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Shrinkage estimators are introduced for the scale parameter of the Rayleigh distribution by 

using two different shrinkage techniques. The mean squared error properties of the 

proposed estimator have been derived. The comparison of proposed classes of the 

estimators is made with the respective conventional unbiased estimators by means of mean 

squared error in the simulation study. Simulation results show that the proposed shrinkage 

estimators yield smaller mean squared error than the existence of unbiased estimators. 

 

Keywords: Rayleigh distribution, scale parameter, shrinkage estimator, mean squared 

error 

 

Introduction 

Unbiased estimators are commonly used for making inferences about an unknown 

descriptive parameter(s) of a population. In cases, when unbiased estimators 

possess larger variances, biased estimators with smaller mean square error (MSE) 

are preferred. Searls (1964), Thompson (1968), Mehta and Srinivasan (1971), Das 

(1975), Srivastava et al. (1980), Rao and Singh (1982), Bhatnagar (1986), Singh 

and Katyar (1988), Rytgaard (1990), Jani (1991), Kourouklis (1994), Singh and 

Singh (1997), Singh and Shukla (2003), Singh and Saxena (2003), Prakash et al. 

https://doi.org/10.22237/jmasm/1608553440
https://doi.org/10.22237/jmasm/1608553440
mailto:qasim.stat@gmail.com
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(2006), Prakash (2009), Ebegil and Ozdemir (2016) and many others proposed 

numerous biased estimators as an alternative to the unbiased estimator. 

Rayleigh distribution was introduced by Rayleigh (1880) after facing a 

problem in acoustics. It has a wide range of applications in almost every field of 

science where the phenomena of interest assume positive value. In this study, we 

deal with two different classes of shrinkage-type estimators for the scale parameter 

of the Rayleigh distribution. The proposed classes of the estimators will be 

compared with the usual unbiased estimators in terms of MSE by deriving optimal 

conditions. For this purpose, a simulation study will be conducted for numerical 

comparisons. 

The Class of Shrinkage Estimators 

Jani (1991) and Singh and Singh (1997) proposed two different shrinkage estimator 

classes for the scale parameter of the exponential and normal distributions. 

Shrinkage estimator class of Jani for the scale parameter of the exponential 

distribution is defined in Equation (1): 

 

 0
0 1

ˆ

p

pT k





  
= +  

   

,  (1) 

 

where θ0 is an a priori value of the parameter θ, k is a shrinkage factor that 

minimizes the MSE value, p is a nonzero real number, and 
0̂  is the unbiased 

estimator of the parameter θ. Singh and Singh (1997) considered the estimation 

problem of population variance by adapting the same class defined in Equation (1) 

for a normal population. The class of estimators by Singh and Singh is given in 

Equation (2): 

 

 ( )

2
2 2

0 2

0

ˆ 1

p

p

s
w 



  
 = +  
   

,  (2) 

 

where 2

0  is an a priori value of the parameter σ2, w is a shrinkage factor that 

minimizes the MSE value, p is a nonzero real number, and s2 is an unbiased 

estimator of the parameter σ2. 

Similarly, Ebegil and Ozdemir (2016) proposed biased estimators for the 

shape parameter of the classical Pareto distribution using two different shrinkage 
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techniques. One of the two classes proposed by Singh and Singh (1997) is given 

below: 

 

 
( ) ( ) ( )0 0

ˆ
p p

k    = + − ,  (3) 

where 

 

 ( ) ( )
( )

( )

1 !
1

2 1 !

p

p

n p
k n

n p

+ −
= −

+ −
 (4) 

 

and p is a nonzero real number. 

Next, a shrinkage type of estimators will be developed having smaller MSEs 

as compared to the unbiased estimator for the scale parameter of Rayleigh 

distribution. Specifically, we develop the estimators in line to Equations (1)-(3). 

Let X be a random variable following the Rayleigh distribution. The 

probability density function (pdf) of X is given by 

 

 ( )
2

2f ; 0, 0
x

x
x e x 



−

=   ,  (5) 

 

where, θ is the scale parameter of the Rayleigh distribution. The maximum 

likelihood estimator (MLE) for the scale parameter θ of the Rayleigh distribution 

is 

 

 

2

1
MLE

ˆ
2 2

n

ii
X Y

n n
 == =


.  

 

It is evident that Y has G(n, 2θ) and the pdf of Y is given by 
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The estimator 
MLÊ  is unbiased having variance 
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2
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ˆVar
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The Proposed Shrinkage-Type Estimators 

Two different classes of shrinkage-type estimators for the scale parameter of the 

Rayleigh distribution are derived and discussed below. 

 

Theorem 1. Following Singh and Singh (1997), the class of shrinkage estimators 

for the scale parameter of Rayleigh distribution is given by 

 

 
( ) ( )0 MLE 0

ˆ
p p

k    = + − .  (6) 

 

The MSE and bias of 
p
  are defined in Equation (7) and Equation (8), respectively: 

 

 ( ) ( )

( )( ) ( )
2

2 2
2 1MSE 1 1

p

p p

k
k

n
   −

 
= + − − 

  

,  (7) 

 

 ( ) ( )( )( )0Bias 1p p
k   = − − ,  (8) 

 

where 
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Proof. From Equation (2), we have 

 

 
( )MLE

0

0

ˆ

1

p

p p
k


 





  
  

= +
  

    

.  (9) 

 

Following equations will be used to derive the MSE of the class of estimator in 

Equation (9). 

 

 ( ) ( ) ( )MLE 1
ˆE , 1,2
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jp
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and 

 

 ( )

( )

( )1

1 !

1 !
jp jp

n jp
K
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+ −
=

−
.  (11) 

 

The MSE of the 
p
  estimator is defined as 

 

 ( )
2

MSE Ep p    = −    (12) 

 

Using Equations (9)-(11) in Equation (12), after necessary calculations, we get 

 

 ( ) ( ) ( ) ( ) ( )
2

2 1 2 2 2 2

1 2 1
MSE 1 2 1p p

p p p
k K kK      − − − = − + + −

  
.  (13) 

 

To obtain optimum value of k, Equation (13) is differentiated with respect to k and 

set equal to zero. After simplification, we get 

 

 
( )

( )

( )
1

2

1
p p

p

K
k

K
 −= − ,  (14) 

 

which minimizes the MSE of Equation (13). After substituting the required values 

in Equation (14), k is defined as 

 

 ( )
0 0

1

p

k k p
 

 

   
= −   

   
.  (15) 

 

The shrinking parameter k is obtained as a function of the parameter θ. In practice, 

it is impossible to obtain a true value of the parameter θ. Therefore, the unknown 

parameter of Equation (15) is replaced by its unbiased estimator. So, the estimator 

for k is obtained as 

 

 ( ) ( ) MLE 0MLE MLE MLE

0 0 0 0

ˆˆ ˆ ˆ
ˆ 1

p p

k k p k p
   

   

       −
= − =              

       
.  (16) 
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After necessary adjustment, the class of estimators for the scale parameter of the 

Rayleigh distribution is derived as given in Equation (6). 

The MSE of the θ* estimator is derived by using Equation (16) from Equation 

(13) as follows: 

 

 ( ) ( ) ( )( ) ( )
2 2 22

0MSE 1p p p
k k

n


   = + − − .  (17) 

 

Simplification of Equation (17) can be reduced to Equation (7). 

The bias of 
p
  is computed as 

 

 ( ) ( )Bias Ep p   = − .  (18) 

 

Taking the expectation of Equation (12) and using Equations (10) and (11) in 

Equation (18), we get Equation (8), which completes the proof. 

The Relative Efficiency of the First Estimator 

The relative efficiency of the class of estimators 
p
  with respect to 

MLÊ  is 

obtained as 

 

 
( )

( ) ( ) ( ) ( )( ) ( )
2 2

2 1

1

MLE

MSE
Relative Efficiency 2 1

ˆVar

p

p p
k n n k








−

−
= = + − + − .  (19) 

 

Hence, it is clear that ( ) ( )MLE
ˆMSE Var 1p    . 

Case 1 

Consider p = 1 in Equation (6). Then an estimator is obtained as 

 

 ( )1 0 MLE 0
ˆ

1

n

n
    = + −

+
.  

 

The MSE of this estimator is calculated as 
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The relative efficiency of the estimator 1
  with respect to 

MLÊ  is 
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It is clear that 1
  is better than 

MLÊ  if 
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 −    

 

when n tends to ∞, the above inequality reduces to 0 ≤ λ ≤ 1. 

Case 2 

Suppose p = 2 in Equation (6), then the following estimator is obtained: 

 

 
( )

( )
2

2 0 MLE 0
ˆ

3

n

n
    = + −

+
  

 

The MSE of the estimator 2
  is defined as 
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The relative efficiency of the estimator 2
  with respect to 

MLÊ  is 
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The estimator 2
  is more efficient than 

MLÊ  if and only if 
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2
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2 2
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1 1
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Furthermore, when n is very large, i.e., n → ∞, then 

 

 ( )
2

2
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5 6
2

1
6

5
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 −

 
+ + 

 − 
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reduces to 0.61 ≤ λ ≤ 1.63. 

 

Theorem 2. Following Jani (1991), the class of shrinkage estimators for the scale 

parameter of the Rayleigh distribution is defined as 

 

 ( ) ( )0 MLE 0
ˆ

p p
w    = + −   (20) 

 

where 

 

 ( )

( )

( )

1 !

2 1 !

p

p

n p
w n

n p

−
− −

=
− −

.  

 

The bias of p


 is given as 

 

 ( ) ( ) ( )( )( )0Bias E 1p p p
w     = − = − − .  (21) 

 

The MSE of p


 is given below: 
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 ( ) ( )

( )( ) ( )
2

2 2
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p

p p
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w

n
   −

 
= + − − 

  

.  (22) 

 

Proof. From Equation (1), the class of shrinkage-type estimators for the 

scale parameter of the Rayleigh distribution is defined as 

 

 0
0

MLE

= 1
ˆ

p

p w


 



  
 +      

.  (23) 

 

Here, 

 

 ( ) ( )MLE
ˆE

jp
jp

jp
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−
−=   (24) 

 

and 

 

 
( )

( )

( )

1 !

1 !

jp

jp

n jp n
W

n

− −
=

−
.  (25) 

 

The expression in Equations (24) and (25) are used to calculate the MSE of p


. 

The MSE of p


 is derived as 

 

 ( ) ( )
2

MSE Ep p   = − .  (26) 

 

Using Equations (23)-(25) in Equation (26), the MSE of p


 is obtained as 

 

 ( ) ( ) ( )
( )

( )
( ) ( )

2 2 1 12 1 2 1

2 1
MSE = 1 2 1

p p

p p p
w W wW     

− + − − − − + + + −
  

.  (27) 

 

Differentiating Equation (27) with respect to w and equating to zero, we find 

an optimum value of w as given below: 
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where 

 

 
( )

( )

( )

1

2

=
p

p

p

W
w

W
.  (29) 

 

On substituting W(1p) and W(2p) in Equation (29), we get 

 

 
( )

( )

( )

1 !
=

2 1 !
p p

n p
w

n p n

− −

− −
.  (30) 

 

Now, using Equation (30) in Equation (28), we get 

 

 
( )

( ) ( ) 0 0

1 !
= 1

2 1 !

p

pp

n p
w

n p n

 

 

 − −  
  − 
 − −   

.  (31) 

 

The shrinkage parameter w is obtained as a function of the unknown parameter θ. 

So, the unknown parameter in Equation (31) is replaced by its unbiased estimator. 

So, the ŵ estimator for w is computed as 

 

 
( )

( ) ( )
MLE MLE

0 0

ˆ ˆ1 !
ˆ = 1

2 1 !

p p

pp

n p
w

n p n

 

 

   − −
  −   − −   

.  (32) 

 

Finally, substituting Equation (32) into Equation (23), the class of estimators for 

the scale parameter of the Rayleigh distribution is obtained as 

 

 ( ) ( )0 MLE 0
ˆ=p p

w    + − .  

 

Similarly, from Equations (25), (27), and (30), the MSE of p


 is obtained as 
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 ( ) ( ) ( )( ) ( )
2 2 22

0MSE = 1p p p
w w

n


   + − −   (33) 

 

After simplification, Equation (33) can be reduced to Equation (22). 

The bias of 
p
  is obtained as 

 

 ( ) ( )Bias = Ep p    − .  

 

By taking the expectation of Equation (23) and substituting Equations (23) and (24) 

in Equation (33), Equation (33) reduced to Equation (21). 

The Relative Efficiency of the Second Estimator 

The relative efficiency of p


 with respect to 
MLÊ  is derived as 

 

 
( )

( ) ( ) ( )( ) ( )
2 2

2 1

MLE

MSE
Relative Efficiency = = 1 1

ˆVar

p

p p
w n w








− + − −
  

.  

Case 1 

Suppose p = 1 in Equation (20); the MSE of the estimator for the scale parameter 

can be obtained as 

 

 ( )1 0

2 ˆ= 1
n

n
    − 

+ − 
 

.  (34) 

 

The MSE of the estimator in Equation (34) is defined as 

 

 ( )
( )

( )
2

2
2 1

1 3 2

2 4
MSE = 1

n

n n
   −

 −
+ − 

  

.  

 

The relative efficiency of 1
  with respect to 

MLÊ  is given by the following 

expression: 
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−
−
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The 1
  estimator will be more efficient than 

MLÊ  if 
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1
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MSE
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 ,  

 

which gives 
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2

2
1

2

2 4
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n
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−

−
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After simplification, the above inequality becomes 

 

 ( )
2

1 2 3
1

4

n
 − −

−  .  

 

For n → ∞, this inequality reduces to 0 < λ < 1. 

Case 2 

By considering p = 2 in Equation (20), an estimator for the scale parameter is 

obtained as 

 

 
( )( )

( )2 0 MLE 02

3 2 ˆ=
n n

n
   

− −
+ − .  

 

The MSE of the 2
  estimator is given by 

 

 ( ) ( )( )( )
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2

222 1 1

2 2

3 4
MSE = 3 4 1 1
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n
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 − − + − − 
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The relative efficiency of 2
  with respect to 

MLÊ  is obtained as 
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( )
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It is clear that 2
  is better than 

MLÊ  if 

 
( )
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This gives 
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After simplification, we get 

 

 

( ) ( )

2 2

1 1

2 7 12 2 7 12
1 1

7 12 7 12

n n n n

n n n n

 
− + − +

+ −
− −

.  

 

When n is very large (n → ∞), the inequality reduces to 0.65 ≤ λ ≤ 2.14. 

 

Note. It can be identified that the class of estimators proposed by Jani (1991) is 

directly related to the Singh and Singh (1997) estimator for the scale parameter of 

the Rayleigh distribution. This relationship is expressed as k(–p) = w(p). 

Numerical Study 

The percent relative bias and MSE are considered as performance criteria to judge 

the performance of the proposed estimation. A relative bias can be calculated by 

dividing Equation (11) into Equation (21). The relative bias is given in Equation 

(35): 

 

 
( )
( )

( )

( )

1Bias
=

1Bias

p p

pp

k

w









−

−
.  (35) 
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The values of relative bias are obtained by means of Equation (35) for n = 10, 15, 

20, 25, and 50 and for different values of p. These values are shown in Table 1. It 

is observed that the biases of 
p
  are smaller (larger) than those of 

p
  when p is 

negative (positive). Moreover, it is seen that the relative bias decreases (increases) 

when the sample size increases and p is negative (positive). However, it can be 

noted that the 
p
  have a smaller bias when the value of p is negative, while they 

have a larger bias when the value of p is positive. 
 
 

Table 1. The relative bias of 


p
θ  relative to 



p
θ  for different n and p values 

 
 Sample size 

p 10 15 20 25 50 

-1.0 2.2000 2.1333 2.1000 2.0800 2.0400 

-0.5 5.1860 5.1214 5.0901 5.0717 5.0354 

0.5 0.1928 0.1952 0.1964 0.1971 0.1985 

1.0 0.4545 0.4687 0.4761 0.4807 0.4902 

1.5 0.5589 0.5805 0.5927 0.6006 0.6176 

2.0 0.6189 0.6404 0.6546 0.6644 0.6870 

5.0 0.6684 0.6814 0.6942 0.7041 0.7298 

 
 

Table 2. The percent relative efficiency of θ̂
MLE

 with respect to 


p
θ  estimator 

 
  Sample size 

λ p 10 15 20 25 50 

0.625 -1.0 112.3948 108.2524 106.1851 104.9460 102.4709 
 -0.5 102.4065 101.5986 101.1968 100.9564 100.4771 
 0.0 100.0000 100.0000 100.0000 100.0000 100.0000 
 0.5 110.2408 106.6603 104.9338 103.9179 101.9301 
 1.0 105.6803 104.6816 103.8287 103.2098 101.7449 
 1.5 66.3761 74.9265 80.0713 83.4819 91.1228 
 2.0 36.3377 43.3610 49.2513 54.1038 69.0787 
 2.5 22.6909 25.7553 29.2873 32.6959 46.2440 
       

2.500 -1.0 118.0488 111.9126 108.8889 107.0891 103.5223 
 -0.5 102.4899 101.6536 101.2378 100.9890 100.4933 
 0.0 100.0000 100.0000 100.0000 100.0000 100.0000 
 0.5 112.9021 108.2732 106.0883 104.8161 102.3553 
 1.0 135.1351 122.2826 116.2791 112.8158 106.2022 
 1.5 133.7216 124.6512 119.0925 115.5048 107.9158 
 2.0 98.2897 101.5389 102.6273 102.9314 102.4205 
 2.5 67.5687 71.7393 75.8728 79.1579 87.8875 

Table 2 (continued). 
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  Sample size 

λ p 10 15 20 25 50 

5.000 -1.0 121.0000 113.7778 110.2500 108.1600 104.0400 
 -0.5 102.5305 101.6803 101.2577 101.0049 100.5012 
 0.0 100.0000 100.0000 100.0000 100.0000 100.0000 
 0.5 114.2392 109.0729 106.6572 105.2573 102.5627 
 1.0 156.2500 133.1361 123.4568 118.1474 108.5069 
 1.5 263.1945 183.7882 155.9376 141.8949 118.5045 
 2.0 566.8934 290.5475 216.2630 183.0105 133.7114 
 2.5 1644.9660 533.9921 331.6380 254.5150 155.9988 
       

7.500 -1.0 118.0488 111.9126 108.8889 107.0891 103.5224 
 -0.5 102.4899 101.6536 101.2378 100.9890 100.4933 
 0.0 100.0000 100.0000 100.0000 100.0000 100.0000 
 0.5 112.9021 108.2732 106.0883 104.8161 102.3553 
 1.0 135.1351 122.2826 116.2791 112.8158 106.2022 
 1.5 133.7216 124.6512 119.0925 115.5048 107.9158 
 2.0 98.2897 101.5389 102.6273 102.9314 102.4205 
 2.5 67.5687 71.7393 75.8728 79.1579 87.8875 
       

12.500 -1.0 98.7755 98.9372 99.1011 99.2293 99.5598 
 -0.5 102.1671 101.4407 101.0790 100.8624 100.4305 
 0.0 100.0000 100.0000 100.0000 100.0000 100.0000 
 0.5 103.2356 102.2745 101.7465 101.4158 100.7256 
 1.0 64.9350 74.0131 79.3650 82.8912 90.7770 
 1.5 27.0942 34.8759 41.2049 46.4272 62.9312 
 2.0 12.9108 16.3661 19.7223 22.8709 35.6598 

  2.5 7.7921 9.0520 10.5823 12.1559 19.5613 

 
 

Here the relative efficiencies of the defined estimator classes with respect to 

the unbiased estimator of the scale parameter of the Rayleigh distribution is 

calculated using the different values of n, p, and λ. The values of λ are selected by 

considering the efficiency range for large sample size values in numerical studies. 

The percent relative efficiency of p


 estimator with respect to 
MLÊ  is calculated 

for the different values of n, p, and λ with the help of Equation (19). These 

calculated values are summarized in Table 2. The p


 estimator performed better 

as compared to the unbiased estimator whenever the value of p was between –1 and 

1, for each value of λ and n, while increased p values cause a decrease in the 

efficiency of the proposed biased estimator class with respect to the unbiased 

estimator. 
 

Table 3. The percent relative efficiency of θ̂
MLE

 with respect to 


p
θ  
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  Sample size 

λ p 10 15 20 25 50 

0.625 -1.0 100.1629 100.1627 100.1624 100.1622 100.1609 
 -0.5 100.0502 100.0502 100.0501 100.0501 100.0500 
 0.0 100.0000 100.0000 100.0000 100.0000 100.0000 
 0.5 100.0098 100.0098 100.0098 100.0098 100.0098 
 1.0 100.0768 100.0768 100.0767 100.0767 100.0764 
 1.5 100.1982 100.1978 100.1975 100.1971 100.1952 
 2.0 100.3710 100.3697 100.3683 100.3670 100.3603 
 2.5 100.5922 100.5888 100.5853 100.5819 100.5647 
       

2.500 -1.0 100.1633 100.1632 100.1631 100.1630 100.1626 
 -0.5 100.0502 100.0502 100.0502 100.0502 100.0502 
 0.0 100.0000 100.0000 100.0000 100.0000 100.0000 
 0.5 100.0098 100.0098 100.0098 100.0098 100.0098 
 1.0 100.0769 100.0769 100.0769 100.0768 100.0768 
 1.5 100.1987 100.1986 100.1985 100.1984 100.1977 
 2.0 100.3728 100.3724 100.3719 100.3715 100.3693 
 2.5 100.5969 100.5957 100.5946 100.5935 100.5879 
       

5.000 -1.0 100.1635 100.1635 100.1635 100.1635 100.1635 
 -0.5 100.0502 100.0502 100.0502 100.0502 100.0502 
 0.0 100.0000 100.0000 100.0000 100.0000 100.0000 
 0.5 100.0098 100.0098 100.0098 100.0098 100.0098 
 1.0 100.0769 100.0769 100.0769 100.0769 100.0769 
 1.5 100.1990 100.1990 100.1990 100.1991 100.1990 
 2.0 100.3737 100.3737 100.3737 100.3737 100.3737 
 2.5 100.5991 100.5991 100.5991 100.5991 100.5991 
       

7.500 -1.0 100.1633 100.1632 100.1631 100.1630 100.1626 
 -0.5 100.0502 100.0502 100.0502 100.0502 100.0502 
 0.0 100.0000 100.0000 100.0000 100.0000 100.0000 
 0.5 100.0098 100.0098 100.0098 100.0098 100.0098 
 1.0 100.0769 100.0769 100.0769 100.0768 100.0768 
 1.5 100.1987 100.1986 100.1985 100.1984 100.1977 
 2.0 100.3728 100.3724 100.3719 100.3715 100.3693 
 2.5 100.5969 100.5957 100.5946 100.5935 100.5879 
       

12.500 -1.0 100.1620 100.1612 100.1605 100.1597 100.1559 
 -0.5 100.0501 100.0500 100.0499 100.0499 100.0495 
 0.0 100.0000 100.0000 100.0000 100.0000 100.0000 
 0.5 100.0098 100.0098 100.0098 100.0098 100.0098 
 1.0 100.0766 100.0764 100.0763 100.0761 100.0753 
 1.5 100.1967 100.1956 100.1945 100.1934 100.1878 
 2.0 100.3658 100.3619 100.3580 100.3540 100.3344 

  2.5 100.5789 100.5687 100.5586 100.5485 100.4980 
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Similarly, the relative efficiency of the proposed class estimator 
p
  with 

respect to 
MLÊ  is computed for different values of n, p, and λ. These computed 

values are given in Table 3. It can also see that the proposed class estimator 
p
  

performs better for each value of n, p, and λ as compared to the unbiased estimator. 

Moreover, when the value of λ is 7 the proposed class of estimator 
p
  performs 

similar to 
MLÊ . Furthermore, when the estimator 

p
  given in Table 2 is compared 

to the estimator given in Table 3, it is detected that the efficiency range of the 

estimator class p


 with respect to the estimator class p

 is larger than that of 

MLÊ . 

It is also observed that the proposed class of shrinkage estimators given in Equation 

(6) performs better than the traditional MLE for each value of n and p. However, 

the percent relative efficiency of the proposed class of biased estimators is 

symmetric around λ = 5 for a given p and n. It shows that the proposed class of 

estimators performs well even when the prior guess θ0 is away from the true but 

unknown value of the parameter θ. Also, the relative efficiency of this class of 

estimators is not much higher. Meanwhile, the proposed class of estimators given 

in Equation (20) performs well compared to the usual MLE but its performance 

depends upon the values of n, p, and λ. For smaller values of n and p, it performs 

better at a given λ. As the sample size increases, λ tends to away from 5, and its 

performance deteriorates and becomes very poor when sample size, p and λ are 

larger. It is observed that the proposed class of estimators can be made highly 

efficient by taking p = 2, 2.5 when sample size is around 20 and λ is expected to be 

approximately 5. Moreover, it is observed that, in general, p should be in the 

interval (–1, 1) so that the proposed class of estimators may be fruitfully used. 

Above discussion establishes the superiority of the proposed classes of biased 

estimators. 

Simulation 

A random sample was generated with different sample sizes from the Rayleigh 

distribution with θ = 5 and then calculated the unbiased and biased estimators from 

the generated samples. The procedure is iterated 10000 times. The MSE of both 

estimators is calculated to judge the performance of the proposed estimators. We 

considered n = 10, 20, and 50 and p = –1.00 to 2.50 with an interval of 0.50. The 

simulated results are shown in Table 4. It can be seen that the proposed estimator 

p

 performs well compared to the estimator p


 when the value of p lies in the 
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interval (–1 ≤ p ≤ 0) for each value of λ. Furthermore, the percent relative 

efficiency of both estimators decreased when sample size increases. It is evident 

from Table 4 that the estimator 
p
  performs much better than the estimator 

p
  and 

these results are in agreement with the theoretical results. 
 
 

Table 4. The percent relative efficiency of the estimators 


p
θ  and 



p
θ  with respect to θ̂

MLE
 

 
  Sample size 

  10  20  50 

λ p 


p
θ  



p
θ   

p
θ  



p
θ   

p
θ  



p
θ  

0.5 -1.0 134.8489 117.9759  116.1170 108.8182  105.9455 103.3986 
 -0.5 113.0125 102.5095  106.0271 101.2272  102.4421 100.5107 
 0.0 100.0000 100.0000  100.0000 100.0000  100.0000 100.0000 
 0.5 102.4252 112.4855  101.2368 106.0785  100.4898 102.3402 
 1.0 117.9180 134.8382  108.9946 116.5100  103.5303 106.2363 
 1.5 135.0329 131.6477  116.9538 117.2962  107.4184 108.4199 
 2.0 137.1994 99.3177  118.5453 102.8011  107.1770 102.0707 
 2.5 113.9579 67.8402  104.8259 76.1585  100.7715 88.3023 
          

1.0 -1.0 156.2500 121.0000  123.4568 110.2500  108.5069 104.0400 
 -0.5 114.2392 102.5304  106.6572 101.2577  102.5628 100.5012 
 0.0 100.0000 100.0000  100.0000 100.0000  100.0000 100.0000 
 0.5 102.5304 114.2392  101.2577 106.6572  100.5012 102.5628 
 1.0 121.0000 156.2500  110.2500 123.4568  104.0400 108.5069 
 1.5 162.0400 263.1945  128.5714 155.9376  110.8653 118.5045 
 2.0 243.3600 566.8934  160.0225 216.2630  121.5286 133.7115 
 2.5 405.8534 1644.9660  211.8779 331.6380  136.9558 155.9989 
          

1.5 -1.0 134.3012 117.7642  116.3531 108.9283  106.7376 103.7642 
 -0.5 113.0051 102.5049  105.9939 101.2203  102.4261 100.5078 
 0.0 100.0000 100.0000  100.0000 100.0000  100.0000 100.0000 
 0.5 102.4557 112.7095  101.1636 105.6888  100.4870 102.3230 
 1.0 118.2849 135.4221  109.0479 116.6330  103.5407 106.2374 
 1.5 137.1121 134.3306  117.6372 118.6150  107.5710 108.5778 
 2.0 138.1145 99.2876  119.0729 103.3666  108.3324 103.5204 
 2.5 115.3105 67.9699  102.1367 74.0475  100.9496 88.2497 
          

2.0 -1.0 96.4793 110.2760  98.2127 104.5576  99.9544 102.0701 
 -0.5 109.0627 102.3512  104.8835 101.2702  101.6787 100.4558 
 0.0 100.0000 100.0000  100.0000 100.0000  100.0000 100.0000 
 0.5 102.4054 109.3374  101.1150 104.0505  100.4903 101.8299 
 1.0 110.0865 96.2502  105.3312 99.6157  101.3720 98.5737 
 1.5 93.0756 53.9501  95.9266 70.9762  97.6059 85.5818 
 2.0 58.9238 28.1040  65.6110 39.6435  81.1719 61.2328 

  2.5 36.4582 17.6169   40.9252 22.8336   56.2884 38.2200 
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Conclusion 

Sometimes, it may be preferable to use biased estimators given that they have 

smaller MSE than the variance of the unbiased estimators. Such biased estimators 

are generally developed using shrinkage estimation techniques. Taking into 

consideration such case, in this study, two different classes of shrinkage estimators 

are proposed. The proposed estimators are defined after minimizing the MSEs. To 

judge the relative performance of the proposed estimators, a numerical and 

simulation study are conducted where percent relative bias and MSE are considered 

as performance criteria. As a conclusion, it is stated that in order to have a better 

estimator when there is a little information about the likely value of the unknown 

parameter of interest, one should use the proposed class of estimators given in 

Equation (6). However, if some information is available as a prior guess about the 

likely values of the parameter, one should use the proposed class of estimators 

given in Equation (20) and p should be chosen in the vicinity of 0. 
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