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On the Level of Precision of a 
Heterogeneous Transfer Function in a 
Statistical Neural Network Model 

Christopher Godwin Udomboso 
University of Ibadan 

Ibadan, Nigeria 

 

 
A heterogeneous function of the statistical neural network is presented from two transfer 

functions: symmetric saturated linear and hyperbolic tangent sigmoid. The precision of the 

derived heterogeneous model over their respective homogeneous forms are established, 

both at increased sample sizes hidden neurons. Results further show the sensitivity of the 

heterogeneous model to increase in hidden neurons. 

 

Keywords: Neural network, transfer function, hidden neuron, precision 

 

Introduction 

The Multi-Layer Perceptron (MLP) is the most commonly used type of ANN. The 

reason for this stems from the fact that the MLP model is concentrated in the 

weights and the Transfer Functions (TFs) of its neurons. The TFs used in MLP 

networks are sometimes complex and can approximate complex problems in a fair 

number of neurons and layers, but are also not easily interpretable. Most neurons 

in an MLP network use the same TFs as the sigmoids and hyperbolic tangent, which 

also limit the model flexibility and can lead to large error. This has been observed 

in user reluctance to accept the model or even a complete rejection of modeling 

results. These observed limitations have been due to the fact that they are 

homogeneous functions. Thus, it is highly desirable to make neural network models 

more comprehensive, and to automatically determine the appropriate complexity of 

the model to avoid large error. 

Udomboso (2013) reported on network analysis using homogeneous transfer 

functions in empirical studies. Tayfur (2002), Gan et al. (2005), Adepoju et al. 
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(2007), Toprak and Cigizoglu (2008), Omole et al. (2009), Adewole et al. (2011), 

Ibeh et al. (2012), and Ashigwuike (2012) used the sigmoid transfer function, and 

Akinwale et al (2009) compared logistic and hyperbolic tangent transfer functions, 

Adeyiga et al. (2011) used the tangential transfer function (that is, family of 

tangents functions), and Udomboso and Amahia (2011), as well as Falode and 

Udomboso (2016) used the symmetric saturated linear transfer function in 

modeling rainfall as well as gas production, utilization and flaring respectively. 

Udomboso and Saliu (2016) used a bootstrap approach to build inference for the 

Statistical Neural Network with application to the Naira-Dollar exchange rate 

efficiency. 

The use of heterogeneous functions in one network may give better results. 

Resop (2006) suggested that studies may be done on improving transfer functions 

in order to improve network models. Hence, if the limitation of homogeneous TFs 

in an MLP network are removed, and use instead a combination of some transfer 

functions with various complexities within the same network, the knowledge 

extraction algorithm could become minimal, which has the potential of becoming 

more comprehensible than homogeneous TFs. One important goal is to maintain 

the level of precision of the model as compared to existing knowledge extraction 

methods from neural networks which generally compromise the level of precision 

for higher comprehensibility. A heterogeneous TF aims to improve the complexity 

fitting and comprehensibility of the most popular type of MLP – the homogeneous 

TF feed-forward network (FFN). Therefore, this work is aimed at creating a 

heterogeneous neural network that is comprehensible, capable of modeling a wide 

range of problems, and at least comparable to current MLP in terms of precision 

and generalization, as a follow-up to Udomboso (2013) that started considering 

heterogeneous functions involving the convolution of linear functions as well as 

functions from the exponential family. 

Materials and Methods 

The form of the homogeneous model of the statistical neural network used is due 

to Anders (1996), and is given by 

 

 ( )f ,y u= +X w ,  (1) 

 

where y is the dependent variable; X = (x0 ≡ 1, x1,…,xI) is a vector of independent 

variables; w = (α, β, γ) is the network weight: α is the weight of the input unit, β is 
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the weight of the hidden unit, and γ is the weight of the output unit; and u is the 

stochastic term that is normally distributed (that is, u ~ N(0, σ2In)). 

From equation (1), f(X, w) is the artificial neural network function, written in 

the form 

 

 ( )
1 0

f , g
H I

h hi i

h i

x  
= =

 
= +  

 
 X w X ,  (2) 

 

where g(∙) is the transfer function 

From Udomboso (2013), the proposed convoluted form of the artificial neural 

network function is given as 

 

 ( ) 1 2

1 0 0

f , g g
H I I

h hi i hi i

h i i

x x   
= = =

    
= +     

    
  X w X ,  (3) 

 

which results in the proposed statistical neural network model 

 

 ( ) 1 2

1 0 0

f , g g
H I I

h hi i hi i i j

h i i

x x u u   
= = =

    
= + +    

    
  X w X ,  (4) 

 

where y is the dependent variable, X = (x0 ≡ 1, x1,…,xI) is a vector of independent 

variables; w = (α, β, γ) is the network weight: α is the weight of the input unit, β is 

the weight of the hidden unit, and γ is the weight of the output unit; ui and uj are the 

stochastic term that is normally distributed (that is, ui ~ N(0, σ2In)); and g1(∙) and 

g2(∙) are the transfer functions. 

First, let g1(∙) = Symmetric Saturated Linear function (SATLINS), defined as 

 

 ( ) ( )1 1

1, 1

SATLINS g f , 1 1

1, 1

x

x x x

x

−  −


= = = −  
 

  (5) 

 

For this transfer function, the network model can thus be written as 

 

 ( )0 1 1 0 1 1

1

H

h h h

h

y x x u    
=

= + + + +   (6) 
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for 2 variables and 

 

 ( )0 1 1 2 2 0 1 1 2 2

1

H

h h h h

h

y x x x x u      
=

= + + + + + +   (7) 

 

for 3 variables. 

Let g2(∙) = Hyperbolic Tangent Sigmoid function (TANSIG), defined as 

 

 ( ) ( )2 2 2

2
TANSIG g f 1

1 x
x

e−
= = = −

−
.  (8) 

 

For this transfer function, the network model can thus be written as 

 

 
( )0 1 1

0 1 1 2
1

2
1

1 h h

H

h x
h

y x u
e

 
  

− +
=

 
= + + − + 

− 
   (9) 

 

for 2 variables and 

 

 
( )0 1 1 2 2

0 1 1 2 2 2
1

2
1

1 h h h

H

h x x
h

y x x u
e

  
   

− + +
=

 
= + + + − + 

− 
   (10) 

 

for 3 variables. 

The Symmetric Saturating Linear and Hyperbolic Tangent Sigmoid 

Functions 

(i) For x < –1, f1(x) = –1. This implies that f1(x – y) = –1. Let 

 

 ( ) ( ) ( ) ( ) ( )1 3 1 3f f f f f

x

r

x x x x y y dy
−

=  = −   (11) 

 

( ) ( )

2

2 4

2
1

1

2 1

x

y

r

x

y y

r

dy
e

x r e e dy

−

−

− −

−

 
= − 

− 

= + − + + +





  

 ( )
2 2

1 1

px pr

p p

e e
x r

p p

− 

= =

= − − +    (12) 
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(ii) For –1 ≤ x ≤ 1, f1(x) = x. This implies that f1(x – y) = x – y. Let 

 

 

( ) ( ) ( ) ( ) ( )

( )

1 3 1 3

1

2

1

f f f f f , 1 1

2
1

1

x

x

y

x x x x y y dy x

x y dy
e

−

−

−

=  = − −  

 
= − − 

− 





  (13) 

 

The integral 

 

 
2

1

2

1

x

y

y
I dy

e−

−

=
−   

 

decreases rapidly for any interval of y. Hence, I = 0 and equation (13) 

becomes 

 

 ( ) ( ) ( ) ( )2

1 3

1 1

f f f 2 1

x x

yx x x x e dy x y dy−

− −

=  = − + −    (14) 

 
2 2

1 1

1
2

2 2

x
py

p

e y
x y x

p

−

= −

 
= − + + + 

 
   

 
2 2

2

1 1

1
2 3

2

px px x

p p

e e
x x x

p p

− −

= =

  
= + + − −  
   

    (15) 

 

(iii) For x > 1, f1(x) = 1. This implies that f1(x – y) = 1. Let 

 

 ( ) ( ) ( ) ( ) ( )1 3 1 3

1

f f f f f

x

x x x x y y dy=  = −   

 

Therefore, 

 

 ( ) ( ) ( )1 3 2

1

2
f f f 1 1

1

x

y
x x x dy

e−

 
=  = − 

− 
   (16) 
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( )

( )

2 4

1 1

2

1 1

2 1

2 1

x x

y y

x
py

p

e e dy dy

e
y x

p

− −

−

=

= + + + −

 
= − − − 
 

 



  

 ( )
2 2

1 1

1
px p

p p

e e
x

p p

− − 

= =

= − − +    (17) 

 

The summary of the derived function is given as 

 

 

( ) ( ) ( )

( )

( )

1 21 1

2 2

1 1

2 2
2

1 1

2 2

1
1

g g f

, 1

1
2 3 , 1 1

2

1 , 1

I I

hi i hi ii i

px pr

p p

px px x

p p

px p

p
p

x x x

e e
x r x

p p

e e
x x x x

p p

e e
x x

p p

 
= =

− 

= =

− −

= =

− −


=
=

=


− − +  −


   

= + + − − −     
   

 − − − 


 

 

 

 

  (18) 

 

Equation (18) is the derived transfer function for the Symmetric Saturated Linear 

transfer function and the Hyperbolic Tangent transfer function 

(SATLINS*TANSIG). 

For this derived transfer function, the network model can thus be written as 

 

 

( ) ( )

( )
( )0 1 1

2

0 1 1 0 1 1 0 1 1

1

2 2
2

0 1 1 1

1 1

1
2 3

2

h h

H

h h h h h

h

p x pn n

h h

p p

y x x x

e e
x u

p p

 

      

 

=

− + −

= =

 
= + + + + + + 

 

 
− + − +  

 



 

  (19) 

 

for 2 variables and 
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( )((
( ) )

( )
( )0 1 1 2 2

2

0 1 1 2 2 0 1 1 2 2

1

0 1 1 2 2

2 2

0 1 1 2 2 1 2

1 1

2

13
2

h h h

H

h h h h

h

h h h

p x x pn n

h h h

p p

y x x x x

x x

e e
x x u u

p p

  

      

  

  

=

− + + −

= =

= + + + + +

+ + + +

 
− + + − +  

 



 

  (20) 

 

for 3 variables. 

The criteria used to compare the models in this study include 

 

(i) Mean Square Error (MSE): 

 

 ( )  
2

ˆˆ ˆMSE , E = −w w ,  (21) 

 

(ii) Network Information Criterion (NIC): 

 

 ( ) ( )
12 2

2

2

1
ˆ ˆ ˆMSE , tr var E

ˆ ˆ
NIC

m

−

  
     

 = + − −           

w w w w w w
w w

  (22) 

 

(iii) Adjusted Network Information Criterion (ANIC), developed by 

Udomboso et al. (2016) as decision criterion when sample sizes vary in 

the network: 

 

 
( )

2

2

np p n
ANIC NIC

n p

− +
= +

−
  (23) 

 

where w = (α, β, γ) is the network weight: α is the weight of the input unit, β is the 

weight of the hidden unit, and γ is the weight of the output unit; θ is the true 

parameter; and p is the number of parameters under estimation in the network. The 

ANIC is a correction for the biased NIC. 
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Results 

The data used for the analyses in this research were simulated and split into two 

case – 2 variables and 3 variables. The results are based on the prediction and model 

selection criteria at different levels of sample sizes and hidden neurons, respectively. 

The sample sizes include 10, 20, 40, 60, 80, 100, 125, 150, 175, 200, 250, 300, and 

400, while the hidden neurons include 2, 5, 10, 20, 40, 60, 80, and 100. Two primary 

transfer functions, as well as a derived transfer function arising from the 

convolution of the transfer functions, were used, namely: 

 

(i) Symmetric Saturated Linear transfer function (SATLINS) 

(ii) Hyperbolic Tangent Sigmoid transfer function (TANSIG) 

(iii) Symmetric Saturated Linear and Hyperbolic Tangent Sigmoid transfer 

function (SATLINS*TANSIG) 

 

Analyses of Results based on Sample Sizes 

The analyses in this section are, respectively, discussed under the 2- and 3-variable 

cases. Model selection criteria were based on the MSE, NIC, and ANIC, 

respectively. 

Table 1 contains results for the model fit across samples from the 2-variable 

case. The comparison of the models based on the MSE showed that SATLINS had 

local minima at sample sizes 10, 100, and 250, while TANSIG at sample sizes 10 

and 200. Local minima of MSE were recorded with SATLINS*TANSIG at 10, 100, 

and 250. Results based on NIC showed that SATLINS local minima at sample sizes 

20, 80, 150, and 250. Local minima at TANSIG were at sample sizes 10, 40, 100, 

150, 250, and 400, while at SATLINS*TANSIG, the local minima occur at sample 

sizes 10, 60, 100 and 250. Moreover, results based on ANIC showed SATLINS to 

have local minima at sample size 250 only; local minima with TANSIG were 

noticed at sample sizes 20, 60, 200, and 300. On the other hand, local minima for 

SATLINS*TANSIG were at sample sizes 150, 250, and 300. 

In the case of Table 2, it is the model fit across samples from the 3-variable 

case. The results showed that with the MSE, SATLINS had local minima at sample 

sizes 20, 80, 125, and 200. In the case of TANSIG, local minima occur at sample 

sizes 20, 80, 125, and 250, while for SATLINS*TANSIG, local minima were seen 

at sample sizes 20, 60, 125, 175, and 250. Using the NIC, local minima were noticed 

for SATLINS at sample sizes 40, 80, and 200, while for TANSIG, records of local 

minima were seen at sample sizes 40, 80, 125, 175, and 250. As for 
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SATLINS*TANSIG, the local minima were at sample sizes 10, 60, 125, and 250. 

Furthermore, with ANIC, SATLINS had local minima at sample sizes 80, 125, and 

200, TANSIG at sample sizes 10, 40, 150, and 300. But for SATLINS*TANSIG, 

results of local minima occurred at sample sizes 40, 250, and 300. 
 
 
Table 1. Model selection across samples (2 variables) 
 
 Mean Square Error  Network Information Criteria 

Sample size SATLINS TANSIG 
SATLINS* 

TANSIG   SATLINS TANSIG 
SATLINS* 

TANSIG 

10 6.95E-06 8.06E-06 8.23E-06  3.81E-03 3.07E-03 4.92E-03 

20 3.92E-05 3.42E-05 3.50E-05  2.56E-03 1.20E-02 1.25E-02 

40 1.53E-04 1.08E-04 1.38E-04  2.39E-02 1.65E-03 5.59E-03 

60 2.62E-04 2.31E-04 1.94E-04  2.13E-03 4.71E-03 9.78E-04 

80 1.77E-04 2.88E-04 3.40E-04  1.73E-04 2.28E-03 1.26E-03 

100 1.74E-04 3.49E-04 2.91E-04  6.93E-04 2.99E-04 2.70E-04 

125 3.20E-04 3.58E-04 4.74E-04  1.31E-03 1.13E-02 1.84E-03 

150 8.62E-04 9.00E-04 8.25E-04  1.06E-03 1.12E-03 1.92E-03 

175 1.12E-03 1.31E-03 1.40E-03  4.39E-03 3.84E-03 5.01E-03 

200 1.53E-03 1.19E-04 9.93E-04  3.91E-03 2.39E-03 3.91E-03 

250 6.99E-04 1.20E-04 6.31E-04  1.18E-03 1.71E-03 7.23E-04 

300 2.30E-03 3.02E-03 2.77E-03  3.15E-03 5.25E-03 4.13E-03 

400 6.54E-03 3.68E-03 4.20E-03   6.79E-03 4.45E-03 4.31E-03 
        

 Adjusted Network Information 
Criteria 

    

Sample size SATLINS TANSIG 
SATLINS* 

TANSIG 
    

10 1.622 1.563 1.526     

20 1.558 1.519 1.526     

40 1.550 1.520 1.515     

60 1.515 1.509 1.512     

80 1.513 1.510 1.509     

100 1.511 1.519 1.507     

125 1.509 1.516 1.506     

150 1.507 1.508 1.504     

175 1.505 1.506 1.507     

200 1.505 1.505 1.506     

250 1.504 1.508 1.505     

300 1.505 1.506 1.596     

400 1.508 1.610 1.571     
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Table 2. Model selection across samples (3 variables) 
 
 Mean Square Error  Network Information Criteria 

Sample size SATLINS TANSIG 
SATLINS* 

TANSIG   SATLINS TANSIG 
SATLINS* 

TANSIG 

10 1.85E-02 1.81E-02 2.04E-02  4.68E-01 3.12E-01 5.17E-02 

20 1.46E-02 1.38E-02 1.37E-02  3.06E-02 1.10E-01 7.84E-02 

40 1.65E-02 1.44E-02 1.44E-02  1.96E-02 2.16E-02 6.01E-02 

60 1.63E-02 1.53E-02 1.42E-02  3.63E-02 5.37E-02 1.98E-02 

80 1.14E-02 1.39E-02 2.17E-02  2.10E-02 1.60E-02 2.01E-02 

100 1.68E-02 1.82E-02 1.49E-02  5.61E-02 1.89E-02 2.82E-02 

125 9.93E-03 1.23E-02 1.38E-02  8.99E-03 1.49E-02 1.93E-02 

150 1.66E-02 1.36E-02 1.44E-02  1.66E-02 2.13E-02 2.06E-02 

175 1.23E-02 1.73E-02 1.26E-02  1.54E-02 1.73E-02 1.80E-02 

200 1.17E-02 1.79E-02 1.53E-02  1.39E-02 2.54E-02 1.76E-02 

250 1.93E-02 1.11E-02 1.00E-02  2.03E-02 1.65E-02 1.43E-02 

300 2.03E-02 1.60E-02 1.77E-02  2.30E-02 2.06E-02 1.92E-02 

400 3.78E-02 3.66E-02 2.59E-02   4.36E-02 4.89E-02 1.38E-01 
        

 Adjusted Network Information 
Criteria 

    

Sample size SATLINS TANSIG 
SATLINS* 

TANSIG 
    

10 2.117 2.008 2.185     

20 2.108 2.185 2.136     

40 2.057 2.038 2.009     

60 2.027 2.075 2.041     

80 2.041 2.034 2.037     

100 2.068 2.034 2.031     

125 2.021 2.025 2.025     

150 2.023 2.016 2.022     

175 2.022 2.022 2.017     

200 2.019 2.023 2.014     

250 2.023 2.016 2.009     

300 2.023 2.014 2.019     

400 2.035 2.022 1.882     

Analyses of Results based on Hidden Neurons 

The analyses are also discussed under the 2- and 3-variable cases, respectively. The 

criteria for model selection used here include the MSE and the NIC. The ANIC is 

not used in this section since sample sizes are not involved in the analyses. 

As for Table 3, it is the model fits across the hidden neurons from the 2-

variable case. Results showed that with MSE, SATLINS had local minima at 

hidden neurons 5 and 20, while TANSIG had local minima at hidden neurons 10, 

60, and 100. In the case of SATLINS*TANSIG, local minima occurred at hidden 
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neurons 10, 60, and 100. Using NIC, it is shown that SATLINS had local minima 

at hidden neuron 20 only, TANSIG at hidden neurons 20 and 80. As for 

SATLINS*TANSIG, local minima occurred at hidden neurons 20, 60, and 100. 

The results in Table 4 are for the model fits across hidden neurons from the 

3-variable case. It is noticed that for MSE, SATLINS had local minima at hidden 

neuron 20 and 100, while TANSIG at hidden neurons 60 and 100. In the case of 

SATLINS*TANSIG, local minima occurred at hidden neurons 10, 40, and 100. As 

for NIC, SATLINS had local minima at hidden neurons 20 and 100, TANSIG at 

hidden neurons 5, 20, and 80, while for SATLINS*TANSIG, local minima were 

noticed at hidden neurons 10, 60, and 100. 
 
 
Table 3. Model selection across hidden neurons (2 variables) 
 
 Mean Square Error  Network Information Criteria 

Hidden 
neurons SATLINS TANSIG 

SATLINS* 
TANSIG   SATLINS TANSIG 

SATLINS* 
TANSIG 

2 2.22E-03 2.32E-03 2.46E-03  2.02E-02 1.42E-02 1.63E-02 

5 1.25E-03 7.84E-04 1.16E-03  2.77E-03 1.67E-03 3.28E-03 

10 1.40E-03 3.75E-04 6.65E-04  2.24E-03 1.77E-03 2.42E-03 

20 4.00E-04 7.15E-04 7.99E-04  8.70E-04 1.64E-03 1.55E-03 

40 4.17E-04 1.03E-03 6.64E-04  1.01E-03 1.87E-03 2.09E-03 

60 6.70E-04 7.79E-04 5.46E-04  1.53E-03 2.54E-03 1.19E-03 

80 1.18E-03 9.29E-04 8.06E-04  2.21E-03 1.94E-03 1.57E-03 

100 1.18E-03 8.66E-04 4.74E-04   3.03E-03 7.61E-03 7.20E-04 

 
 
Table 4. Model selection across hidden neurons (3 variables) 
 
 Mean Square Error  Network Information Criteria 

Hidden 
neurons SATLINS TANSIG 

SATLINS* 
TANSIG   SATLINS TANSIG 

SATLINS* 
TANSIG 

2 7.34E-02 7.76E-02 7.14E-02  3.15E-01 2.83E-01 1.20E-01 

5 2.46E-02 2.02E-02 2.25E-02  2.47E-02 1.38E-02 2.17E-02 

10 6.98E-03 7.24E-03 5.51E-03  1.49E-02 3.23E-02 1.10E-02 

20 3.80E-03 6.98E-03 6.29E-03  1.17E-02 1.23E-02 4.72E-02 

40 4.96E-03 6.37E-03 3.14E-03  2.60E-02 2.44E-02 2.34E-02 

60 5.10E-03 4.94E-03 4.81E-03  4.26E-02 2.72E-02 2.29E-02 

80 1.10E-02 8.20E-03 7.90E-03  2.50E-02 1.79E-02 4.74E-02 

100 8.35E-03 2.95E-03 6.95E-03   1.60E-02 1.84E-02 1.66E-02 

 
 
  



CHRISTOPHER GODWIN UDOMBOSO 

13 

Table 5. Mean performance of the model selection across samples 
 
  Mean Square Error  Network Information Criteria 

 
 SATLINS TANSIG 

SATLINS* 
TANSIG  SATLINS TANSIG 

SATLINS* 
TANSIG 

2-var Mean 1.09E-03 8.10E-04 9.46E-04  4.24E-03 4.16E-03 3.64E-03 
 SD 1.77E-03 1.19E-03 1.23E-03  6.18E-03 3.63E-03 3.23E-03 
         

3-var Mean 1.71E-02 1.68E-02 1.61E-02  5.95E-02 5.36E-02 3.89E-02 

  SD 7.01E-03 6.37E-03 4.29E-03  1.23E-01 8.20E-02 3.59E-02 
         

  Adjusted Network Information 
Criteria 

    

    
SATLINS TANSIG 

SATLINS* 
TANSIG 

    

2-var Mean 1.52E+00 1.52E+00 1.52E+00     

 SD 3.42E-02 3.02E-02 2.86E-02     

         

3-var Mean 2.05E+00 2.04E+00 2.03E+00     

  SD 3.35E-02 4.68E-02 7.00E-02     

 
 
Table 6. Mean performance of the model selection across hidden neurons 
 
  Mean Square Error  Network Information Criteria 

 
 SATLINS TANSIG 

SATLINS* 
TANSIG   SATLINS TANSIG 

SATLINS* 
TANSIG 

2-var Mean 1.09E-03 9.75E-04 9.47E-04  4.23E-03 4.16E-03 3.64E-03 
 SD 6.00E-04 5.77E-04 6.46E-04  6.50E-03 4.53E-03 5.18E-03 
         

3-var Mean 1.73E-02 1.68E-02 1.61E-02  5.95E-02 5.37E-02 3.88E-02 

  SD 2.36E-02 2.51E-02 2.32E-02   1.04E-01 9.29E-02 3.54E-02 

 
 

Compiled in Table 5 is the mean performance of the model fits across samples. 

Results showed for the 2-variable case, with the MSE, TANSIG had the best mean 

performance (8.10E-4, 1.19E-3). Results obtained from NIC showed 

SATLINS*TANSIG having best mean performance (3.64E-3, 3.23E-3), and from 

ANIC, the SATLINS*TANSIG also showed best performance (1.522E+0, 2.86E-2). 

In the case of the 3-Variable case, for MSE, SATLINS*TANSIG had the best mean 

performance (1.61E-2, 4.29E-3). Similarly, for NIC and ANIC, 

SATLINS*TANSIG had the best mean performances, (3.89E-2, 3.59E-2) and 

(2.03E+0, 7.00E-2). 

Table 6 contains the mean performance of the model fits across hidden 

neurons. From the 2-variable case, the results from the MSE showed that 

SATLINS*TANSIG had the best mean performance (9.47E-4, 6.46E-4), and also 
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with the NIC, SATLINS*TANSIG had the best mean performance (3.64E-3, 

5.18E-3). In the case of 3 variables, from the MSE result, SATLINS*TANSIG had 

the best mean performance (1.61E-2, 2.32E-2) and, in the same vein, from the NIC, 

SATLINS*TANSIG had the best mean performance (3.88E-2, 3.54E-2). 

Conclusion 

The heterogeneous model of the Statistical Neural Network had higher precision 

overall in comparison with the homogeneous models of the Statistical Neural 

Network from which it was derived. Specifically, in both 2- and 3-variable cases in 

relation to sample sizes, SATLINS*TANSIG was shown to have a better 

performance in relation to the homogeneous models of SATLINS and TANSIG, 

respectively. This is shown in the Adjusted Network information being sensitive to 

increase in sample size, indicated by the several local minima in the analyses. 

Likewise, in the case of hidden neurons, it is shown in the 2-variable case, 

SATLINS*TANSIG was sensitive to higher neurons, in comparison to SATLINS 

and TANSIG, respectively. In the case of 3 variables, SATLINS*TANSIG was 

more sensitive to the hidden neurons in relation to SATLINS and TANSIG. This is 

also indicated by the several local minima in the analyses. Therefore, in a training 

a neural network model, large sample sizes and hidden neurons would be necessary 

if precision of a model is of importance. 
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