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Abstract

The sequence diversity of natural and laboratory populations of Brugia pahangi and Brugia

malayi was assessed with Illumina resequencing followed by mapping in order to identify

single nucleotide variants and insertions/deletions. In natural and laboratory Brugia popula-

tions, there is a lack of sequence diversity on chromosome X relative to the autosomes (πX/

πA = 0.2), which is lower than the expected (πX/πA = 0.75). A reduction in diversity is also

observed in other filarial nematodes with neo-X chromosome fusions in the genera Oncho-

cerca and Wuchereria, but not those without neo-X chromosome fusions in the genera Loa

and Dirofilaria. In the species with neo-X chromosome fusions, chromosome X is abnor-

mally large, containing a third of the genetic material such that a sizable portion of the

genome is lacking sequence diversity. Such profound differences in genetic diversity can be

consequential, having been associated with drug resistance and adaptability, with the

potential to affect filarial eradication.

Author summary

Almost a billion people receive>7.7 billion doses of treatment aimed at eliminating lym-

phatic filariasis, which is caused by three filarial nematodes: Wuchereria bancrofti, Brugia
malayi, and Brugia timori. Drug resistance and adaptation are both associated with
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pathogen success as well as higher levels of genetic diversity. In an examination of genetic

diversity in Brugia malayi and Brugia pahangi, we observed a lack of genetic diversity over

a third of the genome that is found on chromosome X. These species have neo-X chromo-

somes where a chromosome X fused with an autosome. Using publicly-available pub-

lished data, the other filarial nematodes of greatest human significance are also found to

have a similar lack of genetic diversity on their neo-X chromosomes. The two filarial nem-

atodes with publicly-available data that lack neo-X chromosomes did not have this lack of

genetic diversity. This lack of sequence diversity in B. malayi, W. bancrofti, and O. volvu-
lus could have profound effects on all traits encoded on chromosome X.

Introduction

Brugia malayi, Wuchereria bancrofti, and Brugia timori are filarial nematodes (roundworms)

that are responsible for lymphatic filariasis in humans with almost a billion people receiving

>7.7 billion doses of treatment through lymphatic filariasis elimination efforts [1]. All filarial

nematodes undergo a complex reproductive cycle that includes multiple larval stages within

an arthropod vector followed by more larval stages, sexual development, and reproduction in

vertebrate hosts [2]. Of the three filarial species responsible for human lymphatic filariasis,

only a subset of B. malayi strains can be maintained in small animals in the laboratory, a pre-

requisite for rigorous laboratory-based studies. These laboratory populations are critical to our

understanding of filarial biology, and are commonly used for anti-filarial drug trials [3]. Brugia
pahangi can also be maintained in a laboratory life cycle, infects cats and dogs, and is occasion-

ally zoonotic. B. pahangi and B. malayi use mosquito insect vectors and can co-infect dogs and

cats [4]. Male B. malayi and female B. pahangi can produce viable offspring following mating

in laboratory conditions [5,6], but the extent to which this happens successfully in nature is

unknown. In addition to lymphatic filariasis, filarial nematodes are responsible for other dis-

eases of medical and veterinary important, including human onchocerciasis [7] caused by the

filarial nematode Onchocerca volvulus, human loiasis [8] caused by Loa loa, and dog and cat

heartworm caused by Dirofilaria immitis [9].

Onchocerca volvulus [10], Brugia malayi [11–13], and Brugia pahangi [14] all have nearly

complete genomes with chromosome-level assemblies of autosomes and chromosome X,

while chromosome Y has yet to be resolved in any filarial nematode. Draft genomes are avail-

able for many other filarial nematodes [15], including W. bancrofti [16], L. loa [17], and D.

immitis [18]. The genomes of all filarial nematodes are represented by six Nigon elements

[12,19,20] that reflect conserved chromosomal segments that likely reflect the ancestral chro-

mosome state in many nematodes, similar to Muller elements in Drosophila species [21]. In

the case of filarial nematodes, the composition of these elements was primarily determined

through homology to the completed genomes of O. volvulus, Caenorhabditis elegans, and/or B.

malayi [12,19,20].

An important resource for filarial nematode research is the Filariasis Research Reagent

Resource Center, better known as FR3, which maintains both B. malayi and B. pahangi worms

across the life cycle in both Mongolian gerbils (jirds; Meriones unguiculatus) and cats [3]. At

FR3, B. malayi and B. pahangi are passaged in cats via a mosquito vector. First, blood contain-

ing microfilariae is drawn from multiple cats, and pooled together. Then, this pooled blood is

fed to mosquitos to allow microfilariae to develop to infective third-stage larvae (L3) which are

extracted from mosquitos and introduced into an uninfected cat. Not all mosquitos survive

infection with microfilariae, and not all infective L3 worms that are introduced into cats

mature into viable adults. Infective L3s are also used to inoculate Mongolian gerbils that are
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SRR3111498, SRR5190290, SRR5190289,

SRR5190290, SRR5190289. Lucknow, India B.

malayi males: SRR3111731, SRR3111738,

SRR3111864, SRR3112012. Thailand B. malayi

males: SRR12884294, SRR12884293,

SRR12884292, SRR12884291. FR3 B. pahangi

males: SRR7229557, SRR7244205,

SRR13482041, SRR13482040, SRR13482039.

FR3 B. pahangi females: SRR10997235,

SRR10997259, SRR10997264, SRR10997265,

SRR10997290, SRR10997293, SRR10997301,

SRR10997315, SRR10997319, SRR10997320,

SRR10997325. Kuala Lumpur B. pahangi males:

SRR7226912, SRR7227476, SRR7227477,

SRR7227478, SRR7227479. In addition, we used

the following files from the SRA for the analysis

presented in this paper. W. bancrofti samples:

SRR8188284, SRR8188279, SRR8188269,

SRR8188264, SRR8188300, SRR8188272,

SRR8188273, SRR8188271. O. volvulus samples:

SRR2924837, SRR2924836, SRR2924835,

SRR2924834, SRR2924832, SRR2924830,

SRR2924828, SRR2924826, SRR2924824,

SRR2924823, SRR2924812, SRR2924811,

SRR2924784, SRR2924783, SRR2924782,

SRR2924781, SRR2924780, SRR2924779,

SRR2924778, SRR2924733, SRR2924722,

SRR2924721, SRR2924720, SRR2924719,

SRR2924532, SRR2924467, SRR2924442,

SRR2924439, SRR2924434, SRR2924383,

SRR2924326, SRR2924211. L. loa samples:

SRR3136724, SRR3136977, SRR3136722,

SRR3136723, SRR3136973, SRR3136975,

SRR3136979, SRR3140170, SRR3140171,

SRR3136725, SRR3136972, SRR3136976. C.

elegans samples: SRR9322180, SRR9322887,

SRR9322632, SRR9322850, SRR9322406,

SRR9322439, SRR9322420, SRR9322366,

SRR9322508, SRR9322360, SRR9322172,

SRR9322278, SRR9321994, SRR9322517,

SRR9322739, SRR9322241, SRR9322893,

SRR9322681, SRR9322222, SRR9322809,

SRR9322720, SRR9322512, SRR9322507,

SRR9322002, SRR9322671, SRR9322510,

SRR9322657, SRR9322769. D. immitis samples:

SRR10533236, SRR10533238, SRR10533239,

SRR10533240, SRR10533237, SRR13154013,

SRR13154014, SRR13154015, SRR13154016,

SRR13154017. D. melanogaster samples:

SRR189389, SRR306629, SRR306612,

SRR306616, SRR306614, SRR306609,

SRR306621, SRR306619, SRR306624,

SRR306611, SRR306618, SRR189102,

SRR218317, SRR189040, SRR189101,

SRR189105. All code used for data analysis and

generation of figures used in this project can be

https://doi.org/10.1371/journal.pntd.0009838


used as a source of much of the material that is distributed by FR3. There are several steps

where bottlenecks could occur, and different labs that maintain the life cycle have their own

methods to prevent bottlenecks.

Genetic diversity can be influenced by bottlenecks, polyandry, population size, sex-biased

population size, sex-biased or sex-exclusive inheritance, the rate of recombination, the muta-

tion rate, and selection [22,23]. Bottlenecks occur when there is a rapid reduction in the popu-

lation size such that allele frequencies shift dramatically [24] and have been studied in other

parasite species [25–27]. These bottlenecks can significantly reduce genomic variation, but the

presence of alleles that confer survival advantages can also generate selective sweeps that pro-

duce similar reductions in genomic variation [28]. Sex chromosomes add additional complex-

ity to genetic diversity. For instance, in heteromorphic sex chromosomes like those in X-Y sex

determination systems (which includes some filarial nematodes), the X chromosome has

reduced genetic diversity by virtue of reduced effective population size. In a population with

random mating (e.g. one without polyandry), this results in ~0.75 variance on chromosome X

and ~0.25 variance on chromosome Y relative to the autosomes, but in species with multiple

mating, this variance can be reduced even further [29].

Though multiple centers across the globe maintain B. malayi in laboratories, many of these

laboratory populations are derived from the same initial population. Several cats were experi-

mentally infected in the early 1960s with a sub-periodic zoophilic B. malayi strain that is

reported to be derived from a human patient from Malaysia [30] and distributed to numerous

places by Prof. Dr. C. P. Ramachandran [31,32]. Recipients included the Central Drug

Research Institute, Lucknow, India, and the University of California Los Angeles (UCLA),

among others. Most modern B. malayi laboratory lines are descended from this latter line at

UCLA [3], including populations maintained and distributed by TRS labs and the NIAID-

funded Filariasis Research Reagent Resource Center (FR3). FR3 and TRS supply one another

worms when either laboratory has issues with their populations. In addition, investigators

acquire worms from FR3 and/or TRS to establish their own culture collections and replenish

with worms as needed, including the laboratories of Prof. Mark Taylor and Dr. Joseph Turner

in the Liverpool School of Tropical Medicine and Dr. Gary Weil and Dr. Ramakrishna Rao at

Washington University in St. Louis. A further B. malayi line was established independently

from an infected woman in Narathiwat Province, southern Thailand, and has been maintained

at The Faculty of Tropical Medicine, Mahidol University, Bangkok, then Chiang Mai Univer-

sity, Thailand, for ~40 years with no mixing with the other laboratory lineages [33].

The B. pahangi lineage at FR3 is thought to have been established in the 1970s [34] from a

green leaf monkey. Because B. pahangi and B. malayi share very similar life cycles, the proce-

dure for laboratory maintenance for both species at FR3 is similar.

Using samples of B. malayi and B. pahangi from multiple laboratory centers as well as natu-

ral samples of B. pahangi that were acquired from wild cats [35], we sought to investigate the

genomic diversity within these Brugia populations. Given the potential for frequent bottle-

necks both in nature and the laboratory, there is the repeated and significant risk of a founder

effect that we sought to examine. To this end, we have employed public data from other filarial

nematodes, including W. bancrofti, L. loa, O. volvulus and D. immitis in order to place this

population diversity in the context of the broader filarial nematode family.

Materials and methods

B. malayi library preparation and sequencing

Adult male worms were provided from the following B. malayi centers: Washington Univer-

sity in St. Louis, MO, USA; Liverpool School of Tropical Medicine, UK; TRS Laboratories,
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Athens, GA, USA; FR3, Athens, GA, USA; Central Drug Research Institute, Lucknow, India;

and Chiang Mai University, Chiang Mai, Thailand (S1 Text). Adult male worms were

sequenced, since females are typically gravid precluding obtaining their individual genome.

While virgin females would be a viable alternative, the difficulties in isolating them would have

precluded us from obtaining many of the samples used here. Frozen single adult males recov-

ered from the host gerbil were homogenized separately in 50 μl Buffer G2 from the genomic

DNA buffer set (Qiagen) supplemented with RNase A (Qiagen) to 200 μg/mL. Homogeniza-

tion was performed in a 1.5 mL microcentrifuge tube using a disposable micro pestle (Kimble-

Chase). The homogenate was removed to a fresh tube and then the pestle and original tube

were washed with an extra 0.95 mL of G2 buffer with RNase which was then added to the sam-

ple. The homogenized sample was then processed according to the protocol for tissue samples

described in the genomic DNA handbook (Qiagen) and using genomic-tip 20/G gravity flow

columns (Qiagen) except 80 U proteinase K (New England Biolabs) were used. Elution buffer

QF was prewarmed to 50˚C to increase DNA recovery. The DNA was precipitated by centrifu-

gation as recommended, but in the presence of 20 μg glycogen (Invitrogen). Genomic DNA

was sheared to ~380 bp with an ultrasonicator (Covaris) and used to construct indexed PE Illu-

mina libraries using the NEBNext Ultra DNA kit (New England Biolabs). All samples were

sequenced on the Illumina HiSeq 2500 with a read length of 100 bp, except for W_male_2 and

W_male_6, which were sequenced on the Illumina HiSeq 4000 with a read length of 150 bp.

While the data was generated specifically for this study, the data from a subset of samples were

used in a previously published study to aid in identification of sex chromosomes and as such

these methods are previously described for those samples [12].

B. pahangi library preparation and sequencing

Adult B. pahangi male worms were provided from the following locations: FR3 laboratories, at

both University of Georgia, Athens, GA, USA; University of Wisconsin, OshKosh, WI, USA

(S1 Text) and University of Malaya, Kuala Lumpur, Malaysia [35]. Adult females were

obtained from FR3 laboratories and pooled for the purposes of this analysis. Pooled adult

female samples were prepared as described in Mattick et al [14]. Endemic isolates from Malay-

sia were prepared in an identical fashion to the Brugia malayi samples described above. Frozen

single adult males obtained from FR3 and recovered from the same host gerbil were separately

homogenized under liquid nitrogen in 1.5 mL microcentrifuge tubes. The samples were pro-

cessed according to the Qiagen DNeasy blood and tissue insect protocol using 180 μl buffer

ATL and 20 μL proteinase K. The samples were processed according to the manufacturer’s rec-

ommendations and eluted in 200 μL of buffer AE. After DNA isolation, the pooled adult

female sample and the B. pahangi male FR3_UWO_Bp1AM_09 sample were sequenced on the

Illumina HiSeq2500 from KAPA Hyper libraries with 150 bp paired-end reads. For all other B.

pahangi samples, genomic DNA was sheared to ~380 bp with an ultrasonicator (Covaris) and

prepared into an indexed, paired-end Illumina library using the NEBNext Ultra DNA kit.

These samples were sequenced on the Illumina HiSeq 4000 with 150 bp paired end reads.

Sample variant calling and processing for all individual nematode species

Each individual B. pahangi, B. malayi, O. volvulus, D. immitis, C. elegans and Drosophila mela-
nogaster sample was mapped against its respective genome (GCA_000002995.5,

GCA_012070555.1, GCA_000002985.3, GCA_001077395.1, GCA_000499405.2,

GCA_000001215.4) [14,36–40] using BWA MEM [41] with the following settings: -M -a. The

resulting BAM files were all sorted and de-duplicated using the Picard tools SortSam and

MarkDuplicates, respectively [42] using default parameters for both. Single Nucleotide

PLOS NEGLECTED TROPICAL DISEASES Brugia genomic diversity

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009838 October 27, 2021 4 / 21

https://doi.org/10.1371/journal.pntd.0009838


Variants (SNVs) were jointly called for each sample using Genomic Variant Call Format

(GVCF) files generated using the Genome Analysis Tool kit (GATK) [43] with the Haplotype-

Caller with the--read-filter MappingQualityReadFilter setting. The resulting GVCF files were

merged and jointly called for SNVs using the GATK GenomicsDBImport and Genoty-

peGVCFs functions, then filtered using a manual filter with the following settings:--filter-

name "QD"--filter-expression "QD < 5.0"--filter-name "QUAL"--filter-expression

"QUAL < 30.0"--filter-name "DP"--filter-expression "DP< 14.0"--filter-name "MQ"--filter-

expression "MQ < 30.0"--filter-name "MQRankSum"--filter-expression "MQRankSum <

-12.5"--filter-name "ReadPosRankSum"--filter-expression "ReadPosRankSum < -8.0"--filter-

name "FS"--filter-expression "FS> 60.0". For male samples from species where chromosome

structure was known (B. malayi, B. pahangi), the autosomes were called with a ploidy of 2,

while the X chromosome was called at a ploidy of 1. For female samples from species where

chromosome structure was known (O. volvulus), the autosomes and X chromosome were

called with a ploidy of 2. Filtration in samples called with a ploidy of 1 were filtered with--fil-

ter-name "DP"--filter-expression "DP < 7.0" to reflect the reduced sequencing depth on those

sequences. Putative known pseudoautosomal regions from B. malayi, B. pahangi, and O. volvu-
lus were excluded from variant analysis.

Sample variant calling and processing for multi-individual samples

Each multi-individual W. bancrofti sample was mapped against its respective genome

(GCA_000002995.5, GCA_012070555.1) [14,37] using BWA MEM [44] with the following set-

tings: -M -a. The resulting BAM files were all sorted and de-duplicated using the Picard tools

SortSam and MarkDuplicates respectively [42] using default parameters for both. SNVs were

called using the Freebayes software, specifically the freebayes-parallel feature using default

parameters.

SNV density and Pi analysis

SNV density can allow for the identification of regions of the genome that are under- or over-

represented in variants relative to the entire genomic sequence. SNV density across each of the

chromosomes was calculated over 10-kbp sliding non-overlapping windows, considered as

20,000 possible variant sites with homozygous variants counting for 2 site changes and hetero-

zygous variants counting as 1 site change. Pi was calculated using VCFtools over 10 kbp non-

overlapping windows for all samples with a genomic coverage > 80% (S1 Table) for samples

with a ploidy of 2. Because VCFtools requires diploid sites, the R package PopGenome [45]

was used with default parameters to calculate Pi for B. malayi, B. pahangi and O. volvulus X

chromosomes. Plots of SNV density and Pi were generated using the ggplots2 package in R

[46], with the 10-kbp regions as the X-axis and Pi as the Y-axis. A density plot for Pi for each

species was generated using the geom_density function of ggplots with default settings on the

10-kbp values of Pi across each chromosome. SNV density and Pi were assigned to Nigon ele-

ments, which were determined as previously described [12]. Briefly, contigs were mapped

against B. malayi, O. volvulus and C. elegans using the NUCmer tool from the MUMmer pack-

age v.3.23 [47], and contigs were assigned to a specific Nigon element based on the largest

match against each specific Nigon element. Principal component analysis was conducted on

all autosomal variants in Brugia malayi and Brugia pahangi individuals using PLINK v.1.9 [48]

with the--pca parameter. The resulting primary two principal components for each species

were plotted using the geom_point function of ggplots with default settings in R.
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Phylogenetic relationships

Phylogenetic relationships for chromosome X and the autosomes were developed by first

obtaining current genomes for B. timori, W. bancrofti and O. volvulus from WormBase [49].

Conserved nematode genes from these genomes, in addition to B. malayi and B. pahangi, were

predicted using BUSCO v.4.06 package and its nematoda_odb10 database [50]. To ensure

orthology, the genomes that were not in chromosome form (i.e. B. timori and W. bancrofti)
were aligned against B. malayi using the NUCmer tool from the MUMmer package v.3.23

[47]. Contigs were binned to a chromosome based on maximum match length, and genes

were assigned to chromosome X or the autosomes based on their contig matches. Genes pres-

ent in all 5 species were aligned using TranslatorX [51] and filtered to include only those that

were<15% dissimilar (>85% similarity) at the amino acid level and had at most a difference

of 10% in gene length amongst all 5 orthologues. This left a total of 38 genes on chromosome

X, and 228 genes on the autosomes. Trees were generated for these sequences using IQ-TREE

with default parameters [52], and plotted using iTOL [53]. Mitochondrial sequences

(NC_004298.1, CM022469.1, NC_016186.1, AP017686.1) for each species were obtained from

GenBank, and aligned at the nucleotide level using MAFFT v.7.427 [54]. The mitochondrial

tree was generated and plotted in an identical manner to the autosome and chromosome X

trees.

Ethics statement

All animals in the US were handled in accordance with guidelines defined by the Animal Wel-

fare Act (A3381-01), Association for Assessment and Accreditation of Laboratory Care Inter-

national (AAAALAC), PHS Policy for the Humane Care and Use of Laboratory Animals, and

the Guide for the Care and Use of Laboratory Animals. Animal work for FR3 was approved

under the University of Georgia Athens Institutional Animal Care and Use protocol A2010

12–005 and A2013 11–009 or the University of Wisconsin OshKosh under IACUC protocol

number 0026-000246-R2-01-12-17. All animal research at TRS was approved under Institu-

tional Animal Care and Use Protocol 13–03 or 14–03. All animal work at WUSM was

approved under WUSM Institutional Animal Care and Use Protocol 20120025.

The study in Lucknow India bears IAEC approval number 129/08/Para/IAEC/renew (84/

09) dated April 27, 2009.

All experiments on animals at Liverpool School of Tropical Medicine were approved by the

ethical committees of Liverpool School of Tropical Medicine and the University of Liverpool

and were conducted according to Home Office Legislation, the revised Animals (Scientific

Procedures) Act of 1986 (project license numbers 3002974, P86866FD9).

Approval for using gerbils for sample work in Malaysia was granted by the University of

Malaya Animal Care and Use Committee (Ref. No. PAR/29/06/2012/RM [R]).

The protocol for samples obtained from Thailand was approved by the Institutional Animal

Care and Use Committee (Protocol Number 15/2562) of the Faculty of Medicine, Chiang Mai

University, Chiang Mai province, Thailand.

Results

Genomic variation in B. malayi laboratory populations

Between 4–6 individual adult male B. malayi worms were sequenced from each of 6 laboratory

populations, which are from three primary B. malayi population groups: (a) FR3 and FR3

derived lines, including the continually maintained FR3 line, the line maintained by TRS labs,

and the lines at Washington University in St. Louis and the Liverpool School of Tropical
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Medicine; (b) those from a life cycle established at the same time as the FR3-derived lines, but

maintained independently for decades in Lucknow, India; and (c) those from the life cycle in

Chiang Mai, Thailand, established from a completely independent human infection and main-

tained in the laboratory independently for ~40 years. Paired-end Illumina sequencing reads

were generated to an average of 85× sequencing depth from individual adult male B. malayi
worms (S1 Table). These adult male worms from each site were collected from the same gerbil,

with the exception of TRS, where half of the worms were obtained from a different host gerbil

(S2 Table). All of the reads were mapped to the reference B. malayi genome [11–13] that was

obtained with worms from FR3 and TRS. The B. malayi samples had an average of 105,264

SNVs per sample, and 21,227 insertions/deletions per sample identified with the GATK Hap-

lotypeCaller called jointly on all samples. The B. malayi samples had a transition/transversion

ratio (ts/tv) ranging from 2.10–2.60 (S2 Table).

SNV density and Pi across the B. malayi genome

The analysis of SNV distribution using Pi was calculated over the Nigon elements associated

with each chromosome. Nigon elements are regions of nematode genomes that likely reflect

the ancestral five autosomes and a single sex chromosome. Nigon elements persist despite

genome rearrangements because of the infrequency of recombination between chromosomes

in nematodes [12,19,20]. These are similar to Muller elements in Drosophila [21] with Nigon

elements being denoted as Nigon-A, Nigon-B, Nigon-C, Nigon-D, Nigon-E, and Nigon-X.

The gene content on Nigon elements remains largely conserved even following neo-X chro-

mosome evolution, like the fusion of Nigon-D and Nigon-X in Brugia spp. and Nigon-D and

Nigon-E in O. volvulus [12].

The average SNV density across all samples (S1 Fig) and the amount of allelic diversity (Pi)

for all 26 B. malayi samples (Fig 1) were similar when calculated in 10-kbp windows across

each of the Nigon elements for each sample. For species where chromosome X and the

pseudo-autosomal region were defined and the samples were known to be male (B. malayi and

B. pahangi), Pi for this chromosome was calculated using a ploidy value of 1, while the remain-

ing chromosomes were calculated using the standard ploidy of 2. In these cases, X-specific will

refer to the region of chromosome X that is not shared with chromosome Y, while the pseudo-

autosomal region will refer to the shared sequence between the X and Y chromosomes. After

excluding the pseudo-autosomal region of chromosome X, the average Pi across the X specific

Nigon-D and Nigon-X are 5-fold lower (πX/πA = 0.19) when compared to similar regions of

the autosomes (Fig 2).

A principal component analysis identified that while populations recently supplemented

from the FR3 lineage are very similar, the Thai samples and the Indian samples are signifi-

cantly different, despite those from Lucknow, India, sharing a common background with the

FR3 lines (Fig 3A).

Genomic variation in B. pahangi samples

Individual adult male B. pahangi worms were sequenced from endemic B. pahangi from a cat

in Malaysia and from the B. pahangi FR3 laboratory population. For sequencing of endemic B.

pahangi, Aedes togoi mosquitos were allowed to feed on a naturally-infected microfilaremic

wild cat, L3s were recovered, and these L3s were used to infect gerbils as previously described

by Lau et al. [35]; three of these adult worms from a single gerbil were individually sequenced

and used for variant analysis. These three worms were compared to seven adult male B.

pahangi worms from the FR3 laboratory population from two gerbils. All of these samples

were sequenced on the Illumina HiSeq platform, resulting in an average 105× sequencing
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Fig 1. Pi across B. malayi and B. pahangi samples from multiple laboratory backgrounds. Pi was calculated across each of the B. malayi and B. pahangi contigs/

scaffolds using VCFTools on a combined VCF file containing all samples. The results are organized by chromosome and Nigon elements. Chromosome X shows a

distinct lack of nucleotide diversity relative to the autosomes. The lack of diversity on chromosome X appears to be present in nematodes from all laboratory centers for

B. malayi and in both endemic and laboratory populations for B. pahangi. The plots for chromosome X are larger reflecting the increased size of chromosome X which is

approximately twice the size of the autosomes. Chromosome Y is not resolved in either organism, and as such Pi could not be calculated.

https://doi.org/10.1371/journal.pntd.0009838.g001
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depth (range: 22×-217×) per individual across the genome (S3 Table). All samples were

mapped to the B. pahangi FR3 genome [14]. On average there were 315,514 SNVs and 107,463

insertions/deletions identified with the GATK HaplotypeCaller in each B. pahangi sample with

a consistent ts/tv of 2.67–2.95, which is higher than the ts/tv for B. malayi calculated above.

SNV density and Pi across the B. pahangi genome

The average SNV density across all samples (S2 Fig) and the amount of allelic diversity (Pi)

(Fig 1) for all 10 samples were calculated in 10-kbp windows across each of the Nigon elements

for each sample. Based on both the sequencing depth (S3 Fig) difference between BP_ChrX_c

and other contigs in the B. pahangi chromosome X and the decrease in apparent sequence

diversity on chromosome X contigs in all but BP_ChrX_c (S4 Fig), BP_ChrX_c was deter-

mined to be the pseudo-autosomal region and analyses were adjusted accordingly. After

Fig 2. Pi across filarial nematode species and model organisms. Pi was calculated across B. malayi, B. pahangi, W. bancrofti, O.

volvulus, L. loa, D. immitis, D. melanogaster and C. elegans using VCFTools on a combined VCF file containing all samples for each

of those species. For all nematode species, contigs were assigned to a Nigon element based on their homology to B. malayi, O.

volvulus and C. elegans. Values of Pi were log10-transformed to more readily visualize the distributions. Filarial nematodes with neo-

X chromosomes (Nigon-D/Nigon-X in Brugia spp. and W. bancrofti and NigonD/Nigon-E in O. volvulus) have a significantly

depressed Pi compared to autosomal Nigon elements or X chromosomes in other species (Nigon-D in L. loa and D. immitis, Nigon-

X in C. elegans, and chromosome X in D. melanogaster). This suggests that the loss of diversity observed in B. malayi and B. pahangi
are not limited to those species and related to the formation of the neo-X chromosome. Chromosome 4 in D. melanogaster also has

a decrease in Pi; it is a small chromosome sometimes referred to as the dot chromosome that is largely heterochromatic and may

formerly have been a sex chromosome [74].

https://doi.org/10.1371/journal.pntd.0009838.g002

Fig 3. Principal component analysis of B. malayi and B. pahangi samples. Principal component analyses of the B. malayi (A) and B. pahangi (B) samples were

conducted using PLINK with default parameters on each individual sample for each population, and the resulting outputs were imported into R and plotted using

geom_point from ggplots. All of the FR3-derived B. malayi samples cluster very tightly together, except for those derived from the Lucknow strain, which are separated

by principal component 2. Principal component 1 primarily divides the 4 samples from Thailand, which not only are distinct from FR3-derived worms, but are much

more distinct from each other than FR3-derived worms are from each other. The FR3 single adult male B. pahangi all cluster together, while samples from wild infected

cats from Malaysia appear to dominate the variation along both principal components.

https://doi.org/10.1371/journal.pntd.0009838.g003
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excluding the pseudoautosomal region of the X chromosome, the average Pi across Nigon ele-

ments D and X is 5-fold lower (πX/πA = 0.21) when compared to Nigon elements in the auto-

somes (Figs 1 and 2).

A principal component analysis using PLINK identified that the FR3 B. pahangi samples

are distinct from the endemic samples, but that the FR3 samples are also much more closely

related to each other than the endemic samples are to one another (Fig 3B). The second princi-

pal component primarily separates out each endemic sample, suggesting that these worms

have significantly more diversity than those from the FR3 lineage.

Introgression

In each Brugia nematode, there are three genomes—the mitochondrial genome, the Wolbachia
endosymbiont genome, and the nuclear genome. Because of the similarities in nucleotide iden-

tity, chromosome structure (including a largely shared X chromosome and similar pseudoau-

tosomal region) and genome size between B. pahangi and B. malayi, as well as the documented

ability for these species to successfully cross [5], we tested if there was introgression between B.

pahangi and B. malayi. If an introgression occurred that resulted in the transfer of a chromo-

some X from one Brugia species to the other, one would expect that a phylogenetic tree drawn

from chromosome X would look different than that of the autosomes. However, phylogenetic

trees of a subset of conserved genes on the autosomes of these agents of lymphatic filariasis

and a related filarial parasite, Onchocerca volvulus, are similar in topology and relative distance

when compared to those on chromosome X and the mitochondria, while the rates of variation

are different (Fig 4). These phylogenetic patterns between B. malayi and B. pahangi that are

the same for chromosome X, the autosomes, and mitochondrial sequences suggest that the

decreased variation on chromosome X did not result from introgression. The conserved phy-

logenetic topology suggests that this lack of sequence diversity predates the origins of Brugia
spp.

Other filarial genomes

To examine the loss of sequence diversity on chromosome X more widely, particularly with

respect to the two neo-X chromosomes, we compared the sequence diversity across exemplar

filarial nematodes that have sequence data from multiple samples, including B. malayi, B.

pahangi, O. volvulus [10], W. bancrofti [16], L. loa [17], and D. immitis [18]. These analyses

capitalized on the organization of nematode genomes that allows for the attribution of contigs

to Nigon elements even in the highly fragmented genomes like W. bancrofti [16], L. loa [55]

and D. immitis [56]. W. bancrofti is predicted to have a Nigon-D and Nigon-X fused neo-X

chromosome like Brugia spp., O. volvulus has a Nigon-D and Nigon-E fused neo-X chromo-

some, and D. immitis and L. loa are predicted to have just Nigon-D as their chromosome X

[12]. If the loss of sequence diversity in chromosome X of Brugia is associated with neo-X

chromosome evolution, we would expect there to be a similar loss in the phylogenetically dis-

tinct O. volvulus that we do not see in D. immitis or L. loa. In addition, the results were com-

pared to similar data [57,58] for the model organisms C. elegans and D. melanogaster that have

complete genomes [59,60], and a large amount of available population data. C. elegans is a

free-living nematode with an XO reproductive system, while D. melanogaster is an arthropod

with an XY reproductive system.

Publicly-available WGS data from populations of O. volvulus (mixed sex individuals), W.

bancrofti (mixed samples), L. loa (mixed samples), D. immitis (individual males), C. elegans
(mixed sex individuals), and D. melanogaster (mixed sex individuals) were analyzed to ascer-

tain whether the loss of diversity observed in B. malayi and B. pahangi was present in other
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filarial nematodes. Given the fragmented nature of some of the filarial nematode genomes and

the lack of Y chromosomes in some species, the pseudo-autosomal region could only be

excluded from O. volvulus and D. melanogaster. Contigs from the nematode genomes were

assigned to Nigon elements based on their homology to B. malayi, C. elegans, and O. volvulus.
The distribution of Pi across Nigon elements was non-normal with a mean outside the inter-

quartile range such that the data violates many of the assumptions of common statistical tests.

However, visual inspection of the box plots reveals that in nematodes with neo-X chromo-

somes (i.e. Brugia spp., W. bancrofti, and O. volvulus) chromosome X can clearly be delineated

with a lower Pi (Fig 2), despite the difference in the Nigon-composition of those neo-X

0.01

0.01

A

B

C

X Chromosome BUSCO Gene Relationships

Autosome BUSCO Gene Relationships

Mitochondrial Relationships

Fig 4. Phylogenetic trees of conserved nematode BUSCO genes and mitochondria between filarial species. Conserved genes predicted by BUSCO in B. malayi, B.

pahangi, W. bancrofti, B. timori and O. volvulus were separated out by their location and divided based on their presence on chromosome X of B. malayi and B. pahangi
(A) or the autosomes of those species (B). These gene sets were used to construct phylogenetic trees using IQ-TREE (bootstrap = 1000) that were midpoint rooted in

IQ-TREE (https://itol.embl.de/). (C) Mitochondrial genome sequences of these organisms were aligned via MAFFT, and trees were generated via IQ-TREE. The

relationships between filarial species consistently show B. malayi and B. timori as more closely related to each other than to B. pahangi such that any loss of chromosome

X diversity likely predates the divergence of the three organisms.

https://doi.org/10.1371/journal.pntd.0009838.g004

PLOS NEGLECTED TROPICAL DISEASES Brugia genomic diversity

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009838 October 27, 2021 12 / 21

https://itol.embl.de/
https://doi.org/10.1371/journal.pntd.0009838.g004
https://doi.org/10.1371/journal.pntd.0009838


chromosomes. In contrast, in nematodes without neo-X chromosomes (i.e. D. immitis, L. loa,

and C. elegans) as well as in D. melanogaster, chromosome X cannot be clearly delineated (Fig

2), and Pi on chromosome X is in line with Pi on the autosomes. This indicates that this pro-

found lack of sequence diversity on chromosome X is not due solely to the life cycle and life-

style of filarial nematodes, but instead to creation of neo-X chromosomes through fusion with

an autosome.

Discussion

B. malayi and B. pahangi filarial nematodes populations have genetic diversity that is consis-

tent with the known separation over time of these populations (Fig 3). The greatest difference

is seen between endemic nematodes and laboratory populations in the case of B. pahangi, or

between independently derived laboratory populations in the case of B. malayi. To a lesser

extent there are differences between nematodes that were derived from the same human sam-

ple but have been maintained separately for decades reflected in the differences between Luck-

now and the FR3 samples.

Lack of access to clinical samples precluded their inclusion in this study. While the passage

of laboratory populations through non-native hosts could impact the genetic diversity, intro-

ducing new bottlenecks and selective pressures, the lack of diversity on neo-X chromosomes

was found in at least two populations for each of four species with known neo-X fusions (B.

malayi, B. pahangi, W. bancrofti, and O. volvulus) and was absent from the two filarial nema-

todes that lack such fusions (L. loa and D. immitis). Further population level data and the com-

pletion of filarial nematode genomes will likely shed further light on the factors influencing

genetic diversity in filarial nematodes as well as parasitic nematodes more broadly.

A significant difference in genetic diversity was observed between autosomes and chromo-

some X. Genetic diversity can be influenced by bottlenecks, polyandry, rate of recombination,

mutation rate, selection, and effective population size [22,23]. The loss of genetic diversity on

chromosome X is not limited to just laboratory populations (and the bottlenecks associated

with laboratory propagation) since natural populations of W. bancrofti and B. pahangi have

the same loss of diversity. Although polyandry and population shrinkage may also contribute

to loss of diversity in filarial nematodes, it is quite likely to be similar for all of the examined

filarial nematodes given their life history.

The rate of recombination is expected to be suppressed in sex chromosomes relative to

autosomes [61], which is supported by the significant reduction in intrachromosomal inver-

sions observed in the Brugia chromosome X relative to its autosomes [12]. In addition, chro-

mosome Y has an abundance of repeats and transposable elements that prevented its assembly

[12], and these repetitive elements are predicted to play a critical role in the further suppres-

sion of recombination [62].

In mammals and birds, the higher mutation rate in males over females leads to differences

in the mutation rate between autosomes and sex chromosomes [63], while in at least one plant

[64] the autosome and sex chromosome mutations are approximately equal. Differences in

mutation rate on the sex chromosomes in mammals are associated with more rounds of repli-

cation in male gametes, which is likely also the case in filarial nematodes. However, we expect

male gametogenesis to be similar between all examined filarial nematodes, such that the differ-

ences we observe are not likely attributed to the mutation rate.

Genetic diversity can also be influenced by sex-biased effective population size, sex-biased

inheritance, and sex-exclusive inheritance [22,23]. While we cannot rule out the effects of sex-

biased inheritance or sex-exclusive inheritance, we suggest that they would likely be the same

across all examined filarial nematodes.
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Across nematodes and even filarial nematodes, there is a diversity of sex chromosomes,

with XO sex determination being common, but XY being present, and even some nematodes

having three sexes [65]. Among the filarial nematodes examined, L. loa and D. immitis are

thought to be XO [66], with Brugia spp. and Onchocerca spp. being XY [66] resulting from dif-

ferent neo-X fusions [12]. In the absence of selection and no sex bias in reproduction, the

expected population size for an organism with heteromorphic XY chromosomes, like Brugia
and Onchocerca filarial nematodes, the autosome:(chromosome X):(chromosome Y) allelic fre-

quency is 4:3:1. As a consequence, a reduction of nucleotide diversity is expected on hetero-

morphic sex chromosomes, with πX/πA ~ 0.75 [10,22]. Similarly, nematodes with XO sex

determination would have an expected autosome:(chromosome X):(chromosome Y) allelic

frequency of 4:3:0 with πX/πA ~ 0.75. However, we observe πX/πA ~ 0.2 for both Brugia species.

Upon examination of other filarial nematodes, a reduction in πX/πA similar to that in Bru-
gia spp. was observed for W. bancrofti and O. volvulus, all four of which have neo-X chromo-

somes that emerged after fusion of chromosome X with an autosome. In the case of filarial

worms, different neo-X chromosomes were formed at least twice by the fusion of two Nigon

elements [12,19,20]. The common Nigon element in these fusion events appears to be Nigon-

D, which is likely the ancestral sex chromosome of filarial nematodes [12,19,20]. The chromo-

somal fusion event in the ONC3 clade, containing Onchocerca spp., joined Nigon-D and

Nigon-E, while the chromosomal fusion in the ONC5 clade, containing Brugia spp. and

Wuchereria sp., joined Nigon-D and Nigon-X (Fig 5). Both times that there is a loss in diver-

sity on chromosome X in this study, there is a concomitant neo-X fusion. And conversely,

where there is not a neo-X fusion, there is not the loss of diversity (i.e. L. loa and D. immitis).
As such this lack of genetic diversity on chromosome X seems consistent with the formation of

the neo-X chromosomes prior to several speciation events, like that of Brugia spp. and W. ban-
crofti (Fig 5). Chromosomal fusion events are known to reduce genomic diversity in species as

the effective population size of the sex chromosome is reduced and novel genes and dosage

mechanisms must be generated to compensate for the fusion [67,68]. For example, in Sylvoidea
bird species, a loss of diversity on chromosome Z (the equivalent of chromosome X in ZW sys-

tems) is attributed to a neo-sex chromosome fusion [69].

Chromosomal fusions may not be the only source of diversity loss on chromosome X. For

example, Haemonchus contortus, a parasitic nematode, does not show evidence of a recent

chromosomal fusion. Yet the H. contortus πX/πA is 0.36 [70], which is also lower than neutral

expectation of πX/πA’ 0.75. This decrease in H. contortus was attributed to host sex biases due

to reproductive fitness being over-dispersed between males and females from polyandry and

high fecundity [70]. However, filarial nematodes only seem to have this lack of genetic diver-

sity on neo-X chromosomes despite likely polyandry and high fecundity across many or most

filarial nematodes.

In nematodes, there has also been a transition in the sex chromosomes. Nigon-D is likely

the ancestral chromosome for all Rhabditida nematodes, with a conversion of Nigon-X to

chromosome X in Rhabditina nematodes, which includes C. elegans [12]. This transition does

not appear to be associated with a difference in genetic diversity for chromosome X upon com-

parisons of C. elegans and the filarial nematodes without neo-X fusions, like D. immitis and L.

loa. (Fig 2). It is possible that altering the sex determining Nigon element is not enough to

cause diversity loss, and that it is specifically associated with chromosomal fusion. Alterna-

tively, it is possible that enough time has elapsed to eliminate the signature associated with that

transition at least with the resolution with which it was examined here.

The same processes that subject chromosome X to decreased genetic diversity and Muller’s

ratchet also affect chromosome Y to a much larger degree [63,71]. In filarial nematodes, we do

not have an assembled chromosome Y, and are limited to male-specific contigs attributed to
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chromosome Y. But the high repetitiveness of the sequences [12] suggests that filarial nema-

tode Y chromosomes are undergoing a degeneration consistent with neo-Y formation.

Although chromosomal fusions appear to be associated with diversity loss in filarial worms,

it is not yet clear if this will be found universally in other parasitic nematodes. This lack of

chromosome X genetic diversity is important since most medically important filarial nema-

todes have neo-X fusions with a third of all genetic material being on chromosome X, repre-

senting a substantial loss of sequence diversity. Genetic material on chromosome X also

undergoes recombination at a lower rate than the rest of the genome [61]. Thus the sex chro-

mosome is more susceptible to Muller’s Ratchet [72], which is a process whereby deleterious
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mutations accumulate in the absence of recombination. This loss of diversity on such a large

portion of the genome could have significant consequences. In other parasites, drug resistance

and adaptability are associated with a higher level of genetic diversity, and its absence can pre-

vent an organism from developing strategies of coping with adverse events [73].

Conclusions

Populations were examined that were derived from two independent isolates of B. malayi and

B. pahangi. For B. malayi this includes several populations derived from a human from Malay-

sia and a population from an infected woman in Thailand. For B. pahangi this includes the

populations derived from a green leaf monkey from Malaysia and from naturally infected

Malaysian cats. We observe a profound lack of sequence diversity on chromosome X in all

independent populations of B. malayi and B. pahangi that is consistent with reduced chromo-

some X diversity in other sequenced filarial nematodes with neo-X chromosomes. Given the

importance that sequence diversity has with respect to adaptability and the size of chromo-

some X, which is a third of the genome, this lack of sequence diversity in a third of the genome

in medically important filarial nematodes is likely to have a large effect on the evolutionary tra-

jectory of these species.
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