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Figure 1. PARROT overview. (A) A standard workflow that incorporates PARROT. Quantitative protein data is either obtained computationally or 
generated through experiment, then formatted such that each protein sequence or residue is linked to a particular value. PARROT allows users to train 
a predictor on this dataset. The trained network can then be applied on new sequences to make predictions. (B) The internal architecture of PARROT 
is a bidirectional long short- term memory (LSTM) network. (Top) Series of cells propagate information along the length of a protein sequence in both 
N- to- C and C- to- N directions and the final output is integrated from the deepest layers in each direction. (Bottom) A diagram of the LSTM cells used in 
PARROT. (C) Example data formats for the four kinds of machine learning problems PARROT can carry out on proteins: classification or regression tasks 
using per- sequence or per- residue output.
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Figure 2. PARROT’s performance on a phosphosite prediction task. (A) Workflow for training PARROT networks for phosphosite prediction. Full- length, 
annotated sequences from the Phospho.ELM (P.ELM) dataset were split into phospho- positive and phospho- negative 19aa windows (11aa windows 
used in figure for clarity). PARROT predictors trained on these sequence windows and were used to make predictions on held out sequences and 
the PhosPhAt (PPA) dataset. (B) Matthew’s correlation coefficient (MCC), (C) sensitivity (D), and specificity scores for the PARROT predictors and three 
external predictors on the task of phosphosite prediction on the P.ELM and PPA datasets.
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Figure 3. PARROT predicts functional yeast activation domains. (A) Diagram of activation domain workflow. A 
PARROT network was trained on the yeast fluorescence activation assay data from Erijman et al. and used to 
make predictions on new protein sequences. (B) PARROT’s 10- fold cross- validation accuracy and area under the 
precision- recall curve (AUPRC) on the Erijman et al. dataset compared to the reported scores for two approaches 
employed in that paper: ADpred and a logistic regression based method. (C) Representative example of the 
correlation between PARROT’s predictions and the true activation scores of an independent yeast activation 
domain dataset. (D) PARROT’s performance on the tasks in (B) (top) and (C) (bottom) as a function of dataset size. 
For each specified dataset size, the actual number of sequences used for training and validation was 90% of the 
indicated value since networks were trained using 10- fold cross- validation. The dashed line is a hyperbola best- fit 
line. The reported performance of ADpred is shown for reference in gray.
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Figure 3—figure supplement 1. Performance of 
PARROT networks trained on a multi- study dataset on 
the activation domain prediction task. Red indicates 
PARROT networks trained on the combined datasets of 
Erijman et al. and Ravarani et al. Blue and gray markers 
are identical to Figure 3D in the main text and are 
included for comparison.
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Figure 3—figure supplement 2. Analysis of PARROT networks on the test set data of Sanborn et al. (Top row) Comparison of PADDLE’s predictions 
to the experimental values on three subsets of the sequences in the test set. PADDLE predictions and experimental values were obtained directly 
from Sanborn et al. and replotted in a manner similar to that study in order to facilitate side- by- side comparison. Refer to that published work for more 
information on the different subsets that compose the test set. (Middle row) Predictions made by a PARROT network trained on the Erijman et al. 
dataset. (Bottom row) Predictions made by a PARROT network trained on the Sanborn et al. training set. Denoted in parentheses are the 95% CI of the 
reported R2 value, determined using bootstrapping.
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Figure 4. PARROT can ‘fill in the gaps’ of deep mutational scanning experiments. (A) Depiction of the residue- wise 
cross- validation workflow for predicting fibril nucleation scores using the Aß42 deep mutational scanning (DMS) 
assay from Seuma et al. (B) Correlation between the true assay scores and predictions made by PARROT networks 
trained using residue- wise cross- validation for >14,000 single and double mutant variants. (C) Measurement of 
epistasis within the nucleation assay. (Left) Correlation between the nucleation scores of double mutants and the 
sum of nucleation scores of their composite single mutants. (Right) Correlation between the same double mutant 
nucleation scores and the predictions made by PARROT. (D) Receiver operator characteristic (ROC) curves for 12 
familial Alzheimer’s disease (fAD) mutants versus all other single mutant variants in the dataset. Area under the 
curve (AUC) values are reported in the legend.
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Figure 4—figure supplement 1. Related to Figure 4B, correlation between Aß42 nucleation scores and PARROT 
predictions divided into (A) single mutants and (B) double mutants.
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Figure 4—figure supplement 2. Related to Figure 4C, measured epistasis between Aß42 double mutant 
nucleation scores and the average (top), maximum (middle), and minimum (bottom) of their composite single 
mutant scores. The PARROT predictions have significantly tighter correlation than any of the other methods 
(p<0.01).


