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Bandopadhyaya (1980) developed a dual to product estimator using robust modified 

maximum likelihood estimators (MMLE’s). Their properties were obtained theoretically 

and supported through simulations studies with generated as well as one real data set. 

Robustness properties in the presence of outliers and confidence intervals were studied. 

 

Keywords: Product estimator, dual to product estimator, simulation study, modified 

maximum likelihood, transformed auxiliary variable 

 

Introduction 

Estimating population parameters are common problems in almost all areas like 

management, engineering, and social science at the different stages of estimation 

procedure. Sometimes supplementary information on several variables is useful for 

estimating population parameters. In practice, when the correlation coefficient is 

negatively high between the study variable and auxiliary variables, a product type 

estimator is used to estimate population mean and the estimator is more efficient 

than the simple mean estimator under some realistic conditions. Further, the 

utilization of such supplementary information in sample surveys has been studied 

broadly by Yates (1960), Murthy (1967), Cochran (1977), Sukhatme et al. (1984), 

S. Singh (2003), Bouza (2008, 2015), Chanu and Singh (2014a, b), Gupta and 

Shabbir (2008, 2011), Diana et al. (2011), Choudhury and Singh (2012), H. P. 

Singh and Solanki (2012), Tato et al. (2016), Kumar (2015), Kumar and 

Chhaparwal (2016a), and Yadav and Kadilar (2013). 

https://doi.org/10.22237/jmasm/1608553620
https://doi.org/10.22237/jmasm/1608553620
mailto:rahibhu@gmail.com
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Consider a finite population π: (π1, π2,…, πN) of size N units. Let yi and xi are 

the values of the study (y) and the auxiliary (x) variable, respectively. Now, let 

 

 
1 1

1 1
and

N N

i i

i i

Y y X x
N N= =

= =    

 

be the population means, Cy and Cx be the coefficient of variations of the study (y) 

and the auxiliary (x) variables, respectively, and the correlation coefficient between 

the study and the auxiliary variables be ρyx. Murthy (1964) suggested the product 

estimator (y̅p) for the population mean Y̅ given by 
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y
y x
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= ,  (1) 

 

where 
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,
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and n is the number of units in the sample. 

The expressions for bias and the mean square error (MSE) of the estimator y̅p 

are as follows: 
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where 
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is the covariance between the study and auxiliary variables. 

By taking a transformation, 

 

 ( ), 1,2, ,i
i

NX nx
x i N

N n

 −
= =

−
  

 

Bandopadhyaya (1980) studied a dual to product estimator given by 

 

 1

y
t X

x 
= ,  (4) 

 

where 

 

 iNX nx
x

N n

 −
=

−
,  

 

and the correlations corr(y, x) and ( )corr , iy x  are negative and positive, 

respectively. 

The expressions for mean square error and bias of the estimator t1 are 

 

 ( ) ( ) 2

1

1
B 1 x

f
t k YC

n


− 
= + 
 

  (5) 

 

and 

 

 ( ) ( )2 2 2 2

1

1
MSE 2Y x yx y x

f
t Y C C C C

n
 

− 
= + + 
 

,  (6) 

 

where ρyx (< 0) is the correlation between y and x, γ = n / (N – n), 

( )2

yx x yx y xk C C C C= = . 
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The estimator t1 is preferred to y̅p when k > –(1 + γ)/2, (1 – γ) > 0, k being 

negative because ρyx < 0. 

The studies mentioned above were limited to normal populations. The aim of 

this study is to consider the case where the population is not normal, i.e., real life 

situations. A new modified dual to product type estimator is proposed based on 

modified maximum likelihood (MML) methodology. 

Long Tailed Symmetric Family 

Let a linear regression model yi =  θxi + ei; i = 1, 2,…, n. Consider a study variable 

y from the long tailed symmetric family 

 

 ( ) ( )
2

1
f LTS , 1

1 1

2 2

p

p y
y p

K
K p







−

  −  
= = +  
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,  (7) 

 

–∞ < y < ∞, where K = 2p – 3 and p ≥ 2 is the shape parameter (p is known) with 

E(y) = μ and Var(y) = σ2. Here the kurtosis of (7) can be obtained as 
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.  

 

Assume p = 2.5, 3.5, 4.5, and 5.5, which correspond to a kurtosis of ∞, 6, 4.5, and 

4.0. (7) reduces to a normal distribution when p = ∞. The likelihood function 

obtained from (7) is given by 

 

 2

1

1
LogL log log 1 ;

n
i

i i

i

y
n p z z

K


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 
 .  (8) 

 

The solution of the likelihood equation (assuming σ is known), 
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will produce the MLE of μ, which does not have explicit solutions. 

For all the shape parameters p < ∞,Vaughan (1992a) and Oral (2010) showed 

that equation (8) has multiple unknown roots and the robust MMLE asymptotically 

equivalent to the MLE are obtained as 

 

1. The likelihood equations are expressed in ordered variates: 

 

 y(1) ≤ y(2) ≤ ⋯ ≤ y(n), 

 

2. The function g(zi) are linearized by Taylor series expansion around 
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up to the first two terms. 

3. A unique solution (MMLE) is obtained after the solving the equation. 

 

The values of t(i); 1 ≤ i ≤ n were suggested by Tiku and Kumra (1985) for 

p =2 (0.5) 10 and Vaughan (1992b) for p = 1.5, n ≤ 20. For n > 20, the values of t(i) 

can be approximated from the equations 
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A Taylor series expansion of g(z(i)) around t(i) up to the first two terms of expansion 

gives 
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Further, for symmetric distributions, it may be noted that t(i) = –t(n–i+1) and hence 
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Now, (11) along with (12) and (13) give the modified likelihood equation given by 

 

 
( )( )

1

LogL LogL 2
0

n

i i i
i

d d p
z

d d K
 

  



=

 = + = .  (15) 

 

Hence, (15) provides the MMLE ̂  given by 
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Tiku and Vellaisamy (1996) and Oral and Oral (2011) showed 
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 ( )ˆE 0Y − =   (17) 

 

and 
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The exact variance of ̂  is given by ( ) ( )( )2 2ˆV m = β β , where 

β' = (β1, β2, β3,…, βn) and 
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


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( ) ( )( )2ˆCov , y m = β ω , where ω' = (1 /n , 1 / n,…, 1 / n)1×n. Tiku and Kumra 

(1985) and Vaughan (1992b) tabulated the elements of Ω. 

Tiku and Suresh (1992) and Tiku and Vellaisamy (1996) studied the MMLE 

̂  (assuming σ is unknown), i.e., 
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2 4
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F F nC

n n
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+ +
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where 

 

 ( ) ( )( )
2
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2 2
ˆ,

n n

i ii i
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Puthenpura and Sinha (1986), Tiku and Suresh (1992), Oral (2006, 2010), 

Oral and Oral (2011), Oral and Kadilar (2011), and Kumar and Chhaparwal (2016b, 

c, 2017) have studied the methodology of MML, where maximum likelihood (ML) 

estimation is intractable. Vaughan and Tiku (2000) discussed that MMLEs and ML 

estimators (MLEs) have the same asymptotic properties under certain regularity 

conditions, and both are as efficient as MLEs for small n values. 
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The Proposed Dual to Product Estimator and its Bias and 
Mean Square Error (MSE)  

In the field of sample surveys, MMLE (16) was used by Tiku and Bhasin (1982) 

and Tiku and Vellaisamy (1996) to improve efficiencies in estimators. Using such 

methodology, a new dual to product estimator is proposed: 

 

 1

ˆ
T X

x




= ,  (20) 

 

where X̅ is known. The expressions for bias and MSE of the proposed estimator T1, 

up to the terms of order n–1, are given as follows: 

Let ( ) ( )0 1
ˆ 1 , 1Y x X = + = +ò ò , such that E(ϵ0) = 0 = E(ϵ1), | ϵ1| < 1. Under 

SRSWOR method of sampling, 
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 ( ) ( ) ( ) 1
ˆB V Cov ,T R x x

X


 = +   (21) 

 

and 

 

 ( ) ( ) ( ) ( )
2 2 2

1
ˆ ˆMSE E V 2 Cov ,T Y R x R x   = − + + ,  (22) 

 

where the term ( )ˆCov , x  is calculated by Oral and Oral (2011) as 

 

 ( ) ( )  ( )    ( ) 1 1
ˆ ˆ ˆCov , Cov , Cov , Cov , ,x y e y x e e   
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where 

 

  
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and x[i] is the concomitant of y(i). Here x in y = θx + e is assumed to be non-

stochastic (Oral & Oral, 2011) and hence Cov(xi, ej) is not affected by the ordering 

of the y values for 1 ≤ i ≤ n and 1 ≤ j ≤ n; therefore 

 

 ( ) ( )  ( ) 1
ˆ ˆCov , Cov , Cov ,x y e e 


= − ,  

 

where  ( ) ( )( )2Cov , ee e m= β ω . Note in the case of exceeding 5% of the 

sampling fraction n / N, the finite population correction (N – n) / N can be presented 

as 

 

 ( ) ( )  ( ) ˆ ˆCov , Cov , Cov ,
N n

x y e e
N

 


−
= − .  

Monte Carlo Simulation 

R is used as the simulation platform. The model in the generated super-population 

models is given by 

 

 , 1,2, ,i i iy x e i N= + = .  (23) 

 

The error term ei, i = 1, 2,…, N, with E(e) = 0 and ( ) 2V ee = , and the auxiliary 

variable xi are generated independently from each other and then yi is calculated 

using (23). The calculations for the mean square error of (20) are performed as 

follows: 

Consider the size of the population N = 500 and select a sample of size n (= 5, 

11, 15, 21, 31, 51) from the finite population by SRSWOR. Out of the possible 500 

choose n SRSWOR samples of size n (= 5, 11, 15, 21, 31, 51), select S = 1,00,000 

random samples and calculate the values of mean square error (MSE) of different 

estimators as follows: 

 



KUMAR & CHHAPARWAL 

11 

 ( ) ( ) ( ) ( ) ( ) ( )
2 2 2

1 1 1 1

1 1 1

1 1 1
MSE ,MSE ,MSE

S S S

j j p pj

j j j

T T Y t t Y y y Y
S S S= = =

= − = − = −     

 

Now, in the model y = θx + e, the value of θ is chosen by following Rao and Beegle 

(1967), Oral and Oral (2011), and Oral and Kadilar (2011) in such a way that the 

correlation coefficient between the study (y) and the auxiliary (x) variables is 

ρyx = -0.55. The value of θ is calculated using σ2 = 1 without loss of generality. 

Comparison of Efficiencies of the Proposed Estimator 

The conditions under which the proposed estimator T1 is more efficient than the 

corresponding estimators y̅p and t1 are given as follows: 
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for R > 0, 
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for R < 0, where 
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Two different super-population models as suggested by Oral and Kadilar 

(2011) are given below to observe the performance of the proposed modified 

estimator. Model 2 is taken for knowing the effeteness of outliers. 

 

Model 1. x ~ U(1, 2.5) and y ~ LTS(p, 1) 

Model 2. x ~ exp(1) and y ~ LTS(p, 1) 

 

For Models 1 and 2, the values of θ are given in Table 1. A scatter graph and a 

histogram for the underlying distribution of Model 2 for p = 3.5 are provided in 

Figure 1. 
 
 
Table 1. Parameter values of θ used in Models 1 and 2 that give ρyx = –0.55 
 

 p 

Population 2.5 4.5 5.5 

Model 1 -1.521 -1.521 -1.521 

Model 2 -0.659 -0.659 -0.659 

 
 

 
 
Figure 1. (a) Scatter graph of the study variable and auxiliary variable; (b) Underlying 
distribution of the study variable obtained from Model 2 for p = 3.5 
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Table 2. Mean square error and efficiencies of the estimators under super-populations 1 
and 2 
 

Model 1: x ~ U(1, 2.5) and y ~ LTS(p, 1) 
  n 

p Estimator 5 11 15 21 31 51 

2.5 T1 201.97 203.80 208.33 206.02 192.55 190.00 
  (0.1266) (0.0526) (0.0360) (0.0266) (0.0188) (0.0120) 
 t1 190.25 188.07 182.04 186.39 187.56 182.40 
  (0.1344) (0.0570) (0.0412) (0.0294) (0.0193) (0.0125) 
 y̅p 100.00 100.00 100.00 100.00 100.00 100.00 
  (0.2557) (0.1072) (0.0750) (0.0548) (0.0362) (0.0228)         

4.5 T1 197.65 189.04 192.04 186.97 184.06 178.40 
  (0.1320) (0.0602) (0.0377) (0.0307) (0.0207) (0.0125) 
 t1 197.50 188.72 190.53 183.97 183.17 175.59 
  (0.1321) (0.0603) (0.0380) (0.0312) (0.0208) (0.0127) 
 y̅p 100.00 100.00 100.00 100.00 100.00 100.00 
  (0.2609) (0.1138) (0.0724) (0.0574) (0.0381) (0.0223)         

5.5 T1 194.18 187.95 191.45 192.23 184.13 177.34 
  (0.1322) (0.0614) (0.0399) (0.0309) (0.0208) (0.0128) 
 t1 193.59 185.83 189.58 190.10 182.38 175.97 
  (0.1326) (0.0621) (0.0403) (0.0311) (0.0210) (0.0129) 
 y̅p 100.00 100.00 100.00 100.00 100.00 100.00 
  (0.2567) (0.1154) (0.0764) (0.0594) (0.0383) (0.0227) 

 

Model 2: x ~ exp(1) and y ~ LTS(p, 1) 
  n 

p Estimator 5 11 15 21 31 51 

2.5 T1 260.35 261.64 263.23 233.28 222.76 209.14 
  (0.5523) (0.2474) (0.1727) (0.1331) (0.0883) (0.0536) 
 t1 235.64 221.07 217.62 204.14 194.75 190.65 
  (0.6102) (0.2928) (0.2089) (0.1521) (0.1010) (0.0588) 
 y̅p 100.00 100.00 100.00 100.00 100.00 100.00 
  (1.4379) (0.6473) (0.4546) (0.3105) (0.1967) (0.1121)         

4.5 T1 265.72 228.89 230.09 209.50 210.86 184.40 
  (0.6520) (0.2831) (0.2087) (0.1494) (0.0976) (0.0609) 
 t1 259.40 220.63 221.39 198.10 198.84 179.11 
  (0.6679) (0.2937) (0.2169) (0.1581) (0.1035) (0.0627) 
 y̅p 100.00 100.00 100.00 100.00 100.00 100.00 
  (1.7325) (0.6480) (0.4802) (0.3130) (0.2058) (0.1123)         

5.5 T1 287.83 238.14 233.36 223.44 205.30 191.11 
  (0.6928) (0.2892) (0.2218) (0.1553) (0.1019) (0.0630) 
 t1 283.13 230.41 220.35 211.20 194.42 182.98 
  (0.7043) (0.2989) (0.2349) (0.1643) (0.1076) (0.0658) 
 y̅p 100.00 100.00 100.00 100.00 100.00 100.00 

    (1.9941) (0.6887) (0.5176) (0.3430) (0.2092) (0.1204) 
 

Note: Mean square errors are in parenthesis 

Relative efficiencies (RE) are obtained as 
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( )
( )

MSE
100

MSE

py
RE =  ,  

 

where MSE(∙) and RE are given in Table 2 for Models 1 and 2. 

From Table 2, note that the proposed estimator T1 is more efficient than the 

corresponding estimators y̅p and t1. We also observe that when sample size increases, 

mean square error decreases. Further, we observe that due to the presence of outliers, 

mean square errors of the estimators increase for Model 2 as compared to Model 1. 

Next, the values of mean square errors of different estimators for different values 

of n and p are plotted and shown in Figures 2 and 3. 
 
 

 
 
Figure 2. Mean square errors of different estimators for different values of n and p 
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Figure 3. Mean square errors of different estimators for different values of n and p 
 

 

The mean square error of the proposed estimator T1 is more efficient than the 

corresponding estimators y̅p and t1. Also, when sample size increases, mean square 

error decreases. Further, when p increases, mean square error of the proposed 

estimator increases and becomes close to t1. Absolute biases are calculated via 

 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1

1 1 1

1 1 1
B ,B ,  and B

S S S

j j p p

j j j

T T Y t t Y y y Y
S S S= = =

= − = − = −   .  

 

The simulated bias of the proposed estimator T1 is less than the corresponding 

estimators t1 and y̅p. We also observe that when sample size increases, bias 

decreases. Further, observe that the biases of the estimators increase for Model 2 as 

compared to Model 1 due to the presence of outliers. Next, the values of absolute 

bias of different estimators for different values of n and p are plotted and are shown 

in Figures 4 and 5. 
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Figure 4. Absolute bias of different estimators for different values of n and p 
 

 
 
Table 3. Simulated absolute bias of the estimators T1, t1, and y̅p under super-populations 
1 and 2 
 

Model 1: x ~ U(1, 2.5) and y ~ LTS(p, 1) 

  n 

p Estimator 5 11 15 21 31 51 

2.5 T1 0.2719 0.1847 0.1580 0.1260 0.1082 0.0838 
 t1 0.2787 0.1888 0.1616 0.1303 0.1116 0.0851 
 y̅p 0.3893 0.2552 0.2211 0.1855 0.1517 0.1142 
        

4.5 T1 0.2779 0.1887 0.1615 0.1363 0.1123 0.0897 
 t1 0.2786 0.1891 0.1609 0.1369 0.1126 0.0902 
 y̅p 0.3918 0.2564 0.2245 0.1843 0.1541 0.1195 
        

5.5 T1 0.2820 0.1894 0.1636 0.1383 0.1158 0.0919 
 t1 0.2823 0.1890 0.1631 0.1377 0.1157 0.0920 

  y̅p 0.3847 0.2570 0.2210 0.1876 0.1576 0.1212 
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Table 3 (continued). 
 

Model 2: x ~ exp(1) and y ~ LTS(p, 1) 

  n 

p Estimator 5 11 15 21 31 51 

2.5 T1 0.5859 0.3956 0.3378 0.2861 0.2375 0.1893 
 t1 0.6103 0.4355 0.3723 0.3142 0.2551 0.2006 
 y̅p 0.8972 0.5984 0.5281 0.4361 0.3517 0.2676 
        

4.5 T1 0.6105 0.4200 0.3468 0.3085 0.2453 0.1924 
 t1 0.6231 0.4252 0.3524 0.3192 0.2554 0.1961 
 y̅p 0.9112 0.6117 0.4816 0.4462 0.3585 0.2337 
        

5.5 T1 0.6176 0.4348 0.3631 0.3205 0.2506 0.1955 
 t1 0.6234 0.4406 0.3669 0.3256 0.2569 0.1981 

  y̅p 0.8870 0.6244 0.5290 0.4490 0.3542 0.2658 

 
 

 
 
Figure 5. Absolute bias of different estimators for different values of n and p 
 

 



MODIFIED DUAL TO PRODUCT ESTIMATOR 

18 

The absolute bias of the proposed estimator T1 is less than the corresponding 

estimators y̅p and t1. Also, when sample size increases, absolute bias decreases. 

When p increases, absolute bias of the proposed estimator increases and becomes 

close to the bias of t1. 

Robustness of the Proposed Estimator 

Oral and Oral (2011) and Oral and Kadilar (2011) studied the problem of outliers 

in sample data and hence the shape parameter p in LTS(p, σ) might be mis-specified 

in experiments. Thus, it is important for estimators to be studied for plausibility to 

the assumed model. Consider the robustness property under different outlier models 

for N = 500 and σ2 = 1 without loss of generality. Assume x ~ U(1, 2.5) as well as 

x ~ exp(1) and y ~ LTS(p = 3.5, σ2 = 1). Super-population models are determined 

as follows: 

 

Model 3. True model: LTS(p = 3.5, σ2 = 1) 

Model 4. Dixon’s outliers model: N – No observations from LTS(3.5, 1) and 

No (we don’t know which) form LTS(3.5, 2.0) 

Model 5. Mis-specified model: LTS(4.0, 1) 

 

Here, Model 3 is assumed as a super population model and Models 4 and 5 are 

taken as its plausible alternatives. No in Model 4 is calculated by |0.5 + 0.1 ∗ N| = 50 

for N = 500. The generated sie , (i = 1, 2,…, N) are standardized in all the models 

to have the same variance as LTS(3.5, 1), i.e., it should be equal to 1. The simulated 

values of MSE and relative efficiency are given in Table 4. 
 
 
Table 4. Mean square errors and efficiencies under super-populations 3 to 5 for LTS 
family 
 

 n  n 

 5 11 15  21 31 51 

Estimator Model 3  Model 4 

T1 195.90 189.38 199.44  186.39 211.52 221.34 
 (0.1292) (0.0593) (0.0354)  (0.2771) (0.0755) (0.0464) 

t1 193.80 186.24 191.85  156.71 160.83 170.32 
 (0.1306) (0.0603) (0.0368)  (0.3296) (0.0993) (0.0603) 

y̅p 100.00 100.00 100.00  100.00 100.00 100.00 
 (0.2531) (0.1123) (0.0706)  (0.5165) (0.1597) (0.1023) 
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Table 4 (continued). 
 

 n  n 

 5 11 15  21 31 51 

Estimator Model 5  Model 3 

T1 196.60 200.00 224.28  276.33 238.84 248.12 
 (0.1265) (0.0528) (0.0383)  (0.6260) (0.2698) (0.1970) 

t1 194.30 199.25 166.80  266.70 217.63 224.53 
 (0.1280) (0.0530) (0.0515)  (0.6486) (0.2961) (0.2177) 

y̅p 100.00 100.00 100.00  100.00 100.00 100.00 
 (0.2487) (0.1056) (0.0859)  (1.7298) (0.6444) (0.4888) 
        

 Model 4  Model 5 

T1 313.11 222.34 225.46  302.96 231.61 228.78 
 (0.9839) (0.3093) (0.2239)  (0.6145) (0.2664) (0.2081) 

t1 278.14 202.74 206.21  294.57 217.94 210.48 
 (1.1076) (0.3392) (0.2448)  (0.6320) (0.2830) (0.2262) 

y̅p 100.00 100.00 100.00  100.00 100.00 100.00 
 (3.0807) (0.6877) (0.5048)  (1.8617) (0.6170) (0.4761) 

 

Note: Mean square error are in parenthesis 

 
 

The proposed estimator T1 is more efficient than the estimators y̅p and t1 and, 

as sample size increases, mean square error decreases. Due to the presence of 

outliers, mean square errors of the estimators increase for Model 2 as compared to 

Model 1. 

Real Life Application 

For studying the performance of the product estimator in (7), consider the real-life 

problem of the Auto MPG Data Set (Ramos et al., 1993). It pertains to the 

acceleration (m/s2) of a car as a study variable (y) and weight (pounds) of the car as 

an auxiliary variable (x). The summary of the data on y is as follows: 

 

 
240,Median 15.20,Mean 15.34,Kurtosis 3.5,Skewness 0.20,

0.43yx

N



= = = = =

= −
  

 

The data on y follows the long tailed symmetric distribution with p = 8.5, 

which can be obtained using K = 2p – 3. The scatter plot, histogram between the 

study variable and the auxiliary variable, and the Q-Q plot for the data on the study 
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variable are given in Figure 6, which shows the nature (negative correlation, 

normality etc.) of the data. 

For the simulation study using this data set, R was used and the MSE of the 

proposed estimator in (7) was calculated. The Monte Carlo study proceeded as 

follows: From the real-life population of size 240, S = 1,00,000 samples of size 

n (= 5, 10, 15, 20) are selected by SRSWOR, which gives 1,00,000 values of T1. 
 
 

 
 (a) (b) 

 
(c) 

 
Figure 6. (a) Scatter graph of study and auxiliary variables; (b) Histogram for underlying 
distribution of study variable; (c) Q-Q plot for underlying distribution of study variable 
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The proposed estimator T1 has minimum mean square error as well as 

minimum absolute bias compared to those of the relevant estimators for the true 

value of the shape parameter p = 8.5. However, sample data always have outliers. 

In practice, there might be mis-specification of the shape parameter p in LTS(p, σ). 

Therefore, an estimator must have efficiency robustness. So, consider the 

robustness property of the proposed estimators under mis-specification of the shape 

parameter which are given as follows: 

 

Model 6. True model: LTS(p = 8.5, σ2 = 7.0) 

Model 7. Mis-specified model: LTS(7.0, 7.0) 

Model 8. Mis-specified model: LTS(9.5, 7.0) 

Model 9. Mis-specified model: LTS(10.0, 7.0) 

 

As noted in Table 5, the proposed estimator T1 is more efficient than the 

estimators y̅p and t1 and the mean square error decreases as sample size increases. 
 
 
Table 5. Mean square error and efficiencies of the estimators T1, t1, and y̅p 

 

 Estimators 

    T1 

n y̅p t1   p = 7.0 p = 8.5 p = 9.5 p = 10 

5 100.00 633.37  639.14 638.25 637.79 637.58 
 (7.8620) (1.2413)  (1.2301) (1.2318) (1.2327) (1.2331) 

10 100.00 619.81  632.07 630.44 629.52 629.11 
 (3.8961) (0.6286)  (0.6164) (0.6180) (0.6189) (0.6193) 

15 100.00 563.43  578.26 576.22 575.20 574.62 
 (2.2847) (0.4055)  (0.3951) (0.3965) (0.3972) (0.3976) 

20 100.00 602.43  627.51 624.11 622.42 621.70 

  (1.6127) (0.2677)   (0.2570) (0.2584) (0.2591) (0.2594) 
 

Note: Mean square error are in parenthesis 

 
 
Table 6. Simulated absolute bias of the estimators T1, t1, and y̅p 
 

 Estimators 

    T1 

n y̅p t1   p = 7.0 p = 8.5 p = 9.5 p = 10 

5 2.2273 0.9178  0.9117 0.9128 0.9133 0.9135 

10 1.4841 0.6574  0.6466 0.6484 0.6493 0.6497 

15 1.1889 0.5145  0.5035 0.5050 0.5058 0.5062 

20 1.0129 0.4210   0.4148 0.4155 0.4159 0.4161 
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From Table 6, note the simulated absolute bias of the proposed estimator T1 

is less than the corresponding estimators t1 and y̅p. When sample size increases, bias 

decreases. 

From the Figures 7 and 8, note the absolute bias of the proposed estimator T1 

is less than the corresponding estimators y̅p and t1. Also, when sample size increases, 

absolute bias decreases. When p increases, absolute bias of the proposed estimator 

increases and becomes close to the bias of t1. 
 
 

 
 
Figure 7. Mean square errors of different estimators for different values of n and p 
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Figure 8. Absolute bias of different estimators for different values of n and p 
 

 

Confidence Interval 

The 100(1 – α) percent confidence intervals for the estimators T1, t1, and y̅p are 

given by 

 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1MSE , MSE ,  and MSEp pT t T t t t y t y       ,  

 

where tϑ(α) is the 100(1 – α)% point of the Student t distribution with ϑ = n – 1 

degrees of freedom. The confidence interval ( ) ( )1 1MSET t T   is considerably 

shorter than the classical intervals ( ) ( )1 1MSEt t t   and 
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( ) ( )MSEp py t y  . For p = ∞, the confidence interval ( ) ( )1 1MSET t T   

reduces to the confidence interval ( ) ( )1 1MSEt t t  . Here, we consider α = 5% 

level of significance. 

The coverage of the estimates of the different estimators are now compared, 

and the standard deviation, lower and upper quartile, and the median are obtained 

from the 1,000,000 simulations. Violin plots are shown for the different estimators 

(the red line indicates the value of Y̅); the dashed green line indicates the lower limit 

and the dotted blue line indicates the upper limit for the usual estimator (y̅p) at the 

95% confidence interval for getting a visual conformation of the numbers just 

presented. 
 
 
Table 7. Simulated confidence intervals, coverage (%) of the estimates, simulated 
estimates, and quartiles of the estimators T1, t1, and y̅p for the generated and real data 
 

Exp(1): p = 2.5, Y̅ = –0.990 

  Confidence interval Coverage 
(%) 

Sim. 
est. 

Std. 
dev. 

Lower 
quartile 

 Upper 
quartile n Est. L limit U limit U – L Median 

5 T1 -2.648 0.702 3.350 99.723 -0.970 0.769 -1.455 -0.949 -0.464 
 t1 -2.748 0.755 3.503 99.491 -1.000 0.811 -1.502 -0.971 -0.473 
 y̅p -3.737 1.351 5.087 94.860 -1.190 1.328 -1.687 -0.847 -0.322 
           

10 T1 -2.107 0.222 2.328 99.858 -0.940 0.526 -1.282 -0.929 -0.587 
 t1 -2.243 0.262 2.505 99.602 -0.990 0.573 -1.357 -0.980 -0.609 
 y̅p -2.876 0.690 3.566 95.741 -1.090 0.876 -1.504 -0.915 -0.486 
           

15 T1 -1.877 0.013 1.890 99.898 -0.930 0.423 -1.209 -0.923 -0.645 
 t1 -2.012 0.031 2.043 99.622 -0.990 0.466 -1.292 -0.982 -0.681 

  y̅p -2.500 0.383 2.884 96.165 -1.060 0.690 -1.411 -0.939 -0.574 
           

Real data: p = 8.5, Y̅ = 15.336 

  Confidence interval Coverage 
(%) 

Sim. 
est. 

Std. 
dev. 

Lower 
quartile 

 Upper 
quartile n Est. L limit U limit U – L Median 

5 T1 13.398 17.256 3.859 99.108 15.330 1.145 14.550 15.300 16.080 
 t1 13.390 17.273 3.883 99.096 15.330 1.151 14.550 15.310 16.090 
 y̅p 12.205 18.309 6.105 91.330 15.260 1.794 13.990 15.190 16.440 
           

10 T1 13.995 16.654 2.659 99.220 15.320 0.787 14.790 15.310 15.840 
 t1 13.989 16.679 2.690 99.182 15.330 0.796 14.790 15.320 15.860 
 y̅p 13.179 17.420 4.241 91.194 15.300 1.250 14.440 15.270 16.120 
           

15 T1 14.257 16.378 2.121 99.292 15.320 0.627 14.890 15.310 15.740 
 t1 14.255 16.407 2.152 99.232 15.330 0.636 14.900 15.320 15.750 

  y̅p 13.600 17.020 3.420 90.970 15.310 1.010 14.610 15.280 15.980 
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In Table 7, the confidence intervals are presented for the estimators T1, t1, and 

y̅p along with corresponding coverage (%) of the estimates in the intervals, the 

simulated estimates, standard deviations, lower quartiles, medians, and the upper 

quartiles for both the generated data (p = 2.5) and the real data set (p = 8.5) for 

different sample sizes (n = 5, 10, 15). 
 
 

 
 
Figure 9. Coverage (%) of different estimators for different values of n 
 

 
 

 
 
Figure 10. Coverage (%) of different estimators for different values of n 
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From Table 7, we observe that the confidence interval of the proposed 

estimator is shorter than that of the relevant estimators. Also, the standard deviation 

of the proposed estimator is less than that of the other estimators. The coverage of 

the estimate of the proposed estimator is more than the others. When the sample 

size is increased via more information, the confidence interval becomes shorter, the 

standard deviation decreases, the coverage of the estimate increases, and the lower 

as well as the upper quartiles tend to the median value. 

In Figures 9 and 10, violin plots are presented for the coverage (%) of the 

estimates in the confidence interval of the traditional product estimator and we 

observe that the coverage of the estimate of the proposed estimator is more than 

that of the others. Note when increasing the sample size, the coverage of the 

estimate increases. 
 
 
Table 8. Simulated confidence intervals, coverage (%), simulated estimates, and 
quartiles for the generated and real data 
 

 Exp(1): n = 10 

   Confidence interval Cov. 
(%) 

Sim. 
est. 

Std. 
dev. 

Lower 
quartile 

 Upper 
quartile Y̅ p Est. L limit U limit U – L Median 

-0.990 2.5 T1 -2.648 0.702 3.350 99.723 -0.970 0.769 -1.455 -0.949 -0.464 

  t1 -2.748 0.755 3.503 99.491 -1.000 0.811 -1.502 -0.971 -0.473 

  y̅p -3.737 1.351 5.087 94.860 -1.190 1.328 -1.687 -0.847 -0.322 

   
         

-0.990 4.5 T1 -2.107 0.222 2.328 99.858 -0.940 0.526 -1.282 -0.929 -0.587 

  t1 -2.243 0.262 2.505 99.602 -0.990 0.573 -1.357 -0.980 -0.609 

  y̅p -2.876 0.690 3.566 95.741 -1.090 0.876 -1.504 -0.915 -0.486 
   

         
-1.000 5.5 T1 -1.877 0.013 1.890 99.898 -0.930 0.423 -1.209 -0.923 -0.645 

  t1 -2.012 0.031 2.043 99.622 -0.990 0.466 -1.292 -0.982 -0.681 

  y̅p -2.500 0.383 2.884 96.165 -1.060 0.690 -1.411 -0.939 -0.574 

            
 Real data: n = 10, Y̅ = 15.336 

   Confidence interval Cov. 
(%) 

Sim. 
est. 

Std. 
dev. 

Lower 
quartile 

 Upper 
quartile  p Est. L limit U limit U – L Median 

 7.0 T1 13.398 17.256 3.859 99.108 15.330 1.145 14.550 15.300 16.080 
  t1 13.390 17.273 3.883 99.096 15.330 1.151 14.550 15.310 16.090 
  y̅p 12.205 18.309 6.105 91.330 15.260 1.794 13.990 15.190 16.440 
   

         
 8.5 T1 13.995 16.654 2.659 99.220 15.320 0.787 14.790 15.310 15.840 
  t1 13.989 16.679 2.690 99.182 15.330 0.796 14.790 15.320 15.860 
  y̅p 13.179 17.420 4.241 91.194 15.300 1.250 14.440 15.270 16.120 
   

         
 9.5 T1 14.257 16.378 2.121 99.292 15.320 0.627 14.890 15.310 15.740 
  t1 14.255 16.407 2.152 99.232 15.330 0.636 14.900 15.320 15.750 
  y̅p 13.600 17.020 3.420 90.970 15.310 1.010 14.610 15.280 15.980 
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In Table 8, confidence intervals are presented for the estimators T1, t1, and y̅p 

along wtih corresponding coverage (%) of the estimates in the intervals, the 

simulated estimates, standard deviations, lower quartiles, medians, and the upper 

quartiles for the fixed sample size (n = 10) and for different shape parameters 

p = 2.5, 4.5, 5.5 and p = 7.0, 8.5, 9.5 for the generated data and real data, 

respectively. The confidence interval of the proposed estimator is shorter than the 

other relevant estimators. Also, the standard deviation of the proposed estimator is 

less than that of the other estimators. The coverage of the estimate of the proposed 

estimator is more than that of the others. When the shape parameter is increase, i.e., 

tends to normality, the confidence interval of the proposed estimator T1 becomes 

closer to the estimator t1, the standard deviation increases, the coverage of the 

estimate of the proposed estimator T1 decreases and becomes closer to that of the 

estimator t1, and the lower as well as the upper quartiles tend far from the median 

value. 

In Figures 11 and 12, violin plots are presented for the coverage (%) of the 

estimates in the confidence interval of the traditional product estimator, and the 

coverage of the estimate of the proposed estimator is more than the others. When 

the shape parameters increase, the coverage of the estimate is decreasing and the 

coverage of the estimate of the proposed estimator T1 becomes closer to that of the 

estimator t1. 
 
 

 
 
Figure 11. Coverage (%) of different estimators for different values of p 
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Figure 12. Coverage (%) of different estimators for different values of p 
 

Determination of Shape Parameter 

Sometimes the shape parameter p is not known, and hence to determine whether a 

particular density is suitable for the underlying distribution of the study variable y, 

make a Q-Q plot by plotting the population quantiles for the density against the 

ordered values of y, where the population quantiles t(i) are calculated from 

 

 ( )
( )

,1
1

it

i
t u du i n

n
−

=  
+ .  

 

The Q-Q plot that closely approximates a straight line would be assumed to be the 

most appropriate. Using such a procedure, a plausible value may be obtained for 

the shape parameter. 

Conclusion 

The modified dual to product estimator (T1) can improve the efficiency of the 

Bandopadhyaya dual to product estimator t1 when the underlying population is not 

normal. The proposed estimator T1 is also more efficient than the estimator y̅p and 

the dual to product estimator T1 is robust to outliers. The confidence interval of the 

proposed estimator is shorter than competitors. Also, the standard deviation of the 



KUMAR & CHHAPARWAL 

29 

proposed estimator is at a minimum compared with the other estimators, and the 

coverage is greater. 
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