
Journal of Modern Applied Statistical Journal of Modern Applied Statistical

Methods Methods

Volume 19 Issue 1 Article 19

9-28-2021

JMASM 55: MATLAB Algorithms and Source Codes of 'cbnet' JMASM 55: MATLAB Algorithms and Source Codes of 'cbnet'

Function for Univariate Time Series Modeling with Neural Function for Univariate Time Series Modeling with Neural

Networks (MATLAB) Networks (MATLAB)

Cagatay Bal
Muğla Sitki Kocman University, Turkey, cagataybal@mu.edu.tr

Serdar Demir
Muğla Sitki Kocman University, Turkey, serdardemir@mu.edu.tr

Follow this and additional works at: https://digitalcommons.wayne.edu/jmasm

 Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the Statistical

Theory Commons

Recommended Citation Recommended Citation
Bal, C. & Demir, S. (2020). JMASM 55: MATLAB Algorithms and Source Codes of 'cbnet' Function for
Univariate Time Series Modeling with Neural Networks (MATLAB). Journal of Modern Applied Statistical
Methods, 19(1), eP2928. https://doi.org/10.22237/jmasm/1608553080

This Algorithms and Code is brought to you for free and open access by the Open Access Journals at
DigitalCommons@WayneState. It has been accepted for inclusion in Journal of Modern Applied Statistical
Methods by an authorized editor of DigitalCommons@WayneState.

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
https://digitalcommons.wayne.edu/jmasm
https://digitalcommons.wayne.edu/jmasm
https://digitalcommons.wayne.edu/jmasm/vol19
https://digitalcommons.wayne.edu/jmasm/vol19/iss1
https://digitalcommons.wayne.edu/jmasm/vol19/iss1/19
https://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol19%2Fiss1%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol19%2Fiss1%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol19%2Fiss1%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol19%2Fiss1%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol19%2Fiss1%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages

Journal of Modern Applied Statistical Methods
May 2020, Vol. 19, No. 1, eP2928
doi: 10.22237/jmasm/1608553080

Copyright © 2020 JMASM, Inc.

ISSN 1538 − 9472

doi: 10.22237/jmasm/1608553080 | Accepted: Aug. 24, 2018; Published: Sep 28, 2021.
Correspondence: Cagatay Bal, cagataybal@mu.edu.tr

2

ALGORITHMS & CODE

JMASM 55: MATLAB Algorithms and
Source Codes of 'cbnet' Function for
Univariate Time Series Modeling with
Neural Networks (MATLAB)
Cagatay Bal
Mugla Sitki Kocman Univ.
Muğla, Turkey

Serdar Demir
Mugla Sitki Kocman Univ.
Muğla, Turkey

Artificial Neural Networks (ANN) can be designed as a nonparametric tool for time series
modeling. MATLAB serves as a powerful environment for ANN modeling. Although
Neural Network Time Series Tool (ntstool) is useful for modeling time series, more
detailed functions could be more useful in order to get more detailed and comprehensive
analysis results. For these purposes, cbnet function with properties such as input lag
generator, step-ahead forecaster, trial-error based network selection strategy, alternative
network selection with various performance measure and global repetition feature to obtain
more alternative network has been developed, and MATLAB algorithms and source codes
has been introduced. A detailed comparison with the ntstool is carried out, showing that
the cbnet function covers the shortcomings of ntstool.

Keywords: Artificial neural networks, MATLAB algorithms and codes, time series
modeling

Introduction

Time series is data ordered through a time-dependent structure which has unique
characteristics within time lags. An assumption is autocorrelation, which assumes
that time series model contains the correlation between any given lag observations
or intervals [1]. Therefore, at the modeling aspect, dependent variables can be
created from the lags of the time series which is shown at Table 1 below.

BAL & DEMIR

3

Table 1. Data representation

Y(t) Y1 Y2 … … Y(n−p−1) Y(n−p)
Y(t−1) Y2 Y3 … … Y(n−p) Y(n−p+1)
Y(t−2) Y3 Y4 … … Y(n−p+1) Y(n−p+2)
Y(t−3) Y4 Y5 … … Y(n−p+2) Y(n−p+3)
… … … … … … …
Y(t−k) Y(k+1) Y(k+2) … … Y(n−1) Y(n)

In Table 1, lags obtained from actual time series Y(t) will be used to generate
input matrix. Generated input matrix with given lag intervals can be set as an input
layer parameter for neural network. After utilizing the rest of the parameters and
neural structure, network will be ready for training and modeling given forecasting
task.

Neural networks can be described as nonlinear nonparametric method
(Zhang, Patuwo, and Hu, 1998). Like as the most of methods that exist in the
literature, neural networks have both advantages and disadvantages. No
assumptions, alternative solutions, goal-driven characteristics and parameter
tunability can be counted as its advantages. Poor generalizability, data-focused
characteristics, unpromising optimal solution in every trial and expertise-based
structures can be count as its disadvantages. These features restrained the efforts to
develop intelligent strategies and trial-error method has been accepted widely for
finding the best solution in the neural networks concept.

MATLAB is well-known and widely accepted software by engineers,
researchers, students and companies from all around the world. MATLAB also
serves as a useful environment for modelling and data processing tasks. Among its
many toolboxes, ntstool has been developed for focusing time series analyses. We
focus here on this particular toolbox and explain its advantages and disadvantages
along with reasons to develop a specialized function 'cbnet' for univariate time
series analysis.

Neural Networks

Neural networks consist of three main components as architecture, learning
algorithm and activation functions (Eǧrioǧlu, Aladaǧ, and Günay, 2008).
Architecture of a neural network can be described as the layered visualization
scheme (Figure 1) and should be resolved according to the task. Layer and neuron
numbers, data preparations and data partitions are the parameters which could be
considered within the architecture.

JMASM 55: UNIVARIATE TIME SERIES MODELING (MATLAB)

4

Figure 1. Artificial Neural Network Architecture

The Learning algorithm is the component of training process which makes
neural networks learn from data lags in this case. Back propagation algorithms are
the most widely used learning algorithms for neural networks. Learning algorithms
of neural networks are basically backpropagation algorithms that uses error
functions derivatives as gradients. General framework of backpropagation can be
described as follows

 (1)

An Error function Ep defines error between dk target value and xk output value
of kth neuron in network.
	

 (2)

The Gradient vector of errors will be obtained for ith neuron in network.

 (3)

Ep = Σk dk − xk()2

∈i=
∂+ E
∂xi

∈i

∈i=
−2 di − xi() ∂xi∂xi

= −2 di − xi()xi 1− xi(), if i i thneuron is output neuron

∂xi
∂xi

= ∂+ E
∂x j

∂x j
∂xij ,i< j∑ = xi 1− xi() ∈j wij , otherwise

j ,i< j∑

⎧

⎨
⎪⎪

⎩
⎪
⎪

BAL & DEMIR

5

In equation (3), wij is weights between ith and ith neuron in network. If this
value equals zero then that means there is no connection between ith and ith neuron
in network.

 (4)

In equation (4), η is described as learning ratio which affect convergence

speed and the stability of the weights in the learning process. Bias can be update in
the same way as equation (4). All weights are obtained after each iteration in
training process.

 (5)

 (6)

In equation (5) and (6), weights updating through error gradients E = Σp Ep is

described and the gradients will be calculated throughout the data set.
Data are then typically divided into two sets. The training process is mostly

done with training set of the data and test set will remain for testing the networks
performance for later steps of the evaluation. Another data partition approach is
dividing data into three sets and the third set is called validation and the purpose of
using validation set is to prevent over-fitting by stopping the training process when
the conditions are satisfied. But using validation set might cause under-fitting
(Prechelt, 1998).

Activation functions are linear and non-linear components of neural
networks. They are responsible for mapping between input and target values. The
S-shaped sigmoidal functions such as tangent-sigmoid and logistic-sigmoid
functions are widely used as activation functions because of their non-linear
mapping ability within the hidden layer of network. Output layer usually contains
linear activation functions such as step and purelin functions.

Tangent and logistic sigmoidal functions are,

 (7)

Δwki = −η ∂+ Ep
∂wki

= −η ∂+ Ep
∂xi

∂xi
∂wki

= −η ∈j xk

Δwki = −η ∂+ E
∂wki

= −η ∂+ Ep
∂wkip∑

Δw = −η ∂+ E
∂w

= −η∇wE

flogistic-sigmoid x() = 1
1+ ex

JMASM 55: UNIVARIATE TIME SERIES MODELING (MATLAB)

6

 (8)

Purelin and step functions are,

 (9)

 (10)

Performance measures are used for model selection which is very important

step after error-trial process with many alternative networks (Bal and Demir, 2017).
Performance measures as MSE (Mean Square Error), RMSE (Root Mean Square
Error), MAE (Mean Absolute Error) and MAPE (Mean Absolute Percentage Error)
are given below,

 (11)

 (12)

 (13)

 (14)

There are many strategies for avoiding over-fitting which is the worst scenario

for neural network. Performance measuring through the test set is a useful way to
select the promising network among other alternatives.

ftangent-sigmoid x() = e
x − e− x

ex + e− x

fpurelin x() = x

fstep x() = 0 if x ∈Output1
1 if x ∈Output2
⎧
⎨
⎩

MSE = 1
n

y j − ŷ j()2j=1

n∑

RMSE = 1
n

y j − ŷ j()2j=1

n∑

MAE = 1
n

y j − ŷ j
2

j=1

n∑

MAPE = 1
n

y j − ŷ j
y j

2

j=1

n∑

BAL & DEMIR

7

Properties of cbnet Function

Data Partition
The data partition is an essential matter for ANN modeling. Basic approach is
dividing the data into two sets. The first set is used for training and is generally
called the training set and the second set is used for testing and is generally called
the test set. Another approach is dividing the data into three sets and the third set,
called the validation set, is used after training process for validating the training
error. Both dividing procedures are essential in order to avoid over-fitting for model
selection through test set performance.

MATLAB generates dividerand or divideblock functions for data partition
in related neural network tool. Dividerand function is able to divide data perfectly
through user’s demand. However, it creates the vector indices randomly which is
not quite accurate for time series. Divideblock function seems suitable for time
series while it generates indices time-related but the lack of adjustability abilities
can’t fit the user’s demand perfectly. For instance; users may or may not need the
validation partition, since dividerand allows non-validation partition setup,
divideblock doesn’t. Therefore, modifying dividerand function with generating
time-related indices instead of randomly will solve the problem completely.

Below the MATLAB codes and screen shots (Figure 2) are given for modified
dividerand function and example of data partition are shown.

open dividerand % Opening the dividerand.m file from its original
location.

allInd = 1:Q; % Modify the 105th row `allInd=randperm(Q);` of the
dividerand.m file with this code.

Figure 2. Screen shots for modified dividerand function.

JMASM 55: UNIVARIATE TIME SERIES MODELING (MATLAB)

8

3Generating Input Lag Matrixes
As long as the trial-error method requires alternative models to consider and
compare, input matrixes for given lag intervals should be calculated before training
process. Input matrixes and target vectors must be matched irreproachably for given
time lag in order to achieve correct model construction. Below the MATLAB codes
and screen shots (Figure 3) are given as a result of how input matrixes and target
vectors are generating. Example of 10 lags and screenshots of 5 lagged results are
shown.

function lag(filename,imn)
%
% Function for creating input matrixes and target vectors.
%
% filename; name of the variable for time series vector in the same folder
%
% imn; input matrix number
%
datavector=cell2mat(struct2cell(load(filename)));
n=length(datavector);

for p=1:imn
for i=1:p

for j=1:i
inputvector=datavector(j:n-(p-(j-1)));
input{1,j}=inputvector;

end
input{2,p}(i,:)=input{1,j};

end
data{p,1}=input{2,p};
data{p,2}=datavector(p+1:n);

end
save('lags.mat','data');

end

BAL & DEMIR

9

Figure 3. Screen shots of input matrixes and target vectors.

Forecasting
Forecasting the future values with trained ANN is important future in order to make
networks as useful tools to benefit. The forecasting process algorithm is given
below.

Step 1. Desired number of step-ahead forecasts; f

Step 2. Obtaining number of neurons in input layer of trained network; n

Step 3. Last n observations of target vector will be set as test vector

Step 4. 1-step-ahead forecast will be obtained by using trained network as

output of initialized test vector

Step 5. 1-step-ahead forecast will save as first observation of forecast

vector

Step 6. Test vector will be updated by adding the 1-step-ahead at the end of

test vector and removing the first observation. After updating
process, test vector will remain same size and consist of forecast
values.

Step 7. Step 4, 5 and 6 initialize f times to calculate forecast values.

Forecasting process codes for MATLAB are given below.

JMASM 55: UNIVARIATE TIME SERIES MODELING (MATLAB)

10

Results

Selection of the best neural network architecture can be based on different criteria
that exist in literature. In this study, MSE, RMSE, MAE, and MAPE which are
well-known criteria added to the codes in order to offer different results to the users.
Results of each run collecting into allResults array for these four different criteria.
These results are follows as input, hidden and output neuron number, test set error
value of performance measure, vector of forecast values, input and target matrixes,
test set vector, and trained network as MATLAB object for future use. After
completion of every run allResults will contain the best architecture with
minimum error for each run. The best architecture among all runs will be shown as
the last step of the process. The codes for presentation of results will be given
below.

cbnet Algorithm

In this study, a specialized ANN function named cbnet for MATLAB will be used.
It has the ability to analyze univariate time series with the principle of error and
trial method. Function cbnet has 11 parameters which are designed for data
selection, number of lags for input matrix, maximum number of neuron numbers in
hidden layer, training function, epoch number, activation function, training set
ratio, validation set ratio, test set ratio, number of step ahead forecast and repetition
number of the whole process respectively. For all parameters except the data
selection, default values are predetermined for the cbnet function for practicality.
The workflow of cbnet can be summarized as follows,

Step 1. Parameters are initializing according to given or default values.

Step 2. Input matrix is obtaining by using lag function.

Step 3. The first run starts with nested loops to generate total number of
architectures with given parameter values or 100 possible
architectures will be generated by the default values of 10 for imn
and maxhid parameters.

Step 4. MATLAB function feedforwardnet is using to create network and

after initializing the parameters, network training starts with the
given inputs.

BAL & DEMIR

11

Step 5. After the training process, output of network calculated and test set
partition separated from outputs for performance measuring.

Step 6. Performance measuring is carrying out via MSE, RMSE, MAE and

MAPE. Errors of related measures will be checked with last
achieved errors and the first assigned value is 1e100 for easy
comparison.

Step 7. If current architecture is having less error than previous one, new

FFNN is saving as the new best model. Otherwise previous FFNN
will continue to be the best model until the process done.

Step 8. Desired number of step ahead forecasts will be calculated by FFNN

which is selected by each performance measure.

Step 9. If user demanded multi run for the evaluation, step 3 to 8 repeated
with given repetition number.

Step 10. Finally, all results will be saved in an array variable to workspace of

MATLAB and summary of the best selected model among every run
with important explanatories are given as table in command
window.

Comparison of ntstool and cbnet

In this section, the workflow of ntstool with descriptions will be given and detailed
comparisons with cbnet will be utilized with terms of how many steps needs to get
the results, how much effort does it needs to end the analysis, pros and cons and
satisfaction level of diversity of the results. This comparison is only to show
detailed workflow of both cbnet and ntstool therefore dataset is not having a
crucial role. The example dataset for this task is a linear vector values from 1 to
100 for simple utilization. Sample dataset is also recommended for tutorial of cbnet
in the description of the cbnet function inside its .m file.

JMASM 55: UNIVARIATE TIME SERIES MODELING (MATLAB)

12

1. Choose NAR on ntstool first window 2. Select sample data set

3. Set data partitions 4. Define neuron number and number of delay

Figure 4. MATLAB ntstool workflow step by step (cont’d next page)

As noted in Figure 4, a total of 8 steps are required to train a network with given
data set. ntstool has three choices for times series analysis: nonlinear
autoregressive with external (exogenous) input (NARX), Nonlinear Autoregressive
(NAR) and Nonlinear Input-Output. These options use MATLAB network
functions narxnet, narnet and timedelaynet respectively. Each network functions
are based on feedforwardnet MATLAB network function with their own
modification to adapt the purpose of analyses for each case. In ntstool, these
functions share the same default properties such as number of hidden neurons,
number of delays, training function and the most importantly the data partition
options. Levenberg-Marquadt Backpropagation is default training algorithm for
ntstool along with 2 other function to select and for hidden layer activation

BAL & DEMIR

13

5. Train network and get MSE values 6. Retrain network or forward to next step

7. Generate various deployments of network 8. Save the results

Figure 4 (cont’d). MATLAB ntstool workflow step by step.

function, tangent-sigmoid function has been set as default (unfortunately there is
not any other function offered) which can be seen at neural network diagram at Step
7. Data partition ratios are set default as 70% for training, 15% for validation and
15% for testing. Unfortunately, there is no option for eliminating the validation set
partition which is required to offer users whether or not to use validation method
as a stopping strategy for training process when network’s generalization ability
stops improving. This feature alone shows the ntstool’s inadequate preferences.
Researchers may or may not need the usage of validation which is clearly dictated
at Step 2 and also using validation partition will decrease the size of dataset for
training and testing which could be a disadvantage such as increasing the variability
of the estimates which could weaken the out-of-sample performance of network for
multi-step ahead forecasting tasks (Faraway, 1992).

JMASM 55: UNIVARIATE TIME SERIES MODELING (MATLAB)

14

The data partition is made by using divider and function as default in ntstool
which is randomly divide data into sets. The point to be noted is that the random
partition is irrational in time series analysis because the data must remain sequential
throughout the analysis. Also, random division may affect the network negatively
and imbalanced input-target mapping will decrease the performance thus the step-
ahead forecasting abilities of network. Below in Figure 5, it can be seen in another
trial with the same sample data that the high testing error and poor output
predictions proving the possible danger of random division of time series.

Figure 5. ntstool results.

Despite the effort to increase generalizability of a time series, the random
partition of the data will produce unreliable results. To overcome this situation, a
proposed solution is to self-edit the divider and function, which was already given
in the previous section.

BAL & DEMIR

15

Network parameters as hidden layer neuron number and number of delay has
been set by default to 10 neuron and 2 delays in ntstool. Finding the best parameter
design is one of the biggest neural network problems in literature. There are
numbers of approaches proposed to solve this problem such as early stopping
(Haykin, 1998), noise injection (Holmstrom and Koistinen, 1992; Grandvalet,
Canu, and Boucheron, 1997; Skurichina, Raudys, and Duin, 2000; Brown, Gedeon,
and Groves, 2003; Seghouane, Moudden, and Fleury, 2004), error regularization
(Reed, Marks, and Oh, 1995; Zur, Jiang, Pesce, and Drukker, 2009), weight decay
(Poggio and Girosi, 1990; Haykin, 1998), optimized approximation algorithm (Liu,
Starzyk, and Zhu, 2008), and trial-error which relies on finding many network and
choosing the best performing one. Unfortunately, ntstool doesn’t offer any
strategy for parameter design other than assigning default values of the parameters
and user have to know the best parameter design before the initialization or have to
try all possible parameter designs manually by starting the ntstool all over in
number of times. Also, ntstool doesn’t offer some kind of trial-error based strategy
for users so it might take very long time to find the best working parameter design
by starting over the toolbox and go through 8 steps with changing the parameters
in each time.

Another problematic aspect of ntstool is that there is not an option for
selection of the best network among candidate networks by using performance
measures/criteria via testing performance. This is highly related with the parameter
designing situation mentioned below and must be considered altogether under trial-
error strategy. The only performance indicator that ntstool uses is MSE which is
either widely accepted but at the same time not reliable criterion and widely
criticized (Hyndman and Koehler, 2006; Armstrong Collopy, 1992; Chatfield,
1988). It could be more useful to show the testing performance with various
performance measure to deduce the results because every different measure
calculates the network error with different aspects (Bal, 2016).

As noted in Figure 6, cbnet function with default settings can be utilized by
typing ‘cbnet('sample')’ in MATLAB command window and the data file must
contain in current folder with cbnet in this case data set ‘sample’ is used same as
ntstool examples above.

The proposed cbnet function uses the strategy of choosing the most proper
network which have the best testing performance by using trial-error method and
the network selection procedures are being made by four different criteria such as

JMASM 55: UNIVARIATE TIME SERIES MODELING (MATLAB)

16

Figure 6. cbnet workflow.

Figure 7. cbnet results.

MSE, RMSE, MAE and MAPE. In other words, cbnet uses 4 criteria to obtain
many networks respectively and chooses the best performed one as a result for each
criterion. In the future versions of cbnet, new performance criteria will be added
for network selection to diversify the results. The 4 best networks for 4 criteria will
be obtained. The default parameters of cbnet are set 1 to 10 neuron numbers for
both input and hidden layer respectively and therefore total 100 candidate network
architectures from 1-1-1 to 10-10-1 which can be seen in Figure 3, will be obtained

BAL & DEMIR

17

in each repetition. Network with the best testing performance among these 100
networks is selected with MSE, RMSE, MAE and MAPE individually. This process
also can be done more than 1 time with repetition parameter to obtain many best-
chosen networks. In this example, all 4 performance measures selected the same
network as their best choice. Detail workflow of cbnet has been given in section 3
above.

Table 2. Comparison chart of ntstool and cbnet

ntstool cbnet
GUI Yes No

Time Consumes for Utilization
(Default)

8 steps 1 step

Network Obtained

1 network with given parameter
design

Best network selection with
given range of parameter
design among candidate
networks

Network Selection Strategy

No Done by performance measures

with testing performance

Data Partition

Randomly Sequentially

Data Partition Ratio Eligibility

No Yes

Step-Ahead Forecasting
Function

No Yes

Learning Function Variety

3 Backpropagation Function 8 Backpropagation Function

Activation Function Variety

Only tangent-sigmoid tangent-sigmoid and log-

sigmoid

Global Repetition Parameter
for Obtaining More Selected

Network in Single Run

 No Yes

In the Figure 7, the output performance of the network which is obtained with
the cbnet function is shown. Along with the graphic, almost precise expected 10
step-ahead forecasts can also be seen in Figure 4. Forecasting function of cbnet
allow users to calculate step-ahead forecasts with selected networks which will
strengthen the results and test the network’s power further from testing
performance. However, ntstool doesn’t offer such feature and therefore it is not

JMASM 55: UNIVARIATE TIME SERIES MODELING (MATLAB)

18

quite possible to test the obtained network whether has strong forecasting ability or
not. The advantages and disadvantages of both ntstool and cbnet has been truly
given and proved the reason why cbnet has to be developed. Also, the next versions
of cbnet will be included in the GUI, permitting easier usage along with various
plot options for visual representation of results. Another update is planned is the
addition of different neural networks and multi hidden layered architectures for
deep time series analysis. All analyses and comparisons are made on MATLAB
version 2016a.

Conclusion

A specialized cbnet function for univariate time series analysis with neural
networks in MATLAB environment was introduced. It’s simple and easy to use
structure of the function will allow users to achieve more detailed results with very
less effort for this particular type of analysis. The cbnet function has more
advantageous properties than ntstool in order to analyze univariate time series in
other words nonlinear autoregressive time series. The codes of cbnet is given in
appendix. Also, it can be accessed at MATLAB’s File Exchange platform
(https://www.mathworks.com/matlabcentral/fileexchange/67628-cbnet).

References

Armstrong, B. J. S. and Collopy, F. (1992). Error Measures For Generalizing
About Forecasting Methods: Empirical Comparisons. International Journal of
Forecasting, 8(1), 69–80. https://doi.org/10.1016/0169-2070(92)90008-w

Bal, B. C. (2016). A Comparative Study of Artificial Neural Network Models for
Forecasting EURO/USD Exchange Rates by Feed Forward Neural Network.
International Journal of Computing, Communication and Instrumentation Engineering,
3(2). https://doi.org/10.15242/ijccie.u0616010

Bal, C. and Demir, S. (2017). Forecasting TRY/USD exchange rate with various
artificial Neural Network Models. TEM Journal, 6(1), 11–16.
https://doi.org/10.18421/TEM61-02

Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1976). Time Series Analysis,
Forecasting and Control. Third Edition. Holden-Day.

Brown, W. M., Gedeon, T. D., and Groves, D. I. (2003). Use of noise to augment
training data: A neural network method of mineral-potential mapping in regions of

BAL & DEMIR

19

limited known deposit examples. Natural Resources Research, 12(2), 141–152.
https://doi.org/10.1023/a:1024218913435

Chatfield, C. (1988). Apples, oranges and mean square error. International Journal
of Forecasting, 4(4), 515–518. https://doi.org/10.1016/0169-2070(88)90127-6

Eǧrioǧlu, E., Aladaǧ, Ç. H., and Günay, S. (2008). A new model selection strategy
in artificial neural networks. Applied Mathematics and Computation, 195(2), 591–597.
https://doi.org/10.1016/j.amc.2007.05.005

Faraway, J. J. (1992). On the cost of data analysis. Journal of Computational and
Graphical Statistics, 1(3), 213–229. https://doi.org/10.1080/10618600.1992.10474582

Grandvalet, Y., Canu, S., and Boucheron, S. (1997). Noise Injection: Theoretical
Prospects. Neural Computation, 9(5), 1093–1108.
https://doi.org/10.1162/neco.1997.9.5.1093

Haykin, S. (1998). Neural Networks: A Comprehensive Foundation. 2nd ed. Upper
Saddle River, NJ, USA: Prentice Hall PTR.

Holmstrom, L. and Koistinen, P. (1992). Using additive noise in back-propagation
training. IEEE Transactions on Neural Networks, 3(1) 24–38.
https://doi.org/10.1109/72.105415

Hyndman, R. J. and Koehler, A. B. (2006). Another look at measures of forecast
accuracy. International Journal of Forecasting, 22(4), 679–688.
https://doi.org/10.1016/j.ijforecast.2006.03.001

Liu, Y., Starzyk, J. A., and Zhu, Z. (2008). Optimized approximation algorithm in
neural networks without overfitting. IEEE Transactions on Neural Networks, 19(6), 983–
995. https://doi.org/10.1109/tnn.2007.915114

Poggio, T. and Girosi, F. (1990). Networks for approximation and learning.
Proceedings of the IEEE, 78(9), 1481–1497. https://doi.org/10.1109/5.58326

Prechelt, L. (1998). Automatic early stopping using cross validation: Quantifying
the criteria. Neural Networks, 11(4), 761–767. https://doi.org/10.1016/s0893-
6080(98)00010-0

Reed, R., Marks, R. J., and Oh, S. (1995). Similarities of Error Regularization,
Sigmoid Gain Scaling, Target Smoothing, and Training with Jitter. IEEE Transactions on
Neural Networks, 6(3), 529–538. https://doi.org/10.1109/72.377960

Skurichina, M., Raudys, Š., and Duin, R. P. W. (2000). K-nearest neighbors
directed noise injection in multilayer perceptron training. IEEE Transactions on Neural
Networks, 11(2), 504–511. https://doi.org/10.1109/72.839019

JMASM 55: UNIVARIATE TIME SERIES MODELING (MATLAB)

20

Seghouane, A. K., Moudden, Y., and Fleury, G. (2004). Regularizing the effect of
input noise injection in feedforward neural networks training. Neural Computing and
Applications, 13(3), 248–254. https://doi.org/10.1007/s00521-004-0411-6

Zhang, G., Patuwo, B. E., and Hu, M. Y. (1998). Forecasting with artificial neural
networks, International Journal of Forecasting, 14(1), 35-62.
https://doi.org/10.1016/s0169-2070(97)00044-7

Zur, R. M., Jiang, Y., Pesce, L. L., and Drukker, K. (2009). Noise injection for
training artificial neural networks: A comparison with weight decay and early stopping.
Medical Physics, 36(10), 4810–4818. https://doi.org/10.1118/1.3213517

Appendix A: MATLAB function (cbnet.m)
function cbnet(filename,imn,maxhid,tf,ep,l1,trratio,valratio,teratio,fcast,
glorep, varargin)
%%
% CBNETfunction for univariate time series analysis with feed forward neural
network.
%
% filename; name of the variable for time series vector in the same folder.
% imn; input matrix number.
% maxhid; maximum neuron number of hidden layer.
% tf; training function of network.
% ep; maximum epoch number.
% l1; activation of hidden layer.
% trratio; training set ratio.
% valratio; validation set ratio.
% teratio; test set ratio.
% fcast; desired number of step ahead forecasts.
% glorep; repetition number of CBNETfunction.
%% We recommend self-editing the 'dividerand.m'
% since 'divideblock.m' doesn`t allow not to choose validation set partition.
%
% Openning the dividerand.m file from its original location.
% open dividerand
% Modify the 105th row `allInd=randperm(Q);` of the dividerand.m file with this
code.
% allInd = 1:Q;
%% Simple example of CBNETfunction;
%
% sample=[1:100]; save('sample.mat','sample');
% cbnet('sample')
%
%% Copyright (c) 2018, Cagatay BAL
%
%%
if nargin == 0 || isempty(filename), error('Error: data has not been chosen!'),
end
if nargin > 11 , error('Too many inputs!'), end

BAL & DEMIR

21

switch nargin
 case 1
 imn=10; maxhid=10; tf='trainlm'; ep=1000; l1='tansig';
 trratio=0.85; valratio=0; teratio=0.15; fcast=10; glorep=1;
 case 2
 maxhid=10; tf='trainlm'; ep=1000; l1='tansig'; trratio=0.85;
 valratio=0; teratio=0.15; fcast=10; glorep=1;
 case 3
 tf='trainlm'; ep=1000; l1='tansig'; trratio=0.85; valratio=0;
 teratio=0.15; fcast=10; glorep=1;
 case 4
 ep=1000; l1='tansig'; trratio=0.85; valratio=0; teratio=0.15;
 fcast=10; glorep=1;
 case 5
 l1='tansig'; trratio=0.85; valratio=0; teratio=0.15; fcast=10;
 glorep=1;
 case 6
 trratio=0.85; valratio=0; teratio=0.15; fcast=10; glorep=1;
 case 7
 valratio=0; teratio=0.15; fcast=10; glorep=1;
 case 8
 teratio=0.15; fcast=10; glorep=1;
 case 9
 fcast=10; glorep=1;
 case 10
 glorep=1;
end
function lag(filename,imn)

% Function for creating input matrixes and target vectors.

% filename; name of the variable for time series vector in the same folder

% imn; input matrix number

datavector=cell2mat(struct2cell(load(filename)));
n=length(datavector);

for p=1:imn

for i=1:p

 for j=1:i
 inputvector=datavector(j:n-(p-(j-1)));
 input{1,j}=inputvector;

 end
 input{2,p}(i,:)=input{1,j};

end

 data{p,1}=input{2,p}; %First column of array consist of input matrixes.

JMASM 55: UNIVARIATE TIME SERIES MODELING (MATLAB)

22

 data{p,2}=datavector(p+1:n); %Second column of array consist of target
vectors.

end

save('lags.mat','data'); %Saving the array to the related folder.
figure
plot(datavector)
end
function forecast(fcast)

% Function for calculation of given step ahead forecasts.

% fcast, desired number of step ahead forecasts.

%%
 for f=1:fcast
 fc=(netbest_MSE(MSE_testvector'));
 MSE_forecast(1,f)=fc;
 MSE_fcastvector=[MSE_testvector fc];
 MSE_fcastvector=MSE_fcastvector(2:end);
 MSE_testvector=MSE_fcastvector;
 end
 save(['MSE_forecast-' num2str(glr) '.mat'],'MSE_forecast')
%%
 for f=1:fcast
 fc=(netbest_RMSE(RMSE_testvector'));
 RMSE_forecast(1,f)=fc;
 RMSE_fcastvector=[RMSE_testvector fc];
 RMSE_fcastvector=RMSE_fcastvector(2:end);
 RMSE_testvector=RMSE_fcastvector;
 end
 save(['RMSE_forecast-' num2str(glr) '.mat'],'RMSE_forecast')
%%
 for f=1:fcast
 fc=(netbest_MAE(MAE_testvector'));
 MAE_forecast(1,f)=fc;
 MAE_fcastvector=[MAE_testvector fc];
 MAE_fcastvector=MAE_fcastvector(2:end);
 MAE_testvector=MAE_fcastvector;
 end
 save(['MAE_forecast-' num2str(glr) '.mat'],'MAE_forecast')
%%
 for f=1:fcast
 fc=(netbest_MAPE(MAPE_testvector'));
 MAPE_forecast(1,f)=fc;
 MAPE_fcastvector=[MAPE_testvector fc];
 MAPE_fcastvector=MAPE_fcastvector(2:end);
 MAPE_testvector=MAPE_fcastvector;
 end
 save(['MAPE_forecast-' num2str(glr) '.mat'],'MAPE_forecast')
end
function [allResults]=allResults(glorep)

BAL & DEMIR

23

% Function for gathering and saving the results.

MSE_minerr=1e100; RMSE_minerr=1e100; MAE_minerr=1e100; MAPE_minerr=1e100;

for ar=1:glorep
 load(['MSE-' num2str(ar) '.mat'])
 load(['MSE_forecast-' num2str(ar) '.mat'],'MSE_forecast')
 load(['RMSE-' num2str(ar) '.mat'])
 load(['RMSE_forecast-' num2str(ar) '.mat'],'RMSE_forecast')
 load(['MAE-' num2str(ar) '.mat'])
 load(['MAE_forecast-' num2str(ar) '.mat'],'MAE_forecast')
 load(['MAPE-' num2str(ar) '.mat'])
 load(['MAPE_forecast-' num2str(ar) '.mat'],'MAPE_forecast')

 allResults{1,1}='MSE RESULTS';
 allResults{2,1}{ar,1}=MSE_input;
 allResults{2,1}{ar,2}=MSE_hidden;
 allResults{2,1}{ar,3}=1;
 allResults{2,1}{ar,4}=MSE_performanceError;
 allResults{2,1}{ar,5}=MSE_forecast;
 allResults{2,1}{ar,6}=MSE_inputs;
 allResults{2,1}{ar,7}=MSE_targets;
 allResults{2,1}{ar,8}=MSE_testvector;
 allResults{2,1}{ar,9}=netbest_MSE;
 allResults{2,1}{ar,10}=ar;

 if MSE_performanceError <= MSE_minerr
 MSE_minerr=MSE_performanceError;
 MSE_minerr_order=ar;
 MSE_minerr_input=MSE_input;
 MSE_minerr_hidden=MSE_hidden;
 end

 allResults{1,2}='RMSE RESULTS';
 allResults{2,2}{ar,1}=RMSE_input;
 allResults{2,2}{ar,2}=RMSE_hidden;
 allResults{2,2}{ar,3}=1;
 allResults{2,2}{ar,4}=RMSE_performanceError;
 allResults{2,2}{ar,5}=RMSE_forecast;
 allResults{2,2}{ar,6}=RMSE_inputs;
 allResults{2,2}{ar,7}=RMSE_targets;
 allResults{2,2}{ar,8}=RMSE_testvector;
 allResults{2,2}{ar,9}=netbest_RMSE;
 allResults{2,2}{ar,10}=ar;

 if RMSE_performanceError <= RMSE_minerr
 RMSE_minerr=RMSE_performanceError;
 RMSE_minerr_order=ar;
 RMSE_minerr_input=RMSE_input;
 RMSE_minerr_hidden=RMSE_hidden;
 end

 allResults{1,3}='MAE RESULTS';
 allResults{2,3}{ar,1}=MAE_input;

JMASM 55: UNIVARIATE TIME SERIES MODELING (MATLAB)

24

 allResults{2,3}{ar,2}=MAE_hidden;
 allResults{2,3}{ar,3}=1;
 allResults{2,3}{ar,4}=MAE_performanceError;
 allResults{2,3}{ar,5}=MAE_forecast;
 allResults{2,3}{ar,6}=MAE_inputs;
 allResults{2,3}{ar,7}=MAE_targets;
 allResults{2,3}{ar,8}=MAE_testvector;
 allResults{2,3}{ar,9}=netbest_MAE;
 allResults{2,3}{ar,10}=ar;

 if MAE_performanceError <= MAE_minerr
 MAE_minerr=MAE_performanceError;
 MAE_minerr_order=ar;
 MAE_minerr_input=MAE_input;
 MAE_minerr_hidden=MAE_hidden;
 end

 allResults{1,4}='MAPE RESULTS';
 allResults{2,4}{ar,1}=MAPE_input;
 allResults{2,4}{ar,2}=MAPE_hidden;
 allResults{2,4}{ar,3}=1;
 allResults{2,4}{ar,4}=MAPE_performanceError;
 allResults{2,4}{ar,5}=MAPE_forecast;
 allResults{2,4}{ar,6}=MAPE_inputs;
 allResults{2,4}{ar,7}=MAPE_targets;
 allResults{2,4}{ar,8}=MAPE_testvector;
 allResults{2,4}{ar,9}=netbest_MAPE;
 allResults{2,4}{ar,10}=ar;

 if MAPE_performanceError <= MAPE_minerr
 MAPE_minerr=MAPE_performanceError;
 MAPE_minerr_order=ar;
 MAPE_minerr_input=MAPE_input;
 MAPE_minerr_hidden=MAPE_hidden;
 end

end
 save('allResults.mat','allResults')
 assignin('base','allResults',allResults)
end
%% Creating input matrix and target vector with 'lag' function.
lag(filename,imn)
%%
for glr = 1 : glorep
%% Assigning very big error values for performance measures.
global_error_MSE=1e100; global_error_RMSE=1e100;
global_error_MAE=1e100; global_error_MAPE=1e100;

%%
 for j=1:imn
 inputs=data{j,1};
 targets=data{j,2};
%%
 for i=1:maxhid

BAL & DEMIR

25

 net = feedforwardnet(i);

 net.trainFcn = tf;
 net.trainParam.epochs = ep;
 net.layers{1}.transferFcn = l1;
 net.trainParam.showWindow = 1;

 net.divideParam.trainRatio=trratio;
 net.divideParam.valRatio=valratio;
 net.divideParam.testRatio=teratio;

 [net,tr] = train(net,inputs,targets);
 outputs = net(inputs);
 errors = gsubtract(targets,outputs);
 testset=targets.* tr.testMask{1};
 testset(isnan(testset))=[];
 testerror = errors .* tr.testMask{1};
 testerror(isnan(testerror))=[];
 %% Performance measures for calculating test set error.
 MSE_testerror=mean(testerror.^2);
 RMSE_testerror=sqrt(mean(testerror.^2));
 MAE_testerror=mean(abs(testerror));
 MAPE_testerror=mean(abs(testerror)./abs(testset));

 %% Model selection algorithm for each performance measure.

 if MSE_testerror<global_error_MSE
 MSE_performanceError=MSE_testerror;
 global_error_MSE=MSE_testerror;
 MSE_input=j;
 MSE_hidden=i;
 MSE_inputs=inputs;
 MSE_targets=targets; MSE_tl=length(MSE_targets);
 MSE_outputs=outputs;
 MSE_testvector=MSE_targets(MSE_tl-MSE_input+1:MSE_tl);
 netbest_MSE=net;
 save(['MSE-' num2str(glr) '.mat'],'MSE_performanceError',...
 'global_error_MSE','MSE_input','MSE_hidden','MSE_inputs',...
 'MSE_targets','MSE_outputs','MSE_testvector','netbest_MSE')
 end
 if RMSE_testerror<global_error_RMSE
 RMSE_performanceError=RMSE_testerror;
 global_error_RMSE=RMSE_testerror;
 RMSE_input=j;
 RMSE_hidden=i;
 RMSE_inputs=inputs;
 RMSE_targets=targets; RMSE_tl=length(RMSE_targets);
 RMSE_outputs=outputs;
 RMSE_testvector=RMSE_targets(RMSE_tl-RMSE_input+1:RMSE_tl);
 netbest_RMSE=net;
 save(['RMSE-' num2str(glr) '.mat'],'RMSE_performanceError',...
 'global_error_RMSE','RMSE_input','RMSE_hidden',...
 'RMSE_inputs','RMSE_targets','RMSE_outputs',...
 'RMSE_testvector','netbest_RMSE')

JMASM 55: UNIVARIATE TIME SERIES MODELING (MATLAB)

26

 end
 if MAE_testerror<global_error_MAE
 MAE_performanceError=MAE_testerror;
 global_error_MAE=MAE_testerror;
 MAE_input=j;
 MAE_hidden=i;
 MAE_inputs=inputs;
 MAE_targets=targets; MAE_tl=length(MAE_targets);
 MAE_outputs=outputs;
 MAE_testvector=MAE_targets(MAE_tl-MAE_input+1:MAE_tl);
 netbest_MAE=net;
 save(['MAE-' num2str(glr) '.mat'],'MAE_performanceError',...
 'global_error_MAE','MAE_input','MAE_hidden','MAE_inputs',...
 'MAE_targets','MAE_outputs','MAE_testvector','netbest_MAE')
 end
 if MAPE_testerror<global_error_MAPE
 MAPE_performanceError=MAPE_testerror;
 global_error_MAPE=MAPE_testerror;
 MAPE_input=j;
 MAPE_hidden=i;
 MAPE_inputs=inputs;
 MAPE_targets=targets; MAPE_tl=length(MAPE_targets);
 MAPE_outputs=outputs;
 MAPE_testvector=MAPE_targets(MAPE_tl-MAPE_input+1:MAPE_tl);
 netbest_MAPE=net;
 save(['MAPE-' num2str(glr) '.mat'],'MAPE_performanceError',...
 'global_error_MAPE','MAPE_input','MAPE_hidden',...
 'MAPE_inputs','MAPE_targets','MAPE_outputs',...
 'MAPE_testvector','netbest_MAPE')
 end
 end
end

forecast(fcast) % Calculating the forecasts with 'forecast' function.

 if glr==1
 fprintf('\r%dst Repetition Completed.\r',glr)
 elseif glr==2
 fprintf('\r%dnd Repetition Completed.\r',glr)
 elseif glr==3
 fprintf('\r%drd Repetition Completed.\r',glr)
 else
 fprintf('\r%dth Repetition Completed.\r',glr)
 end
end

allResults(glorep) % Obtaining results with 'allResults' function.

%%
disp('Best Architecture(MSE) Best Architecture(RMSE) Best
Architecture (MAE) Best Architecture (MAPE)')
disp('--------------------------- ---------------------------- -----------
----------------- -----------------------------')
fprintf('Run = %d.\t\t\tRun = %d.\t\t\tRun = %d.\t\t\tRun = %d. \r',...

BAL & DEMIR

27

 MSE_minerr_order,RMSE_minerr_order,MAE_minerr_order,MAPE_minerr_order)
fprintf('Error = %e\t\tError = %e\t\tError = %e\t\tError = %e \r',...
 MSE_minerr,RMSE_minerr,MAE_minerr,MAPE_minerr)
fprintf('Architecture = %d - %d - 1\tArchitecture = %d - %d - 1\tArchitecture =
%d - %d - 1\tArchitecture = %d - %d - 1 \r',...
 MSE_minerr_input,MSE_minerr_hidden,RMSE_minerr_input,...
 RMSE_minerr_hidden,MAE_minerr_input,MAE_minerr_hidden,...
 MAPE_minerr_input,MAPE_minerr_hidden)
end

	JMASM 55: MATLAB Algorithms and Source Codes of 'cbnet' Function for Univariate Time Series Modeling with Neural Networks (MATLAB)
	Recommended Citation

	JMASM 55: MATLAB Algorithms and Source Codes of 'cbnet' Function for Univariate Time Series Modeling with Neural Networks (MATLAB)

