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A new method for generating family of distributions was proposed. Some fundamental 
properties of the new proposed family include the quantile, survival function, hazard rate 
function, reversed hazard and cumulative hazard rate functions are provided. This family 
contains several new models as sub models, such as the Weibull exponential model which 
was defined and discussed its properties. The maximum likelihood method of estimation 
is using to estimate the model parameters of the new proposed family. The flexibility and 
the importance of the Weibull-exponential model is assessed by applying it to a real data 
set and comparing it with other known models. 
 
Keywords: T-X Family, Weibull exponential distribution, Quantile, Maximum 
likelihood estimation 
 

Introduction 

Many statisticians have made efforts to develop new families of continuous 
probability distributions. Some well-known family of distributions are: the beta 
generated family of distributions studied by Eugene et al. (2002), McDonald 
generated family of distributions studied by Alexander et al. (2012), Weibull-X 
family of distributions proposed by Alzaatreh et al. (2013), Lomax generated family 
of distributions introduced by Cordeiro et al. (2012), gamma-X family of 
distributions studied by Alzaatreh et al. (2014), Kumaraswamy Marshall-Olkin 
generated family of distributions proposed by Alizadeh et al. (2015), Garhy 
generated family of distributions introduced by Elgarhy et al. (2016), the 
Kumaraswamy Weibull generated family of distributions proposed by Hassan and 
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Elgarhy (2016), Type II half logistic-G by Hassan et al. (2017), exponentiated 
extended generated family of distributions proposed by Elgarhy et al. (2017), 
generalized odd log-logistic generated family of distributions studied by Cordeiro 
et al. (2017), Odd Fréchet generated family of distributions proposed by Haq and 
Elgarhy (2018), Muth generated family of distributions studied by Almarashi and 
Elgarhy (2018), A new Weibull-X family of distributions discussed by Ahmad et 
al. (2018), truncated Cauchy power generated family of distributions discussed by 
Aldahlan et al. (2020), transmuted odd Fréchet generated family of distributions 
proposed by Badr et al. (2020), Topp-Leone odd Fréchet generated family of 
distributions studied in Al-Marzouki et al. (2020) and among others.  

Alzaatreh et al. (2013) introduced a new family of distributions is called the 
T-X family with the cumulative distribution function (cdf) defined as 
 

  (1) 

 
where W(G(x)) be a function of G(x). The corresponding probability density 
function (pdf) to the cdf (1) is given by 
 

  (2) 

 
Note the upper limit for generating the T-X distribution is transformation 

W[G(x)] = −log[1 − G(x,ζ)], ζ is the set of parameters. It is possible to define a 
different upper limit for generating different types of T-X distributions. The 
transformation W[G(x)] satisfies the following two conditions: W[G(x)] (0,∞) and 
it is a monotonic non decreasing function. In this paper, the upper limit   was defined 

to be  which leads to a new family of exponentiated T-X distributions. 
By including the additional parameter α, the new T-X family provides more flexible 
distributions for fitting real data. Table 1 provides some W[G(x)] functions for some 
members of the T-X family. 
 
 
  

F x( ) = r t( )dt
0

W G x( )( )
∫ ,

f x( ) = ∂
∂x
W G x;ζ( )⎡⎣ ⎤⎦

⎧
⎨
⎩

⎫
⎬
⎭
r W G x;ζ( )⎡⎣ ⎤⎦{ }.

∈

α
log

G x ,ζ( )
1−G x ,ζ( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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Table 1. Members of T-X Family 
 
W[G(x)] Range of T Members of T-X Family 
G(x,ζ) (0,1) Beta-G (Eugene et al., 2002), Mc-G (Alexander et al., 2012) 
−log[G(x,ζ)] (0,∞) Gamma-G Type-2 (Ristić and Balakrishnan, 2012) 
−log[1−G(x,ζ)] (0,∞) Gamma-G Type-1 (Zografos and Balakrishnan, 2009) 

  (0,∞) Gamma-G Type-3 (Torabi and Montazeri, 2012) 

−log[1−Gα(x,ζ)] (0,∞) Exponentiated T-X (Alzaghal et al., 2013) 

  (−∞,∞) Logistic-G (Torabi and Montazeri, 2014) 

log[−log[1−G(x,ζ)]] (−∞,∞) The Logistic-X Family (Tahir et al., 2015) 

  
(0,∞) New T-X Family (Proposed) 

 

The New T-X Family 

Let r(t) which was defined in (1) be the pdf of a non-negative continuous random 
variable T defined on [0, ∞), and let F(x) denote the cdf of a random variable X. We 
define the cdf for the new T-X (NT-X) class of distributions for a random variable 
X as follows 
 

  (3) 

 
where R(t) is the cdf of the random variable T. The corresponding pdf of the 
generalized distribution in (3) is given by 
 

  (4) 

 
The survival function, hazard rate function (hrf), reversed hazard function and 

cumulative hazard rate function of the NT-X are given respectively by 
 

G x,ζ( )
1−G x,ζ( )

log
G x,ζ( )
1−G x,ζ( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

α
log

G x,ζ( )
1−G x,ζ( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

F x( ) = r t( )dt
0

α
log

G x( )
1−G x( )

∫ = R α
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
,x ∍ R,α >1,

f x( ) =α
log

G x( )
1−G x( ) g x( )logα

G x( ) 1−G x( )( ) r α
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
,α >1,x ∈!.
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and 
 

   

 
The quantile function for NT-X distribution, Q(u), 0 < u < 1, is obtained by 

solving G(Q(u)) = u, which is given by 
 

  

 

S x( ) = 1− R α
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
,

h x( ) =
α
log

G x( )
1−G x( ) g x( )logα

G x( ) 1−G x( )( ) r α
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1− R α
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

,

τ x( ) =
α
log

G x( )
1−G x( ) g x( )logα

G x( ) 1−G x( )( ) r α
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1− R α
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

,

H x( ) = − ln 1− R α
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
.

Q u( ) = G−1 e
logR−1 u( )
logα

1+ e
logR−1 u( )
logα

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
.
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Some Members of New T-X Family with Different T-
Distributions 

New Fréchet –X Family of distributions 
Consider a random variable X has the Fréchet distribution with cdf given by 

 where θ is a shape parameter and γ is a scale parameter and 

the corresponding pdf is given as  The cdf and pdf of the new 
Fréchet –X (NF-X) family of distributions are obtained respectively by using the 
cdf in (3) and the pdf in (4) as follows  
 

  (5) 
 
and the corresponding pdf is given by 
 

  (6) 

 
The survival function, hazard rate function, reversed hazard function and 

cumulative hazard rate function of the NF-X are given respectively by 
 

  
 

R t( ) = e−
γ
t( )θ ,t,γ ,θ > 0,

r t( ) = θγ θt− θ+1( )e
− γ
t( )θ .

F x( ) = e
− γ

α
log

G x( )
1−G x( )

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

θ

, t > 0,γ ,θ > 0,α >1,

f x( ) = α
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−θ

θγ θg x( )logα
G x( ) 1−G x( )( ) e

− γ

α
log

G x( )
1−G x( )

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

θ

.

S x( ) = 1− e
− γ

α
log

G x( )
1−G x( )

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

θ

,
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and 
 

  

 

New Lomax-X Family of distributions 
Consider the Lomax random variable X with cdf given by 

 and pdf  respectively. The cdf of 
the new Lomax–X (NL-X) family of distributions is obtained by using the cdf of 
Lomax in (3) as follows  
 

  (7) 

 
and the corresponding pdf is given by 
 

h x( ) =
α
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−θ

θγ θg x( )logα
G x( ) 1−G x( )( ) e

− γ

α
log

G x( )
1−G x( )

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

θ

1− e

− γ

α
log

G x( )
1−G x( )

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

θ ,

τ x( ) = α
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−θ

θγ θg x( )logα
G x( ) 1−G x( )( ) ,

H x( ) = − ln 1− e

− γ

α
log

G x( )
1−G x( )

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

θ⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

.

R t( ) = 1− 1+ λt( )−k , t,λ,k > 0, r t( )λk 1+ λt( )−k−1

F x( ) = 1− 1+ λα
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−k

, x > 0;λ,k and α >1,



A NEW GENERATING FAMILY OF DISTRIBUTIONS 

8 

  (8) 

 
The survival function, hazard rate function, reversed hazard function and 

cumulative hazard rate function of the NL-X are given respectively by 
 

   

 

  

 

  

 
and 
 

  

New Burr-X Family of distributions 
Consider the Burr random variable X with cdf given by R(t) = 1 − (1 + tλ)−k, 
t, λ, k > 0, and pdf r(t) = λktλ−1(1 + tλ)−k−1 respectively. The cdf of the new Burr-X 
(NB-X) family of distributions is obtained by using the cdf of Burr in (3) as follows  
 

f x( ) =α
log

G x( )
1−G x( ) λkg x( )logα

G x( ) 1−G x( )( ) 1+ λα
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−k−1

.

S x( ) = 1+ λα
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−k

,

h x( ) =α
log

G x( )
1−G x( ) λkg x( )logα

G x( ) 1−G x( )( ) 1+ λα
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1

,

τ x( ) =
f x( ) =α

log
G x( )
1−G x( ) λkg x( )logα

G x( ) 1−G x( )( ) 1+ λα
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−k−1

1− 1+ λα
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−k ,

H x( ) = − ln 1+ λα
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−k⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ .
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  (9) 

 
The corresponding pdf, survival, hazard, reversed hazard and cumulative 

hazard rate functions are given respectively by 
 

  (10) 

 

  

 

  

 

  

 
and 
 

  

f x( ) = 1− 1+ α
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

−k

, x > 0;λ,k > 0,α >1,

f x( ) = α
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ

λkg x( )logα
G x( ) 1−G x( )( ) 1+ α

log
G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

−k−1

,

S x( ) = 1+ α
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

−k

,

h x( ) = α
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ

λkg x( )logα
G x( ) 1−G x( )( ) 1+ α

log
G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

−1

,

τ x( ) =
α
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ

λkg x( )logα
G x( ) 1−G x( )( ) 1+ α

log
G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

−k−1

1− 1+ α
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

−k ,

H x( ) = − ln 1+ α
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

−k⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
.
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New Weibull-X Family of distributions 
Consider the cdf of the two-parameter Weibull model with shape parameter γ > 0 
and scale parameter λ > 0 given by	 	and its pdf as 

. The cdf of the new Weibull-X (NW-X) family of distributions is 
obtained by using the cdf of Weibull in (3) as follows  
 

  (11) 
 
and the corresponding pdf is given by 
 

  (12) 

 
The pdf (12) reduces to the new Rayleigh-X (NR-X) family of distributions 

for γ = 2 and the new exponential-X (NE-X) family of distributions for γ = 1 as 
special cases from the new Weibull-X (NW-X) family of distributions.  

The survival function, hazard rate function, reversed hazard function and 
cumulative hazard rate function of the NW-X are given respectively by 
 

  
 

  

 

R t( ) = 1− e−λtγ , t > 0,
r t( ) = γλtγ −1e−λtγ

F x( ) = 1− e
−λ α

log
G x( )
1−G x( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

γ

, x > 0, λ,γ > 0,α >1,

f x( ) = α
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

γ

γλg x( )logα
G x( ) 1−G x( )( ) e

−λ α
log

G x( )
1−G x( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

γ

.

S x( ) = e
−λ α

log
G x( )
1−G x( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

γ

,

h x( ) = e
−λ α

log
G x( )
1−G x( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

γ

γλg x( )logα
G x( ) 1−G x( )( ) ,
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and 
 

  

 

Some Special Sub-Models 

The new-G families of distributions contain as special sub-models various new 
generated distributions. Some useful distributions in the new-G families are listed 
in the following subsections. 

New Fréchet-Exponential Distribution 
The cdf of the new Fréchet-exponential distribution (NFED) when X follows the 
standard exponential distribution in (5) is given by 
 

  
 
and the corresponding pdf is given by 
 

  

 

τ x( ) =
α
log

G x( )
1−G x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

γ

γλg x( )logα
G x( ) 1−G x( )( ) e

−λ α
log

G x( )
1−G x( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

γ

1− e
−λ α

log
G x( )
1−G x( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

γ ,

H x( ) = − ln e
−λ α

log
G x( )
1−G x( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

γ⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.

F x( ) = e
− γ

α
log ex−1⎛

⎝⎜
⎞
⎠⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

θ

, x > 0;θ ,γ and α >1,

f x( ) = α log 1−e− x( )⎛
⎝

⎞
⎠

−θ θγ θ logα
1− e− x

e
− γ

α
log ex−1⎛

⎝⎜
⎞
⎠⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

θ

.
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The survival function, hazard rate function, reversed hazard function and 
cumulative hazard rate function of the NFED are given respectively by 
 

  
 

  

 

  

 
and 
 

  

 
Plots of the pdf and hazard rate function of the NFED are displayed in Figures 

1 and 2 respectively for selected parameter values. It is clear from Figure 1 that the 
NFED densities take various shapes such as right skewed and unimodal. Also, 
Figure 2 indicates that NFED hrfs can have increasing, constant and U-shape. 
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Figure 1. Plots of the pdf of the NFED for some parameter values 
 
 
 

 
 
Figure 2. Plots of the hazard rate function of the NFED for some parameter values 
 
 

New Lomax-Exponential Distribution 
The cdf of the new Lomax-exponential distribution (NLED) when X follows the 
standard exponential distribution in (7) is given by 
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and the corresponding pdf is given by 
 

  

 
The survival function, hazard rate function, reversed hazard function and 

cumulative hazard rate function of the (NLED) are given respectively by 
 

  

 

  

 

  

 
and 
 

  

 
Plots of the pdf and hazard rate function of NLED distribution for some 

parameter values are displayed in Figures 3 and 4 respectively. 
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Figure 3. Plots of the pdf of the NLED for some parameter values 
 
 
 

 
 
Figure 4. Plots of the hazard rate function of the NLED for some parameter values 
 
 

New Weibull-Exponential Distribution 
The cdf of the new Weibull-exponential distribution (NWED) when X follows the 
standard exponential distribution in (11) is given by 
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  (13) 
 
and the corresponding pdf is given by 
 

  (14) 

 
The survival function, hazard rate function, reversed hazard function and 

cumulative hazard rate function of the NWED are given respectively by 
 

  
 

  

 

  

 
and 
 

  

 
Plots of the pdf and hazard rate function of NWED for some parameter values 

are displayed in Figures 5 and 6 respectively. 
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Figure 5. Plots of the pdf of the NWED for some parameter values 
 
 
 

 
 
Figure 6. Plots of the hazard rate function of the NWED for some parameter values 
 
 

The quantile function, say Q(u) = F−1(u) of X which has the NWED is given 
by 
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after some simplifications, it reduces to the following form 
 

  (15) 

 
where, u is considered as a uniform random variable on the unit interval (0,1). In 
particular, the median can be derived from (15) by setting u = 0.5. That is, the 
median is given by  
 

  

 

Maximum Likelihood Estimation 
The maximum likelihood estimates (MLEs) of the unknown parameters for the 
NWED are determined based on complete samples. Let X1, X2, …, Xn be observed 
values from the NWED with set of parameters φ = (α, λ, γ)T. The total log-
likelihood function for the vector of parameters φ can be expressed as  
 

  

 
The elements of the score function U(φ) = (Uα, Uλ, Uγ) are given by 
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and 
 

  (18) 

 
The maximum likelihood estimates of the parameters α, λ and γ are obtained 

by setting Equations (16-18) to be zero and solving them. Clearly, there is no closed 
solution for the above non-linear equations, so an extensive numerical solution will 
be applied via iterative technique. Therefore, the Newton-Raphson’s iteration 
method can be applied and used the computer package such as Maple or R or other 
software. 

Simulation  

It is difficult to compare the theoretical performances of the different estimators 
(MLEs) for the NWED. Therefore, simulation is needed to compare the 
performances of the different methods of estimation mainly with respect to their 
biases, mean square errors and Variances (MLEs) for different sample sizes. A 
numerical study is performed using Mathematica 7 software. Different sample sizes 
are considered through the experiments at size n = 20, 30, 50, 100, 200 and 300. In 
addition, the different values of parameters α, λ and γ.  

The experiment will be repeated 1000 times. In each experiment, the 
estimates of the parameters will be obtained by maximum likelihood methods of 
estimation. The means, MSEs and biases for the different estimators will be 
reported from these experiments. 

Application 

A real data set is used to illustrate the importance and flexibility of the NWED. We 
compare the fits of the NWED model with some models namely: the alpha power 
transformed Weibull (APTW) (Dey et al., 2017), Marshal-Olkin Weibull (MOW) 
(Marshal and Olkin, 1997), Very flexible weibull (VFW) (Ahmad, 2017) and 
Kumaraswamy Weibull (Ku-W) (Cordeiro et al., 2010) distributions. The 
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maximized log-likelihood ( ), Akaike information criterion (AIC), the corrected 
Akaike information criterion (CAIC), Bayesian information criterion (BIC), and 
Hannan-Quinn information criterion (HQIC), statistics are used for model 
selection. More information can be provided in Figures 7 and 8. Also PP-plots are 
shown in Figures 8 for the real data.   
 
 
Table 2. The parameter estimation from NWED using MLE 
 

n Params Init MLE Bais MSE Init MLE Bais MSE 

20 

α 1.9 4.14262 2.24262 5.13795 1.9 4.71060 2.81060 8.05459 

γ 1.5 1.74853 0.24853 0.11193 2.0 2.13902 0.13902 0.09590 

λ 2.5 2.79363 0.29363 0.85860 2.5 2.81134 0.31134 0.82198 

30 

α 1.9 4.11939 2.21939 4.99652 1.9 4.68207 2.78207 7.85143 

γ 1.5 1.73180 0.23180 0.08607 2.0 2.11818 0.11818 0.06873 

λ 2.5 2.70896 0.20896 0.42179 2.5 2.69311 0.19311 0.45953 

50 

α 1.9 4.08096 2.18096 4.79733 1.9 4.62904 2.72904 7.50431 

γ 1.5 1.70515 0.20515 0.06056 2.0 2.08017 0.08017 0.03382 

λ 2.5 2.61272 0.11273 0.19481 2.5 2.61463 0.11463 0.20961 

100 

α 1.9 4.05615 2.15615 4.66861 1.9 4.59809 2.69809 7.30487 

γ 1.5 1.68792 0.18792 0.04415 2.0 2.05796 0.05796 0.01544 

λ 2.5 2.54982 0.04982 0.07937 2.5 2.55132 0.05132 0.07704 

20 

α 2.2 4.29472 2.09472 4.50716 1.5 5.85642 4.35642 19.2489 

γ 2.0 1.85193 -0.14810 0.07800 2.0 2.97081 0.97081 1.09319 

λ 2.5 2.81095 0.31095 1.05974 1.5 1.62149 0.12149 0.21440 

30 

α 2.2 4.27166 2.07166 4.37322 1.5 5.79974 4.29974 18.6579 

γ 2.0 1.83502 -0.16500 0.06516 2.0 2.92721 0.92721 0.95197 

λ 2.5 2.71553 0.21553 0.42753 1.5 1.57231 0.07231 0.12419 

50 

α 2.2 4.23508 2.03508 4.18275 1.5 5.75801 4.25801 18.2302 

γ 2.0 1.80928 -0.19070 0.05536 2.0 2.89519 0.89519 0.85588 

λ 2.5 2.61038 0.11038 0.20311 1.5 1.52970 0.02970 0.05124 

100 

α 2.2 4.20321 2.00321 4.03231 1.5 5.72126 4.22126 17.8714 

γ 2.0 1.78709 -0.21290 0.05427 2.0 2.86747 0.86747 0.78100 

λ 2.5 2.53574 0.03574 0.07586 1.5 1.52523 0.02523 0.02492 

 
 
 

−2ℓ
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Figure 7. Estimated pdf and cdf of NWE for the data set. 
 
 
 

 
 
Figure 8. Estimated survival function and pp plots of NWE for the data set. 
 
 
 

The data set was first analyzed by Teimouri and Gupta (2013). The data are 
summarized in Table 3. 
 
 
Table 3. Lifetimes of 20 electronic components. 
 
 0.03, 0.12, 0.22, 0.35, 0.73, 0.79, 1.25, 
Data Set 1.41, 1.52, 1.79, 1.80, 1.94, 2.38, 2.40, 
 2.87, 2.99, 3.14, 3.17, 4.72, 5.09 
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For the data set, Table 4 gives the MLEs of the fitted models and their standard 
errors (SEs) in parenthesis. The values of goodness-of-fit statistics are listed in 
Table 5.  
 
 
Table 4. Maximum likelihood estimates of the fitted distributions using data set. 
 
Dist.             
Proposed 3.045 0.484 0.275       
APTW 5.189 1.014 0.704    
MOW 6.292 0.815 1.308    
VFW 0.073 0.494 0.892    
Ku-W   2.659 0.071   0.268 0.558 
 
 
Table 5. The statistics of the fitted models using data set. 
 
Dist. KS CM AD AIC BIC CIAC HQIC 
Proposed 0.125 0.032 0.261 69.390 72.380 70.890 69.980 
APTW 0.141 0.055 0.333 70.910 73.900 72.410 71.490 
MOW 0.139 0.040 0.265 70.200 73.180 71.700 70.780 
VFW 0.165 0.263 1.620 71.490 74.480 72.990 72.070 
Ku-W 0.169 0.271 0.195 71.980 74.891 73.570 72.890 
 
 

It is noted, from Table 5 that the NWED distribution provides a better fit than 
other competitive fitted models. It has the smallest values for goodness-of-fit 
statistics among all fitted models. 

Conclusion 

A new method for generating family of distributions called the new T-X family is 
introduced. Some of its properties are derived and some members of the family are 
defined. New sub-models of the family are studied. Maximum likelihood estimators 
of the parameters for NWED are derived. The NWED has the ability to fit the data 
set better than competing distributions. 
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