Supplementary information

Accelerated functional brain aging in pre-clinical familial Alzheimer's disease

Julie Gonneaud, Alex T. Baria, Alexa Pichet Binette, Brian A. Gordon, Jasmeer P. Chhatwal, Carlos Cruchaga, Mathias Jucker, Johannes Levin, Stephen Salloway, Martin Farlow, Serge Gauthier, Tammie L.S. Benzinger, John C. Morris, Randall J. Bateman, John C.S. Breitner, Judes Poirier, Etienne Vachon-Presseau, and Sylvia Villeneuve, Alzheimer's Disease Neuroimaging Initiative (ADNI), Dominantly Inherited Alzheimer Network (DIAN) Study Group, Pre-symptomatic Evaluation of Experimental or Novel Treatments for Alzheimer's Disease (PREVENT-AD) Research Group

Supplementary Fig. 1	
Correlation between the 10 graph metrics used as input in the neural network	page 2
Supplementary Fig. 2	
Age prediction model with and without ComBat harmonization	page 3
Supplementary Table 1	
Percentage of frames retained from resting-state fMRI scans in each cohort	page 4
Supplementary Table 2	
Functional brain parcellation (based on Power and Petersen functional atlas)	page 5
Supplementary Table 3	
Gene primers in DIAN	page 7
Supplementary Table 4	
Gene primers in PREVENT-AD	page 8
Supplementary Methods	
Race/ethnicity of the different cohorts and Estimated years to symptom onset	page 9
Small-worldness and resilience calculation	page 10
Supplementary Notes	page 11
Supplementary References	page 16

Supplementary Fig. 1

Supplementary Figure 1: Pearson correlations between the 10 graph metrics used as input in the neural network. The color-scale represents r-values; stronger positive correlations being represented by lighter (yellow) colors while darker (blue) colors correspond to stronger negative correlations.

Supplementary Figure 2. Age prediction from support vector machine models using original graph metrics as input (A) and age prediction from support vector machine models using harmonized graph metrics from ComBat as input. (B)

Supplementary Table 1. Percentage of frames retained from resting-state fMRI scans in each cohort

Cohort	Average % frames retained \pm SD
CamCAN	86.2 ± 15.5
FCP-Cambridge	100 ± 0
DIAN	93.8 ± 12.0
Prevent-AD	85.0 ± 17.2
ADNI	80.7 ± 15.4
ICBM	96.76 ± 8.0

SD: standard deviation

Supplementary Table 2. Functional brain parcellation (based on Power and Petersen

functional atlas)

	MN	I sp	ace	Suggested System					
ROI	Х	Y	Ζ						
13	-7	-52	61	Sensory/somatomotor Hand		MN	lI spa	ice	Suggested System
14	-14	-18	40	Sensory/somatomotor Hand	ROI	Х	Ý	Z	
15	0,1	-15	47	Sensory/somatomotor Hand	74	-41	-75	26	Default mode
16	9,5	-2	45	Sensory/somatomotor Hand	75	5,6	67	-4	Default mode
17	-7	-21	65	Sensory/somatomotor Hand	76	8,4	48	-15	Default mode
18	-7	-33	72	Sensory/somatomotor Hand	77	-13	-40	0,9	Default mode
19	13	-33	75	Sensory/somatomotor Hand	78	-18	63	-9	Default mode
20	-54	-23	43	Sensory/somatomotor Hand	79	-46	-61	21	Default mode
21	29	-1/	/1	Sensory/somatomotor Hand	80	43	-72	28	Default mode
22	9,9	-46	/3 72	Sensory/somatomotor Hand	81	-44	12	-34	Default mode
23	-23	-30	72	Sensory/somatomotor Hand	82	46	16	-30	Default mode
24	-40	-19	50	Sensory/somatomotor Hand	86	-44	-65	35	Default mode
25	50	-20	42	Sensory/somatomotor Hand	87	-39	-/5	44	Default mode
20	-38	-20	69	Sensory/somatomotor Hand	80	-/	-55	27	Default mode
28	20	-29	60	Sensory/somatomotor Hand	89	5,9	-59	35 16	Default mode
29	44	-8	57	Sensory/somatomotor Hand	90	-11	-30	13	Default mode
30	-29	-43	61	Sensory/somatomotor Hand	92	-5 7 9	-45	21	Default mode
31	10	-17	74	Sensory/somatomotor Hand	93	15	-63	26	Default mode
32	22	-42	69	Sensory/somatomotor Hand	94	-2	-37	44	Default mode
33	-45	-32	47	Sensory/somatomotor Hand	95	11	-54	17	Default mode
34	-21	-31	61	Sensory/somatomotor Hand	96	52	-59	36	Default mode
35	-13	-17	75	Sensory/somatomotor Hand	97	23	33	48	Default mode
36	42	-20	55	Sensory/somatomotor Hand	98	-10	39	52	Default mode
37	-38	-15	69	Sensory/somatomotor Hand	99	-16	29	53	Default mode
38	-16	-46	73	Sensory/somatomotor Hand	100	-35	20	51	Default mode
39	2,4	-28	60	Sensory/somatomotor Hand	101	22	39	39	Default mode
40	3,5	-17	58	Sensory/somatomotor Hand	102	13	55	38	Default mode
41	38	-17	45	Sensory/somatomotor Hand	103	-10	55	39	Default mode
42	-49	-11	35	Sensory/somatomotor Mouth	104	-20	45	39	Default mode
43	36	-9	14	Sensory/somatomotor Mouth	105	5,9	54	16	Default mode
44	51	-6	32	Sensory/somatomotor Mouth	106	6,1	64	22	Default mode
45	-53	-10	24	Sensory/somatomotor Mouth	107	-7	51	-1	Default mode
46	66	-8	25	Sensory/somatomotor Mouth	108	8,8	54	3,5	Default mode
47	-3	2,4	53	Cingulo-opercular Task Control	109	-3	44	-9	Default mode
48	54 10	-28	54 64	Cingulo opercular Task Control	110	7,5	42	-5	Default mode
49 50	19	-0	04 71	Cingulo opercular Task Control	111	-11	45	7,6	Default mode
51	-10	-2	42	Cingulo-opercular Task Control	112	-2	38	30	Default mode
52	37	0.8	-4	Cingulo-opercular Task Control	115	-5	4Z	10	Default mode
53	13	-1	70	Cingulo-opercular Task Control	114	-20	/18	23	Default mode
54	6,5	7,7	51	Cingulo-opercular Task Control	115	-56	-13	-10	Default mode
55	-45	0,1	8,8	Cingulo-opercular Task Control	118	-58	-30	-4	Default mode
56	49	8,3	-1	Cingulo-opercular Task Control	119	65	-31	-9	Default mode
57	-34	3,3	4,2	Cingulo-opercular Task Control	120	-68	-41	-5	Default mode
58	-51	8,3	-2	Cingulo-opercular Task Control	121	13	30	59	Default mode
59	-5	18	34	Cingulo-opercular Task Control	122	12	36	20	Default mode
60	36	10	1,2	Cingulo-opercular Task Control	123	52	-2	-16	Default mode
61	32	-26	13	Auditory	124	-26	-40	-8	Default mode
62	65	-33	20	Auditory	125	27	-37	-13	Default mode
63	58	-16	7,5	Auditory	126	-34	-38	-16	Default mode
64	-38	-33	17	Auditory	127	28	-77	-32	Default mode
65	-60	-25	14	Auditory	128	52	6,8	-30	Default mode
66	-49	-26	5,2	Auditory	129	-53	2,6	-27	Default mode
٥/ دە	43	-23	20	Auditory	130	47	-50	29	Default mode
60	-50	-34	∠0 22	Auditory	131	-49	-42	0,8	Default mode
09 70	-55	<u></u> 0	∠⊃ 17	Auditory	133	-2	-35 71	31 42	Nemory retrieval
71	56	-5	13	Auditory	134	-/	-/1	42 10	Momony retrievel
72	59	-17	29	Auditory	135	1 2	-00-	4Z 51	Memory retrieval
73	-30	-27	12	Auditory	127	4,2 -46	-40 21	-12	Default mode
				,	1.57		51	10	2 shunt mout

138	-10	11	67	Ventral attention
139	49	35	-12	Default mode

	MN	I sp	ace	Suggested System					
ROI	Х	Υ	z						
143	18	-47	-10	Visual					
144	40	-72	14	Visual					
145	8,5	-72	11	Visual		MN	I sp	ace	Suggested System
146	-8	-81	7,4	Visual	ROI	Х	Y	Ζ	
147	-28	-79	19	Visual	211	34	16	-8	Salience
148	20	-66	1,7	Visual	212	-11	26	25	Salience
149	-24	-91	19	Visual	213	-1	15	44	Salience
150	27	-59	-9	Visual	214	-28	52	21	Salience
151	-15	-/2	-8	Visual	215	-0	30	27	Salience
152	-18	-68	4,8	Visual	216	5,2	23	37	Salience
153	43	-/8	-12	Visual	217	10	22	27	Salience
154	-47	-/0	-10	Visual	218	31	56	14	Salience
155	-14	-91	31	Visual	219	26	50	27	Salience
157	20	-07	25	Visual	220	-39	51	17	Salience
158	20	-86	-2	Visual	221	1,8	-24	30	Memory retrieval
159	15	-77	31	Visual	222	6,3	-24	-0	Subcortical
160	-16	-52	-1	Visual	223	-2	-13	12	Subcortical
161	42	-66	-8	Visual	224	-10	-18	7	Subcortical
162	24	-87	24	Visual	225	12	-17	7,5	Subcortical
163	5.6	-72	24	Visual	220	-5 22	-28 7 E	-4 E	Subcortical
164	-42	-74	0.4	Visual	227	-22	26	-5	Subcortical
165	26	-79	-16	Visual	220	-15	5,0 _1/I	0 17	Subcortical
166	-16	-77	34	Visual	229	22	10	1,7	Subcortical
167	-3	-81	21	Visual	230	20	0.8	1,5 4	Subcortical
168	-40	-88	-6	Visual	231	-31	-11	-0	Subcortical
169	37	-84	13	Visual	232	15	4.9	7.2	Subcortical
170	6,2	-81	6,1	Visual	234	8.6	-4	5.8	Subcortical
171	-26	-90	3,1	Visual	235	54	-43	22	Ventral attention
172	-33	-79	-13	Visual	236	-56	-50	9.9	Ventral attention
173	37	-81	1,2	Visual	237	-55	-40	14	Ventral attention
174	-44	1,8	46	Fronto-parietal Task Control	238	52	-33	7,6	Ventral attention
175	48	25	27	Fronto-parietal Task Control	239	51	-29	-4	Ventral attention
176	-47	11	23	Fronto-parietal Task Control	240	56	-46	11	Ventral attention
177	-53	-49	43	Fronto-parietal Task Control	241	53	33	0,6	Ventral attention
178	-23	11	64	Fronto-parietal Task Control	242	-49	25	-1	Ventral attention
179	58	-53	-14	Fronto-parietal Task Control	251	9,6	-62	61	Dorsal attention
180	24	45	-15	Fronto-parietal Task Control	252	-52	-63	5,3	Dorsal attention
181	34	54	-13	Fronto-parietal Task Control	255	47	-30	49	Sensory/somatomotor Hand
186	47	9,9	33	Fronto-parietal Task Control	256	22	-65	48	Dorsal attention
187	-41	5,8	33	Fronto-parietal Task Control	257	46	-59	3,9	Dorsal attention
188	-42	38	21	Fronto-parietal Task Control	258	25	-58	60	Dorsal attention
189	38	43	15	Fronto-parietal Task Control	259	-33	-46	47	Dorsal attention
190	49 20	-42 E0	45 40	Fronto-parietal Task Control	260	-27	-71	37	Dorsal attention
191	-20	-20	40	Fronto parietal Task Control	261	-32	-1	54	Dorsal attention
192	22	-55 1/1	47 56	Fronto parietal Task Control	262	-42	-60	-9	Dorsal attention
193	32	-65	10	Fronto-parietal Task Control	263	-17	-59	64	Dorsal attention
195	-42	-55	40	Fronto-parietal Task Control	264	29	-5	54	Dorsal attention
196	40	18	40	Fronto-parietal Task Control	265	-10	14	-2	LIMDIC
197	-34	55	44	Fronto-narietal Task Control	266	10	14	-2	
198	-42	45	-2	Fronto-parietal Task Control	207	-22	-2	-22	Limbic
199	33	-53	44	Fronto-parietal Task Control	200	20	-Z 1 /	-22	Limbic
200	43	49	-2	Fronto-parietal Task Control	209	-24	-14	-10	Limbic
201	-42	25	30	Fronto-parietal Task Control	270	-20	-14	-10	Limbic
202	-3	26	44	Fronto-parietal Task Control	271	30	-34	-6	Limbic
203	11	-39	50	Salience	212	50	54	0	Lindic
204	55	-45	37	Salience					
205	42	-0	47	Salience					
206	31	33	26	Salience					
207	48	22	9,7	Salience					
208	-35	20	0,1	Salience					
209	36	22	2,6	Salience					
210	37	32	-2	Salience					

Gene	Ensembl_Transcript_ID	Exon	Direction	Sequence
PSEN2	ENST00000366783.3	4	Forward	GACAGGCATCTCTTGGAAGC
		4	Reverse	CATCAGGGAATGAATGTCTGG
		5	Forward	ACTTCTCATTTCTGGTTCCA
		5	Reverse	TAGGTCACAATCCAGGAGG
		6	Forward	ACTCCATCAGGGCAGCAT
		6	Reverse	AAAAATCTGGGTCTATTTTCCTCT
		8	Forward	GTTGGGACTGAATGGTGGTA
		8	Reverse	CCCTCTGTTTTACAAAGGCG
PSEN1	ENST00000324501.5	4	Forward	AACTCATAGTGACGGGTCTG
		4	Reverse	GTAATAACCCCTCGCTCTCT
		5	Forward	TTGGTGAGTTGGGGAAA
		5	Reverse	CACAGTGAGGAGGAAGAAAA
		6	Forward	CGACAAAGTGAGACCCTGT
		6	Reverse	AGTACATGGCTTTAAATGATAGCT
		7	Forward	ATGTTTGGGAGCCATCA
		7	Reverse	CCAGCCGAAATCTTCAA
		8	Forward	TCACCTGCCATTTATTTCA
		8	Reverse	CAGGAATGCTGTGCATTTA
		9	Forward	CTGCTAAAACCAAAGAGAACC
		9	Reverse	TGTATTTACTGGGCATTATCATAG
		11	Forward	AAAACACAGCTGAAGCCTAA
		11	Reverse	GCTCCTCAGATAGCTGGAAT
		12	Forward	TCCAGATTGAATGAACGTCT
		12	Reverse	TGGAAGGAAGCTGCAAA
APP	ENST00000346798.3	7	Forward	ATGCTGCCTAATAAACCAGTCC
		7	Reverse	TCCCAAGAACCAGGAAAATCAA
		16	Forward	GGTTTCCCTTACCCTTTCATTT
		16	Reverse	TCAGCCTAGCCTATTTATTTTCT
		17	Forward	TGAAACTTTTTATATAACCTCATCCAA
		17	Reverse	CATGGAAGCACACTGATTCG

Supplementary Table 3: Gene primers in DIAN

The table is annotated based on Ensembl version 75 in genome build GRCh37

Gene	Variant	Analyses	Sequence
APOE	rs429358	amplification forward	5'-ACGGCTGTCCAAGGAGCTG-3'
		amplification reverse biotinylated	5'-CACCTCGCCGCGGTACTG-3'
		sequencing	5'-CGGACATGGAGGACG-3'
	rs7412	amplification forward	5'-CTCCGCGATGCCGATGAC-3'
		amplification reverse biotinylated	5'-CCCCGGCCTGGTACACTG-3'
		sequencing	5'-CGATGACCTGCAGAAG-3'

Supplementary Table 4: Gene primers in PREVENT-AD

Supplementary Methods

Race/ethnicity from the different cohorts

DIAN: The sample mainly identified as non-Hispanic/White, both for mutation non-carriers (90% from the training set and 100% from the test set) and mutation carriers (80% from the test set).

The ten remaining mutation non-carriers (all from the training set) identified as Hispanic/White (n=4), Hispanic with no further specification (n=2), non-Hispanic/Middle Eastern (n=1) or non-Hispanic/Aboriginal (n=2). Regarding the 24 mutation carriers with a different race/ethnicity, they identified themselves as Hispanic/White (n=10), Hispanic with no further specification (n=6), non-Hispanic/Middle Eastern-North Africa (n=2), Aboriginal (n=1), native Hawaiian or other pacific islanders (n=3), Hispanic/Black or African American (n=1) and non-Hispanic/Asian (n=1).

PREVENT-AD: The sample was mainly White/Caucasian with the exception of 4 participants (2 Hispanics, 1 Haitian and 1 unspecified).

ADNI: The sample mainly identified as non-Hispanic/White (83% of those included in the training set and 93% of those included in the test set), with the exception of 6 subjects (1 Hispanic/White, 1 unknow ethnicity/White and 3 non-Hispanic/not White [1 Black, 1 with more than one race and 1 unknown] in the training set, and 1 Hispanic/White in the test set).

FCP-Cambridge, CamCAN and ICBM: Participants from the FCP-Cambridge were recruited from the Cambridge (MA, USA) area, CamCAN is a population-based cohort recruited within the Cambridge City (UK) area (excluding term-time residents of colleges and universities) and the ICBM cohort was recruited in the Montreal (QC, Canada) area; however further demographic information, including specific information on race/ethnicity, was not provided for these cohorts.

Estimated years to symptom onset

Estimated expected years to symptom onset (EYO) was computed in the two cohorts by subtracting each participant's age at assessment from his/her parent's age at symptom onset. In DIAN, the parental age at onset was determined using semi-structured interview in which family members were asked about the age of first progressive cognitive decline.¹ In PREVENT-

AD, EYO was calculated using the age of the parent at which the family observed significant cognitive/memory changes, as reported by the participant during the medical interview.^{2–4}

We conducted partial correlations between EYO and the predicted age difference (PAD), controlling for the influence of chronological age, in DIAN and PREVENT-AD.

Calculation of small-worldness and resilience

For a thresholded correlation matrix *G*, small-worldness was calculated as Supplementary Equation 1:

in which clustering is the clustering coefficient, and indicates the extent to which nodes are clustered together. The efficiency indicates the average of the inverse path length between nodes of the matrix. The subscript random indicates when these measures are taken on randomly scrambled matrices with preserved degree count for each node in *G*, and were generated using the function randmio_und. Random clustering coefficient and efficiency were averaged over 100 random matrices, generated for each scan.

Resilience is a measure of the robustness of network *G* as node hubs are removed. Networks with scale-free properties *(i.e.* node degree probabilities follow a power-law distribution) are resilient to random attacks and can be described as Supplementary Equation 2:

$$p(k) \alpha k^{y} \tag{2}$$

where p(k) is the probability of a node having a degree of k (or k total connections), and y is an exponent. On a log-log scale this probability distribution is linear, and thus resilience of G can be estimated as the negative slope of the degree distribution.

Supplementary Notes. DIAN Study Group

Last Name	First	Institution	Affiliation	Core	Role	Email address
Allegri	Ricardo	FLENI	FLENI Institute of Neurological Research (Fundacion para la Lucha contra las Enfermedades Neurologicas de la Infancia)	N/A	PI	rallegri@fleni.org.ar
Bateman	Randy	WU	Washington University in St. Louis School of Medicine	Admin	Core Leader/PI/Chair	batemanr@wustl.edu
Bechara	Jacob	Sydney	Neuroscience Research Australia	N/A	Site Leader	j.bechara@neura.edu.au
Benzinger	Tammie	WU	Washington University in St. Louis School of Medicine	Imaging	Core Leader	benzingert@wustl.edu
Berman	Sarah	Pitt	University of Pittsburgh	N/A	PI	bermans@upmc.edu
Bodge	Courtney	Butler	Brown University-Butler Hospital	N/A	Site Coordinator	Cbodge@Butler.org
Brandon	Susan	WU	Washington University in St. Louis School of Medicine	Admin / Clincal	Core Personnel	brandons@wustl.edu
Brooks	William (Bill)	Sydney	Neuroscience Research Australia	N/A	Site Coordinator	w.brooks@NeuRA.edu.au
Buck	Jill	IU	Indiana University	N/A	Site Coordinator	jilmbuck@iu.edu
Buckles	Virginia	WU	Washington University in St. Louis School of Medicine	Admin	Core Personnel	bucklesv@wustl.edu
Chea	Sochend a	Мауо	Mayo Clinic Jacksonville	N/A	Site Coordinator	chea.sochenda@mayo.edu
Chhatwal	Jasmeer	BWH	Brigham and Women's Hospital–Massachusetts General Hospital	N/A	PI	Chhatwal.Jasmeer@mgh.harva rd.edu
Chrem	Patricio	FLENI	FLENI Institute of Neurological Research (Fundacion para la Lucha contra las Enfermedades Neurologicas de la Infancia)	N/A	Site Coordinator	pchremmendez@fleni.org.ar
Chui	Helena	USC	University of Southern California	N/A	PI	helena.chui@med.usc.edu
Cinco	Jake	UCL	University College London	N/A	Site Coordinator	jcinco@nhs.net
Cruchaga	Carlos	WU	Washington University in St. Louis School of Medicine	Genetics	Core Co-Leader	cruchagac@wustl.edu
Donahue	Tamara	WU	Washington University in St. Louis School of Medicine	N/A	Site Coordinator	tammie@wustl.edu
Douglas	Jane	UCL	University College London	N/A	Site Coordinator	jdouglas@dementia.ion.ucl.ac. uk

Last Name	First	Institution	Affiliation	Core	Role	Email address
Edigo	Noelia	FLENI	FLENI Institute of Neurological Research (Fundacion para la Lucha contra las Enfermedades Neurologicas de la Infancia)	N/A	Site Coordinator	negido@fleni.org.ar
Erekin-Taner	Nilufer	Мауо	Mayo Clinic Jacksonville	N/A	sub-l	taner.nilufer@mayo.edu
Fagan	Anne	WU	Washington University in St. Louis School of Medicine	Biomarker	Core Leader	fagana@wustl.edu
Farlow	Marty	IU	Indiana University	N/A	PI	mfarlow@iupui.edu
Fitzpatrick	Colleen	BWH	Brigham and Women's Hospital-Massachusetts	N/A	Site Co- Coordinator	cdfitzpatrick@bwh.harvard.edu
Flynn	Gigi	WU	Washington University in St. Louis School of Medicine	Admin / Clinical	Core Personnel	flynng@wustl.edu
Fox	Nick	UCL	University College London	N/A	PI	nfox@dementia.ion.ucl.ac.uk
Franklin	Erin	WU	Washington University in St. Louis School of Medicine	Neuropath	Core Coordinator	efranklin@wustl.edu
Fujii	Hisako	Japan	Osaka City University	N/A	Assistant/Coord	hfujii@med.osaka-cu.ac.jp
Gant	Cortaiga	WU	Washington University in St. Louis School of Medicine	Admin / Clinical	Core Personnel	cortaiga.gant@wustl.edu
Gardener	Samanth a	Perth	Edith Cowan University, Perth	N/A	Site Coordinator	s.gardener@ecu.edu.au
Ghetti	Bernardi no	IU	Indiana University	N/A	sub-l	bghetti@iupui.edu
Goate	Alison	Icahn NY	Icahn School of Medicine at Mount Sinai	Genetics	Core Co-Leader	alison.goate@mssm.edu
Goldman	Jill	CU	Columbia University	N/A	Genetics Ethics	JG2673@cumc.columbia.edu
Gordon	Brian	WU	Washington University in St. Louis School of Medicine	Imaging	Core Personnel	bagordon@wustl.edu
Graff-Radford	Neill	Мауо	Mayo Clinic Jacksonville	N/A	PI	graffradford.neill@mayo.edu
Gray	Julia	WU	Washington University in St. Louis School of Medicine	Biomarker	Core Personnel	gray@wustl.edu
Groves	Alexande r	WU	Washington University in St. Louis School of Medicine	Biomarker	Core Coordinator	amgroves@wustl.edu
Hassenstab	Jason	WU	Washington University in St. Louis School of Medicine	Clinical	Core Personnel	hassenstabj@wustl.edu
Hoechst- Swisher	Laura	WU	Washington University in St. Louis School of Medicine	Admin / Clinical	Core Coordinator	goodl@wustl.edu

Last Name	First	Institution	Affiliation	Core	Role	Email address
Holtzman	David	WU	Washington University in St. Louis School of Medicine	N/A	Associate Director	holtzman@wustl.edu
Hornbeck	Russ	WU	Washington University in St. Louis School of Medicine	Imaging	Core Coordinator	russ@wustl.edu
Houeland DiBari	Siri	Munich	German Center for Neurodegenerative Diseases (DZNE) Munich	N/A	Site Coordinator	Siri.HouelandDiBari@dzne.de
Ikeuchi	Takeshi	Niigata	Niigata University	N/A	Site Leader	ikeuchi@bri.niigata-u.ac.jp
Ikonomovic	Snezana	Pitt	University of Pittsburgh	N/A	Site Coordinator	ikonomovics@upmc.edu
Jack	Clifford	Мауо	Mayo Clinic Jacksonville	MRI QC	Vendor MRI QC	jack.clifford@mayo.edu
Jerome	Gina	WU	Washington University in St. Louis School of Medicine	Biomarker	Core Coordinator	ginajerome@wustl.edu
Jucker	Mathias	Tubingen	German Center for Neurodegnerative Diseases (DZNE) Tubingen	N/A	PI	mathias.jucker@uni- tuebingen.de
Karch	Celeste	WU	Washington University in St. Louis School of Medicine	Administrati ve	Core Personnel	karchc@wustl.edu
Kasuga	Kensaku	Niigata	Niigata University	N/A	Site Coordinator	ken39@bri.niigata-u.ac.jp
Kawarabayas hi	Takeshi	Hirosaki	Hirosaki University	N/A	Clinician	tkawara@hirosaki-u.ac.jp
Klunk	William (Bill)	Pitt	University of Pittsburgh	N/A	sub-l	klunkwe@gmail.com
Koeppe	Robert	U of Michigan	University of Michigan	PET QC	Vendor PET QC	koeppe@umich.edu
Kuder-Buletta	Elke	Tubingen	German Center for Neurodegnerative Diseases (DZNE) Tubingen	N/A	Site Coordinator	elke.buletta@med.uni- tuebingen.de
Laske	Christoph	Tubingen	German Center for Neurodegnerative Diseases (DZNE) Tubingen	N/A	sub-l	christoph.laske@med.uni- tuebingen.de
Lee	Jae- Hong	Korea	Asan Medical Center	N/A	PI	jhlee@amc.seoul.kr
Levin	Johanne s	Munich	German Center for Neurodegnerative Diseases (DZNE) Munich	N/A	PI	Johannes.Levin@med.uni- muenchen.de
Martins	Ralph	Perth	Edith Cowan University	N/A	PI	r.martins@ecu.edu.au
Mason	Neal Scott	UPMC	University of Pittsburgh Medical Center	PIB QC	Vendor PIB QC	masonss@upmc.edu
Masters	Colin	Melb	University of Melbourne	N/A	PI - former	c.masters@unimelb.edu.au

Last Name	First	Institution	Affiliation	Core	Role	Email address
Maue- Dreyfus	Denise	WU	Washington University in St. Louis School of Medicine	Clinical	Core Personnel	dmdreyfu@wustl.edu
McDade	Eric	WU	Washington University in St. Louis School of Medicine	Clinical	Core Leader Assoc	ericmcdade@wustl.edu
Mori	Hiroshi	Japan	Osaka City University	N/A	PI	mori@med.osaka-cu.ac.jp
Morris	John	WU	Washington University in St. Louis School of Medicine	Clinical	Core Leader	jcmorris@wustl.edu
Nagamatsu	Akem	Tokyo	Tokyo University	N/A	Site Coordinator	akm77-tky@umin.ac.jp
Neimeyer	Katie	CU	Columbia University	N/A	Site Coordinator	kn2416@cumc.columbia.edu
Noble	James	CU	Columbia University	N/A	PI	jn2054@columbia.edu
Norton	Joanne	WU	Washington University in St. Louis School of Medicine	Genetics	Core Coordinator	nortonj@wustl.edu
Perrin	Richard	WU	Washington University in St. Louis School of Medicine	Neuropath	Core Leader	rperrin@wustl.edu
Raichle	Marc	WU	Washington University in St. Louis School of Medicine	Imaging	Core Personnel	mraichle@wustl.edu
Renton	Alan	Icahn NY	Icahn School of Medicine at Mount Sinai	Genetics	Core Personnel	alan.renton@mssm.edu
Ringman	John	USC	University of Southern California	N/A	sub-l	john.ringman@med.usc.edu
Roh	Jee Hoon	Korea	Asan Medical Center	N/A	sub-l	roh@amc.seoul.kr
Salloway	Stephen	Butler	Brown University-Butler Hospital	N/A	PI	SSalloway@Butler.org
Schofield	Peter	Sydney	Neuroscience Research Australia	N/A	PI	p.schofield@neura.edu.au
Shimada	Hiroyuki	Osaka	Osaka City University	N/A	Site Leader	h.shimada@med.osaka- <u>cu.ac.jp</u>
Sigurdson	Wendy	WU	Washington University in St. Louis School of Medicine	N/A	Site Coordinator	sigurdsonw@wustl.edu
Sohrabi	Hamid	Perth	Edith Cowan University	N/A	Site Coordinator	h.sohrabi@ecu.edu.au
Sparks	Paige	BWH	Brigham and Women's Hospital-Massachusetts	N/A	Site Coordinator	kpsparks@bwh.harvard.edu
Suzuki	Kazushi	Tokyo	Tokyo University	N/A	Site Leader	kazusuzuki-tky@umin.ac.jp
Taddei	Kevin	Perth	Edith Cowan University	N/A	Site Coordinator	k.taddei@ecu.edu.au
Wang	Peter	WU	Washington University in St. Louis School of Medicine	Biostat	Core Coordinator	guoqiao@wustl.edu
Xiong	Chengjie	WU	Washington University in St. Louis School of Medicine	Biostat	Core Leader	chengjie@wustl.edu

Last Name	First	Institution	Affiliation	Core	Role	Email address
Xu	Xiong	WU	Washington University in St. Louis School of Medicine	Biostat	Core Personnel	xxu@wustl.edu
Levey	Allan	Emory	Emory University School of Medicine	N/A	Project Leader	alevey@emory.edu

Supplementary References

- 1. Bateman, R. J. *et al.* Clinical and biomarker changes in dominantly inherited Alzheimer's disease. *N. Engl. J. Med.* **367**, 795–804 (2012).
- 2. Villeneuve, S. *et al.* Proximity to Parental Symptom Onset and Amyloid-β Burden in Sporadic Alzheimer Disease. *JAMA Neurol* (2018) doi:10.1001/jamaneurol.2017.5135.
- 3. Vogel, J. W. *et al.* Brain properties predict proximity to symptom onset in sporadic Alzheimer's disease. *Brain* (2018) doi:10.1093/brain/awy093.
- 4. Gonneaud, J. *et al.* Association of education with Aβ burden in preclinical familial and sporadic Alzheimer disease. *Neurology* **95**, e1554–e1564 (2020).