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Accurate plaque cap thickness quantification and cap stress/strain calculations are of
fundamental importance for vulnerable plaque research. To overcome uncertainties due to
intravascular ultrasound (IVUS) resolution limitation, IVUS and optical coherence
tomography (OCT) coronary plaque image data were combined together to obtain
accurate and reliable cap thickness data, stress/strain calculations, and reliable plaque
progression predictions. IVUS, OCT, and angiography baseline and follow-up data were
collected from nine patients (mean age: 69; m: 5) at Cardiovascular Research Foundation
with informed consent obtained. IVUS and OCT slices were coregistered and merged to
form IVUS + OCT (IO) slices. A total of 114 matched slices (IVUS and OCT, baseline and
follow-up) were obtained, and 3D thin-layer models were constructed to obtain stress and
strain values. A generalized linear mixed model (GLMM) and least squares support vector
machine (LSSVM) method were used to predict cap thickness change using nine
morphological and mechanical risk factors. Prediction accuracies by all combinations
(511) of those predictors with both IVUS and IO data were compared to identify optimal
predictor(s) with their best accuracies. For the nine patients, the average of minimum cap
thickness from IVUS was 0.17 mm, which was 26.08% lower than that from IO data
(average � 0.23mm). Patient variations of the individual errors ranged from ‒58.11 to
20.37%. For maximum cap stress between IO and IVUS, patient variations of the individual
errors ranged from ‒30.40 to 46.17%. Patient variations of the individual errors of
maximum cap strain values ranged from ‒19.90 to 17.65%. For the GLMM method,
the optimal combination predictor using IO data had AUC (area under the ROC curve) �
0.926 and highest accuracy � 90.8%, vs. AUC � 0.783 and accuracy � 74.6% using IVUS
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data. For the LSSVM method, the best combination predictor using IO data had AUC �
0.838 and accuracy � 75.7%, vs. AUC � 0.780 and accuracy � 69.6% using IVUS data.
This preliminary study demonstrated improved plaque cap progression prediction
accuracy using accurate cap thickness data from IO slices and the differences in cap
thickness, stress/strain values, and prediction results between IVUS and IO data. Large-
scale studies are needed to verify our findings.

Keywords: coronary plaque, plaque progression prediction, patient-specific coronary plaque models, vulnerable
plaque, optical coherence tomography-based coronary models

INTRODUCTION

Cardiovascular disease is a serious threat to human life and
health. Atherosclerotic plaques often rupture without warning,
leading to acute cardiovascular syndrome. It is commonly agreed
that plaques prone to rupture (also called thin-cap fibroatheroma,
TCFA) normally have three main characteristics: large lipid-rich
necrotic core, higher prevalence of macrophage infiltration in the
fibrous cap, and a fibrous cap with thickness less than 65 μm
(Kolodgie et al., 2001). Among the three, cap thickness may be
one of the more closely monitored and critical factors for
assessing plaque stress, strain, and vulnerability. Quantification
of fibrous cap thickness and cap stress/strain conditions plays an
important role in plaque progression prediction and vulnerability
assessment, which in turn has clinical importance in monitoring
disease development and patient management.

Considerable efforts have been made in investigating plaque
progression using image-based patient follow-up data (Yang
et al., 2010; Samady et al., 2011; Stone et al., 2011; Stone et al.,
2012; Hung et al., 2016; Wang et al., 2018). Plaque vessel wall
thickness change was often used as a measure for plaque
progression. In most available patient follow-up data (follow-
up time around 1 year), plaque vessel wall thickness changes were
mostly under 100 µm in a year (Yang et al., 2010). With
intravascular ultrasound (IVUS) imaging resolution at
150–200 µm and magnetic resonance imaging (MRI)
resolution at 200–300 μm, it is extremely challenging to
quantify and predict plaque progression with acceptable
reliability and accuracy. With its superior resolution at about
10 μm, optical coherence tomography (OCT) is getting
acceptance in research community and clinical practices. OCT
is able to detect the thin fibrous cap of vulnerable plaques (Kume
et al., 2006). However, due to its limited penetration, OCT is not
able to “see” the whole vessel. Several groups have combined
IVUS and OCT in detecting and analyzing vulnerable plaques,
and impressive results have been reported (Sawada et al., 2008;
Fujii et al., 2015; Zanchin et al., 2020). As an initial effort, a
modelling approach combining IVUS and OCT was introduced
by Guo et al. (2019) for cap thickness quantification, more
accurate cap stress/strain calculations, and plaque progression
prediction. With IVUS and OCT combined, the merged IVUS +
OCT (IO) data include the whole vessel from IVUS and accurate
cap thickness from OCT. The accurate and reliable image data
provide a solid base for further vulnerable plaque investigations.
In particular, we should be able to trust cap thickness change

measured by OCT and use that to obtain some reliable
progression prediction results.

The goal of this study is to extend the initial effort by Guo et al.
(2019) to a multipatient study. IVUS, OCT, and angiography data
from nine patients with follow-up were used to generate IVUS
and IVUS + OCT (IO) slices, where IO slices were made by
combining IVUS and OCT segmented contours together. Since
cap thickness is one of the most critical and most closely
monitored measurable plaque features linked to plaque
vulnerability, it was selected as the target for our prediction
study. A total of 114 matched (baseline and follow-up) slices
were obtained to quantify their cap thickness differences between
IVUS and OCT data and their changes between baseline and
follow-up. 3D thin-layer models were constructed using both
IVUS and IO slices to obtain cap stress and strain data. Two
prediction methods (a generalized linear mixed model (GLMM)
and least squares support vector machine (LSSVM)method) were
used to predict cap thickness changes using nine morphological
and mechanical risk factors. Prediction accuracies by all
combinations (total 511) of those predictors with both IVUS
and IO data were compared to identify the optimal predictor(s)
with their best accuracies.

MATERIALS AND METHODS

Data Acquisition and Processing
IVUS, OCT, and angiography data including three epicardial
coronary vessels were collected at Cardiovascular Research
Foundation (CRF) from patients with coronary heart diseases
between April 2017 and November 2018 using the protocol
approved by the local institute, and informed consent forms
were obtained from the patients. Nine lipid-rich plaques were
identified from nine patients with good-quality baseline and
follow-up data matched for our analysis (average follow-up
days: 251). These patients had stable angina pectoris and
underwent percutaneous coronary intervention (PCI). Patients
with acute coronary syndrome, severe calcified lesion, chronic
total occlusion, or chronic kidney disease (Cr > 1.5 mg/ dl) were
excluded. Patient demographic data are shown in Table 1. IVUS
examination was performed after 0.2 mg of intracoronary
nitroglycerin. The IVUS catheter was advanced as far as
possible using a commercially available IVUS system: a
40 MHz IVUS catheter (OptiCross, Boston Scientific
Corporation, Natick, Massachusetts) with motorized pullback
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at 0.5 mm/ s. OCT images were acquired with ILUMIEN OPTIS
System and Dragonfly or Dragonfly JP Imaging Catheter (St. Jude
Medical, Westford, Massachusetts).

Coregistration of IVUS and OCT slices was performed by
using fiduciary points such as side branches, bifurcations, and
calcifications with the assistance of quantitative coronary
angiography (QCA) images. IVUS and OCT frames at baseline
and follow-up were also matched to quantify changes of plaque
morphology and cap thickness using the same matching
techniques. Three plaque compositions were considered in
segmentation of IVUS and OCT images: lipid-rich necrotic
core (short form, lipid) and calcification and other vessel
tissue (fibrotic, fibro-fatty, etc.). Segmentation was performed
by ImageJ 1.52 v software. For IVUS images, we used manual

segmentation. For OCT images, we used the combination of
manual segmentation and algorithms. Details of the
segmentation methods were previously published (Lv et al.,
2020). Small-size plaque components were neglected for
simplicity. Matched IVUS and OCT slices were combined
together to form IVUS + OCT (IO) slices with OCT providing
accurate cap thickness quantifications, while IVUS providing
vessel outboundary contours not visible from OCT (Lv et al.,
2020). Sample IO and IVUS slices with segmented contours are
given in Figure 1 showing the merging process.

IVUS and corresponding IO slices at baseline and follow-up
were matched, and 114 matched lipid-slices were selected for
analysis. Each slice (IVUS and IO) was divided into 100 parts
using 100 evenly spaced lumen points and a Four-Quarter Even-

TABLE 1 | Patient demographic and clinical information. F: female; M: male; BL: baseline; FU: follow-up; HT: hypertension; DM: diabetes mellitus; HL: hyperlipidemia.

Patient
ID

Age Sex Vessel
segment

Segment
length
(cm)

BP
(mmHg)

Slice
number

Diagnosis
history

Follow-
up

days

P1 80 F RCA 3.9 71–138 60 HT DM 304
P2 70 M RCA 2.6 84–155 42 HT 273
P3 65 F RCA 19.5 63–149 41 DM 220
P4 66 M LCX 2.0 89–150 49 DM 290
P5 73 M LCX 2.2 55–150 45 HT HL 248
P6 74 F LAD 2.3 62–151 58 HT DM HL 244
P7 62 F LAD 1.9 79–117 48 HL 195
P8 61 M LCX 16.4 78–128 40 HT DM HL 283
P9 72 M LCX 2.9 80–143 42 HT DM HL 272

FIGURE 1 | Sample IVUS and merged IVUS + OCT (IO) slices showing segmentation and merging at baseline and follow-up. (A) IVUS slice and its segmented
contours at baseline. (B) Corresponding OCT slice and IVUS + OCT (IO) slice at baseline. (C) IVUS slice and its segmented contour plot at follow-up. (D) Corresponding
OCT slice and IVUS + OCT (IO) contour plot at follow-up. Outwall contours of IO slices are taken from IVUS.
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Spacing method so that vessel and cap thickness could be
calculated properly and recorded for analysis (Wang et al.,
2019). Figure 2 illustrates our Four-Quarter Even-Spacing
method with which cap thickness was defined and calculated.
It also shows clear cap thickness difference between IVUS and IO
slices and between baseline and follow-up. Nine morphological
and mechanical risk factors were selected as our predictors to
predict cap thickness change from baseline to follow-up: lumen
area (LA), plaque area (PA) which is defined as the area between
the vessel outwall (see Figure 2) and the lumen contour, plaque
burden (PB) defined as the ratio of the plaque area over the area
inside the vessel outwall, minimum cap thickness (MinCapT),
mean cap thickness (MeanCapT), maximum cap stress
(MaxCapS), mean cap stress (MeanCapS), maximum cap
strain (MaxCapSn), and mean cap strain (MeanCapSn). Their
values were calculated from baseline IVUS and IO slices. Values
of cap-related predictors were collected from related cap lumen
points (see Figure 2). For better clarity, the distance between the
lumen point and its corresponding wall point was defined as the
wall thickness. The connecting line from the lumen contour to the
edge of the lipid near the lumen was defined as cap thickness
(CapT). For a given slice, MinCapT was defined as the minimum
of all the fibrous cap point thicknesses for the slice. When analysis
was performed at patient level, MinCapT was defined as the
minimum of all fibrous cap point thicknesses in all lipid slices of
the patient. Slice and patient MeanCapT were defined the same
way. Maximum and mean values of stress and strain predictors
were calculated similarly. Data for all predictors were collected,

calculated, and saved for prediction model use. The work of
morphology calculation was accomplished by MATLAB
(MATLAB R2018a, MathWorks, United States).

The 3D Thin-Layer Biomechanical Model
For the 114 matched IVUS and IO slices containing a lipid-rich
core with fibrous cap, a thin-slice thickness (0.5 mm) was used to
make the 3D thin-layer models (see Figure 3). Since IVUS and
OCT data were acquired under in vivo condition when the vessel
was under stretched and loaded conditions, a 5% axial
shrink–stretch combined with our circumferential preshrink
process was performed to obtain in vivo slice morphology
with proper plaque stress/strain when 5% axial stretch and
pressure condition were imposed (Wang et al., 2019). Details
of the preshrink procedure are described in our previous studies
(Yang et al., 2010; Wang et al., 2015). Vessel tissue was assumed
to be hyperelastic, anisotropic, nearly incompressible, and
homogeneous (Guo et al., 2018). Plaque components (lipid
core and calcification) were assumed to be hyperelasic,
isotropic, and nearly incompressible. A modified
Mooney–Rivlin material model was used to describe the
material properties of vessel tissue with the strain-energy
density function given as follows (Wang et al., 2018):

Wiso � c1(I1 − 3) + c2(I2 − 3) + D1[exp(D2(I1 − 3)) − 1], (1)

Waniso � Wiso + K1

K2
{exp[K2(I4 − 1)2] − 1}, (2)

where I1 � ∑ (Cii) and I2 � 1
2 (I

2
1 − CijCij), in which I1 and I2 are

the first and second invariants of right Cauchy–Green
deformation tensor C � (Cij) � FTF � (Fii) � (zxi/zaj), (xi) is
the current position, (aj)is the original position, and
I4 � Cij(nc)i(nc)j, where nc is the unit vector in the
circumferential direction of the vessel and c1, c2, D1, D2, K1,
and K2 are the material parameters. Material constants of the
isotropic Mooney–Rivlin model from the existing literature were
used. Lipid: c1 � 0.5 kPa, c2 � 0 kPa, D1 � 0.5 kPa, and D2 � 1.5;
calcification: c1 � 92 kPa, c2 � 0 kPa, D1 � 36 kPa, and D2 � 2.0;
vessel/fibrous tissue: c1 � ‒262.76 kPa, c2 � 22.9 kPa,D1 � 125.9
kPa, D2 � 2.0, K1 � 7.19 kPa, and K2 � 23.5 (Guo et al., 2018; Guo
et al., 2019).

The 3D thin-layer models were solved by finite element
software ADINA 9.0 (Adina R & D, Watertown, MA,
United States) following our established procedures (Wang
et al., 2019). Nonlinear incremental iterative procedures were
used to solve the models. Mesh analysis was performed by
refining mesh density by 10% until changes of solutions
became less than 2%. Figure 4 provides plots of a sample slice
contour with cap thickness and stress and strain distributions to
show the cap thickness and stress/strain differences between
IVUS and IO models. Cap thickness, plaque stress, plaque
strain, plaque cap stress, and cap strain were extracted and
saved for analysis.

Prediction Models and Strategy
Nine morphological and mechanical risk factors were selected as
our predictors to predict cap thickness change from baseline to

FIGURE 2 | The Four-Quarter Even-Spacing method with which cap
thickness was defined and calculated. Cap thickness differences between
IVUS and IO slices and between baseline and follow-up are shown. (A) IVUS
segmented contours with lumen–outwall connection lines at baseline.
(B) Corresponding IVUS + OCT (IO) segmented contours with lumen–outwall
connection lines at baseline. (C) IVUS slice with connection lines at follow-up.
(D) Corresponding IVUS + OCT (IO) slice with connection lines at follow-up.
Minimum cap thickness was marked using bold black.
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follow-up (see Data Acquisition and Processing for
descriptions): LA, PA, PB, MinCapT, MeanCapT, maximum
cap stress (MaxCapS), mean cap stress (MeanCapS),
maximum cap strain (MaxCapSn), and mean cap strain
(MeanCapSn). As the prediction target variable, Δ(MinCapT)
is defined as

Δ(MinCapT) � ΔMinCapT

� MinCapT at T2 −MinCapT at T1, (3)

where T1 � baseline and T2 � follow-up. Δ(MinCapT) of IO
was used as the benchmark for model prediction
verifications. For a given slice, its binary labels for
ΔMinCapT were defined as

Slice Label(ΔMinCapT) � { 1, if ΔMinCapT < 0,
−1, if ΔMinCapT ≥ 0, (4)

where Slice Label � 1 means the lipid plaque is progressive
(getting worse), while Slice Label � ‒1 means the lipid plaque
is nonprogressive.

A 5-fold cross-validation strategy with generalized linear
mixed model (GLMM) and least squares support vector
machine (LSSVM) methods were adopted to calculate
prediction accuracy for each single predictor and all
combinations of the nine predictors and quantify prediction
accuracy differences using IO and IVUS slice values (Wang
et al., 2015). The GLMM model is defined as

yij � E(yij∣∣∣∣bj) + εij, (5)

log it(E(yij∣∣∣∣bj)) � β0 + β1x1ij + β2x2ij + . . . + bj, (6)

where yij is the binary response of ΔMinCapT and E(yij|bj) �
P(yij � 1|bj) is the probability on the ith slice of the jth patient.
logit(x) � log[x/(1 − x) ] is the binomial link function. x1ij, x2ij,
etc. are the risk factors, which were used to predict plaque cap
progression. β0, β1, etc. are the fixed-effect coefficients, and bj and
εij are the random-effect terms and the random error terms of
GLMM. R function glmmPQL was used to estimate the term
values by fitting GLMM.

The LSSVM method used Gaussian radial basis function as
kernel function, fitted all the samples with least square error, and
used the steepest descent method to find the optimal parameters.
Radial basis function is given by

K(x, z) � exp( − ‖x − z2‖
σ2

), (7)

where σ2 is the square-coordinated kernel width. MATLAB
(MATLAB R2018a, MathWorks, United States) was used to
adjust the parameters and complete the prediction work.

All 114 IO and IVUS slices were randomly divided into 5
subgroups, 4 as training subgroups and 1 as test subgroup. The
training subgroups were used for model fitting. The test subgroup
was used to test the model, and dichotomous prediction is
performed. Each subgroup was used once, and the testing

FIGURE 3 | The 3D thin-layer model construction process. (A) An in vivo IVUS + OCT (IO) slice. (B) The slice after shrinking. (C) The 3D thin-layer model with a
thickness added. (D) The slice with load-added matching in vivo slice morphology. (E) Plaque wall stress under minimum pressure. (F) Plaque wall strain under minimum
pressure.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org August 2021 | Volume 9 | Article 7135255

Lv et al. Quantify Coronary Plaque Progression

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


results from the five subgroups were combined together as the
final result to give prediction accuracy. The binary
responses for the measures of cap thickness changes
(ΔMinCapT) were adopted to find the best predictor(s). If
fibrous cap thickness decreases, it was positive (labeled 1);
meanwhile, increase was negative (labeled ‒1). The classified
result is judged by accuracy (Acc), sensitivity (Sen),
specificity (Spe), and area under the ROC curve (AUC).
Accuracy is the probability of correctly predicted slices
being detected in all test groups. Sensitivity is the
probability of detecting a plaque progression slice in the
plaque progression test subgroup. Specificity is the
probability of the correct slice being detected in the
nonplaque progression test subgroup. The AUC was used
to assess the predictive power of each predictor.

Statistical Analysis
MinCapT, MeanCapT, MaxCapS, MeanCapS, MaxCapSn, and
MeanCapSn from IO and IVUS models were compared to get
differences. Errors by IVUS data and models were calculated
using IO results as baseline (gold standard). The
Kolmogorov–Smirnov tests were performed to check data
normality. Analysis of variance, paired t-tests, and
Mann–Whitney U test were used to check if the differences

were statistically significant. A p value < 0.05 was considered
statistically significant.

RESULTS

IVUS Cap Thickness Data Had Large Errors
Compared to OCT Data
Table 2 lists minimum and mean cap thickness values from nine
patients based on 114 slices at baseline. Mean cap thickness
(MeanCapT) was the average of point-to-point cap thickness for
every patient. The average of MinCapT from IVUS was 0.17 mm,
which was 26.09% lower than that from IO data (average �
0.23 mm). Patient variations of the individual errors ranged from
‒58.11 to 20.37%, with mean ± SD � ‒20.70 ± 30.32%. Negative
error value means IVUS cap thickness values were lower than
those from IO values. The average of MeanCapT from IVUS was
0.38 mm, which was 2.56% lower than that from IO data. Patient
variations of the individual errors ranged from ‒30.32 to 25.50%,
with mean ± SD � 0.16 ± 20.86%. Patient five had the biggest
error (in absolute value) for both MinCapT (‒58.11%) and
MeanCapT (‒30.32%). Patient six had maximum MinCapT
(0.324 mm) based on IO slice, but its IVUS slice had
MinCapT 0.141 mm with error ‒56.48%.

FIGURE 4 | An example showing the differences of cap thickness, maximum cap stress, and maximum cap strain in the cap region andmaximum stress and strain
on the whole lumen for IVUS + OCT (IO) and IVUS. (A–C) IO slice—contour, stress, and strain plots. (D–F) IVUS slice—contour, stress, and strain plots.
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Cap Stress and Strain From IVUS and IO
Data Have Large Differences and the
Differences Have Large Patient Variations
Table 3 summarizes mean and maximum cap stress values from
the nine patients based on simulation results from 114 3D thin-

layer models. The average of IO MeanCapS of the 114 slices was
67.15 kPa. The average MeanCapS from IVUS slices was
73.44 kPa, which was 9.37% higher than that from IO models.
The modest error value could be misleading since positive and
negative individual errors canceled against each other in the
average. Patient variations of the individual errors for

TABLE 2 | Summary of minimum and mean cap thickness from 9 patients based on 114 slices at baseline. Unit for fibrous cap thickness: mm.

Patient MinCapT MeanCapT

IO IVUS Error (%) IO IVUS Error (%)

Patient 1 0.162 0.195 20.37 0.251 0.315 25.50
Patient 2 0.242 0.190 −21.49 0.385 0.379 −1.56
Patient 3 0.271 0.284 4.80 0.390 0.447 14.62
Patient 4 0.317 0.135 −57.41 0.536 0.451 −5.86
Patient 5 0.222 0.093 −58.11 0.376 0.262 −30.32
Patient 6 0.324 0.141 −56.48 0.602 0.499 −17.11
Patient 7 0.181 0.144 −20.44 0.325 0.382 17.54
Patient 8 0.127 0.124 −2.36 0.273 0.230 −15.75
Patient 9 0.228 0.239 4.82 0.348 0.433 24.43

Max 0.324 0.284 20.37 0.602 0.499 25.50
Min 0.127 0.093 −58.11 0.251 0.230 −30.32
Mean ± SD 0.23 ± 0.07 0.17 ± 0.06 -20.70 ± 30.32 0.39 ± 0.11 0.38 ± 0.09 0.16 ± 20.86

TABLE 3 | Summary of mean and maximum cap stress values for the plaques of 9 patients. Unit for stress: kPa.

Patient MeanCapS MaxCapS

IO IVUS Error (%) IO IVUS Error (%)

Patient 1 71.77 44.73 −37.68 78.65 54.74 −30.40
Patient 2 70.76 71.53 1.09 82.14 81.29 −1.03
Patient 3 90.49 91.83 1.48 101.82 100.95 −0.85
Patient 4 48.77 70.35 44.25 73.47 107.39 46.17
Patient 5 71.89 95.88 33.37 95.45 113.03 18.42
Patient 6 69.64 82.94 19.10 97.99 106.47 8.65
Patient 7 85.58 68.24 −20.26 112.25 78.89 −29.72
Patient 8 60.91 86.09 41.34 68.01 94.19 38.49
Patient 9 34.58 49.34 42.68 49.43 57.08 15.48

Max 90.49 95.88 44.25 112.25 113.03 46.17
Min 34.58 44.73 −37.68 49.43 54.74 −30.40
Mean ± SD 67.15 ± 17.27 73.44 ± 17.81 13.93 ± 29.69 84.36 ± 19.48 88.23 ± 21.62 7.24 ± 26.47

TABLE 4 | Summary of mean and maximum cap strain values for 9 patients.

Patient MeanCapSn MaxCapSn

IO IVUS Error (%) IO IVUS Error (%)

Patient 1 0.144 0.111 −22.92 0.154 0.125 −18.83
Patient 2 0.189 0.176 −6.88 0.215 0.192 −10.70
Patient 3 0.175 0.177 1.14 0.191 0.190 −0.52
Patient 4 0.149 0.172 15.44 0.202 0.217 7.43
Patient 5 0.065 0.073 12.31 0.084 0.094 11.90
Patient 6 0.177 0.185 4.52 0.211 0.212 0.47
Patient 7 0.169 0.151 −10.65 0.201 0.161 −19.90
Patient 8 0.159 0.185 16.35 0.171 0.194 13.45
Patient 9 0.108 0.140 29.63 0.136 0.160 17.65

Max 0.189 0.185 29.63 0.215 0.217 17.65
Min 0.065 0.073 −22.92 0.084 0.094 −19.90
Mean ± SD 0.15 ± 0.04 0.15 ± 0.04 4.33 ± 16.10 0.17 ± 0.04 0.17 ± 0.04 0.11 ± 13.94
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MeanCapS ranged from ‒37.68 to 44.25%, with mean ± SD �
13.93 ± 29.69%. The average of MaxCapS of the 114 IO slices was
84.36 kPa, compared to 88.23 kPa from IVUS slices, which was
4.59% higher than that from IO models. Patient variations of the
individual errors ranged from ‒30.40 to 46.17%, with mean ± SD
� 7.24 ± 26.47%. Patientwise comparisons of IO and IVUS cap
stress indicates that Patient four had the highest error for
MeanCapS and MaxCapS (44.25 and 46.17%, respectively).

Table 4 summarizes mean and maximum cap strain values
from the nine patients from our 114 3D thin-layer models. The
average of IO MeanCapSn of the 114 slices was 0.15 which is the
same as that from IVUS slices. However, patient variations of the
individual errors ranged from ‒22.92 to 29.63%, with mean ± SD
� 4.33 ± 16.10%. The average of MaxCapSn of the 114 IO slices
was 0.17, which again was the same as that from the IVUS slices.
Patient variations of the individual errors ranged from ‒19.90 to
17.65%, with mean ± SD � 0.11 ± 13.94%. Patientwise
comparisons of IO and IVUS mean cap strain indicated that
Patient nine had the highest error in 29.63% under MeanCapSn
and Patient seven had the lowest error in ‒19.90% under
MaxCapSn. Figure 4 gives an example to show the differences
of mean cap thickness, maximum cap stress, and maximum cap
strain in the cap region and maximum stress and strain on the
whole lumen for IO and IVUS.

Cap Thickness Progression Prediction
Using GLMM: Comparison Between IO and
IVUS Results
There were altogether 511 (2̂9–1) combinations using nine
predictors. Table 5 gives prediction results by two best
combinations and nine single predictors for ΔMinCapT using
IO and IVUS data based on the GLMM method, respectively.
Values for prediction accuracy (Acc), specificity (Spe), and area
under the ROC curve (AUC) are given. The optimal combination
predictor among all 511 predictors using IO data was the
combination of MinCapT, MeanCapS, PB, and PA with the
highest AUC � 0.926 and highest accuracy � 90.8% for IO
data, which compared favourably with AUC � 0.783 and Acc
� 74.6% using IVUS data. The best single predictor was PA with
the highest AUC value in IO prediction results with AUC � 0.868

and accuracy � 85%, compared to AUC � 0.637 and accuracy �
64.0% using IVUS data. The best prediction accuracy of IO using
combinations was 16.2% higher than that of IVUS (90.8 vs.
74.6%). The AUCs for the best combinations of predictors
using IVUS and IO data are given in Figure 5. For the
predictor using IO data, the best combination is given by PA
+ MinCapT + MeanCapS + PB. For IVUS data, the best
combination is given by PA + MinCapT + MeanCapT +
MeanCapS + MeanCapSn.

Cap Thickness Progression Prediction
Using LSSVM: Comparison Between IO and
IVUS Results
Using the LSSVM method to predict ΔMinCapT, Table 6 gives
prediction results by two best combinations and nine single
predictors using IO and IVUS data, respectively. The optimal
combination predictor (best AUC value) among all 511
predictors using IO data was the combination of PA, PB,
MinCapT, and MeanCapS with AUC � 0.838 and accuracy �
75.7%. The best predictor for IVUS data was a combination of
MeanCapT, MaxCapS, and MeanCapSn with AUC � 0.780
and accuracy � 69.6%. The best single predictor was
MinCapT in IO prediction results with AUC � 0.804 and
accuracy � 76%, compared to AUC � 0.725 and accuracy �
71.5% using IVUS data. The best prediction accuracy of IO
using combinations was 6.1% higher than that of IVUS (75.7
vs. 69.6%).

Combining Morphological and Mechanical
Factors Improved Prediction Accuracies
Figure 6 provides bar plots comparing prediction results using
only morphological predictors and using combinations of
morphological and mechanical predictors. Results from
GLMM and LSSVM methods using IO data are shown. For
the GLMM method, combining biomechanical and
morphological factors helped to improve prediction accuracy
from 88.8 to 90.8%. The AUC value improved from 0.911 to
0.926. Sensitivity did not show improvement. Specificity
improved from 0.9 to 0.925. The LSSVM method showed

TABLE 5 | ΔMinCapT prediction results using the GLMMmethod. AUC: area under the ROC curve; Acc: accuracy; Sen: sensitivity; Spe: specificity. Bold indicates the best
value.

IO prediction results IVUS prediction results

Predictor Acc Sen Spe AUC Predictor Acc Sen Spe AUC

PA + MinCapT + MeanCapS + PB 0.908 0.851 0.925 0.926 PA + MinCapT + MeanCapT + MeanCapS + MeanCapSn 0.746 0.870 0.633 0.783
PA + MinCapT + MeanCapS 0.892 0.865 0.900 0.926 MaxCapS + MeanCapS + MaxCapSn + MeanCapSn 0.737 0.870 0.617 0.778
PA 0.850 0.851 0.850 0.868 PA 0.640 0.463 0.800 0.637
MinCapT 0.753 0.870 0.717 0.854 MinCapT 0.746 0.926 0.583 0.704
MaxCapSn 0.863 0.743 0.900 0.847 MaxCapSn 0.632 0.870 0.417 0.627
MeanCapT 0.782 0.778 0.783 0.843 MeanCapT 0.746 0.944 0.567 0.774
PB 0.653 0.986 0.550 0.822 PB 0.693 0.833 0.567 0.711
MaxCapS 0.653 0.986 0.550 0.814 MaxCapS 0.693 0.926 0.483 0.708
MeanCapSn 0.653 0.986 0.550 0.788 MeanCapSn 0.649 0.870 0.450 0.635
MeanCapS 0.653 0.986 0.550 0.786 MeanCapS 0.728 0.815 0.650 0.716
LA 0.743 0.611 0.783 0.699 LA 0.667 0.593 0.733 0.645
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similar improvements, while overall performance was not as good
as that from the GLMM method.

DISCUSSION

Significance of Accurate Cap Thickness
Data for Plaque Progression Assessment
In order to predict plaque progression, one simple truth is that we
must be able to acquire the progression data with enough
accuracy to predict. With IVUS imaging resolution at
150–200 μm and MRI resolution at 200–300 μm, and with the
fact that plaque vessel wall thickness changes were mostly under
100 μm in a year, well below imaging resolutions (Yang et al.,
2010), it is extremely challenging to quantify and predict plaque
progression with acceptable reliability and accuracy. OCT comes

with a superior 10–15 μm resolution, and it gives us hope that we
may get accurate data to work with. However, OCT is limited by
its penetration and cannot get the whole vessel cross section.
Combining IVUS and OCT provides one approach where we
have the whole cross section from IVUS and accurate cap
thickness from OCT. Since the whole cross section is
primarily from IVUS with its resolution limitation, it remains
to be questionable to use vessel wall thickness as the measure for
plaque progression. In this study, cap thickness was selected as
the measure for plaque progression. While it does not give
complete information for plaque changes, it does come with
the accuracy from OCT and it is one of the most critical plaque
features affecting plaque stress/strain conditions. The well-known
cap thickness threshold value (65 μm) of vulnerable plaques is
usually used as an important criterion for morphological
classification (Virmani et al., 2002, Virmani et al., 2006;

FIGURE 5 | ROC curves of the best combinations of predictors predicting ΔMinCapT. (A) ROC curve using IO data. The best combination is given by PA +
MinCapT + MeanCapS + PB. (B) ROC curve using IVUS data. The best combination is given by PA + MinCapT + MeanCapT + MeanCapS + MeanCapSn.

TABLE 6 | ΔMinCapT prediction results using the LSSVM method. AUC: area under the ROC curve; Acc: accuracy; Sen: sensitivity; Spe: specificity. Bold indicates the
best value.

IO prediction results IVUS prediction results

Predictor Acc Sen Spe AUC Predictor Acc Sen Spe AUC

PA + MinCapT + MeanCapS + PB 0.757 0.793 0.725 0.838 MeanCapT + MaxCapS + MeanCapSn 0.696 0.749 0.649 0.780
PA + MinCapT + MeanCapS + MeanCapT 0.717 0.716 0.718 0.837 MeanCapT + MaxCapS + MeanCapS + PB 0.706 0.752 0.664 0.771
MinCapT 0.760 0.737 0.792 0.804 MinCapT 0.715 0.748 0.670 0.725
MeanCapT 0.741 0.670 0.825 0.764 MeanCapT 0.613 0.639 0.578 0.613
MeanCapSn 0.622 0.652 0.586 0.633 MeanCapSn 0.594 0.663 0.499 0.615
PA 0.605 0.642 0.555 0.608 PA 0.570 0.702 0.388 0.518
LA 0.545 0.619 0.456 0.552 LA 0.565 0.684 0.401 0.544
MeanCapS 0.541 0.476 0.601 0.544 MeanCapS 0.618 0.737 0.454 0.608
MaxCapS 0.590 0.436 0.728 0.543 MaxCapS 0.644 0.711 0.551 0.626
PB 0.576 0.726 0.371 0.537 PB 0.608 0.660 0.535 0.600
MaxCapSn 0.548 0.635 0.445 0.506 MaxCapSn 0.633 0.685 0.563 0.652
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Cardoso and Weinbaum, 2014; Fenning and Wilensky, 2014;
Saba et al., 2014; Arbab-Zadeh and Fuster, 2015; Goncalves et al.,
2015; Bala et al., 2018; Yonetsu and Jang, 2018; Zhao et al., 2018;
Porcu et al., 2020). For the first time, the progression prediction
models were based on image data with resolution good enough to
quantify thin cap thickness and the predicted target parameter
(cap thickness) has values that are accurate and reliable. With
that, prediction accuracies should be more reliable and
meaningful.

Cap thickness data from OCT (and IO slices) are considered
and used as the gold standard. Therefore, comparison of IVUS
and IO data and prediction results is to show the errors
(uncertainties) by IVUS images when we have “true” cap
thickness obtained by OCT. It should be noted that the
average of MeanCapT from IVUS was only 2.56% lower than
that from IO data, while patient variations of the individual errors
ranged from ‒30.32 to 25.50%, with mean ± SD � 0.16 ± 20.86%.
The average of MinCapT from IVUS was 0.17 mm, which was
26.09% lower than that from IO data (average � 0.23 mm). Patient
variations of the individual MinCapT errors were even worse: it
ranged from ‒58.11 to 20.37%, with mean ± SD � ‒20.70 ± 30.32%.
These data indicated that cap thickness data from IVUS have high
uncertainties and should be interpreted and used with caution.

Comparison of Prediction Results by GLMM
and LSSVM Methods and by IVUS and IO
Data
While image data accuracy is the base of any prediction research,
selection of prediction methods is also of great interest. The use of
prediction models requires their stability, simplicity,
extendibility, and good adaptability. The logistic regression
model is one of the commonly used models for plaque

prediction (Samady et al., 2011; Stone et al., 2012). GLMM is
commonly used in clinical medicine, which can be seen as an
extended form of GLM without the requirement to meet the
normal distribution of dependent variable, and has the
characteristics of GLM method at the same time including
fixed effect and random effect. Because risk factors were
extracted from the slices, the quantitative factors between
adjacent slices were neither random nor independent of each
other, and GLMM could take this into account. Artificial
intelligence (AI) and various machine leaning methods have
been introduced to perform predictions with limited success
(Han et al., 2020; Kay et al., 2020). For this work, 114 slice
data constitute a relatively small data set in general machine
learningmethod applications. SVM is amachine learningmethod
suitable for small samples. LSSVM is a support vector machine
optimized by the least squares method. The function maps the
space where the samples are mapped to a higher dimensional
space, which helps to recognize the targeted group/classification
(Guo et al., 2019). Both GLMM and LSSVM methods have the
potential to further improve the accuracy of predictions. In this
study, the quantitative index based on fibrous cap thickness is
more direct and simple. Based on R language, the GLMMmethod
has fast debugging and good stability. The prediction result of
GLMM’s optimal combination predictor was better than that of
LSSVM (AUC 0.926 vs. 0.830).

Prediction accuracy using IO data (AUC � 0.926 and accuracy
� 90.8%, by GLMM) is clearly better that using IVUS data (AUC
� 0.783 and accuracy � 74.6%, by GLMM). The comparison
seems to be unfair since the prediction target ΔMinCapT was
quantified using IO data. Our purpose is not to show that IO data
are better since it was used as the gold standard in this study. The
purpose of the comparison is to show the impact of IVUS data
uncertainty on prediction accuracy. The differences of prediction

FIGURE 6 | Comparison between the best morphology–only combined predictor and the best biomechanical + morphology combined predictor using IO data
based on ΔMinCapT prediction results. (A) IO prediction result based on GLMM. (B) IO prediction result based on LSSVM. AUC: area under the ROC curve; Acc:
accuracy; Sen: sensitivity; Spe: specificity.
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accuracies using LSSVMwere smaller, as shown inTable 6 (AUC:
0.838 vs. 0.780; accuracy: 83 vs. 69.6%).

Cap Stress and Strain Differences Between
IVUS and IO Models
Mechanical forces, especially cap stress and strain, play an
important role in plaque progression and vulnerability
assessment. Cap thickness differences between IVUS and IO
data led to large cap stress/strain differences. It is worth
noting that overall averaged cap stress and strain values had
very modest differences between IO and IVUS data, while
individual differences ranged from about −40% to + 40%.
Patient variations of the individual errors for mean cap stress
(MeanCapS) ranged from ‒37.68 to 44.25%, with mean ± SD �
13.93 ± 29.69%. For maximum cap stress which could be closely
related to potential plaque rupture, patient variations of the
individual errors ranged from ‒30.40 to 46.17%, with mean ±
SD � 7.24 ± 26.47%. For cap strain comparisons, patient
variations of individual errors of mean cap strain
(MeanCapSn) ranged from ‒22.92 to 29.63%, with mean ± SD
� 4.33 ± 16.10%. Patient variations of the individual errors for
MinCapSn ranged from ‒19.90 to 17.65%, with mean ± SD �
0.11 ± 13.94%. Errors for strain comparisons were smaller than
those from stress comparisons.

Combining Biomechanical and
Morphological Factors Could Improve
Prediction Accuracy
Combination of morphology and mechanical predictors may give
better prediction accuracy than using morphology only or single-
factor predictors which was seen again in this work. Using the
GLMM method, there is an improvement in accuracy from 88.8
to 90.8%, in Sen + Spe from 0.751 to 1.776 and in AUC value from
0.911 to 0.926 based on IO data (Figure 6A). The corresponding
IVUS combined predictors shows the same trend with
MaxCapSn, which helps the combination of LA and
MeanCapT increase the AUC from 0.756 to 0.778. Figure 6B
illustrates a similar result using the LSSVM method. Combining
morphological factors and mechanical factors demonstrated a
certain ability not to be ignored in plaque progression prediction.

Further Plaque Prediction Strategies
Plaque progression is a long and complex process, and it involves
many factors. Data from multichannels should be collected. And,
ideally, more time points (i.e., follow-up 1, follow-up 2, etc.)
would be desirable and may give better results. However, those
patient studies are very expensive, especially for this IVUS + OCT
studies. A one-year follow-up is a typical timeframe researchers
use for plaque progression investigations (Samady et al., 2011;
Stone et al., 2012; D’Ascenzo et al., 2021). OCT has an accuracy of
10–15 µm and can detect relatively small changes in cap
thickness. Compared to other publications for plaque
progression research, we tend to believe that better accuracy
from OCT should lead to more accurate and reliable predictions.

Limitations and Future Directions
Automation of simulation modelling has always been a goal. A
3D thin-layer model helps move forward this process.
However, there is still a need for further improvement.
Patient-specific vessel material properties were not
available for this study, and parameters from our previous
studies using VH-IVUS and Cine-IVUS were used (Guo et al.,
2019). 3D thin-layer models did not take into account the
effects of fluid. The modest improvement of combining
morphological and mechanical factors could also be due to
the fact that flow shear stress is not included in the predictor
list. Biochemical indicators such as hyperlipidemia or
diabetes mellitus were not considered. Further refinement
of the prediction models is needed.

One major limitation of this study is its small sample size.
Clinical significance of our results in predicting plaque
progression and regression is limited by the small patient size.
Large-scale studies are needed to further verify our findings and
bring our research scheme closer to clinical practice. It should be
noted that data needed for this study are extremely hard to get
because the data set included IVUS and OCT at both baseline
and follow-up. Not only IVUS and OCT are very expensive,
but also they are invasive procedures. While it is relatively
easier to get patients to participate at baseline since they need
to do that for their diagnosis anyway, it is much harder to
recruit patients to do those invasive imaging procedures
(IVUS and OCT) mainly for research purpose. It involves
additional risk with only limited benefits to patients. Most
insurances do not have coverage for such procedures. So,
financial support becomes a limiting factor. These are
practical difficulties in the data acquisition front. We will
keep trying to get more data, improve our models, and move
closer to clinical implementations.

Another major limitation is that predictors in this study only
included morphological and biomechanical factors from
structure-only models. Atherosclerosis is a pathophysiological
process.While plaque rupture may be the result of the mechanical
failure of the fibrous cap, there is a cascade of mechanisms
involved in the thinning of the cap or the prevention of such
thinning that are critical to monitor, so critical that is what is
currently monitored in the clinical setting. Additional factors
such as plaque erosion, inflammation, blood conditions, genomic
factors, and many others should be explored to improve our
models and prediction accuracies.

With the same context about vulnerable plaque research in
biomechanical setting and current clinical practices, plaque
stenosis severity remains to be the commonly quantified,
monitored, and used in clinical diagnosis and treatment
decision-making (stenting or conservative medication).
Researchers have tried in recent years seeking better risk
indicators including plaque components (therefore cap
thickness) and plaque stress/strain conditions using more
advanced imaging modalities and mechanical models. Cap
thickness does play an important role in plaque stress/strain
calculations. Yet, there are still considerable gaps between
research findings and actual clinical implementations.
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