal and subclonal neoantigen loads. Immune hot tumours 369 
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display a significantly higher clonal neoantigen burden (OR = 1.236, p < 2.2e-16, Negative Binomial 370 

GLM) as well as a skew in the neoantigen burden towards clonal neoantigens after adjusting for 371 

tumour type (OR = 1.03, p = 1.6e-5). These findings provide the first evidence for a direct link 372 

between Class I MHC clonal neoantigen burden and patterns of TIL abundance and help to explain 373 

the observations of McGranahan and colleagues, that high clonal neoantigen burden predicts 374 

favourable response to immune checkpoint modulation using Pembrolizumab
12

. While it is unclear 375 

why clonal neoantigens should elicit a proinflammatory Th1 response, some previous work has 376 

suggested that the antigen dose may determine the nature of the subsequent immune response58, 377 

or alternatively, clonal neoantigens may simply have been subjected to immunosurveillance for far 378 

longer, and this is borne out by improved immunosurveillance in mouse models when mismatch 379 

repair deficiency is induced clonally instead of subclonally59. 380 

Finally, we examined if the genomic features associated with immune cluster were also reproducible 381 

across cancer types, performing adjusted binomial regressions to estimate cluster association after 382 

controlling for tumour type for genes previously implicated as pan-cancer drivers based on 383 

signatures of positive selection
60

 and recorded 114 hits at FDR < 0.1 (Table S7). Interestingly, these 384 

putative drivers of hot tumours were significantly enriched (OR = 8.43, p < 0.002, Fisher’s Exact Test) 385 

in a list of genes demonstrated to confer resistance to CD8 T-cell mediated killing in a recent CRISPR-386 

Cas9 screen 
61

. These functionally-verified immune-resistance genes included components of the 387 

MHC Class I complex such as B2M and HLA-A, apoptosis pathway genes such as CASP8, and JAK1, 388 

which is required for interferon mediated signalling that in turn is associated with resistance to 389 

checkpoint blockade
62-64

. We also show the recently-identified immunotherapy sensitizers (ARID2, 390 

BRD7
65

) to be disproportionately mutated in hot tumours, together with tumour suppressors such as 391 

RB1 
66

 , TP53 
67,LATS2 

68, ATRX 
69 and SETD2 

70, all of which have been associated directly or indirectly 392 

with interferon responses, additional epigenetic regulators (KMT2A, TET2, IDH1, NSD1, KDM6A, 393 

KMT2B, BCOR, and NCOR), and finally, multiple DNA-damage associated proteins, including BRCA1, 394 

BAP, TOP2A and CDK12. Taken together, these point to a model where mutations in certain genes 395 
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render tumours hot as a consequence (and therefore susceptible to checkpoint blockade), or may 396 

enable tumours to survive in a hot tumour microenvironment, potentially also bestowing resistance 397 

to checkpoint blockade. We sought to test this model by linking immune-resistance mutations  to 398 

lack of immune checkpoint blockade response in hot tumours and although we observed a trend, 399 

(odds ratio= 0.26), the number of treated tumours with sequence data available is currently too low 400 

(41 hot tumours across four studies) to gain a definitive answer. 401 

To complement these analyses, we also carried out copy number analyses, calling copy numbers 402 

across 11,000 tumours and testing for differential association of peaks with immune cluster after 403 

adjusting for tumour type for the subset with Immune Cluster Assignment available. This led to the 404 

identification of multiple events that occurred at different frequencies between cold and hot 405 

tumours (FDR < 0.1, Figure 4B). Of these, prominent examples included amplifications targeting the 406 

epidermal growth factor receptor (EGFR) (7p11.2) and MYC (8q24.3) and deletions at 10q23.31, 407 

encompassing the PTEN tumour suppressor gene in cold tumours and JAK2 (9p24.1) amplifications in 408 

hot tumours. Some of these candidates already have known associations with immune evasion; MYC 409 

has been linked to an immune evasion phenotype that is amenable to targeting through gene-body 410 

demethylation 
71

  and PTEN deletion has recently been linked to failure of immunotherapy and 411 

decreased cytotoxic T-lymphocyte infiltration in patients and in a mouse model of melanoma
55,72,73

. 412 

Among the genomic alterations we identify (for full list of predicted driver events see Table S8), it is 413 

likely that some establish, while others are selected for, in different immune microenvironments. In 414 

either case, alongside PTEN deletion, these alterations warrant further investigation as candidate 415 

genomic markers for response to immune checkpoint blockade. The enrichment of EGFR and MYC 416 

amplification, together with PTEN deletion in cold tumours pan-cancer was striking given the co-417 

expression module linked to increased tumour cell glycolysis and immune evasion in HNSCC, which 418 

includes EGFR and in which pathway analysis also predicts increased c-MYC and mTORC1 activity25. A 419 

similar relationship has been observed in triple negative breast cancer74  and we therefore 420 

investigated this relationship further, initially interrogating the link between EGFR protein levels and 421 
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TILs in two HNSCC cohorts (n=518)1,7 we found that samples classified as EGFR high and moderate 422 

were significantly more likely to be TIL low than EGFR low cancers after accounting for anatomic site 423 

and HPV status (Figure 5E, p < 0.05 and 0.01 for EGFR moderate and high cancers, Logistic 424 

Regression).  The positive correlation between EGFR levels (which are themselves correlated with 425 

EGFR phosphorylation (activation), Figure S3) and the glycolytic signature is maintained across TCGA 426 

when matched RPPA profiles and RNA-seq data are compared (Fig 5E). Notably, high levels of the 427 

glycolytic signature are present in progressing melanomas after PD-1 blockade (Fig 5F, p = 0.06, t-428 

test, p = 0.02 when excluding stable disease) and are inversely associated with expression of the 429 

immune-hot transcriptional signature (Rho = -0.44) we associated with response (Fig 5G). 430 

 431 

Discussion  432 

Of the methods developed to deconvolve cell mixtures into multiple cell types from methylation 433 

data, none have been comprehensively employed across cancer types. Methods such as LUMP and 434 

the Leukocyte Methylation Score estimate only the overall leukocyte fraction, while methods based 435 

on expression data either produce relative estimates of abundance within the immune fraction or 436 

enrichment scores(CIBERSORT, TIMER20) or perform low resolution deconvolution 437 

(ESTIMATE)21,29,75,76. Combining methylation-based feature selection from both stromal and cancer 438 

cells with the robust performance of CIBERSORT previously displayed on gene expression microarray 439 

data
21

 allowed us to derive estimates for different infiltrating cell populations as a fraction of the 440 

overall sample.  441 

While approaches using RNA-sequencing or other transcriptional profiling, such as the construction 442 

of an index of cytolytic activity, have been useful in predicting immunotherapy response77 and in 443 

identifying the role of mutations in genes like CASP8 in immune evasion26, the deeper level of 444 

deconvolution made feasible using DNA methylation data allows the roles of distinct cellular subsets 445 

and their interdependencies to be dissected. Here, by applying the method to HNSCC, which is 446 
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marked by a great degree of clinical heterogeneity, we identified lymphocyte-rich and stromal-rich 447 

prognostic subgroups consistent with those discovered previously using a variety of independent 448 

methods 
1,7,31,78-81

 and derived novel insights into the microenvironmental alterations that modulate 449 

prognosis. In the process, we showed that our scheme for classifying cancers correlates with well-450 

established immune metrics such as cytolytic activity, neoantigen/mutational load, and CTL:Treg 451 

ratios, and then demonstrated that tumours similar to the HNSCC Immune-hot subgroup, which by 452 

association exist in varying fractions across the vast majority of cancer types, and the congruence of 453 

our classification with the aforementioned metrics is maintained throughout, and translates to 454 

broader TCR responses which in turn correspond to greater depletion of neoantigens.   455 

We then demonstrated that the transcriptional correlates of our classification scheme are indicative 456 

of active antitumour immunity through Th1 responses and reinforced this theme through integration 457 

with RNA-based CIBERSORT that indicated differences in CD4 and macrophage polarisation. We 458 

went on to show that the hot-tumour transcriptional programme, if induced upon checkpoint 459 

blockade, is strongly associated with response, indicating that it represents active antitumour 460 

immunity and establishing the TCGA as a resource to study genomic alterations that may associate 461 

with checkpoint blockade resistance/sensitivity.  Upon extending our analysis pan-cancer, we made 462 

several observations that give novel insight into the interplay between tumour genomics and the 463 

immune microenvironment. Genomic analysis identified significant enrichment for events that 464 

confer resistance to T-cell mediated destruction in hot tumours as well as potential sensitisers. Our 465 

copy number analysis revealed that PTEN deletion, MYC amplification and EGFR amplification are 466 

associated with immune depletion.  467 

All of these mediate increased glycolysis, which we have previously linked to immune evasion82. Our 468 

finding that PTEN deletion is associated with poor CTL infiltration in this pan-cancer cohort adds 469 

substantial support and mechanistic rationale for its proposed role as a determinant of response to 470 

immune checkpoint blockade. Taken together with our identification of EGFR and MYC amplification 471 
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in cold tumours, our analysis suggests that pharmacological inhibition of EGFR/mTORC1/MYC-driven 472 

glycolysis could be an effective means by which to ‘warm-up’ these tumours and potentially enhance 473 

responses to immune checkpoint blockade. Additionally, our analysis of neoantigen clonality and 474 

immune infiltration patterns adds mechanistic insight to the value of clonal neoantigen burden in 475 

predicting response to immune checkpoint blockade
12

.  In particular, we show that clonal 476 

neoantigens are associated with infiltration of CTLs and Tregs, while Th2 cells and CAFs are enriched 477 

in tumours with lower clonal neoantigen loads. These findings support recent evidence suggesting 478 

that differentiation of naïve CD4+ T-lymphocytes into Tregs occurs within tumours83, since a 479 

microenvironment favouring differentiation into Tregs would likely be selected for in tumours with 480 

increased neoantigens and more infiltrating CTLs. Why these relationships between neoantigen 481 

loads and T-lymphocytes are apparent only when one considers clonal neoantigens is an intriguing 482 

question. It could be that since many subclonal neoantigens are expressed by a small minority of 483 

cells within the tumour, these evade effective presentation to the immune system. Indeed, in a 484 

previous study by several of the authors, it was possible to isolate T-lymphocytes reactive against 485 

clonal but not subclonal neoantigens from lung cancer patients12.  Our data suggest that this is due 486 

to a relative paucity of CTLs in tumours with low clonal neoantigen loads and that this is true across 487 

a wide range of cancer types. In summary, the development of a stand-alone method to estimate 488 

both tumour purity and stromal composition from DNA methylation data has allowed us to make a 489 

number of novel insights that shed light on potential biomarkers for immunotherapy response and 490 

the way in which tumour genomes influence, and are shaped by, the immune microenvironment.   491 

Finally, the association between neoantigen clonality, the probability of being immunologically hot, 492 

and enrichment for known mediators of immune evasion/resistance in hot tumours before 493 

treatment with any checkpoint blockade also raises profound questions about the use of 494 

immunotherapy; the features that render tumours susceptible to immune destruction are likely to 495 

have existed far back into the evolutionary history of these tumours, increasing the likelihood that 496 

natural selection will have already produced genomic alterations that doom eventual checkpoint 497 
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blockade to failure. Thus, we can stratify immune-hot tumours into two groups: those without 498 

aberrations in immune-resistance genes that we may expect to respond to checkpoint blockade, and 499 

those with resistance mutations, in which these either these aberrant pathways will likely have to be 500 

co-targeted, or alternative therapies may be more suitable. Finally, the lack of immune-resistance 501 

mutations in cold tumours (presumably due to the absence of a selection pressure for them) 502 

suggests that if we can induce lymphocyte infiltration (e.g. by targeting glycolysis or CAFs
84

), we may 503 

improve the effectiveness of checkpoint blockade across a broader range of patients. 504 

 505 

Methods 506 

Code Availability. 507 

All scripts and functions developed for our method will be made freely available in an R-package 508 

upon publication of this manuscript. R markdowns for analysis code will be available by request 509 

upon publication. 510 

 511 

Development of a methylation signature for in-silico deconvolution.  512 

Dataset Assembly and Preprocessing 513 

Raw data were obtained in the form of IDAT files from the following sources (the number of samples 514 

from which each profile was derived is shown in parentheses): Granulocytes (12), CD8+ (cytotoxic T-515 

lymphocytes) (6), CD19+ (B-lymphocytes) (6), CD56+ (Natural Killer cells) (6), CD14+ (monocyte 516 

lineage) (6), Eosinophils (6) were from the Blood.450k Bioconductor package85. CD4+ cells were 517 

removed from the Blood.450k dataset and CD4+ T-cells from the Zhang dataset86 (data kindly 518 

provided by Dr Alicia Oshlack) were further divided into FOXP3+ (Tregs) (4) or FOXP3- (6) groups. 519 

Fibroblast profiles (4) were from the Gene Expression Omnibus (GSE74877).  Neutrophils are the 520 
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most abundant subset of granulocytes and these samples were therefore aggregated into a single 521 

category for further analysis. To generate a DNA methylation signature for cancer cells, we used 522 

450k methylation profiles we previously obtained from a series of 6 HNSCC cell lines: UM-SCC47; 523 

93VU147T; UPCI:SCC090; PCI-30; UPCI:SCC036 and UPCI:SCC003 (GSE38270, described in
87

) and 524 

additionally those from Iorio et al (GSE68379  ) . 525 

The files were parsed into R using the minfi
88 Bioconductor package and were normalised using 526 

single sample Noob as implemented in minfi.  527 

Derivation of signature features 528 

A custom limma based wrapper function was used to fit a series of linear models for all pairwise 529 

comparisons between candidate cell types. Features from this set of analyses were then restricted to 530 

MVPs that showed a median beta-value difference of 0.25 at an FDR of 0.01 for that fit or less, with a 531 

maximum of 100 MVPs per pairwise comparison. Finally, for use with CIBERSORT, data were 532 

transformed from beta values (bound between 0 and 1) to percentages (0 – 100). Type-wise means 533 

were estimated for each probe and cell type and the matrix exported for upload to CIBERSORT. 534 

Benchmarking using PBMC mixtures. 535 

We applied the feature selection pipeline to the matrix of stromal cells that we assembled and then 536 

tested performance against 450k profiles of PBMC mixtures with flow-cytometry gold standards. We 537 

also applied LM22 (Expression-based CIBERSORT) to datasets consisting of PBMC samples and 538 

Follicular Lymphoma biopsies originally evaluated in CIBERSORT21. Wilcoxon’s rank sum tests were 539 

used to test for differences in correlations with flow-cytometry for cell types and samples, and 540 

absolute errors between flow-cytometry and deconvolution estimate.  541 

For the Expression CIBERSORT estimates, we performed comparisons against both calibrated (i.e, 542 

enforcing a sum-to-one constraint as reflected in the flow cytometry) and uncalibrated (straight 543 

estimates of cell fractions from CIBERSORT) estimates.  544 
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 545 

Running Deconvolution Experiments on HNSCC using CIBERSORT. 546 

Data for 464 methylation profiled TCGA HNSCC samples were downloaded in the form of raw IDAT 547 

files for the 450k array from the TCGA data. Data were normalised using functional normalisation89 548 

in the minfi88 package and BMIQ90, with 10,000 reference probes for Expectation Maximisation 549 

fitting. HPV status was determined using VirusSeq91 based on detection of viral gene transcripts.  550 

Beta values for deconvolution associated features, and the signature matrix derived in the previous 551 

step, were uploaded to CIBERSORT at https://cibersort.stanford.edu. The data were not quantile 552 

normalised due to the potential for global methylation shifts in cancers, and CIBERSORT was run 553 

using 1000 permutations. Output files were downloaded as tab-delimited text files and custom 554 

parsers were used to import results into R for downstream analysis. FFPE methylation profiles for 42 555 

HNSCC were obtained from Gene Expression Omnibus (Accession GSE38266) using the GEOquery R 556 

package, and beta values were BMIQ normalised and analysed using CIBERSORT as described for the 557 

TCGA cohort. Wilcoxon’s Rank Sum Tests were used to test for differences in total TIL abundance 558 

and TIL subsets. 559 

Estimating accuracy of MethylCIBERSORT in tumour deconvolution  560 

In the absence of flow-cytometry based estimates for the different cell types in the analyzed 561 

tumours, the estimated fraction of cancer cells from MethylCIBERSORT was compared to 562 

sequencing-data based estimates from ABSOLUTE available for 466 HNSCCs from previously 563 

published work29 using Spearman’s Rank Correlation. Correlations were between ABSOLUTE and 564 

other methods of estimating purity/immune cell fraction in this subset of tumours; (LUMP, 565 

ESTIMATE76 and H&E staining assessment of tumour purity (data available in29). Residuals were 566 

computed by subtracting the method estimate from the ABSOLUTE value. Distributions were 567 

compared using Wilcoxon’s Rank Sum Test. Spearman’s Rank Correlation was used to estimate 568 
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correlations between expression of marker transcripts and MethylCIBERSORT estimates for multiple 569 

cellular populations. Where applicable, multiple testing correction was performed using the 570 

Benjamini Hochberg approach.  571 

Clustering and correlation analyses. 572 

Estimates of immune cell fractions in HPV- HNSCC (HPV-transcript negative) were examined for 573 

correlations with other infiltrating cell types using Spearman’s Rank Correlation with BH correction 574 

for multiple testing. Clustering was carried out using the clusterCons package with 100 iterations 575 

using a manhattan distance metric. The most robust number of clusters was then selected.  576 

Differences in the distribution of infiltrating cell types by immune cluster were summarised using 577 

mean fold changes and tested using Wilcoxon’s Rank Sum Test with BH-correction for multiple 578 

testing. 579 

Differentially expressed genes were identified using Limma-trend and were defined at a threshold of 580 

a 2-fold change and BHFDR < 0.01. Pathway analysis was carried out using Ingenuity Pathway 581 

Analysis, with findings restricted to experimentally confirmed direct interactions in human 582 

cells/tissues. Cytolytic activity (CYT) was calculated as the geometric mean of GZMA and PRF1 583 

expression as defined previously
26

. To estimate the contributions of cell population abundances to 584 

this, a linear model was fit against log2(CYT) with the different populations as predictors. Wilcoxon’s 585 

Rank Sum tests were used to test differences in CYT and CD8:Treg ratios between the immune 586 

clusters.  587 

 Survival Analyses 588 

Multivariate Cox Regression was used to estimate the prognostic utility of clusters derived using 589 

infiltration patterns with age and stage as covariates. The survival effect of estimated purity was 590 

regressed with the same covariates using a Cox regression with coefficients defined per percent 591 

increase in purity. 592 
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Genomic Correlates 593 

We obtained a list of driver genes inferred by MutSigCV41 in TCGA HNSCC cohort from the Broad 594 

Institute’s GDAC. GISTIC Copy number estimates thresholded by genes were also obtained from this 595 

source. MAF files were obtained from the TCGA data portal. MutSigCV drivers were filtered at a 596 

q.value threshold of 0.01 and mutations in this set were tested for differences in frequencies of 597 

occurrence using a chi-squared test for differences in proportion. Multiple testing correction was 598 

carried out using the Benjamini-Hochberg method. Tables of predicted neoantigens were 599 

downloaded from The Cancer Immunome Atlas (http://tcia.at).  600 

 601 

Benchmarking performance across other tumour types 602 

Signature features were derived from 450k profiles using the aforementioned heuristic (delta-Beta 603 

and FDR cutoffs) with a maximum of 100 features per cell type for a wide range of tumour types, 604 

using cell lines allocated to the corresponding tissue in GSE683791646 (Table S10) and the 605 

aforementioned infiltrating cell types (Table 1). These signatures were applied to deconvolve 606 

methylation profiles and estimates of purity were derived using TCGA samples for which ABSOLUTE, 607 

ESTIMATE and LUMP purity estimates were available
29

. 608 

The cell line data were functionally normalized with the infiltrating cell types described earlier 609 

before signature extraction was carried out. 450k data for the aforementioned tumour types were 610 

loaded from a pan-cancer freeze derived from SAGE synapse for TCGA pan-cancer (syn2812961) and 611 

a custom function was used to extract signature probes and generate methylation percentage 612 

matrices for deconvolution with CIBERSORT. CIBERSORT was run as described previously.  613 

Correlation and residuals analysis were carried out as described above with MethylCIBERSORT purity 614 

estimates vs ABSOLUTE, and between previously published methods and ABSOLUTE. Wilcoxon’s 615 
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Rank Sum Test with Benjamini-Hochberg correction for multiple testing were used to compare 616 

distributions, with these estimates sourced from
29

.  617 

Pan-cancer analyses of immune cluster assignment.  618 

An elastic net model was fit using cellular abundance estimates for HPV- HNSCC using 3 iterations of 619 

5-fold cross-validation to identify the optimal values of lambda and alpha with Kappa values being 620 

the selection criterion. The classifier was then applied to MethylCIBERSORT estimates from 18 621 

further tumour types for which corresponding cancer cell line methylation profiles were available46 622 

(Table S10) to allocate immune cluster. Deconvolution was performed as described above and class 623 

allocations were made using the elastic net classifier derived from HNSCC.  624 

For immunoediting analyses, we estimated the number of nonsynonymous mutations encoding at 625 

least one immunogenic peptide empirically by summing coefficients across each of six base change 626 

contexts as well as the number of non-neoepitope nonsynonymous mutations. Together , these 627 

were applied to silent mutation counts in each cancer to derive an expected fraction of neoantigens 628 

to nonneoantigens. Comparing the observed fraction to the expected fraction yielded the 629 

percentage of neoantigens depleted, and using this in combination with the number of observed 630 

neoantigens yielded the count of neoantigen-encoding mutations lost specifically to immunoediting. 631 

This was then modelled using a negative binomial framework to estimate the influence of immune 632 

cluster on immunoediting.  633 

MAF files for mutations were again downloaded from SAGE synapse for all tumours from the MC3 634 

calling effort (syn7214402). Driver mutations were defined based on pan-cancer MutSig analyses 635 

previously published
41

 and binomial GLMs were used to estimate coefficients for mutation 636 

frequencies for immune cluster with tumour type as a covariate. Significant genes were defined at 637 

BHFDR < 0.1.  Survival analyses were performed using data downloaded from Synapse (syn7343873) 638 

using Cox proportional hazards regression with stage and cancer type as covariates. Substages were 639 
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aggregated into stages and only Stages I-IV were considered. Neoantigen abundance and clonality 640 

data were downloaded from The Cancer Immunome Atlas
92

.  641 

Negative binomial modelling was used to model all count data, cytolytic activity was modelled using 642 

linear models, and binomial GLMs were used to model proportions. Details of covariates, 643 

hypotheses and response variables are presented inline. For copy number analyses, SNP6 data were 644 

downloaded from the GDC data portal and processed using GISTIC 2.093 on the GenePattern Public 645 

Server (arm-level peel off, noise threshold 0.3, FDR < 0.01, driver-gene confidence > 95%) and 646 

modelled similarly to mutation data.  647 

Further resolution of cell-types using expression-based CIBERSORT. 648 

RNA-seq data were downloaded from the European Nucleotide Archive for the following datasets: 649 

PRJEB1184494; GSE6042495; and E-MTAB-231996. Kallisto97  was used to quantify gene expression 650 

with a reference transcriptome consisting of Gencode Grch37 assembly of protein coding and 651 

lincRNA transcripts. Data were then modelled using limma trend and the top 50 markers by t-652 

statistics were selected for each cell subset from one versus all comparisons after thresholding with 653 

a 2-fold change and FDR < 0.05.  These cell types were used to generate a reference profile and 654 

CIBERSORT was run to deconvolute samples. For M1/M2 macrophage analyses we used LM22 from 655 

the CIBERSORT server as the reference. In both cases, Wilcoxon’s Rank Sum Test was used to 656 

estimate differences in distributions.  657 

Analysis of Immunotherapy response 658 

Nanostring data for a panel of immune genes and and exome sequencing data were obtained from 659 

Chen et al54 and Roh et al55 respectively for patients treated using sequential anti-CTLA4 and anti-660 

PD1 checkpoint blockade.  661 

Clustering and machine learning were carried out using the subset of genes intersecting with the 662 

Hot-vs-Cold pancancer signature. .632 bootstrapping was used for hyperparameter tuning and ROC 663 
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estimation. Negative binomial regression was used to model neoantigen, mutation and subclone 664 

numbers, and logistic regression to estimate predictive performance of count data on response.  665 

The number of subclones present in each tumour from the Roh cohort, derived from the EXPANDS 666 

algorithm, were obtained from the associated publication98. RNAseq data were obtained for aCTLA4 667 

pretreatment biopsies by personal communication with Eliezer Van Allen and genomic data from the 668 

associated publication. Data for post-treatment Nivolumab treated melanomas were obtained from  669 

56. 670 

Valiation of EGFR association with cold tumours.  671 

RPPA data were downloaded for TCGA cancers from the TCPA portal. IHC data were derived from1,7 672 

for comparison of EGFR protein levels vs TIL levels, previously defined in1,7. ssGSEA scores were used 673 

to summarise the activity of the glycolytic gene signature (described in ) and standard statistical 674 

procedures were used to assess interrelationships.  675 
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 909 

Figure Legends 910 

 911 

Figure 1. Validation of DNA methylation-based deconvolution for the analysis of tumour 912 

composition (a) Correlation between MethylCIBERSORT fractions and flow cytometry for PBMC 913 

mixtures in independent data. (b-d) Boxplots showing comparisons between MethylCIBERSORT and 914 

flow cytometry versus Expression-CIBERSORT and flow cytometry in mixtures of similar complexity 915 

for correlations by cell type, correlations within samples, and finally absolute error. (e) Correlations 916 

between ABSOLUTE and MethylCIBERSORT versus other previously published purity estimation 917 

methods. (f) Validation of previously reported associations between CD8 T-cells and B-cells and HPV 918 

status by HPV status. (g) Correlation plot showing Spearman's Rho between cell-types in HPV- 919 

HNSCC, red boxes indicate nonsignificance at q < 0.1. (h) IHC showing representative image of CD8 920 

and SMA and Kaplan-Meier curves confirming the prognostic impact of TILs and fibroblasts in HPV-921 

negative HNSCC.  922 
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 923 

Figure 2: Classification of HNSCC into hot and cold tumour subgroups on the basis of immune cell 924 

infiltration patterns. (a) Boxplot of cell-types based on clustering HNSCC. (b) Kaplan-Meier curves of 925 

overall survival by HNSCC immune cluster. HR and p.values from multivariate Cox regression 926 

controlling for age and stage. (c) Bar-graph showing associations between cytolytic activity and cell 927 

types. (d) Cytolytic activity is elevated in immune-hot HNSCC. (e) CD8/Treg ratios by HNSCC Immune 928 

Cluster. (f) Mutations significantly associated with HNSCC immune cluster.  929 

 930 

Figure 3. Identification and characterization of hot and cold tumours pan-cancer. (a) Barplot of 931 

distribution of Immune-hot and cold tumours across TCGA. Cancers known to respond favourably to 932 

checkpoint blockade, such as lung cancer and melanomas, show high fractions of hot tumours. (b) 933 

Boxplot of cell-type estimates by immune cluster. All at q < 0.05. Numbers  represent mean fold 934 

changes. (c) CD8:Treg ratio is elevated in hot tumours pan-cancer. (d) Increased breadth of TCR 935 

sequences in Immune Hot tumours. (e) Results of IPA canonical pathway analysis comparing hot and 936 

cold tumours pan-cancer after adjusting for tumour type. (f) Transcriptional deconvolution by 937 

Expression-based CIBERSORT shows immune cluster is associated with distinct CD4 polarisation and 938 

(g) macrophage polarisation.  939 

 940 

Figure 4. The immune-hot signature is associated with response to immune checkpoint blockade in 941 

melanoma. (a) heatmap showing expression of the hot-tumour transcriptional signature in 942 

Nanostring data from posttreatment biopsies of immunotherapy patients. (b) heatmaps showing the 943 

same signature in RNAseq data of aCTLA4 (pre-treatment) and aPD1 (post-treatment) respectively. 944 

(c) boxplots highlighting significant differences in ssGSEA scores for the hot-tumour transcriptional 945 

signature in the datasets featured in (b). (d) barplots display similarity to TCGA hot and cold tumours 946 
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based on logistic regression class probabilities from a model fit to TCGA data, which are associated 947 

with response. (e) boxplots showing Kappa values from cross-validation for models examining the 948 

performance of the Immune-hot signature, Class I neoepitope burden, and finally mutational load on 949 

immunotherapy response classification.  950 

 951 

Figure 5. Genomic features of hot and cold tumours. (a) Density plots showing differences in 952 

neoantigen burden by immune cluster pan-cancer. P.value from negative binomial regression that 953 

accounts for tumour type. (b) Clonal neoantigens and subclonal neoantigens are correlated with 954 

different infiltration profiles. Volcanoplot shows Spearman's Rho on the X-axis and –log10(FDR) on 955 

the y-axis. (c) Volcanoplot showing results of binomial regression testing for associations between 956 

Immune-hot cancers and mutation frequencies in candidate cancer driver genes. Those genes 957 

implicated in resistance to T-cell mediated destruction are highlighted in orange. (d) Volcanoplot 958 

showing associations between GISTIC candidate driver copy number peaks and immune cluster. (e) 959 

Plot showing results of logistic regression in a cohort of HNSCCs where the probability of being 960 

classified TIL-high was regressed against anatomic subsite, EGFR IHC (low/moderate/high) and HPV 961 

status. (f) Correlation between glycolytic coexpression signature ssGSEA scores and EGFR levels by 962 

RPPA. (g) Association of glycolytic signature post-Nivolumab with response and (h) Inverse 963 

correlation between the glycolytic signature and the immune-hot expression signature, Spearman’s 964 

correlation has been plotted.  965 

 966 

  967 
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Supplementary Figures 1 

 2 

Figure S1: (A) Analysis of ABSOLUTE estimate (x-axis) and error from MethylCIBERSORT, ESTIMATE 3 

and LUMP in estimating purity in relation (y-axis). (B) Correlations (Spearman’s Rho) between 4 

MethylCIBERSORT estimates and marker gene expression in TCGA HNSCC.  5 
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6 
 7 

Figure S2: (A) Correlation densities for associations with ABSOLUTE purity for MethylCIBERSORT, 8 

ESTIMATE and LUMP across tumour types. (B) Density plots showing error relative to ABSOLUTE in 9 

individual tumour types for MethylCIBERSORT, ESTIMATE and LUMP. (C) Marker correlation plots 10 

between MethylCIBERSORT estimates and expression of marker genes. (D) Correlation plots for 21 11 

450k methylomes relative from FFPE samples relative to their fresh frozen counterparts.  12 

 13 

 14 

 15 
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 16 

 17 

Figure S3: Scatterplots showing association between EGFR levels by RPPA and phosphorylation at 18 

key activating residues. 19 

 20 
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List of Supplementary Tables – Chakravarthy et al 

 

Table S1 - Genes differentially expressed between HNSCC Hot and Cold clusters. 

Tables S2, S3, S4 – IPA canonical pathway analysis, ontology analysis, and upstream regulator 

analysis for genes in Table S1, respectively. 

Table S5 - Differentially bound antibodies from RPPA data for HNSCC Hot vs Cold cluster comparison 

Table S6 – Canonical pathway analysis for pan-cancer hot vs cold transcriptional signature.  

Table S7 – Results of association analysis between immune cluster and mutation frequency.  

Table S8 – Results of association analysis between immune cluster and copy number alteration 

frequency.  
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