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Figure 1. Simulation of the spinal locomotor circuit coupled to a musculoskeletal model during a beat-and-glide swimming episode. (A) Schematic of

locomotor movements during the development of zebrafish. (B) Schematic of a fish body with 10th somite outlined. (C) Motoneuron membrane

potential (Vm) in the 10th somite during a single beat-and-glide swimming episode from our model is used to calculate this body segment’s body

angle variation (D) in a musculoskeletal model. (E) Several representative body midlines from this episode of beat-and-glide swimming. Body midline is

computed by compiling all the calculated local body angles along the simulated fish body. (F) Heat-map of local body angle (in radians) across the total

body length and through time during the episode. Red is for right curvatures, while blue labels left curvatures. Body position on the ordinate, 0 is the

rostral extremity, while 1 is the caudal extremity. In (D–F), the magenta to yellow color coding represents the progression through the swimming

episode depicted.
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Figure 2. Single coiling model driven by pacemaker neurons. (A) Schematic of the single coiling model. The

dashed line indicates the body midline. Gray arrows indicate descending motor command. (B) Membrane

potential (Vm) response of isolated spinal neuron models to a depolarizing current step. (C) Vm of spinal neurons

during a simulation with a tonic command to left pacemakers only. Note the synaptic bursts in gray in the right

MNs and IC neurons (a blue arrow marks an example). The Vm of a rostral (lightest), middle, and caudal (darkest)

neuron is shown, except for IC neurons that are all in a rostral kernel. (D) Periodic depolarizations in a

hyperpolarized motoneuron on the same side where single coils are generated. (E) The phase delay of left

neurons in relation to ipsilateral spinal neurons in the first somite and an IC in the rostral kernel in a 10,000 ms

simulation. The reference neuron for each polar plot is labeled, and all neurons follow the same color-coding as

the rest of the figure. A negative phase delay indicates that the reference neuron precedes the neuron to which it

is compared. A phase of 0 indicates that a pair of neurons is in-phase; a phase of p indicates that a pair of neurons

is out-of-phase. Sensitivity testing showing (F–I) coiling frequency and (J–M) proportion of full coils during ten

20,000 ms simulation runs at each value of sd , sl, sp, and sw tested. Each run is color-coded. Bars on box plots

represent 25th, median, and 75th percentile. Whiskers extend to 1.5 times the interquartile range. L: left, R: right.

Statistics: Asterisks denote significant differences detected using a one-factor ANOVA test. (F) F5,59=10.4,

p=5.2�10�7. (G) F5,59=2.4, p=0.05. (H) F5,59=5.2, p=0.0006. (I) F5,59=2.2, p=0.07. (J) F5,59=10.9, p=2.7�10�7. (K)

F5,59=4.9, p=0.0009. (Note that there were no pairwise differences detected). (L) F5,59=6.5, p=8.2�10�5. (M)

F5,59=8.8, p=3.5�10�6. P-values for t-tests are found in Figure 2—source data 1. See also Figure 2—figure

supplements 1 and 2 and Figure 2—videos 1 and 2. IC, Ipsilateral Caudal; MN, motoneuron.

Roussel et al. eLife 2021;10:e67453. DOI: https://doi.org/10.7554/eLife.67453 3 of 24

Research article Neuroscience

https://doi.org/10.7554/eLife.67453


Figure 2—figure supplement 1. Silencing spinal neurons during single coiling. Simulations consisted of three 5000 ms epochs. In the middle epoch,

silencing of targeted spinal neurons was achieved by removing all synaptic and external currents from the targeted population. Synaptic and external

currents were restored in the last epoch. (A) Silencing IC neurons silences the other spinal neurons. (B) Silencing MNs slightly reduces IC burst duration

but does not preclude IC bursting. (C) Silencing V0ds blocks synaptic bursts in contralateral ICs and MNs but does not preclude single coils, nor does it

lead to multiple coils. The Vm of a rostral (lightest), middle, and caudal (darkest) neuron is shown, except for IC neurons that are all in a rostral kernel. L:

left, R: right. IC, Ipsilateral Caudal; MN, motoneuron.
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Figure 2—figure supplement 2. Membrane potential (Vm) during a simulation of a 30-somite single coiling model. The Vm of a rostral (lightest),

middle, and caudal (darkest) neuron is shown, except for IC neurons that are all in a rostral kernel. L: left, R: right. IC, Ipsilateral Caudal.
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Figure 3. Double coiling model relies on a hybrid network of electrical and chemical synapses. (A) Schematic of

the double coiling model. Gap junctions between spinal neurons are not depicted. Dashed line indicates the body

midline. Gray arrows indicate descending motor command. (B) Membrane potential (Vm) response of isolated

spinal neuron models to a depolarizing current step. (C) Vm of spinal neurons during a double coil. (D) The phase

delay of left neurons in relation to ipsilateral and contralateral spinal neurons in the fifth somite and an IC in the

rostral kernel during five consecutive left-right double coils. The reference neuron for each polar plot is labeled,

and all neurons follow the same color-coding as the rest of the figure. A negative phase delay indicates that the

reference neuron precedes the neuron to which it is compared. A phase of 0 indicates that a pair of neurons is in-

phase; a phase of p indicates that a pair of neurons is out-of-phase. Vm in simulations where (E) the weights of the

V2a to V0v and the V0v to IC synapses were increased to show that early excitation of V0v prevented the initiation

of a second coil following a single coil, (F) all glutamatergic transmission was blocked, and (G) glycinergic

transmission was blocked. (H) Top row, mixed event composed of a synaptic burst (SB) directly followed by a

periodic depolarization (PD) in a motoneuron in control but not in glutamate null conditions. Bottom row, Vm in

left IC and right V0d during events in top row. (I) Proportions of single, double, multiple, and truncated coiling

events under control, glutamate null (Glut�), overexcited V0vs (V0v hyper), and glycine null (Glycine-) conditions.

Figure 3 continued on next page
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Figure 3 continued

Each condition was tested with five 100,000 ms runs with sd = 0.5, sp=0.01, and sw = 0.05. (J–M) Sensitivity testing

showing proportions of single, double, multiple, and truncated coiling events during ten 100,000 ms runs for each

value of sd , sl, sp, and sw tested. Solid red and gray bars in (C,E–G) indicate the duration of coils. Chevrons in (C

and E) denote the initial spiking of V0vs and V2as to indicate latency of V0v firing during the first coil. For (C, E–G),

the Vm of a rostral (lightest), middle, and caudal (darkest) neuron is shown, except for IC neurons that are all in a

rostral kernel. L: left, R: right. See also Figure 3—figure supplements 1 and 2 and Figure 3—videos 1–

4. IC, Ipsilateral Cauda; MN, motoneuron.
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Figure 3—figure supplement 1. Double coiling model with no V2a to V0v synapses, no contralateral synapses, or

with 30 somites. (A) Membrane potential (Vm) during a simulation without V2a to V0v synapses. V0v neurons

remain inactive, and there are only single coils. (B) Simulation with no contralateral inhibition or excitation. The

lack of double and multiple coils, even without contralateral inhibition, suggests that contralateral excitation is

necessary to generate double and multiple coils. (C) Double coiling in a model composed of 30 somites. The Vm

of a rostral (lightest), middle, and caudal (darkest) neuron is shown, except for IC neurons that are all in a rostral

kernel. L: left, R: right. See also Figure 3—video 5. IC, Ipsilateral Caudal; MN, motoneuron.
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Figure 3—figure supplement 2. Sensitivity testing of the double coiling model for the glycinergic reversal

potential (Egly), weights of chemical synapses (sw, chem), and weights of gap junctions (sw, gap). Sensitivity testing

showing proportions of single, double, multiple, and truncated coiling events during ten 100,000 ms runs for each

value tested.
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Figure 4. The base model for beat-and-glide swimming. (A) Schematic of the model architecture underlying beat-

and-glide swimming. (B) Membrane potential (Vm) response to a depolarizing current step of isolated spinal

neurons in the model. (C) Vm of spinal neurons during a beat-and-glide swimming simulation. The Vm of a rostral

(lightest), middle, and caudal (darkest) neuron is shown. L: left, R: right. (D) Heat-map of local body angle. (E)

Episode duration, (F) inter-episode interval, (G) instantaneous tail beat frequency, and (H) the phase delay of left

neurons in relation to ipsilateral and contralateral spinal neurons in the 10th somite during a 10,000 ms simulation.

The reference neuron for each polar plot is labeled, and all neurons follow the same color-coding as the rest of

the figure. A negative phase delay indicates that the reference neuron precedes the neuron to which it is

compared. A phase of 0 indicates that a pair of neurons is in-phase; a phase of p indicates that a pair of neurons is

out-of-phase. See also Figure 4—video 1. IC, Ipsilateral Caudal; MN, motoneuron.
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Figure 5. Silencing spinal excitatory neurons during beat-and-glide swimming. Simulations consisted of three

5,000 ms epochs. In the middle epoch, silencing of targeted spinal neurons was achieved by removing all synaptic

and external currents from the targeted population. Synaptic and external currents were restored in the last

epoch. (A–F) Simulations where V2as were silenced and (G–L), where V0vs were silenced. (A, G) Top, the functional

state of the spinal network during the three epochs. Bottom, motoneuron (MN) membrane potential (Vm) during

simulations where targeted neurons were silenced in the middle epoch. The Vm of a rostral (lightest), middle, and

caudal (darkest) neuron is shown. (B, H) The integrated muscle output, (C, I) episode duration, (D, J) inter-episode

intervals, and (E, K) instantaneous tail beat frequency during each respective simulation. Averages within epoch

are shown in black (mean±s.d.). Brackets denote significant pairwise differences. (F, L) The left-right coordination

of somites 5 and 10. L: left, R: right. The first part of epoch 3 of the V2a silenced simulation involved synchronous

left-right activity, hence the lack of instantaneous tail beat frequency values. Statistics: For (C–E), there were no

episodes during epoch 2. There were no statistically significant differences between epochs 1 and 3 for any of the

parameters. (I) F2,31=7.2, p=0.0029. (J) F2,28=10.2, p=0.001. (K) F2,115=3.0, p=0.055. P-values for t-tests are found in

Figure 5—source data 1. See also Figure 5—figure supplement 1 and Figure 5—videos 1 and

2. MN, motoneuron.
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Figure 5—figure supplement 1. Membrane potential (Vm) of spinal neurons during simulations of beat-and-glide

swimming where excitatory neurons were silenced. Simulations consisted of three 5000 ms epochs. In the middle

epoch, silencing of targeted spinal neurons was achieved by removing all synaptic and external currents from the

targeted population. Synaptic and external currents were restored in the last epoch. (A–E) Simulations where V2as

were silenced and (F–J), where V0vs were silenced in the middle epoch. The Vm of a rostral (lightest), middle, and

caudal (darkest) neuron is shown. L: left, R: right. MN, motoneuron.
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Figure 6. Silencing spinal inhibitory neurons during beat-and-glide swimming. Simulations consisted of three 5000

ms epochs. In the middle epoch, silencing of targeted spinal neurons was achieved by removing all synaptic and

external currents from the targeted population. Synaptic and external currents were restored in the last epoch. (A–

F) Simulations where V1s were silenced and (G–L), where dI6s were silenced. (A, G) Top, the functional state of the

spinal network during the three epochs. Bottom, motoneuron (MN) membrane potential (Vm) during simulations

where targeted neurons were silenced in the middle epoch. The Vm of a rostral (lightest), middle, and caudal

(darkest) neuron is shown. (B, H) The integrated muscle output, (C, I) episode duration, (D, J) inter-episode

intervals, and (E, K) instantaneous tail beat frequency during each respective simulation. Averages within epoch

are shown in black (mean±s.d.). Brackets denote significant pairwise differences. (F, L) The left-right coordination

of somites 5 and 10. L: left, R: right. Statistics: (C) F2,25=10.5, p=5.8�10�4. (D) F2,22=6.6, p=0.0063. (E) F2,214=6.9,

p=0.0013. (I) F2,31=2.5 p=0.10. (J) F2,28=0.9, p=0.42. (K) F2,145=3.5, p=0.033. P-values for t-tests are found in

Figure 6—source data 1. See also Figure 6—figure supplements 1 and 2 and Figure 6—videos 1 and 2.
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Figure 6—figure supplement 1. Membrane potential (Vm) of spinal neurons during simulations of beat-and-glide

swimming where inhibitory neurons were silenced. Simulations consisted of three 5000 ms epochs. In the middle

epoch, silencing of targeted spinal neurons was achieved by removing all synaptic and external currents from the

targeted population. Synaptic and external currents were restored in the last epoch. (A–E) Simulations where V1s

were silenced and (F–J), where dI6s were silenced in the middle epoch. The Vm of a rostral (lightest), middle, and

caudal (darkest) neuron is shown. L: left, R: right. MN, motoneuron.
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Figure 6—figure supplement 2. Altered kinematics during silencing of dI6 neurons. Simulation of a 30-somite

beat-and-glide swimming model consisted of three 5000 ms epochs. In the middle epoch, silencing of dI6s was

achieved by removing all synaptic and external currents from the targeted population. Synaptic and external

currents were restored in the last epoch. (A) Representative body midlines are shown for each epoch along with a

probability density histogram of the y-coordinate of the terminal somite during each epoch. The histograms are

truncated at 0.05 as there were many points at y=0 during inter-episode intervals. The magenta to yellow color

coding represents the progression through each epoch. (B) Y-coordinate of the tail tip during the last 2000 ms of

each epoch. Details of the 30-somite model are described in Figure 8—figure supplement 1.
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Figure 7. Simulating the effects of strychnine on beat-and-glide swimming. Simulations to assess the effects of

blocking glycinergic transmission consisted of three 5000 ms epochs. In the middle epoch, all glycinergic currents

were blocked. Glycinergic transmission was restored in the last epoch. (A) Motoneuron (MN) membrane potential

(Vm) during simulations where glycinergic transmission was blocked in the middle epoch. The Vm of a rostral

(lightest), middle, and caudal (darkest) neuron is shown. (B) The integrated muscle output, (C) episode duration,

(D) inter-episode intervals, and (E) instantaneous tail beat frequency during this simulation. Averages within epoch

are shown in black (mean±s.d.). (F) The left-right coordination of somites 5 and 10. L: left, R: right. Statistics: (C)

F2,24=2.5, p=2.2�10�6. (D) F2,21=32.0, p=8.3�10�7. (E) F2,267=8.3, p=0.0003. P-values for t-tests are found in

Figure 7—source data 1. See also Figure 7—figure supplement 1 and Figure 7—video 1.

Roussel et al. eLife 2021;10:e67453. DOI: https://doi.org/10.7554/eLife.67453 16 of 24

Research article Neuroscience

https://doi.org/10.7554/eLife.67453


Figure 7—figure supplement 1. Altered kinematics during strychnine. Simulation of the base beat-and-glide

swimming model consisted of three 5000 ms epochs. In the middle epoch, all glycinergic currents were blocked.

Glycinergic transmission was restored in the last epoch. (A) Representative body midlines are shown for each

epoch along with a probability density histogram of the y-coordinate of the terminal somite during each epoch.

The histograms are truncated at 0.05 as there were many points at y=0 during inter-episode intervals. The

magenta to yellow color coding represents the progression through each epoch. (B) Y-coordinate of the tail tip

during the last 2000 ms of each epoch.
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Figure 8. Beat-and-glide models with bursting V2a (A–F) or only tonic neurons (G–L). (A, G) Membrane potential

(Vm) response of isolated neurons in the model to a current step. (B, H) Vm of spinal neurons during swimming

simulation. The membrane potential of a rostral (lightest), middle, and caudal (darkest) neuron is shown. L: left, R:

right. (C, I) Heat-map of local body angle. (D, J) Episode duration, (E, K) inter-episode interval, and (F, L)

instantaneous tail beat frequency during the same simulations as (B and H), respectively. See also Figure 8—

figure supplements 1 and 2 and Figure 8—videos 1 and 2. MN, motoneuron.
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Figure 8—figure supplement 1. Beat-and-glide swimming model with different number of somites. (A, F)

Membrane potential (Vm) of spinal neurons during a beat-and-glide swimming simulation. The Vm of a rostral

(lightest), middle, and caudal (darkest) neuron is shown. L: left, R: right. (B, G) Heat-map of local body angle, (C, H)

episode duration, (D, I) inter-episode interval, and (E, J) instantaneous tail beat frequency during the same

simulations as (A and F), respectively. MN, motoneuron.
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Figure 8—figure supplement 2. Sensitivity of beat-and-glide swimming to variability in glycinergic reversal

potential (Egly). Five 10,000 ms long simulations were run for each value of Egly. (A) Episode duration, (B) inter-

episode intervals, and (C) average tail beat frequency during each swimming episode. (D) The minimum coefficient

Figure 8—figure supplement 2 continued on next page
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Figure 8—figure supplement 2 continued

of the cross-correlation of left and right muscle was calculated at each Egly. The minimum coefficient was taken

between �10 and 10 ms time delays. Asterisks denote significant differences detected using a one-factor ANOVA

test. Each run is color-coded. Statistics: (A) F8,681=74.9, p=2.7�10�88. (B) F8,681=32.6, p=1.5�10�43. (C) F8,36=22.9,

p=6.0�10�12. (D) F8,36=327.8, p=3.0�10�31. P-values for t-tests are found in Figure 8—source data 1.
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Figure 9. Sensitivity of beat-and-glide swimming to tonic motor command amplitude, length of rostrocaudal

projections, and synaptic weighting. Ten 10,000-ms long simulations were run for each value of sd (A–D), sL(E–H),

and sw(I–L) tested. (A, E, I) Episode duration. (B, F, J) Inter-episode interval. (C, G, K) Average tail beat frequency

during each swimming episode. (D, H, L) Minimum coefficient of the cross-correlation of left and right muscle. The

minimum was taken between �10 and 10 ms time delays. Each circle represents a single swimming episode (A, E,

I), inter-episode interval (B, F, J), or a single run (all other panels). Each run is color-coded. Runs with only one side

showing activity are not depicted in (D and H). Asterisks denote significant differences detected using a one-factor

ANOVA test. Statistics: (A) F5,1253=2.5, p=0.03. (Note that there were no pairwise differences detected). (B)

F5,1253=11.2, p=1.3�10�10. (C) F5,54=1.9, p=0.11. (D) F5,54= 14.5, p=5.2�10�9. (E) F5,1253=8.7, p=3.8�10�8. (F)

F5,1253=118.1, p=2.0�10�102. (G) F5,54=4.0, p=0.004. (H) F5,54=3.2, p=0.014. (I) F5,1400=13.5, p=6.8�10�13. (J)

F5,1400=74.5, p=2.5�10�69. (K) F5,53=1.3, p=0.30. (L) F5,53=0.8, p=0.55. P-values for t-tests are found in Figure 9—

source data 1.
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Figure 10. Sensitivity of beat-and-glide swimming to variability in membrane potential dynamics. Ten 10,000-ms

long simulations were run at each value of sp (A–D). (A) Episode duration. (B) Inter-episode interval. (C) Average

tail beat frequency during each swimming episode. (D) Minimum coefficient of the cross-correlation of left and

right muscle. The minimum was taken between �10 and 10 ms time delays. Each circle represents a single

swimming episode (A), inter-episode interval (B), or a single run (C, D). Each run is color-coded. Runs not depicted

exhibited either continual motor activity with no gliding pauses or no swimming activity. Asterisks denote

significant differences detected using a one-factor ANOVA test. (E) Responses to a 1-s long step current of all

neurons on the left side in a model where sp=0.01. Step current amplitudes varied between populations of

neurons. The amplitude of the step currents to each population is the same as in Figure 4B. The simulation of the

model with these neurons generated continued swimming activity with no gliding pauses. The neurons are

ordered by somite, from somite 1 at the top to somite 15 at the bottom. Statistics: (A) F2,211=143.8, p=4.0�10�40.

(B) F2,211=32.3, p=5.8�10�13. (C) F5,53=4.0, p=0.0036. (D) F5,53=2.1, p=0.085. P-values for t-tests are found in

Figure 10—source data 1. MN, motoneuron.
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Figure 11. Summary figure of computational models of zebrafish locomotor movements during development. See

also Figure 11—video 1.
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