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JMASM 57: Bayesian Survival Analysis of 
Lomax Family Models with Stan (R) 

Mohammed H. A. Abujarad 
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Aligarh, India 

Athar Ali Khan 
Aligarh Muslim University 
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An attempt is made to fit three distributions, the Lomax, exponential Lomax, and Weibull 

Lomax to implement Bayesian methods to analyze Myeloma patients using Stan. This 

model is applied to a real survival censored data so that all the concepts and computations 

will be around the same data. A code was developed and improved to implement censored 

mechanism throughout using rstan. Furthermore, parallel simulation tools are also 

implemented with an extensive use of rstan. 

 

Keywords: Lomax model, exponential Lomax model, Weibull Lomax model, 

posterior, simulation, RStan, Bayesian inference, R software, HMC 

 

Introduction 

Survival analysis is the study of survival times and of the factors that influence 

them. Types of studies with survival outcomes include clinical trials, time from 

birth until death. Survival analysis arises in many fields of study including medicine, 

biology, engineering, public health, epidemiology, and economics. An attempt is 

made in the current study to outline how a Bayesian approach proceeds to fit Lomax, 

exponential Lomax, and Weibull Lomax models for lifetime data using Stan. The 

tools and techniques used are in a Bayesian environment, which are implemented 

using the rstan package. Stan is a probabilistic programming language for 

specifying statistical models. 

Bayesian inference is based on Bayes’ rule which provides a rational method 

for updating our beliefs in the light of new information. Bayes’ rule states that a 

posterior distribution is the combination of a prior and data information. It does not 

tell what beliefs should be, it tells how they should change after seeing new 

https://doi.org/10.22237/jmasm/1608553800
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information. The prior distribution is important in Bayesian inference since it 

influences the posterior. 

When no information is available, we need to specify a prior which will not 

influence the posterior distribution. Such priors are called weakly-informative or 

non-informative, such as normal, gamma, and half-Cauchy; these types of priors 

will be used throughout the paper. The posterior distribution contains all the 

information needed for Bayesian inference and the objective is to calculate the 

numeric summaries of it via integration. In cases where the conjugate family is 

considered the posterior distribution is available in a closed form and so the 

required integrals are straightforward to evaluate. However, the posterior is usually 

of non-standard form and evaluation of integrals is difficult. 

For evaluating such integrals various methods are available such as Laplace’s 

method (see, for example, Carlin & Louis, 2009; Tierney et al., 1989) and 

numerical integration methods (Evans & Swartz, 1995). Simulation can also be 

used as an alternative technique. Simulation based on Markov chain Monte Carlo 

(MCMC) is used when it is not possible to sample θ directly from a posterior p(θ | y). 

For a wide class of problems, this is the easiest method to get reliable results 

(Gelman et al., 2004). Gibbs sampling, Hamiltonian Monte Carlo, and Metropolis-

Hastings algorithm are the MCMC techniques which render difficult computational 

tasks quite feasible. A variant of MCMC techniques are performed such as 

independence Metropolis and Metropolis within Gibbs sampling. To make 

computation easier, software such as R, Stan (full Bayesian inference using the No-

U-Turn sampler (NUTS), a variant of Hamiltonian Monte Carlo (HMC)) are used. 

Analysis of Lomax Family of Distributions 

Lomax Model 

The Lomax model (Lomax, 1954) attracted the attention of researchers due to its 

applications in various branches of actuarial, medical, biological, engineering, 

lifetime, and reliability modeling. Atkinson and Harrison (1978) applied the Lomax 

distribution to income and wealth data. Myhre and Saunders (1982) applied the 

Lomax distribution in the right censored data. Abd-Elfattah et al. (2007) discussed 

the Bayesian and non-Bayesian estimation problem of sample size in the case of 

type-I censored samples. Based on a cumulative exposure model, the optimal times 

plans of changing stress level of simple stress for the Lomax distribution were 

determined by Hassan and Al-Ghamdi (2009). The optimal times of changing stress 

level for k-level step stress accelerated life tests based on adaptive type-II 
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progressive hybrid censoring with product’s lifetime following the Lomax 

distribution have been investigated by Hassan et al. (2016). 

The cumulative distribution function (cdf) F(y, α, λ), probability density 

function (pdf) f(y, α, λ), survival function S(y, α, λ), and hazard function h(y) of the 

Lomax distribution are given as 

 

 ( )F , , 1 1 ; , , 0
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y y
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Figure 1. Probability density plots, cdf, survival, and hazard curves of Lomax distribution 
for different values of shape and scale 
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The Exponential Lomax Model 

The exponential and Lomax distributions are used widely. The cumulative 

distribution function (cdf) F(y, ν, α, λ), probability density function (pdf) 

f(y, ν, α, λ), survival function S(y, ν, α, λ), and hazard function h(y) of the 

exponential Lomax model are given as 

 

 ( )F , , , 1 1 ; , , , 0
y

y y
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Figure 2. Probability density plots, cdf, survival, and hazard curves of exponential Lomax 
distribution for different values of shapes and at scale = 1 
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Taking ν = 1 in equations (5), (6), and (7), we get equations (1), (2), and (3), 

respectively. 

The Weibull Lomax Model 

A random variable y with the Weibull Lomax distribution has four parameters: ν, 

η, α, and λ. The cumulative distribution function (cdf) F(y, ν, η, α, λ), probability 

density function (pdf) f(y, ν, η, α, λ), survival function S(y, ν, η, α, λ), and hazard 

function h(y) of the Weibull Lomax model are given as 

 

 ( )F , , , , 1 exp 1 1 ; , , , , 0
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,  (9) 

 
 

 
 
Figure 3. Probability density plots, cdf, survival, and hazard curves of Weibull Lomax 
distribution for different values and α = 0.75, λ = 0.5 
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Bayesian Inference 

Some preliminary considerations: 

 

• Prior distribution p(θ): The parameter θ can set a prior distribution that 

uses probability as a means of quantifying uncertainty about θ before 

taking the data into account. 

• Likelihood p(y | θ): A likelihood function for variables related in the full 

probability model. 

• Posterior distribution p(θ | y): The joint posterior distribution that 

expresses uncertainty about parameter θ after taking into account 

information about the prior and the data, as in the following equation: 

 

 ( ) ( ) ( )p | = p | py y   .  (13) 

The Prior Distributions 

Bayesian inference has the prior distribution which represents the information 

about an uncertain parameter θ that is combined with the probability distribution of 

data to get the posterior distribution p(θ | y). For the Bayesian paradigm, it is 

important to specify prior information with the value of the specified parameter or 

information which are obtained before analyzing the experimental data by using a 

probability distribution function which is called the prior probability distribution 
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(or the prior). In this paper, we use two types of priors, which are the half-Cauchy 

prior and the normal prior. The simplest of all priors is conjugate prior which makes 

posterior calculations easy. Also, a conjugate prior distribution for an unknown 

parameter leads to a posterior distribution for which there is a simple formula for 

posterior means and variances. Abujarad and Khan (2018b) used the half-Cauchy 

distribution with scale parameter α = 25 as prior distribution for scale parameters. 

Weakly Informative Priors for the Parameters 

Consider the types of prior distribution, which are the half-Cauchy prior and the 

normal prior. First, the probability density function of half-Cauchy distribution with 

scale parameter α is given by 

 

 ( )
( )2 2

2
f = ; > 0, > 0x x

x




 +
.  

 

The mean and variance of the half-Cauchy distribution do not exist, but its mode is 

equal to 0. The half-Cauchy distribution with scale α = 25 is a recommended, 

default, weakly informative prior distribution for a scale parameter. At this scale, 

α = 25, the density of half-Cauchy is nearly flat but not completely (see Figure 4); 

prior distributions that are not completely flat provide enough information for the 

numerical approximation algorithm to continue to explore the target density, the 

posterior distribution. The inverse-gamma is often used as a non-informative prior 

distribution for the scale parameter. However, this model creates a problem for 

scale parameters near zero. Gelman and Hill (2006) recommend that the uniform 

or, if more information is necessary, the half-Cauchy is a better choice. Thus, in 

this paper, the half-Cauchy distribution with scale parameter α = 25 is used as a 

weakly informative prior distribution. 

Second, in the normal (or Gaussian) distribution, each parameter is assigned 

a weak informative Gaussian prior probability distribution. In this paper, we use 

the parameters βi which are independently normally distributed with mean = 0 and 

standard deviation = 1000, that is, βi ~ N(0, 1000), as this obtains a flat prior. From 

Figure 4, we see the large variance indicates a lot of uncertainty about each 

parameter and hence, a weakly informative distribution. 
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Figure 4. Weakly informative priors 
 

Stan Modeling 

Stan is a high-level language written in a C++ library for Bayesian modeling and 

inference that primarily uses the No-U-Turn sampler (NUTS) (Hoffman & Gelman, 

2014) to obtain posterior simulations given a user-specified model and data. A 

statistical model through a conditional probability function p(θ | y, x) can be 

defined by the Stan program, where θ is a sequence of modeled unknown values, y 

is a sequence of modeled known values, and x is a sequence of un-modeled 

predictors and constants (e.g., sizes, hyperparameters). A Stan program 

imperatively defines a log probability function over parameters conditioned on 

specified data and constants. Stan provides full Bayesian inference for continuous-

variable models through Markov chain Monte Carlo methods (Metropolis et al., 

1953), an adaptive form of Hamiltonian Monte Carlo sampling (Duane et al., 1987). 

Stan can be called from R using the rstan package, and through Python using the 

pystan package. All interfaces support sampling and optimization-based inference 

with diagnostics and posterior analysis. rstan and pystan also provide access to log 

probabilities, parameter transforms, and specialized plotting. Stan programs consist 

of variable type declarations and statements. Variable types include constrained and 

unconstrained integer, scalar, vector, and matrix types. Variables are declared in 
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blocks corresponding to the variable use: data, transformed data, parameter, 

transformed parameter, or generated quantities. 

Bayesian Approach 

Obtain the marginal posterior distribution of the particular parameters of interest. 

In principle, the route to achieving this aim is clear; first, we require the joint 

posterior distribution of all unknown parameters, then, we integrate this distribution 

over the unknowns parameters that are not of immediate interest to obtain the 

desired marginal distribution. Or equivalently, using simulation, we draw samples 

from the joint posterior distribution, then, we look at the parameters of interest and 

ignore the values of the other unknown parameters. 

Lomax Model 

The probability density function (pdf) is given by 

 

 ( )
( )1

f , , = 1
y

y




 
 

− +

 
+ 

 
.  

 

Also, the survival function is given by 

 

 ( ) ( )S , , = 1 F = 1
y

y y



 


−

 
− + 

 
.  

 

Write the likelihood function for right censored (as is our case the data are right 

censored) as 

 

 

( )

( ) ( )

0

1

0

L = p ,

= f S
i i

n

i i

i

n

i i

i

y

y y
 


=

−

=

      





  

 

where δi is an indicator variable which takes the value 0 if the observation is 

censored and 1 if the observation is uncensored. Thus, the likelihood function is 

given by 
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( ) 1
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L = 1 1
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−
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        
   (14) 

 

and the joint posterior density is given by Abujarad and Khan (2018a): 
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
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  (15) 

 

To perform Bayesian inference in the Lomax model, we must specify a prior 

distribution for α and the βs. We discussed the issue associated with specifying 

prior distributions in a previous section, but for simplicity at this point, we assume 

that the prior distribution for α is half-Cauchy on the interval [0, 5] and for β is 

normal on [0, 5]. Elementary application of Bayes’ rule as displayed in (13), applied 

to (14), then gives the posterior density for α and β as equation (15). The result for 

this marginal posterior distribution results in a high-dimensional integral over all 

model parameters βj and α; for solving this integral we use the approximated using 

Markov chain Monte Carlo methods. However, due to the availability of computer 

software package like rstan, this required model can be easily fitted in Bayesian 

paradigm using Stan as well as MCMC techniques. 

Exponential Lomax Model 

The probability density function (pdf) is given by 
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f , , , = 1 1 1
y y

y
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.  

 

Also, the survival function is given by 
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Write the likelihood function for right censored (as is our case the data are right 

censored) as 
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where δi is an indicator variable which takes the value 0 if the observation is 

censored and 1 if the observation is uncensored. Thus, the likelihood function is 

given by 
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and the joint posterior density is given by 
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  (17) 

 

To perform Bayesian inference on the exponential Lomax model, we must 

specify a prior distribution for α, ν, and the βs. Assume the prior distribution for α 

and ν is half-Cauchy on the interval [0, 5] and for β is Normal on [0, 5]. Elementary 

application of Bayes’ rule as displayed in (13), applied to (16), gives the posterior 

density for α, ν, and β as equation (17). The result for this marginal posterior 

distribution is a high-dimensional integral over all model parameters βj, ν, and α. 

For solving this integral we approximate using Markov chain Monte Carlo methods. 
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However, due to the availability of computer software packages like rstan, this 

required model can be easily fitted in Bayesian paradigm using Stan as well as 

MCMC techniques. 

Weibull Lomax Model 

The probability density function (pdf) is given by 
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.  

 

The survival function is given by 

 

 ( )S , , , , = exp 1 1
y

y



    

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.  

 

Write the likelihood function for right censored (as is our case the data are right 

censored) as 
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where δi is an indicator variable which takes the value 0 if the observation is 

censored and 1 if the observation is uncensored. Thus, the likelihood function is 

given by 
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            + − + − + −                       

       − + −   
       





  (18) 
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and the joint posterior density is given by 
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  (19) 

 

To perform Bayesian inference on the Weibull Lomax model, we must 

specify a prior distribution for α, ν, η, and the βs. Assume the prior distribution for 

α, η, and ν is half-Cauchy on the interval [0, 5] and for β is Normal on [0, 5]. 

Elementary application of Bayes’ rule as displayed in (13), applied to (18), gives 

the posterior density for α, ν, η, and β as equation (19). The result for this marginal 

posterior distribution is a high-dimensional integral over all model parameters βj, ν, 

η, and α. For solving this integral we approximate using Markov chain Monte Carlo 

methods. However, due to the availability of computer software packages like rstan, 

this required model can be easily fitted in Bayesian paradigm using Stan as well as 

MCMC techniques. 

Lung Cancer Survival Data 

The data in Table 1 are from a more comprehensive set given by Krall et al. (1975). 

The problem is to relate survival times for multiple myeloma patients to a number 

of prognostic variables. The data given here show survival times, in months, for 65 

patients and include measurements on each patient for the following five covariates: 

 

x1 Logarithm of a blood urea nitrogen measurement at diagnosis. 

x2 Hemoglobin measurement at diagnosis. 

x3 Age at diagnosis. 
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x4 Sex: 0, male; 1, female. 

x5 Serum calcium measurement at diagnosis. 
 
 
Table 1. Lung cancer survival data 
 

t x1 x2 x3 x4 x5  t x1 x2 x3 x4 x5 

1 2.218 9.4 67 0 10  26 1.230 11.2 49 1 11 

1 1.940 12.0 38 0 18  32 1.322 10.6 46 0 9 

2 1.519 9.8 81 0 15  35 1.114 7.0 48 0 10 

2 1.748 11.3 75 0 12  37 1.602 11.0 63 0 9 

2 1.301 5.1 57 0 9  41 1.000 10.2 69 0 10 

3 1.544 6.7 46 1 10  42 1.146 5.0 70 1 9 

5 2.236 10.1 50 1 9  51 1.568 7.7 74 0 13 

5 1.681 6.5 74 0 9  52 1.000 10.1 60 1 10 

6 1.362 9.0 77 0 8  54 1.255 9.0 49 0 10 

6 2.114 10.2 70 1 8  58 1.204 12.1 42 1 10 

6 1.114 9.7 60 0 10  66 1.447 6.6 59 0 9 

6 1.415 10.4 67 1 8  67 1.322 12.8 52 0 10 

7 1.978 9.5 48 0 10  88 1.176 10.6 47 1 9 

7 1.041 5.1 61 1 10  89 1.322 14.0 63 0 9 

7 1.176 11.4 53 1 13  92 1.431 11.0 58 1 11 

9 1.724 8.2 55 0 12  4 1.945 10.2 59 0 10 

11 1.114 14.0 61 0 10  4* 1.924 10.0 49 1 13 

11 1.230 12.0 43 0 9  7* 1.114 12.4 48 1 10 

11 1.301 13.2 65 0 10  7* 1.532 10.2 81 0 11 

11 1.508 7.5 70 0 12  8* 1.079 9.9 57 1 8 

11 1.079 9.6 51 1 9  12 1.146 11.6 46 1 7 

13 0.778 5.5 60 1 10  11* 1.613 14.0 60 0 9 

14 1.398 14.6 66 0 10  12* 1.398 8.8 66 1 9 

15 1.602 10.6 70 0 11  13* 1.663 4.9 71 1 9 

16 1.342 9.0 48 0 10  16* 1.146 13.0 55 0 9 

16 1.322 8.8 62 1 10  19* 1.322 13.0 59 1 10 

17 1.230 10.0 53 0 9  19* 1.322 10.8 69 1 10 

17 1.591 11.2 68 0 10  28* 1.230 7.3 82 1 9 

18 1.447 7.5 65 1 8  41* 1.756 12.8 72 0 9 

19 1.079 14.4 51 0 15  53* 1.114 12.0 66 0 11 

19 1.255 7.5 60 1 9  57* 1.255 12.5 66 0 11 

24 1.301 14.6 56 1 9  77* 1.079 14.0 60 0 12 

25 1.000 12.4 67 0 10        

 

Note: t = Days of survival 
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Implementation using Stan 

Bayesian modeling of the Lomax family in the rstan package includes the creation 

of blocks, data, transformed data, parameter, transformed parameter, or generated 

quantities. To use the method for Lomax model, exponential Lomax, and Weibull 

Lomax, first you must build a function for the model containing the following 

objects: 

 

• Define the log survival. 

• Define the log hazard. 

• Define the sampling distributions for right censored data. 

 

Then the distribution should be based on the function definition blocks. The 

function definition block contains user defined functions. The data block declares 

the required data for the model. The transformed data block allows the definition 

of constants and transforms of the data. The parameters block declares the model’s 

parameters. The transformed parameters block allows variables to be defined in 

terms of data and parameters that may be used later and will be saved. The model 

block is where the log probability function is defined. 

Model Specification 

Now look for the posterior estimates of the parameters when the Lomax, 

exponential Lomax and Weibull Lomax models are fitted to the above data. The 

first most requirement for the Bayesian fitting is the definition of the likelihood. 

Here, we have likelihood as: 
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Thus, our log-likelihood becomes 
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log L log h log
i

n

i t

i

t S


=

= +   .  

 

Lomax Model 

The first model is Lomax: 

 

 ( )~ Lomax ,y   ,  

 

where λ = exp(Xβ). The Bayesian framework requires the specification of prior 

distributions for the parameters. Here, we stick to subjectivity and thus introduce 

weakly informative priors for the parameters. Priors for the βs and α are taken to be 

normal and half-Cauchy as follows: 

 

 
( )

( )

~ N 0,5 ; 1, 2,3, ,

~ HC 0,5

j j J



=
  

 

Finally, the fitting is done with the Stan function using the following commands: 

 

library(rstan) 

model_code1=" 

functions{ 

//defined survival, shape= , scale= . 

vector log_s(vector t, real shape, vector scale){ 

vector[num_elements(t)] log_s; 

for(i in 1:num_elements(t)){ 

log_s[i]=log((1+t[i] / scale[i])^-shape);}  

return log_s;} 

//define log_ft, shape= , scale= . 

vector log_ft(vector t, real shape, vector scale){ 

vector[num_elements(t)] log_ft; 

for(i in 1:num_elements(t)){ 

log_ft[i]=log((shape / scale[i]) * (1+t[i] / scale[i])^-

(shape+1));} 

return log_ft;} 

//define log hazard, shape= , scale= . 
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vector log_h(vector t, real shape, vector scale){ 

vector[num_elements(t)] log_h; 

vector[num_elements(t)] logft; 

vector[num_elements(t)] logs; 

logft=log_ft(t,shape,scale); 

logs=log_s(t,shape,scale); 

log_h=logft-logs; 

return log_h;} 

//define the sampling distribution , shape=alpha, scale=lambda. 

real surv_lom_lpdf(vector t, vector d, real shape, vector scale){ 

vector[num_elements(t)] log_lik; 

real prob; 

log_lik=d .* log_h(t,shape,scale)+log_s(t,shape,scale); 

prob=sum(log_lik); 

return prob;}} 

 

Therefore, obtain the survival and hazard of the Lomax model. 

Exponential Lomax Model 

The second model is exponential Lomax: 

 

 ( )~ EL , ,y    ,  

 

where λ = exp(Xβ). The Bayesian framework requires the specification of prior 

distributions for the parameters. Here, we stick to subjectivity and thus introduce 

weakly informative priors for the parameters. Priors for the βs, α, and ν are taken 

to be normal and half-Cauchy as follows: 

 

 
( )

( )

~ N 0,5 ; 1, 2,3, ,

, ~ HC 0,5

j j J

 

=
  

 

Finally, the fitting is done with the Stan function using the following commands: 

 

model_code1=" 

functions{ 

//defined survival, shape1= ,shape2=  , scale=  

vector log_s(vector t, real shape1, real shape2 ,vector scale){ 
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vector[num_elements(t)] log_s; 

for(i in 1:num_elements(t)){ 

log_s[i]=log(1-(1-(1+t[i] / scale[i])^-shape1)^shape2);}  

return log_s;} 

//define log_ft, shape1= ,shape2=  , scale=  

vector log_ft(vector t, real shape1, real shape2 , vector scale){ 

vector[num_elements(t)] log_ft; 

for(i in 1:num_elements(t)){ 

log_ft[i]=log((shape1*shape2/scale[i])*(1+t[i]/scale[i])^-

(shape1+1)*(1-(1+t[i]/scale[i])^(-shape1))^(shape2-1));} 

return log_ft;} 

//define log hazard, shape1= ,shape2=  , scale=  

vector log_h(vector t, real shape1, real shape2 , vector scale){ 

vector[num_elements(t)] log_h; 

vector[num_elements(t)] logft; 

vector[num_elements(t)] logs; 

logft=log_ft(t,shape1,shape2,scale); 

logs=log_s(t,shape1,shape2,scale); 

log_h=logft-logs; 

return log_h;} 

//define the sampling distribution  

real surv_lomE_lpdf(vector t, vector d, real shape1, real 

shape2 , vector scale){ 

vector[num_elements(t)] log_lik; 

real prob; 

log_lik=d .* 

log_h(t,shape1,shape2,scale)+log_s(t,shape1,shape2,scale); 

prob=sum(log_lik); 

return prob;}} 

 

Therefore, obtain the survival and hazard of the exponential Lomax model. 

Weibull Lomax Model 

The third model is Weibull Lomax: 

 

 ( )~ WL , , ,y     ,  
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where λ = exp(Xβ). The Bayesian framework requires the specification of prior 

distributions for the parameters. Here, we stick to subjectivity and thus introduce 

weakly informative priors for the parameters. Priors for the βs, α, ν, and η are taken 

to be normal and half-Cauchy as follows: 

 

 
( )

( )

~ N 0,5 ; 1,2,3, ,

, , ~ HC 0,5

j j J

  

=
  

 

Finally, the fitting is done with the Stan function using the following commands: 

 

model_code1=" 

functions{ 

//defined survival, shape1= ,shape2= , shape3=  ,scale=  

vector log_s(vector t, real shape1, real shape2 ,real shape3, 

vector scale){ 

vector[num_elements(t)] log_s; 

for(i in 1:num_elements(t)){ 

log_s[i]=log(exp(-shape1*(((1+t[i] / scale[i])^shape3)-

1)^shape2));}  

return log_s;} 

//define log_ft shape1= ,shape2= , shape3=  ,scale=  

vector log_ft(vector t, real shape1, real shape2, real shape3, 

vector   scale){ 

vector[num_elements(t)] log_ft; 

for(i in 1:num_elements(t)){ 

log_ft[i]=log((shape1*shape2*shape3/scale[i])*((1+t[i]/scale[i])^

(shape2*shape3-1))*((1-(1+t[i]/scale[i])^(-shape3))^(shape2-

1))*exp(-shape1*(((1+t[i]/scale[i])^(shape3))-1)^shape2));} 

return log_ft;} 

//define log hazard shape1= ,shape2= , shape3=  ,scale=  

vector log_h(vector t, real shape1, real shape2 ,real shape3, 

vector scale){ 

vector[num_elements(t)] log_h; 

vector[num_elements(t)] logft; 

vector[num_elements(t)] logs; 

logft=log_ft(t,shape1,shape2,shape3,scale); 

logs=log_s(t,shape1,shape2,shape3,scale); 
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log_h=logft-logs; 

return log_h;} 

//define the sampling distribution  

real surv_lomW_lpdf(vector t, vector d, real shape1, real 

shape2 ,real shape3, vector scale){ 

vector[num_elements(t)] log_lik; 

real prob; 

log_lik=d.*log_h(t,shape1,shape2,shape3,scale)+log_s(t,shape1,sha

pe2,shape3,scale); 

prob=sum(log_lik); 

return prob;}} 

 

Therefore, obtain the survival and hazard of the Exponential Lomax model. 

Build the Stan 

Stan contains a set of blocks as described before; the first block to work on is data 

block. In this block create a number of observations that include observed times, a 

censoring indicator (1 = observed, 0 = censored), a number of covariates, and build 

the matrix of covariates (with N rows and M columns). Then, create the parameter 

in block parameters because there is more than one parameter. Then, do some 

transformations of the parameters in blocks of transformed parameters. Finally, 

create the models in blocks Model. In these blocks, put the prior for the parameters 

and the likelihood in this block to get the posterior distribution for this model. After 

this, save the work in a file to use in the rstan package. 

Lomax Model 

//data block 

data { 

int N;                            // number of observations 

vector<lower=0>[N] y;             // observed times 

vector<lower=0,upper=1>[N] censor;//censoring indicator 

(1=observed, 0=censored) 

int M;                            // number of covariates 

matrix[N, M] x;  }          // matrix of covariates (with N rows 

and M columns) 

parameters { 
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vector[M] beta; // Coefficients in the linear predictor 

(including intercept) 

real<lower=0> shape; }   // shape parameter 

transformed parameters { 

vector[N] linpred; 

vector[N] scale; 

linpred = x*beta; 

for (i in 1:N) { 

scale[i] = exp(linpred[i]);}} 

model { 

shape ~ cauchy(0,25); 

beta  ~ normal(0,5); 

y ~ surv_lom(censor, shape, scale);} 

" 

Exponential Lomax Model 

//data block 

data { 

int N;                            // number of observations 

vector<lower=0>[N] y;             // observed times 

vector<lower=0,upper=1>[N] censor;//censoring indicator 

(1=observed, 0=censored) 

int M;                            // number of covariates 

matrix[N, M] x; }           // matrix of covariates (with N rows 

and M columns) 

parameters { 

vector[M] beta; // Coefficients in the linear predictor 

(including intercept) 

real<lower=0> shape1;    // shape parameter 

real<lower=0> shape2; }   // shape parameter 

transformed parameters { 

vector[N] linpred; 

vector[N] scale; 

linpred = x*beta; 

for (i in 1:N) { scale[i] = exp(linpred[i]); }} 

model { 

shape1 ~ cauchy(0,25); 

shape2 ~ cauchy(0,25); 
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beta   ~ normal(0,25); 

y ~ surv_lomE(censor, shape1,shape2, scale);} 

" 

Weibull Lomax Model 

//data block 

data { 

int N;                            // number of observations 

vector<lower=0>[N] y;             // observed times 

vector<lower=0,upper=1>[N] censor;//censoring indicator 

(1=observed, 0=censored) 

int M;                            // number of covariates 

matrix[N, M] x; }           // matrix of covariates (with N rows 

and M columns) 

parameters { 

vector[M] beta; // Coefficients in the linear predictor 

(including intercept) 

real<lower=0> shape1;     // shape1 parameter 

real<lower=0> shape2;     // shape2 parameter 

real<lower=0> shape3; }   // shape3 parameter 

transformed parameters { 

vector[N] linpred; 

vector[N] scale; 

linpred = x*beta; 

for (i in 1:N) { scale[i] = exp(linpred[i]); }} 

model { 

shape1 ~ cauchy(0,25); 

shape2 ~ cauchy(0,25); 

shape3 ~ cauchy(0,25); 

beta ~ normal(0,5); 

y ~ surv_lomW(censor, shape1,shape2,shape3, scale); } 

" 

Creation of Data for Stan 

Now create the data to use for analysis; data creation requires model matrix X, a 

number of predictors M, and information regarding the censoring and response 

variable. The number of observations is specified by N, that is, 65. Censoring is 
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taken into account, where 0 stands for censored and 1 for uncensored values. Finally, 

all these operations are combined in a listed form as dat. 

 

y<-

c(1,1,2,2,2,3,5,5,6,6,6,6,7,7,7,9,11,11,11,11,11,13,14,15,16,

16,17,17,18,19,19,24,25,26,32,35,37,41,42,51,52,54,58,66,67,8

8,89,92,4,4,7,7,8,12,11,12,13,16,19,19,28,41,53,57,77) 

x1<-

c(2.218,1.940,1.519,1.748,1.301,1.544,2.236,1.681,1.362,2.114

,1.114,1.415,1.978,1.041,1.176,1.724,1.114,1.230,1.301,1.508,

1.079,0.778,1.398,1.602,1.342,1.322,1.230,1.591,1.447,1.079,1

.255,1.301,1.000,1.230,1.322,1.114,1.602,1.000,1.146,1.568,1.

000,1.255,1.204,1.447,1.322,1.176,1.322,1.431,1.945,1.924,1.1

14,1.532,1.079,1.146,1.613,1.398,1.663,1.146,1.322,1.322,1.23

0,1.756,1.114,1.255,1.079) 

x2<-

c(9.4,12.0,9.8,11.3,5.1,6.7,10.1,6.5,9.0,10.2,9.7,10.4,9.5,5.

1,11.4,8.2,14.0,12.0,13.2,7.5,9.6,5.5,14.6,10.6,9.0,8.8,10.0,

11.2,7.5,14.4,7.5,14.6,12.4,11.2,10.6,7.0,11.0,10.2,5.0,7.7,1

0.1,9.0,12.1,6.6,12.8,10.6,14.0,11.0,10.2,10.0,12.4,10.2,9.9,

11.6,14.0,8.8,4.9,13.0,13.0,10.8,7.3,12.8,12.0,12.5,14.0) 

x3<-

c(67,38,81,75,57,46,50,74,77,70,60,67,48,61,53,55,51,43,65,70

,51,60,60,70,48,62,53,68,65,51,60,56,67,49,46,48,63,69,70,74,

60,49,42,59,52,47,63,58,59,49,48,81,57,46,60,66,71,55,59,69,8

2,72,66,66,60) 

x4<-

c(0,0,0,0,0,1,1,0,0,1,0,1,0,1,1,0,0,0,0,0,1,1,0,0,0,1,0,0,1,0

,1,1,0,1,0,0,0,0,1,0,1,0,1,0,0,1,0,1,0,1,1,0,1,1,0,1,1,0,1,1,

1,0,0,0,0) 

x5<-

c(10,18,15,12,9,10,9,9,8,8,10,8,10,10,13,12,10,9,10,12,9,10,1

0,11,10,10,9,10,8,15,9,9,10,11,9,10,9,10,9,13,10,10,10,9,10,9

,9,11,10,13,10,11,8,7,9,9,9,9,10,10,9,9,11,11,12)  

censor<-

c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0) 
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x <- cbind(1,x1,x2,x3,x4,x5) 

N = nrow(x) 

M = ncol(x) 

event=censor 

dat <- list( y=y, x=x, event=event, N=N, M=M) 

Running the Model using Stan for Lomax Model 

#regression coefficient with log(y) as a guess to initialize 

beta1=solve(crossprod(x),crossprod(x,log(y))) 

#convert matrix to a vector 

beta1=c(beta1) 

M00<-

stan(model_code=model_code1,init=list(list(beta=beta1)),data=

dat,iter=1000,chains=1) 

Summarizing Output 

The function rstan approximates the posterior density of the fitted model and the 

posterior summaries can be seen in the following tables. Table 2 contains 

summaries for all chains merged and individual chains, respectively. Included in 

the summaries are quantiles, means, standard deviations (sd), effective sample sizes 

(n_eff), and split (Rhats) (the potential scale reduction derived from all chains after 

splitting each chain in half and treating the halves as chains). For the summary of 

all chains merged, Monte Carlo standard errors (se_mean) are also reported. 
 
 
Table 2. Summary of the simulated results using rstan function with Mean stands for 
posterior mean, se_mean, sd for posterior standard deviation, LB, Median, UB are 2.5%, 
50%, 97.5% quantiles, n_eff for number effective sample size, and Rhat, respectively 
 

 Mean se_mean sd 2.50% 25% 50% 75% 97.50% n_eff Rhat 

beta[1] 5.6089 0.1240 2.0703 1.5289 4.2831 5.6102 7.0116 9.5042 279 0.9995 

beta[2] -1.5127 0.0312 0.6156 -2.6675 -1.9476 -1.5312 -1.0925 -0.3258 390 0.9983 

beta[3] 0.1558 0.0040 0.0678 0.0296 0.1092 0.1544 0.2009 0.2899 281 1.0006 

beta[4] 0.0252 0.0008 0.0178 -0.0109 0.0135 0.0256 0.0376 0.0595 489 1.0001 

beta[5] 0.1466 0.0192 0.3698 -0.4930 -0.1249 0.1394 0.4029 0.8843 373 0.9980 

beta[6] -0.1163 0.0054 0.1082 -0.3116 -0.1882 -0.1176 -0.0538 0.1249 405 0.9981 

shape 13.3384 1.7943 25.5222 2.0063 4.6611 7.2923 13.0081 53.8389 202 0.9997 

lp__ -211.7708 0.1160 1.9048 -216.3929 -212.7992 -211.4257 -210.4121 -208.9114 270 0.9990 

dev 423.1262 0.2380 3.8849 417.5023 420.4241 422.5258 425.2199 433.6832 266 0.9983 
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Figure 5. Caterpillar plot for Lomax model 
 

 

The selection of appropriate regressor variable can also be done by using a 

caterpillar plot. Caterpillar plots are popular plots in Bayesian inference for 

summarizing the quantiles of posterior samples. We can see in Figure 5 that the 

caterpillar plot is a horizontal plot of 3 quantiles of the selected distribution. This 

may be used to produce a caterpillar plot of posterior samples. 

Running the Model using Stan for Exponential Lomax Model 

#regression coefficient with log(y) as a guess to initialize 

beta1=solve(crossprod(x),crossprod(x,log(y))) 

#convert matrix to a vector 

beta1=c(beta1) 

M11<-

stan(model_code=model_code1,init=list(list(beta=beta1)),data=

dat,iter=1000,chains=1) 

Summarizing Output 

The function rstan approximates the posterior density of the fitted model and 

posterior summaries can be seen in the following tables. Table 3 contains 

summaries for all chains merged and individual chains, respectively. Included in 

the summaries are quantiles, means, standard deviations (sd), effective sample sizes 

(n_eff), and split (Rhats) (the potential scale reduction derived from all chains after 
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splitting each chain in half and treating the halves as chains). For the summary of 

all chains merged, Monte Carlo standard errors (se_mean) are also reported. 

The selection of appropriate regressor variable can also be done by using a 

caterpillar plot. Caterpillar plots are popular plots in Bayesian inference for 

summarizing the quantiles of posterior samples. We can see in Figure 6 that the 

caterpillar plot is a horizontal plot of 3 quantiles of the selected distribution. 
 
 
Table 3. Summary of the simulated results using rstan function with Mean stands for 
posterior mean, se_mean, sd for posterior standard deviation, LB, Median, UB are 2.5%, 
50%, 97.5% quantiles, n_eff for number effective sample size, and Rhat, respectively 
 

 Mean se_mean sd 2.50% 25% 50% 75% 97.50% 
n_ef

f Rhat 

beta[1] 3.5139 0.1745 2.0718 -0.5590 2.1267 3.4463 5.0398 7.5326 141 1.0185 

beta[2] -1.5541 0.0196 0.4393 -2.3904 -1.8659 -1.5400 -1.2403 -0.7263 500 0.9997 

beta[3] 0.1594 0.0031 0.0548 0.0546 0.1219 0.1587 0.1920 0.2650 311 1.0025 

beta[4] 0.0112 0.0008 0.0144 -0.0161 0.0016 0.0103 0.0204 0.0413 347 0.9988 

beta[5] 0.2547 0.0196 0.3123 -0.3490 0.0388 0.2530 0.4781 0.8200 255 1.0011 

beta[6] -0.1606 0.0046 0.0798 -0.3107 -0.2154 -0.1593 -0.1089 0.0042 301 0.9996 

shape1 2.6087 0.2872 4.2739 0.8902 1.1702 1.4611 2.3965 10.8118 221 1.0042 

shape2 8.7931 2.0758 23.4918 1.2799 2.1065 3.6149 6.6342 41.1162 128 1.0197 

lp__ -207.7097 0.1344 1.8616 -212.2721 -208.8383 -207.4109 -206.3405 -204.7106 192 1.0039 

dev 416.4598 0.2666 3.5951 410.8526 413.8118 415.9122 418.5855 425.0859 182 1.0102 

 
 

 
 
Figure 6. Caterpillar plot for exponential Lomax model 
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Running the Model using Stan for Weibull Lomax Model 

#regression coefficient with log(y) as a guess to initialize 

beta1=solve(crossprod(x),crossprod(x,log(y))) 

#convert matrix to a vector 

beta1=c(beta1) 

M22<-

stan(model_code=model_code1,init=list(list(beta=beta1)),data=

dat,iter=1000,chains=1) 

Summarizing Output 

The function rstan approximates the posterior density of the fitted model and 

posterior summaries can be seen in the following tables. Table 4 contains 

summaries for all chains merged and individual chains, respectively. Included in 

the summaries are quantiles, means, standard deviations (sd), effective sample sizes 

(n_eff), and split (Rhats) (the potential scale reduction derived from all chains after 

splitting each chain in half and treating the halves as chains). For the summary of 

all chains merged, Monte Carlo standard errors (se_mean) are also reported. 

The selection of appropriate regressor variable can also be done by using a 

caterpillar plot. Caterpillar plots are popular plots in Bayesian inference for 

summarizing the quantiles of posterior samples. We can see in Figure 7 that the 

caterpillar plot is a horizontal plot of 3 quantiles of the selected distribution. 
 
 
Table 4. Summary of the simulated results using rstan function with Mean stands for 
posterior mean, se_mean, sd for posterior standard deviation, LB, Median, UB are 2.5%, 
50%, 97.5% quantiles, n_eff for number effective sample size, and Rhat, respectively 
 

 Mean se_mean sd 2.50% 25% 50% 75% 97.50% n_eff Rhat 

beta[1] 2.6908 0.2807 2.9114 -2.4083 0.6400 2.6679 4.5507 8.7606 108 0.9993 

beta[2] -1.5325 0.0270 0.4978 -2.4714 -1.8583 -1.5445 -1.2044 -0.5361 339 1.0040 

beta[3] 0.1371 0.0032 0.0582 0.0265 0.0996 0.1357 0.1741 0.2578 320 1.0122 

beta[4] 0.0185 0.0009 0.0150 -0.0082 0.0083 0.0179 0.0287 0.0496 299 1.0078 

beta[5] 0.1174 0.0171 0.3233 -0.4502 -0.1057 0.1027 0.3428 0.7776 356 1.0034 

beta[6] -0.1274 0.0046 0.0939 -0.3117 -0.1925 -0.1227 -0.0633 0.0466 418 0.9991 

shape 1 13.5279 2.6027 4.0793 0.2709 2.0477 4.9785 10.3969 61.3541 287 1.0125 

shape 2 2.2235 0.1069 1.1900 0.9090 1.2989 1.8814 2.8694 5.2507 124 1.0026 

shape 3 1.2650 0.3346 6.3690 0.0693 0.1233 0.2009 0.4644 8.7262 362 0.9982 

lp__ -210.0986 0.1596 2.1192 -214.8266 -211.2244 -209.8324 -208.6732 -206.7228 176 1.0091 

dev 418.4230 0.3054 3.9798 412.0384 415.4552 418.1524 420.4794 427.7097 170 1.0018 
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Figure 7. Caterpillar plot for Weibull Lomax model 
 

Conclusion 

To select a model for the models discussed in this paper, it is necessary to a draw a 

comparison among them. the result should be tabulated and analyzed as in Table 5. 

The exponential Lomax is the most appropriate model for the stan for the data used, 

as it has a minimum value of deviance as compared with Lomax and Weibull 

Lomax. The deviance is very good criterion for model comparisons. 
 
 
Table 5. Model comparison of Lomax, Weibull Lomax, and exponential Lomax models for 
the myloma data; it is evident from this table that exponential Lomax is much better than 
Weibull Lomax and Lomax 
 

Model Stan deviance 

Lomax 422.52 

Exponential Lomax 415.91 

Weibull Lomax 418.15 
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