Supplementary information for :

Brown adipose tissue monocytes support tissue expansion.

Authors

Alexandre Gallerand^{1£}, Marion I. Stunault^{1£}, Johanna Merlin¹, Hannah P. Luehmann², Deborah H. Sultan², Maria M. Firulyova³, Virginie Magnone⁴, Narges Khedher¹, Antoine Jalil⁵, Bastien Dolfi¹, Alexia Castiglione¹, Adelie Dumont¹, Marion Ayrault¹, Nathalie Vaillant¹, Jérôme Gilleron¹, Pascal Barbry⁴, David Dombrowicz⁶, Matthias Mack⁷, David Masson⁵, Thomas Bertero⁴, Burkhard Becher⁸, Jesse W. Williams⁹, Konstantin Zaitsev³, Yongjian Liu², Rodolphe R. Guinamard¹, Laurent Yvan-Charvet¹ and Stoyan Ivanov^{1*}

Affiliations

¹ Université Côte d'Azur, INSERM, C3M, Nice, France.

² Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110 United States.

³ Computer Technologies Department, ITMO University, Saint Petersburg, Russia.

⁴ Université Côte d'Azur, CNRS, IPMC, Valbonne, France.

⁵ Université Bourgogne Franche-Comté, LNC UMR1231, F-21000 Dijon, France.

⁶ Univ.Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France.

⁷ Department of Internal Medicine - Nephrology, University Hospital Regensburg, Regensburg, Germany.

⁸ Institute of Experimental Immunology, University of Zürich, Switzerland.

⁹ Department of Integrative Biology and Physiology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA.

[£]Equal contribution ^{*}Corresponding author

Correspondence to:

Stoyan.ivanov@unice.fr

Figure S1. This figure is related to Figure 1.

(A) (Left) Cell-sorting strategy used for isolation of BAT CD45⁺ cells before scRNA-Seq and (right) Single Cell RNA-Seq analysis of *Ptprc* expression among BAT CD45⁺ cells (**B**) Breeding scheme for generating Adipo^{Δ/Δ} mice. (**C**) TdTomato reporter expression (red) in epididymal (EAT) and brown (BAT) adipose tissues by fluorescence microscopy. (**D**) ATGL protein expression in Adipo^{Δ/Δ} mice brown adipose tissue (BAT) compared to controls (Ctrl) by Western Blot analysis; HSP90 was used as loading control for protein expression. (**E**) Glycerol levels in control (n=18) and Adipo^{Δ/Δ} (n=20) mice sera. *p*= 0,0096. (**F**) Myristic acid (C14:0), palmitic acid (C16:0) and α-linoleic acid (C18:3 n-3) levels in control (n=7) and Adipo^{Δ/Δ} (n=9) mice sera. *p*=0,0003 (left), *p*=0,0115 (middle), *p*= 0,0418 (right). (**G**) Lipidomic analysis of serum from control and Adipo^{Δ/Δ} mice. Data are represented in ratio compared to Ctrl condition ± SEM. Stars indicate a statistically significant difference between controls and Adipo^{Δ/Δ} mice (*p*<0,05).

Panel C is representative of 3 experiments. Panel D represents one experiment. Panel E represents pooled data from 5 independent experiments. Panels F and G represent pooled data from 2 independent experiments. All data are represented in means \pm SEM. Two-tailed Mann Whitney tests were used to determine statistical significance in panels E and F. ns p>0,05 ; * p<0,05 ; **<0,01 ; **** p<0,001 ; ***** p<0,0001. Source data, and notably uncropped blots for panel S1D, are provided as a Source Data file.

Figure S2. This figure is related to Figure 2.

(A) Single Cell RNA-Seq analysis of the PID "lysophospholipid metabolism" pathway, the KEGG "glycerolipid metabolism" gene set and the KEGG "glycerophospholipid metabolism" gene set expression. (B) Single Cell RNA-Seq analysis of *Mrc1* and *CD226* expression among BAT monocytes and macrophages. (C) Gating strategy used for identification of tissue macrophages, and tissue monocytes in mice lacking the *CX3CR19^{fp}* reporter. (D) Representative dot plots (left) and proportions (right) of BAT and EAT CD206^{high} and CD226^{high} macrophages in Adipo^{Δ/Δ} mice (n=11). *p*=0,0788 (left), *p*<0,0001 (right). (E) Quantification of EAT macrophage and monocyte counts in control (n=11) and Adipo^{Δ/Δ} (n=16) mice using flow cytometry. *p*=0,3607 (left), *p*=0,1207 (right). (F) Quantification of BAT monocyte and macrophage numbers in control (n=6) and BAT^{Δ/Δ} (n=4) mice using flow cytometry. *p*= 0,0095 (left and right). (G) Quantification of surface MHCII expression on EAT monocytes in control (n=14) and Adipo^{Δ/Δ} mice (n=15) using flow cytometry. *p*=0,9095. (H) Quantification of surface CD206 and CD301 expression by EAT macrophages in control (n=11) and Adipo^{Δ/Δ} (n=16) mice using flow cytometry. *p*=0,6905 (left and right). (I) Single Cell RNA-Seq analysis of *Mrc1* (CD206) and *Clec10a* (CD301) expression among BAT myeloid cells. (J) Single Cell RNA-Seq analysis of genes involved in cell proliferation.

Panel D represents pooled data from 2 independent experiments. Panels E, G and H represent pooled data from 4 independent experiments. Panel F is representative from 2 independent experiments. All data are represented in means \pm SEM. Two-tailed Mann Whitney tests were used to determine statistical significance. ns p>0,05; * p<0,05; **<0,01; **** p<0,001; **** p<0,001. Source data are provided as a Source Data file.

Figure S3. This figure is related to Figure 3.

(A) (Top panel) Representative photos showing the enlarged BAT in $Adipo^{\Delta/\Delta}$ mice compared to control groups 16 days post-tamoxifen administration. (Bottom panel) Representative autoradiography images showing the increased ⁶⁴Cu-DOTA-ECL1i signals in the BAT of $Adipo^{\Delta/\Delta}$ mice compared to control groups 16 days post-tamoxifen administration. (B) Representative dot plots of blood monocytes in control and $Adipo^{\Delta/\Delta}$ mice. (C) Quantification of blood neutrophil, T cell and B cell counts in control (n=12) and $Adipo^{\Delta/\Delta}$ (n=14) mice using flow cytometry. *p*=0,4428 (left), *p*=0,5826 (middle), *p*=0,6848 (right). (D) Quantification of bone marrow LSK (Lin⁻Sca1⁺ cKit⁺) and monocytes in control (n=9 and 13 respectively) and $Adipo^{\Delta/\Delta}$ (n=10 and 14 respectively) mice using flow cytometry. *p*=0,4002 (left) and *p*=0,0850 (right). (E) Bone marrow monocyte proliferation rate and survival in control (n=4 and n=5 respectively) and $Adipo^{\Delta/\Delta}$ (n=8 and n=7 respectively) mice by flow cytometry. *p*=0,3144 (left), *p*=0,0657 (right). (F) Schematic representation of Brdu injection protocol to visualize monocyte export from bone marrow to blood (left) and its quantification by flow cytometry in control (n=5) and $Adipo^{\Delta/\Delta}$ mice (n=7). *p*= 0,1490.

Panels C and D represent pooled data from 4 independent experiments. Panel E (left) represents pooled data from 2 independent experiments. Panels E (right) and F are representative of one experiment. All data are represented in means \pm SEM. Two-tailed Mann Whitney tests were used to determine statistical significance. ns p>0,05; * p<0,05; ** p<0,01; **** p<0,001; ***** p<0,001. Source data are provided as a Source Data file.

Figure S4. This figure is related to Figure 4.

(A) Representative dot plots (left) and quantification (right) of blood and spleen monocytes in MC-21 (n=13 and 15 respectively) or vehicle-treated (n=15 and 18 respectively) Adipo^{Δ/Δ} mice. *p*= 0,0002 (left) and *p*<0,0001 (right). (B) (Left panel) EAT weight of MC-21 or vehicle-treated control (n=5 and 6 respectively) and Adipo^{Δ/Δ} (n=15 and 18 respectively) mice and (right panel) EAT adipocyte diameter measurement. *p*>0,05 (all comparisons). (C) Quantification of crown-like structures (CLS) (left)) and immunofluorescence microscopy analysis in BAT of control (n=10) and MC-21-treated (n=9) Adipo^{Δ/Δ} mice. *CX3CR1*^{+/+} samples were used to determine background signal. White stars indicate crown-like structures. Scale bar = 100um. *p*=0,0364. (D) Glycerol, TG and NEFA levels in the serum of control (n=17) and MC-21-treated (n=15) Adipo^{Δ/Δ} mice. *p*= 0,2948 (left), *p*= 0,5800 (middle) and *p*= 0,4474 (right).

Data were obtained from 3 pooled independent experiments. All data are represented in means \pm SEM. Two-tailed Mann Whitney tests were used to determine statistical significance. ns p>0,05 ; * p<0,05 ; ** p<0,01 ; *** p<0,001 ; **** p<0,001. Source data are provided as a Source Data file.

(A) a-SMA staining (red) in the BAT of Adipo^{Δ/Δ} mice. Autofluorescence signal (green) is used to show tissue architecture. Data representative of 2 independent experiments. (B) Histograms showing CLEC-2 and FMO stainings among BAT monocytes and macrophages from Adipo^{Δ/Δ} mice. Data representative of 2 independent experiments. (C) (Left) Quantification of MEF morphological features after a 18hour co-culture experiment with monocytes in the presence of anti-Podoplanin blocking antibody. (Right) Representative images of MEF morphology at the end of the co-culture experiment. Scale bar = 20µm. *p*=0,3784 (left) and *p*=0,9203 (right). Data representative of 2 independent experiments. (D) Quantification of BAT macrophage and monocyte numbers in anti-Podoplanin (n=8) and isotype control-treated (n=10) Adipo^{Δ/Δ} mice using flow cytometry. (E) Glycerol, TG and NEFA levels in the serum of isotype control (n=10) and anti-Podoplanin-treated (n=8) Adipo^{Δ/Δ} mice. Data were obtained from 2 pooled independent experiments.

Panel C is representative of 2 independent experiments. Panels D and E represent pooled data from 2 pooled independent experiments. All data are represented in means ± SEM. Two-tailed Mann Whitney tests were used to determine statistical significance. ns p>0,05 ; * p<0,05 ; ** p<0,01 ; *** p<0,001 ; **** p<0,001. Source data are provided as a Source Data file.

Supplementary Table 1 Primers used for genotyping and RT-qPCR.

Mouse	Genotyping Primer sequences	
Gene name	Primer Forward (Left)	Primer Reverse (Right)
GAPDH	ACCACAGTCCATGCCATCACTGCCA	GGCCATCCACAGTCTTCTGC
ß-Actin	GAGACCTTCAACACCCC	GTGGTGGTGAAGCTGTAGGC
CXCL12	CCAAACTCTCCCCTTCAGAT	ATTTCGGGTCAATGCACACT
CCL2	CATCCACGTGTTGGCTCA	GATCATCTTGCTGGTGAATGAGT
TNF- α	CACAAGATGCTGGGACAGTGA	TCCTTGATGGTGGTGCATGA

Mouse	RT-qPCR Primer sequences	
Gene name	Primer Forward (Left)	Primer Reverse (Right)
GAPDH	ACCACAGTCCATGCCATCACTGCCA	GGCCATCCACAGTCTTCTGC
ß-Actin	GAGACCTTCAACACCCC	GTGGTGGTGAAGCTGTAGGC
CXCL12	CCAAACTCTCCCCTTCAGAT	ATTTCGGGTCAATGCACACT
CCL2	CATCCACGTGTTGGCTCA	GATCATCTTGCTGGTGAATGAGT
TNF-α	CACAAGATGCTGGGACAGTGA	TCCTTGATGGTGGTGCATGA

Supplementary Table 2 List of reagents, materials, models and software used.

Reagent or resource	Source	Identifier
---------------------	--------	------------

Antibodies

CD115 PE (clone AFS98)	eBioscience	Cat# 12-1152-82
CD11b Brilliant Violet 510 (cloneM1/70)	Biolegend	Cat# 101263
Gr1 PerCP-Cy5.5 (clone RB6-8C5)	BD Biosciences	Cat# 552093
Ly6C PerCP-Cy5.5 (clone HK1.4)	Biolegend	Cat# 128011
F4/80 PE-Cy7 (clone BM8)	Biolegend	Cat# 123114
CD45 APC-Cy7 (clone 30-F11)	BD Biosciences	Cat# 557659
CD64 Brillant Violet 421 (clone X54-5/7.1)	Biolegend	Cat# 139309
CD19 FITC (clone 6D5)	Biolegend	Cat# 115506
CD301 FITC (clone ER-MP23)	Bio-Rad	Cat# MCA2392
MerTK PE (clone 2B10C42)	Biolegend	Cat# 151506
CD11c PE-Cy7 (clone HL3)	BD Biosciences	Cat# 558079
MHC II IA/IE APC (clone M5/114.15.2)	Biolegend	Cat# 107618
CD206 PerCp-Cy5.5 (clone C068C2)	Biolegend	Cat# 141715
CD206 AF647 (clone C068C2)	Biolegend	Cat# 141712
CD226 PerCp-Cy5.5 (clone10E5)	Biolegend	Cat# 128813
Clec2 PE (clone 17D9/CLEC-2)	Biolegend	Cat# 146103
TCRβ PB (clone H57-597)	Biolegend	Cat# 109226
CD3 APC (clone 17A2)	Biolegend	Cat# 100236
NK1.1 APC (clone PK136)	Biolegend	Cat# 108720
Ter119 APC (clone TER-119)	Biolegend	Cat# 116212
B220 APC (clone RA3-6B2)	BD Biosciences	Cat# 561226
CD19 APC (clone REA749)	Miltenyi Biotec	Cat# 130-111-884
CD150 PE-Cy7 (clone TC15-12F12.2)	Biolegend	Cat# 115914
Sca1 PB (clone D7)	Biolegend	Cat# 108120
c-Kit APC-Cy7 (clone ACK2)	eBioscience	Cat# 47-1172-82
CD48 AF488 (clone HM48-1)	Biolegend	Cat# 103414

CXCR4 APC (clone 2B11)	eBioscience	Cat# 51-9991-80
CD11b APC (clone M1/70)	Biolegend	Cat# 101218
MC-21	Dr Mack M.	
Podoplanin (clone 8.1.1)	BioXCell	Cat# BE0236
InVivoMAb polyclonal Syrian hamster IgG	BioXCell	Cat# BE0087
Ly6G Biotin (clone REA526)	Miltenyi biotec	Cat# 130-116-512
CD3 Biotin (clone REA641)	Miltenyi biotec	Cat# 130-123-861
B220 Biotin (clone REA755)	Miltenyi biotec	Cat# 130-110-844
NK1.1 Biotin (clone REA1162)	Miltenyi biotec	Cat# 130-120-513
Ter-119 Biotin (clone Ter-119)	Miltenyi biotec	Cat# 130-120-828
SiglecF Biotin (clone REA798)	Miltenyi biotec	Cat# 130-112-329
α-SMA	Abcam	Cat# ab5694
Goat anti Rabbit Cy3	Jackson ImmunoResearch	Cat# 111-165-003

Chemicals

DAPI	Sigma	Cat# D9542
Phalloidin Texas Red	Invitrogen	Cat# T7471
PFA 4%	VWR International	Cat# 9713.1000
Bovine serum Albumin (BSA)	Sigma	Cat# A7030
Tamoxifen	Sigma	Cat# T5648
RPMI medium	Life Technologies	Cat# 21875091
DMEM medium	Life Technologies	Cat# 11960044
Collagenase A	Sigma	Cat# 11088793001
IHC Antigen retrieval solution	eBiosciences	Cat# 00-4955-58
ImmunoHistoMount	Sigma	Cat# I1161
Thiazolyl blue tetrazolium bromide	Sigma	Cat# M2128
Fetal bovine serum	Fisher Scientific	Cat# 12350273
Lysing buffer	BD Biosciences	Cat# 555899
L-Glutamine	Life Technologies	Cat# 25030024
Penicillin Streptomycin	Life Technologies	Cat# 15070063
Sodium Pyruvate	Life Technologies	Cat# 11360039
Free glycerol reagent	Sigma	Cat# F6428
Power SYBR [™] green PCR Master Mix	Applied Biosystems	Cat# 4367659
RIPA buffer	Cell signaling	Cat# 9806
Anti-Biotin MicroBeads	Miltenyi Biotec	Cat# 130-090-858

Critical commercial Assays

High-Capacity cDNA reverse transcription	Applied Biosystems	Cat# 4368814
kit		
CCL2 DuoSet ELISA	R&D Systems	Cat# DY479-05
TNF-alpha DuoSet ELISA	R&D Systems	Cat# DY410-05
RNeasy Plus Mini Kit (250)	QIAGEN	Cat# 74136
Mouse CXCL12/SDF-1 DuoSet ELISA	R&D Systems	Cat# DY460
(Stromal Cell Derived Factor 1), Human,	EUROMEDEX	Cat# EH3755
Elisa Kit		
NEFA-HR2 R1 + R2 FUJFILM	WAKO	Cat# W1W270-
		77000
Glucose dosage Kit	BioSentec	Cat# 075
Triglyceride dosage Kit	DiaSys	Cat#
		157109910021
BrdU APC Staining Kit	ThermoFisher	Cat# 8817-6600-42
0.4 µm Cell culture Inserts 24 well format	Falcon	Cat# 353095

Experimental models: Organisms/Strains

Mouse: C57BL/6-Tg(Adipoq- cre/ERT2)1Soff/J	The Jackson laboratory	JaxStock# 025124
Mouse: B6.FVB-Tg(Ucp1-cre)1Evdr/J	The Jackson laboratory	JaxStock# 024670
Mouse: B6N.129S-Pnpla2 ^{tm1Eek} /J	The Jackson laboratory	JaxStock# 024278
Mouse: B6.129P-Cx3cr1 ^{tm1Litt} /J	The Jackson laboratory	JaxStock# 008451
Mouse: B6.Cg-Gt(ROSA)26Sor ^{tm9(CAG-} ^{tdTomato)Hze} /J	The Jackson laboratory	JaxStock# 007909
Mouse: C57BL/6NTac-Ccr2 ^{tm2982} (T2A-	Dr. Burkhard Becher	N/A
Cre7ESR1-T2A-mKate2]		
Mouse: CCR2 ^{GFP}	Dr. Marco Colonna	N/A
Cell line : Mouse Embryonic Fibroblasts (MEFs)	ATCC	CRL-2907

Accessories

StepOne	Applied Biosystem	N/A
Thermo Cycler SimpliAmp	Applied Biosystem	N/A
Nanodrop	OZYME	
MACS Multistand	Miltenyi Biotec	Cat# 130-042-303
MACS LS Columns	Miltenyi Biotec	Cat# 130-042-401

Softwares

Prism6	GraphPad	N/A
FlowJo	Tree Star	N/A
Fuji	Fiji	N/A
GENEsys	Syngene	N/A
StepOne Software v.2.2.2	Applied Biosystem	N/A
Fiji	https://imagej.net/software/fiji/	N/A