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ARTICLE

Outcome after acute ischemic stroke is linked to
sex-specific lesion patterns
Anna K. Bonkhoff 1✉, Markus D. Schirmer1,2, Martin Bretzner 1,3, Sungmin Hong1, Robert W. Regenhardt 1,

Mikael Brudfors4, Kathleen L. Donahue1, Marco J. Nardin1, Adrian V. Dalca5,6, Anne-Katrin Giese7,

Mark R. Etherton1, Brandon L. Hancock6, Steven J. T. Mocking6, Elissa C. McIntosh6, John Attia 8,9,

Oscar R. Benavente10, Stephen Bevan11, John W. Cole12, Amanda Donatti13, Christoph J. Griessenauer14,15,

Laura Heitsch16,17, Lukas Holmegaard18,19, Katarina Jood18,19, Jordi Jimenez-Conde20, Steven J. Kittner12,

Robin Lemmens21,22, Christopher R. Levi23,24, Caitrin W. McDonough25, James F. Meschia 26,

Chia-Ling Phuah17, Arndt Rolfs27, Stefan Ropele 28, Jonathan Rosand1,6,29, Jaume Roquer20, Tatjana Rundek30,

Ralph L. Sacco30, Reinhold Schmidt28, Pankaj Sharma31,32, Agnieszka Slowik33, Martin Söderholm34,35,
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Acute ischemic stroke affects men and women differently. In particular, women are often

reported to experience higher acute stroke severity than men. We derived a low-dimensional

representation of anatomical stroke lesions and designed a Bayesian hierarchical modeling

framework tailored to estimate possible sex differences in lesion patterns linked to acute

stroke severity (National Institute of Health Stroke Scale). This framework was developed in

555 patients (38% female). Findings were validated in an independent cohort (n= 503, 41%

female). Here, we show brain lesions in regions subserving motor and language functions

help explain stroke severity in both men and women, however more widespread lesion

patterns are relevant in female patients. Higher stroke severity in women, but not men, is

associated with left hemisphere lesions in the vicinity of the posterior circulation. Our results

suggest there are sex-specific functional cerebral asymmetries that may be important for

future investigations of sex-stratified approaches to management of acute ischemic stroke.

https://doi.org/10.1038/s41467-021-23492-3 OPEN

A full list of author affiliations appears at the end of the paper.

NATURE COMMUNICATIONS |         (2021) 12:3289 | https://doi.org/10.1038/s41467-021-23492-3 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;



Stroke affects >15 million people each year1. It is known to
result in a substantial overall degree of long-term impair-
ment across men and women2,3. However, numerous epi-

demiological studies indicate clinically relevant, sex-related
differences in the characteristics of ischemic cerebrovascular
disease4,5. For instance, due to a longer life expectancy, more
women than men experience a stroke each year6. Expected
demographical changes, i.e., an aging population, will widen this
gap further: in the US, projections suggest that ~200,000 more
women will be disabled after stroke than men by 20307.

Further sex differences relate to women more often presenting
with non-classic stroke symptoms, such as fatigue or changes in
mental status8,9, and having a higher risk of delays in hospital
arrival10,11. Also, women feature a higher risk of cardioembolic
stroke due to atrial fibrillation12, which may contribute to the
often-observed higher acute ischemic stroke (AIS) severity in
female patients13. This excess in stroke severity in women persists
even after adjusting for their greater age at onset, comorbidities,
and prestroke level of independence14,15. Importantly, women
seem to experience more severe strokes despite comparable lesion
sizes in men and women16. In fact, a similar observation of sex-
specific lesion volume effects was noted in the case of aphasia,
where women had a smaller lesion volume threshold to cause
aphasia than men17.

Going beyond lesion volume, lesion-symptom mapping studies
have enriched our understanding of anatomically unique lesion
locations underlying specific symptoms post-stroke18–20. In the
case of stroke severity, these analyses have determined widespread
lesions in white matter, basal ganglia, pre- and postcentral gyri,
opercular, insular, and inferior frontal regions to be most relevant
for a higher stroke severity, especially if affecting the left
hemisphere21. While these lesion-symptom studies have uncov-
ered eloquent lesion locations with high spatial resolution, they
have been systematically blind to any potential sex disparities. If
considered at all, sex was treated as a nuisance variable and
regressed out prior to the main analysis21. Thus, none of the
recently employed analytical approaches in clinical neuroimaging
allowed for a dedicated, explicit investigation of sex-specific lesion
pattern effects in relation to continuous outcome scores.

In this work, we aim to design and conduct a lesion-symptom
analysis capable of capturing male- and female-specific lesion
patterns, underlying stroke severity in a statistically robust and
spatially precise manner to address previous methodological
constraints. For this purpose, we leverage neuroimaging data

originating from two large, independent hospital-based cohorts
gathering data of 555 (derivation) and 503 (validation) AIS
patients in total. We tailor and deploy sex-aware hierarchical
Bayesian models to simulate predictions of AIS severity and to
elucidate the sex-specific effects of lesion patterns affecting
similar brain regions in women and men. We seek to map the
lesion constellations underpinning female-specific more severe
strokes, potentially indicating sex-specific maps of functional
deficits on the one hand and encouraging more sex-aware acute
stroke treatment decisions on the other. Such a sex-informed
acute stroke care has the potential to alleviate the burden of
disease on an individual patient level, as well as broader and
socioeconomically relevant levels.

Results
We here present a generative analysis of acute stroke severity,
putting a particular focus on sex-specific lesion pattern effects.
We successively combined (1) the automated low-dimensional
embedding of high-dimensional DWI-derived lesion information
via non-negative matrix factorization (NMF)22, and (2) prob-
abilistic modeling, based on the latent NMF embedding, to
simulate the prediction of acute stroke severity, as measured by
the National Institute of Health Stroke Scale (NIHSS)23. We thus
first determined pivotal, general lesion pattern effects across all
patients and successively concentrated on similarities and dif-
ferences between men and women (sex assessed by patients’
medical records). We interpreted explanatory relevances on the
level of NMF-derived low-dimensional lesion representations,
that we call lesion atoms, as well as the same relevances trans-
formed back to the level of the anatomical gray matter brain
regions and white matter tracts.

Stroke sample characteristics. The derivation cohort consisted of
208 female and 347 male patients (n= 555 in total, mean age
(standard deviation (SD)): 65.0(14.8); 38% women, as indicated
by patients’ medical records). The main outcome of interest was
the acute NIHSS-based stroke severity score within the first 48 h
after admission (median(interquartile range): 3(6), Supplemen-
tary Fig. 1). More than one-fourth of stroke patients had a history
of hypertension (28.1%), 19.5% had a diagnosis of diabetes mel-
litus, 6.3% atrial fibrillation, and 7.6% coronary artery disease. As
expected based on prior reports12, women showed a higher fre-
quency of atrial fibrillation than men (9.1% vs. 4.6%, p= 0.05; c.f.,
Table 1 for further sex-specific numbers). Acute stroke lesion

Table 1 Patient characteristics.

All participants
(n= 555)

Women (n= 208) Men (n= 347) Statistical comparison of male
and female patients

Age 65.0 (14.8) 67.7 (16.3) 63.3 (13.5) p= 0.001*
Sex 62% male, 38% female — — —
NIHSS 5.0 (5.9) (median(iqr): 3

(6))
5.6 (6.6) (median
(iqr): 3(6))

4.7 (5.5) (median
(iqr): 3(5))

p= 0.09

Normalized DWI-derived stroke
lesion volume (ml)

13.7 (29.9) (median(iqr):
1.7(11.6))

13.6 (31.8) (median
(iqr): 1.5(9.7))

13.7 (28.7) (median
(iqr): 1.7(13.2))

p= 0.98

White matter hyperintensity
lesion volume (ml)

11.5 (13.5) 12.1 (13.3) 11.1 (13.6) p= 0.42

Hypertension 28.1% 29.3% 27.4% p= 0.63
Diabetes mellitus type 2 19.5% 17.8% 20.5% p= 0.51
Atrial fibrillation 6.3% 9.1% 4.6% p= 0.05*
Coronary artery disease 7.6% 6.7% 8.1% p= 0.62

Mean (SD) unless otherwise noted. The groups of male and female patients were compared via two-sample t tests or two-sided Fisher’s exact test as appropriate. Asterisks indicate significant
differences between men and women. The disproportionate representation of men and women may reflect an undersampling of female patients as frequently observed in randomized clinical stroke
trials87, and may largely stem from the noninclusion of elderly and more severely affected female patients.
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volume did not differ significantly between men and women
(two-sided t test: p= 0.98). Moreover, neither the frequencies of
how often each cortical and subcortical gray matter region or
white matter tract was affected, nor the numbers of lesioned
voxels within each region of interest differed significantly between
the sex categories, or between the left and right hemisphere (all
Fisher’s exact tests or two-sidedt tests p > 0.05, Bonferroni-
corrected for multiple comparisons, c.f., Fig. 1c, Supplementary
Fig. 1, and Supplementary Data 1 and 2).

Anatomy of the extracted lesion atoms in stroke patients. We
reduced the high-dimensional lesion voxel space by first com-
puting the number of lesioned voxels within each of 109 cortical
and subcortical gray matter regions, as well as 20 white matter
tracts. Subsequently, we employed unsupervised NMF to ten final
distinct lesion topographies, or lesion atoms. Derived low-
dimensional lesion atoms were found to represent anatomically
plausible, hemisphere-specific lesion patterns. The centers of
these lesion patterns varied from anterior to posterior and sub-
cortical to cortical regions, and were broadly similar between
hemispheres (Fig. 1a, b). Subcortical and cortical lesion patterns
were represented in separate lesion atoms in the right hemi-
sphere, while they were captured in a joint lesion atom on the left.
In correspondence to the primary distribution of individual
lesions, most of these lesion atoms related to infarcts in the left
and right MCA-supply territories and to a lesser extent to infarcts
in the posterior circulation. The maximum lesion overlap was
localized in left and right subcortical MCA and insular region
(Fig. 1c).

The low-dimensional representation of lesion topographies
served as input for fully probabilistic, hierarchical linear
regression models to explain acute stroke severity: first, we

examined general effects across all patients, on the level of lesion
atoms and on the level of individual anatomical brain regions.
Successively, we refined analyses and integrated an additional
hierarchy capturing sex-specific effects. We stratified for male and
female sex status and scrutinized sex-specific effects of lesion
atoms and anatomical brain regions. Of note, we corrected all of
these analyses for the covariates age, sex, stroke lesion volume,
white matter hyperintensity lesion volume, and relevant comor-
bidities (atrial fibrillation, hypertension, diabetes mellitus, and
coronary artery disease). Notably, we included sex as a variable in
the model to differentiate between sex differences in stroke
severity that were dependent and independent of lesion patterns.
If, for example, stroke severity was generally higher in women,
without any link to the actual lesion pattern, conceivably due to a
longer delay between symptom onset and hospital admission and
decreased likelihood of acute treatment administration, this effect
would be represented by the Bayesian posterior distribution of
this sex variable, but not in the sex-specific lesion atom Bayesian
posterior distribution. In contrast, sex-specific lesion atom
distributions would indicate interaction effects on the outcome,
i.e., effects that were specific to an individual’s sex and the precise
lesion atom. Lastly, it is important to note that this adjustment for
global sex differences was independent of the exact knowledge or
measurements of their causes, i.e., we did not need to include any
information on the delay in hospital admission explicitly.

Lesion atom and regional relevance for stroke severity. Out of
the ten derived lesion atoms, five atoms possessed a substantial
explanatory relevance for acute stroke severity. This relevance was
inferable from Bayesian posterior distributions of lesion atoms
that did not substantially overlap with zero. In the right hemi-
sphere, the most relevant lesion atom included subcortical

Lesion atom 1 Lesion atom 6

Lesion atom 2 Lesion atom 5

Lesion atom 3

Lesion atom 9

Lesion atom 4

Lesion atom 7

Lesion atom 8

a   Right-hemispheric lesion atoms b   Le�-hemispheric lesion atoms

R L

Lesion atom 10RL

c 40 pa�ents

2 pa�ents

Fig. 1 Archetypical stroke patterns, lesion atoms, as resulting from non-negative matrix factorization-based dimensionality reduction. A data-driven
pattern discovery framework enabled the derivation of coherent patterns of stroke lesion topographies directly from the segmented high-resolution brain
scans from 555 stroke patients. This unsupervised, multi-to-multi mapping approach led to unique, predominantly right-hemispheric (a) or left-
hemispheric (b) lesion patterns. In case of either one hemisphere, individual lesion atoms represented anatomically coherent cortical and subcortical brain
regions and respective white matter tracts, and had varying emphases on more anterior, medial, and posterior regions. While subcortical basal ganglia
lesions and cortical lesions in anterior and insular regions were combined in a single lesion atom on the left side of the brain, these patterns were
characterized by two separate lesion atoms on the right side of the brain. Lesion atom 8 comprised several brain regions in the left hemisphere; however,
also comprised the brainstem and, to a lesser degree, the right thalamus. This pattern likely arose since we did not exclude patients with bilateral stroke (n
= 21, 38% female). Some lesion atoms did not comprise any substantial contributions from subcortical brain regions and are shown in transparent. The
anatomical plausibility of our derived lesion pattern may particularly stem from the positivity constraint of the non-negative matrix factorization algorithm,
an advantageous quality that motivated our choice of dimensionality reduction technique. Conversely, alternative matrix factorization algorithms, such as
principal component analysis, would have hampered a straightforward interpretation of lesion pattern effects by encoding individual lesions through more
incomprehensible additions and subtractions of low-dimensional lesion pattern. c Similarity of lesion patterns across patients. A voxel-wise lesion overlap is
visualized on the left-hand side, while the right-hand side presents region-wise frequencies, i.e., the number of how often a specific region was affected.
The maximum lesion overlap was localized subcortically and in the proximity of insular regions in the left and right vascular supply territory of the middle
cerebral artery. Significant region-wise differences in lesion loads and frequencies did neither arise between men and women nor between left and right
hemispheres (Supplementary Data 1 and 2). Source data are provided as a Source data file.
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regions, i.e., thalamus, nucleus caudatus, putamen, and globus
pallidus (lesion atom 4: mean of the posterior distribution= 2.18,
highest probability density interval (HPDI) of the posterior dis-
tribution covering 90% certainty= 1.43–2.99, Supplementary
Fig. 2A). In the left hemisphere, the two most relevant lesion
atoms were characterized by both subcortical and cortical regions
(lesion atom 7: posterior mean= 3.76, HPDI= 2.99–4.49; lesion
atom 8: posterior mean= 4.8, HPDI= 2.89–6.98, Supplementary
Fig. 2B). Affected left and right subcortical regions were similar in
explaining acute stroke severity, whereas left cortical affected
regions additionally included inferior frontal, insular and superior
temporal gyrus regions, as well as the postcentral gyrus.

Once projected back to the level of individual gray matter
regions and white matter tracts, similarities and disparities
between the left and right hemispheres became apparent as well.
Subcortical regions, most notably thalamus, nucleus caudatus,
putamen, globus pallidus, and several white matter tracts
(anterior thalamic radiation, corticospinal tract, inferior fronto-
occipital fasciculus, and superior longitudinal fasciculus)
explained higher stroke severity, independent of the lesioned
hemisphere (Fig. 2). Likewise, cortical pre- and postcentral, as
well as supramarginal gyrus and parietal regions explained higher
stroke severity in both the left and right hemispheres. In contrast,
further cortical effects were more pronounced and more wide-
spread in the left hemisphere. These enhanced left-sided effects
mainly related to middle and inferior frontal gyri, as well as

superior and middle temporal gyri, insular cortex, and broader
opercular regions.

In summary, we derived stroke severity-linked lesion patterns
that highlighted the general importance of subcortical gray matter
regions and white matter tracts, as well as of bilateral cortical
motor regions, and additional left-lateralized cortical regions,
likely underlying language function.

Differences in lesions patterns between men and women. Next,
we concentrated on sex differences in eloquent lesion patterns.
We refined our Bayesian model and introduced a hierarchical
structure that allowed lesion atom effects on stroke severity to
vary by sex. Previous findings suggest a higher stroke severity in
women in general, the extent of which can neither be sufficiently
explained by their advanced age nor differences in comorbidities,
the prestroke level of independence or lesion volume14–16.

Main patterns of explanatory relevances remained similar to the
preceding analysis across all patients: for both men and women, the
same three lesion atoms, that had already emerged in the joint
analyses, had the highest explanatory relevance. The right-
hemispheric lesion atom denoted subcortical regions, among others
representing thalamus, nucleus caudatus, putamen, and globus
pallidus (lesion atom 4: men: posterior mean= 1.89, HPDI=
1.00–2.90, women: posterior mean= 2.64, HPDI= 1.44–3.82,
Fig. 3). The lesion atoms in the left hemisphere combined the

Postcentral gyrus
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Thalamus

Brainstem

Opercular cortex

Pallidum

Cor�cal regions

Subcor�cal regions
and WM tracts
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Fig. 2 Local brain regions explaining NIHSS-based stroke severity across 555 patients. a Relevant cortical and subcortical gray matter regions, as well as
relevant white matter (WM) tracts. Shows collection of marginal Bayesian posterior distributions from the hierarchical model to explain high vs. low
symptom severity (NIHSS). Lesions affecting pre- and postcentral gyri, as well as opercular regions of both hemispheres explained a higher stroke severity.
Further brain-behavior effects were left-lateralized: multiple regions, including left middle and inferior frontal gyrus, as well as superior and middle temporal
explained a higher stroke severity only when affecting the left hemisphere. While bilateral subcortical regions, in general, had substantial effects on stroke
severity, the highest weights were assigned to the putamen and caudate, as well as anterior thalamic radiation, corticospinal tract, and inferior fronto-
occipital fasciculus of the left hemispheres. b Brain renderings of region-wise relevances in the explanation of NIHSS-based stroke severity. Source data are
provided as a Source data file.
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same subcortical structures, as well as the brainstem and additional
cortical regions, all of them in proximity to the insular cortex in the
left hemisphere (lesion atom 7: men: posterior mean= 3.15, HPDI
= 2.22–4.02, women: posterior mean= 4.76, HPDI= 3.49–6.07;
lesion atom 8: men: posterior mean= 2.37, HPDI= 0.393–4.27,
women: posterior mean= 7.04, HPDI= 3.75–10.50, Fig. 3).

Women presented with generally more widespread explanatory
relevances as seven out of ten lesion atoms posterior distributions
did not overlap with zero (Fig. 3, lesion atoms 1, 4, 5, 7–10). In
men, only five lesion atoms posterior distributions did not
overlap with zero (Fig. 3, lesion atoms 2, 4, 6–8).

Once projected back to the level of individual brain regions, these
more widespread lesion pattern effects in women were also visible,
in particular regarding cortical gray matter regions (c.f., Figs. 3 and
4). Manifest differences between men and women emerged for five
specific lesion atoms: for women, the right-hemispheric lesion atom
1 and the four left-hemispheric lesion atoms 7–10 had substantially
higher explanatory relevances, i.e., the distribution of the difference
between posterior distributions of male and female patients did not
overlap with zero (Fig. 5). Lesion atom 1 was mainly characterized
by right-sided frontal, insular and opercular, as well as precentral
regions. Lesion atoms 7–10 represented cortical and subcortical
regions of the entire left hemisphere.

Validation analyses. Similar main findings were shown when
repeating the analyses in an independent, multisite dataset24.
Again, we extracted ten lesion atoms that captured typical stroke
patterns in the left and right hemispheres in low dimensions
(Supplementary Fig. 3). While there were subtle differences of

lesion embeddings, likely expressing sample-specific lesion dis-
tributions, lesion atoms of the derivation and validation dataset
were overall highly correlated. This high correlation indicated
that our unsupervised approach facilitated the derivation of
similar lesion topography embeddings in both independent
datasets (Supplementary Table 2). In addition, back-projected
region-wise relevances were highly correlated when computed
based on the other cohort’s lesion embedding (derivation cohort:
r= 0.84, p < 0.001; validation cohort: r= 0.78, p < 0.001). Both of
these correlation analyses combined, thus highlighted the dis-
tillation of largely similar archetypical lesion pattern in both
cohorts and the independence of results from the concrete lesion
embedding.

The most relevant regions explaining stroke severity were also
located subcortically in the left and right hemisphere, as well as in
bilateral precentral and postcentral gyri and left-hemispheric
insular and opercular regions (Supplementary Fig. 4a). Similar to
our analysis before, women presented more widespread eloquent
lesion patterns compared to men (Supplementary Fig. 4b, c). In
particular, we found substantial differences between men and
women in a lesion atom that predominantly comprised left-
hemispheric, presumably posterior cerebral artery-supplied
regions (lesion atom 10: difference distribution: mean=−2.68,
HPDI=−4.92 to −0.733 (i.e., no overlap with zero)). Sex
differences relating to this specific left-sided lesion atom thus
appeared to be the most pronounced and robust.

Ancillary analyses. We aimed to gain further insights into the
influences of (i) the exact time of imaging and stroke severity
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Fig. 3 Sex-specific Bayesian posterior distributions of all ten lesion atoms and overall whole-brain region-wise relevance to explain stroke severity in
women (left) and men (right). Our Bayesian framework was purpose-designed to enable fully probabilistic estimations of the parameters that quantify the
associations of the ten lesion atoms with stroke severity. These Bayesian posterior parameter distributions are shown in outer circles, corresponding lesion
atom renderings are presented in the subjacent circle (right-hemispheric lesion atoms: shaded in yellow-olive, left-hemispheric lesion atoms: orange-
yellow; distributions that substantially diverged from zero are nontransparent). Lesion atoms 7 and 8 of the left hemisphere and lesion atom 3 of the right
hemisphere had the highest weights, implying a high relevance in explaining stroke severity, in both men and women. In view of seven relevant lesion
atoms in women (lesion atoms: 1, 4, 5, 7–10), yet only five of such relevant lesion atoms in men (lesion atoms: 2, 4, 6–8), lesion patterns were more
widespread in women compared to men. This female-specific more widespread pattern becomes additionally apparent in whole-brain renderings of region-
wise relevances explaining stroke severity, as visualized in circle centers (c.f., Fig. 4 for details). Source data are provided as a Source data file.
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acquisition, (ii) cardioembolic vs. non-cardioembolic stroke
subtypes, and (iii) potential hormonal effects.

While data were acquired within the first 48 h after admission
for the entire derivation cohort, we aimed to reduce potential
confounds due to varying times of imaging and stroke severity
acquisition, as well as any acute revascularization therapy effects
by specifically investigating those patients with MRI imaging and
NIHSS score available upon their admission. These criteria were
fulfilled by 152 patients in total (men: 87, mean age(SD): 63.1
(12.3), mean NIHSS(SD): 4.6(5.6); women: 65, mean age(SD):
69.6(14.5), mean NIHSS(SD): 5.5(6.5); two-sidedt tests: age: p=
0.003, NIHSS: p= 0.45, Supplementary Fig. 6). The Bayesian
posterior difference distribution of lesion atom 10, representing
presumed left posterior cerebral artery (PCA)-supplied brain
regions, indicated a substantial female-specific effect in explaining
a higher stroke severity (Supplementary Fig. 7).

Women, especially if older, are known to more frequently
experience atrial fibrillation and cardioembolic strokes12. The
motivation of our second ancillary analysis was to investigate
whether observed sex differences in explanatory lesion patterns
merely stemmed from varying frequencies of cardioembolic
strokes. As information on stroke subtype was available for
subgroups of each cohort only, we here pooled data from the
derivation and validation cohort to rest analyses on a sample as
large as possible. Approximately one-fourth of the 880 patients in
total experienced a cardioembolic stroke (203 patients with
cardioembolic stroke: men: 108, mean age(SD): 66.6(14.3), mean
NIHSS(SD): 6.3(5.4), women: 95, mean age(SD): 74.3(12.9), mean
NIHSS(SD): 7.5(7.0); two-sidedt tests: age: p < 0.001, NIHSS: p=
0.17; 677 patients with non-cardioembolic stroke: men: 419, mean
age(SD): 62.8(13.3), mean NIHSS(SD): 4.7(5.3), women: 258,
mean age(SD): 63.7(16.4), mean NIHSS(SD): 5.1(5.7); two-sidedt
tests: age: p= 0.45, NIHSS: p= 0.44, Supplementary Fig. 8). As
expected, women featured a higher frequency of cardioembolic
strokes (Fisher’s exact test: p= 0.03). We detected substantial

female-specific lesion atom effects independent of whether
comparing men and women with cardioembolic strokes, or
men and women with non-cardioembolic stroke genesis: in case
of cardioembolic stroke, difference distributions of lesion atoms 4,
6, and 8 suggested a higher explanatory relevance exclusively in
women (Supplementary Fig. 9), while lesion atoms 1, 2, 9,
and 10 had a substantially higher relevance in women in case of
non-cardioembolic stroke (Supplementary Fig. 10). Since we
extracted female-specific effects in strata of both only cardioem-
bolic and non-cardioembolic stroke patients, these results
rendered the interpretation of lesion pattern effect differences
due to varying frequencies of cardioembolic stroke unlikely.
Furthermore, all of these female-specific effects emerged for
samples that were fairly even in their numbers of men and
women (c.f., cardioembolic stroke: 108 men and 95 women), or
did not comprise any significant differences in age and stroke
severity (c.f., non-cardioembolic stroke: two-sidedt tests: age: p=
0.45, NIHSS: p= 0.44), which additionally increased the con-
fidence that sex differences did not artificially arise from these
differences.

Finally, we aimed to explore the potential effects of sex
hormones, such as estrogen, which are known to be markedly
affected by menopause25. We stratified the entire group of
patients according to their sex and an age cutoff of 52 years, the
median age at menopause26. All of the female-specific lesion atom
effects, as observed in the main analysis, disappeared in the
analysis of all men and women below the age of 52 years (men:
113, mean age(SD): 43.1(8.5), mean NIHSS(SD): 5.4(6.1), women:
87, mean age(SD): 42.1(7.9), mean NIHSS(SD): 4.3(5.2); two-
sidedt tests: age: p= 0.41, NIHSS: p= 0.19; Supplementary
Fig. 11). What is more, lesion atom 7 was now assigned a higher
relevance in male patients (Supplementary Fig. 12). In contrast,
we observed female-specific higher relevances in three lesion
atoms (lesion atoms 1, 9, and 10), when comparing men and
women in the subgroup of patients above the age of 52 years of
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Fig. 4 Local brain regions explaining stroke severity. a Female-specific results (208 women) and b male-specific results (347 men). In both men and
women, subcortical lesions affecting gray matter regions and white matter tracts explained higher stroke severity. Similarly, cortical presumptive bilateral
motor and left-lateralized language regions (e.g., especially bilateral precentral and postcentral gyri, left-sided inferior frontal and superior, middle temporal
gyri) also explained higher stroke severity. In difference to men, women featured more widespread and also more pronounced lesion pattern, including a
greater range of cortical regions contributing to stroke severity, e.g., the left superior, middle and inferior temporal gyrus, left angular gyrus and lateral
occipital cortex, lingual gyrus, as well as precuneus and parahippocampal cortex gyrus. These differences in eloquent lesion patterns arose despite
comparable total lesion volumes for men and women (two-sided t test: p > 0.05). Source data are provided as a Source data file.
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age (Supplementary Fig. 13, men: 533, mean age(SD): 68.4(9.5),
mean NIHSS(SD): 4.9(5.2), women: 325, mean age(SD): 73.0
(11.0), mean NIHSS(SD): 6.0(6.3); two-sidedt tests: age: p < 0.001,
NIHSS: p= 0.004). Overall, female-specific effects were thus
noticeably more pronounced with advanced age. Given that we
ascertained female-specific effects for both cardioembolic, as well
as non-cardioembolic stroke subtypes in the previous ancillary
analysis, the observations for older female patients are unlikely
due to an increased frequency of cardioembolic stroke and linked
lesion patterns. Further, this observable sex–age interaction might
also explain why we discovered more extensive female-specific

effects in the derivation cohort, featuring significantly older
female patients, than in the validation cohort that was
characterized by a nonsignificant age difference between men
and women.

Of note, female-specific effects relating to lesion atom 10,
representing left-hemispheric presumably PCA-supplied regions,
were the only ones that consistently emerged in all of the three
ancillary analyses. Thus, these results confirmed the notion
arising from the main derivation and validation analyses that sex
differences concerning this lesion atom were the most
reliable ones.
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Fig. 5 Five lesion atoms showed substantially higher relevance for explaining stroke-induced symptom severity in women than men. a Lesion atom 1.
Less than 5% of samples of the difference Bayesian posterior distribution between men and women (i.e., posterior distribution of lesion atom 1 in men—
posterior distribution of lesion atom 1 in women) overlapped with zero, suggesting a substantially larger lesion atom 1 effect in women. This specific lesion
pattern represented right-hemispheric lesions in frontal, insular, and precentral regions (difference distribution: mean=−1.2, HPDI=−1.96 to −0.31). b–d
Lesion atoms 7–9. Almost all lesion atoms of the left hemisphere, but the one representing precentral cortex and middle and inferior frontal gyrus regions,
indicated more pronounced effects on stroke severity in women. Lesion atom 7 highlighted left-sided insular cortex and subcortical regions (difference
distribution: mean=−1.61, HPDI=−3.12 to −0.02). Lesion atom 8 comprised brainstem lesions, as well bilateral, left-hemispherically more distinct
thalamus lesions (difference distribution: mean=−4.67, HPDI=−8.55 to −1.08) and lesion atom 9 widespread left-sided cortical lesions relating to the
superior, middle and inferior temporal gyri, postcentral cortex, angular and supramarginal gyrus, and latero-occipital cortex (difference distribution: mean
=−3.42, HPDI=−6.15 to −0.63). e Lesion atom 10. Lesions in left-sided brain regions of the presumed posterior circulation were associated to more
severe strokes specifically in women (difference distribution: mean=−1.99, HPDI=−3.90 to −0.22). The sex difference for lesion atom 10 can be
considered the most pronounced and robust one, given it was reliably observable in all ancillary analyses and was replicated in an independent dataset of
stroke patients. All analyses were corrected for overall sex effects, i.e., lesion atom-independent effects (e.g., due to potential female-specific delayed
hospital arrival). Of note, this correction was independent of the explicit knowledge or measurement of the causes of these global sex differences. Source
data are provided as a Source data file.
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Discussion
In this study, we combined a probabilistic lesion-symptom
mapping technique with empirical lesion data originating from
two large independent cohorts of 555 (derivation) and 503
(validation) AIS patients to derive and validate sex-specific lesion
patterns underlying NIHSS-based acute stroke severity.

Across all patients, lesion patterns highlighted the relevance of
bilateral subcortical and white matter regions, as well as bilateral
cortical motor regions and left-lateralized cortical insular and
opercular regions, likely representing regions underlying language
function. This distribution of main weights was rendered parti-
cularly plausible, given that the NIHSS scale assigns the majority
of its points to motor and language functions. In addition, results
from both of our cohorts, and those results originating from
established voxel-wise lesion-symptom mapping (VLSM)
analyses21 were very similar. This congruency increased the
confidence in our methodological approach, as well as in the
accuracy and reproducibility of results.

When comparing men and women, eloquent lesion patterns
were generally more widespread in female patients, implying that
more regions contributed to stroke severity in women. These sex
discrepancies were particularly pronounced for lesions affecting a
number of left-hemispheric regions, i.e., thalamus, hippocampus,
and occipital cortical brain regions, thus regions reminiscent of
the vascular territory of the posterior circulation. Lesions in these
regions were underpinning a substantially higher stroke severity
in women only, indicating sex-specific distributions of functional
deficits.

Our sex-specific findings are of interest from several points of
view. First, we could not detect any sex differences in total nor-
malized lesion volume, or in any normalized lesion volumes of
the atlas-based brain regions and white matter tracts. Rather,
similarly configured lesion patterns were linked to more severe
strokes in women compared to men. Stroke severity in men was
predominantly explained by five specific lesion patterns, denoting
bilateral subcortical and left-sided insular and opercular regions.
Women were characterized by similar, yet more pronounced
relevant lesion patterns, as well as several additional relevant
ones. These additional lesion patterns did not possess any rele-
vance in men. Therefore, the female-specific effects can be con-
sidered more substantial and spatially widespread. Most
noticeably, lesions in the presumed vascular territory of the left
PCA, among other regions affecting left hippocampal and tha-
lamic regions, left fusiform, lingual, and intracalcarine cortex, as
well as left precuneus and cuneal cortex explained a dis-
proportionally high stroke severity in women compared to men.
This difference was consistently observable across datasets and
did not appear to represent an artifact of a more frequent car-
dioembolic stroke genesis, more severe strokes or a higher age at
stroke onset in women.

It is important to note that the strongest observed sex differ-
ences were strictly lateralized to the left hemisphere. Previous
research suggests that male or female sex and respective sex
hormones contribute to induce functional cerebral
asymmetries27. Men appear to have a stronger hemispheric
asymmetry; however, while robustly replicated, determined effect
sizes have been small28. Such an enhanced asymmetry in men was
also found in some early lesion studies on intelligence29. How-
ever, further early lesion studies suggested that lateralization
differences between the sexes might be even more complex, i.e.,
female brains may be asymmetric to a comparable degree, yet in
different ways30,31. In particular, it was found that left-
hemispheric lesions in women led to both verbal and perfor-
mance scale IQ deterioration, while only one quality—either
verbal or performance—was affected in all other lesion and sex
constellations30,32. Our outcome measure, NIHSS-based stroke

severity, cannot be broken down and thus does not allow for
conclusions on specific functions, such as verbal and performance
scale IQ. This level of granularity hampers a direct comparison to
earlier studies. Nonetheless, we also find that particularly women
are vulnerable to left-hemispheric lesions. Indeed, we can relate
the most robust excess vulnerability of female vs. male patients to
anatomically precise lesion locations in the left-hemispheric PCA
territory, specifically featuring hippocampal, thalamic, and pre-
cuneal regions. Based on existing knowledge on these regions’
physiological functions, it may be suggested that lesions in these
regions more likely underlie (higher) cognitive, than, for example,
basic motor functions. This predilection toward specific anato-
mical regions within the left hemisphere could also explain dif-
ferences seen in earlier lesion studies, as these studies stratified
patients only based on left- or right-sided lesion locations without
investigating any greater spatial detail of lesions29,30,32.

Altogether, a sex-specific lateralization effect, comparable to
the considerable extent and spatial distribution of the one that we
detected in two independent datasets, has not been described in
previous lesion studies, nor in studies focused on sex dis-
crepancies in functional cerebral asymmetries in healthy adults28.
This discrepancy between previous reports and our findings may
originate from (i) the greater anatomical resolution in our study
compared to early sex-aware lesion studies, (ii) not explicitly
considering sex in any of the recent lesion-symptom
studies18,21,33–35, and (iii) the fact that our lesion-symptom
analysis jointly investigated effects of functional asymmetry and
the capacity for acute compensation, e.g., by means of brain
plasticity.

We furthermore observed signs of an interaction effect of sex
with age, when stratifying the entire sample based on the median
age at menopause26. None of the female-specific lesion pattern
effects could be detected, when comparing men and women
below the age of 52 years. In fact, we rather saw indications for a
male-specific effect pertaining to left-hemispheric subcortical and
insular brain regions in this age subgroup. In contrast, three
lesion atoms, among others relating to the left-hemispheric PCA
territory, were found to be more pronounced in men and women
above the age of 52 years. This constellation was thus suggestive
of a possible influence of sexual hormones, that are dramatically
changed in women after menopause36.

Sex differences in brain organization in general and in
stroke incidence and outcome in particular are related to the
influence of sex steroid hormones, with estrogen likely being
the most prominent one36,37. These hormones are assumed to act
via irreversible organizational and reversible activational
mechanisms. The former effect implies the facilitation of definite
male or female tissue phenotypes, while the latter requires the
presence of the hormone for an effect25. Any sex difference that
changes with menopause is thus rather linked to activational
hormonal pathways. An example of sex differences in stroke
thought to be due to activational hormonal effects is the reduced
stroke risk due to the premenopausal cycle of estrogen. This
protective effect is lost after menopause38 and may not be rees-
tablished by hormone replacement therapy independent of the
time of initiation39,40. Experimental research has furthermore
shown that female animals experience smaller stroke lesions than
male animals41. This effect could be neutralized by ovariectomy
and consequently a decrease in estrogen levels42. It was inter-
preted as hormone-linked sex-specific sensitivity to cerebral
ischemia25,29,43. In fact, male-specific cell cultures of hippo-
campal neurons and astrocytes seem to be more vulnerable to
ischemia than female-specific cell cultures44, and even ischemia-
independent research indicates an important role of estrogen in
sustained hippocampal structural plasticity and associated cog-
nitive function45,46.
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The effect of age that we witnessed here—stronger female-
specific effects in older patients, yet none in younger patients
—suggests an activational nature of the apparent sex
disparities. While our outcome measure of global stroke severity
does not allow for fine-grained evaluations of implicated func-
tions, let alone hippocampus-linked cognitive functions, it is
nonetheless notable that hippocampal regions, that were mark-
edly susceptible to hormonal influences as outlined above, con-
tributed to the female-specific lesion patterns identified in
our study.

It is however important to note, that we did not have access to
information on the hormonal status in women. Instead, we here
assumed the same median age of menopause for all female
patients. Employing the actual age at menopause, as well as
increasing the number of younger patients in general would have
allowed for stronger conclusions on the potential organizational
or activational character of findings. Besides, the availability of
the exact level of estrogens would be most desirable, as previous
studies indicate that sex-specific functional cerebral asymmetries
may even vary during the menstrual cycle27. Moreover, the
measurement of exact hormonal levels could inform about the
effects of hormonotherapy (e.g., hormone replacement therapy
after menopause, oral contraceptives prior to menopause) and
surgical interventions, such as hysterectomies, oophorectomies,
and ovaries remaining after hysterectomy. Therefore, future stu-
dies could attempt to gather data on hormonal status, and also to
recruit more balanced numbers of men and women of pre-
menopausal and postmenopausal status. In addition, it might be
promising to test links between implicated brain regions and sex-
specific genetic underpinnings, as was recently introduced for
healthy population samples47,48.

Independent of their exact origin, the sex-sensitive effects that
we observed in brain-behavior associations underlying stroke
severity, could lead to important clinical implications. Since
lesions of any kind explained more severe stroke in women,
rescuing the same (normalized) amount of brain tissue—for
example, by thrombolysis or mechanical thrombectomy—could
have a more enhanced effect in female than male patients. This
resulting expectation is well in line with previous reports on
enhanced therapy response to intravenous thrombolysis49–51 or
more advantageous long-term outcome in women compared
to men in clinical mechanical thrombectomy studies52. In
this recently published study on sex discrepancies after
thrombectomy52, Sheth and colleagues ascertain these outcome
differences between men and women despite comparable infarct
volumes and reperfusion rates.

Most previous studies have relied on sex-independent, general
cutoffs of salvageable tissue volumes to decide, for example,
whether to undertake mechanical thrombectomy in the later time
window53. A conceivable first step could be to revisit previous
randomized clinical trials’ data to investigate rescued tissue–sex
interactions. Future clinical treatment studies could then pro-
spectively and systematically test varying cutoffs for men and
women, hypothesizing that rescuing a lesser amount of tissue in
women would still be sufficient for a noticeable positive treatment
response. Furthermore, it may be important to take into account
this female-specific salvaging effect for lesions in the posterior
circulation territory of the left hemisphere. Thrombectomy for
primary distal posterior cerebral artery occlusion stroke was
recently found to be a safe and potentially beneficial treatment
option, as treated patients showed a pronounced decrease in
stroke severity until discharge54. In view of these results, future
thrombectomy studies could evaluate whether female patients
benefited even more substantially from these reperfusion thera-
pies of more distal PCA occlusions. Notably, such studies should
also consider additional age–sex interactions, given that our

ancillary analyses suggested more pronounced female-specific
effects in case of more advanced age.

Overall, an effective step toward tailored medical stroke
care55,56 may lie in more sex-aware acute treatment decisions.
Sex-specific guidelines on stroke prevention7 could be com-
plemented by sex-specific guidelines on acute treatment deci-
sions, enhancing sex-sensitive stroke care and ultimately
increasing the benefit for both men and women.

In this study, we explored sex disparities in lesion patterns of
global stroke severity, which allows for some broad clinical
implications of our findings. Naturally, our results may to a
certain extent be dominated by effects due to motor symptoms,
given their disproportionally high importance for the overall
NIHSS score. To evaluate more specific brain functions at acute
and chronic stages, future studies could therefore focus on sub-
items of the NIHSS, such as language impairments, dysarthria,
disturbances in orientation, neglect, or on specific cognitive
behavioral tests, e.g., probing memory functions. This would be a
promising approach to trace back our most prominent sex-
specific finding, the relevance of the left PCA territory, to specific
brain functions. Incorporating outcomes from more chronic time
points would furthermore allow for more definite conclusions on
long-term effects. Above all, it may be especially fruitful to
examine whether sex differences observed here generalize to
cerebral reorganization processes during the recovery phase post-
stroke. In the positive case, generated results could fuel sex-
specific personalized clinical rehabilitation endeavors57.

Similarly, the spatial resolution of our Bayesian hierarchical
approach stays within the realms of frequently arising, typical
lesion patterns, and back-transformed atlas brain regions. Con-
sequently, our region-wise approach does not allow for a com-
parably high spatial resolution of lesion-symptom analyses
relying on voxel-wise data18,34. Nonetheless, this reduction in
lesion dimensionality was necessary to render sex-aware analyses
within our Bayesian hierarchical model framework feasible. We
here employed two frequently used brain atlas templates58,59 and
unsupervised dimensionality reduction22. Future studies could
explore differing atlas templates and also supervised strategies to
organize brain regions. Such supervised approaches could reduce
variability between lesion embeddings of different datasets, since
we here saw subtle differences in automatically derived lesion
atoms. Eventually, confidence in our results could then be
increased in case of successful replication despite these metho-
dological alterations. What is more, our Bayesian models could,
for example, be modified to integrate an additional hierarchical
level to differentiate between rich-club and non-rich-club
regions60,61 or contrast agglomerated and separately modeled
sets of brain regions to test brain modes, as introduced by
Godefroy and colleagues62,63.

Lastly, we did carefully account for interindividual differences
in important sociodemographic characteristics (e.g., age),
comorbidities (e.g., atrial fibrillation), markers of chronic brain
health (e.g., white matter hyperintensity lesion load), and stroke
subtypes (e.g., cardioembolic stroke genesis). We furthermore
adjusted all analyses for global, lesion atom-independent sex
differences (e.g., due to a potentially longer time between symp-
tom onset and hospital admission in women)10. In addition, each
image and corresponding lesion mask was individually quality
controlled to ensure the absence of overt spatial distortions (e.g.,
due to cerebral atrophies). However, our cohorts were slightly
imbalanced with respect to the men:women ratio, which may not
have faithfully captured the oftentimes reported equally high or
higher stroke incidence in women64,65. Also, we did not have
access to some measures, which could be of potential interest as
covariate in our analysis, for a majority of patients; for example,
delays in hospital arrival, the exact time between imaging and
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NIHSS acquisition, acute changes in stroke severity (e.g., due to
spontaneous reperfusion, brain edema, or seizures) or adminis-
tered revascularization therapies and their interactions with
stroke severity (e.g., NIHSS scores upon admission and after acute
treatment may differ substantially). In this study, we aimed to
address these factors indirectly by tailoring ancillary analyses to
subgroups, e.g., only those patients whose data was acquired
directly after admission. Their data acquisition thus preceded the
onsets of any acute treatment effects with high probability—
female-specific effects relating to left posterior circulation lesions
were nonetheless reliably observable. Future large-scale studies
are warranted to recruit equal numbers of men and women and
systematically record further clinical aspects, such as delays in
hospital arrival and acute treatments, to facilitate more compre-
hensive and explicit investigations. In particular, these studies
may be enriched for patients receiving acute treatments to max-
imize the power of uncovering sex- and treatment-specific lesion
atom effects. By these means, it may eventually be possible to
quantify the clinical importance of sex-specific lesion patterns by
taking into account their modifying effects on acute recanaliza-
tion treatments. Since some evidence for example suggests sex-
specific effects of white matter integrity on stroke outcome66,
further future studies may also not only include acute, but also
chronic markers of brain health while taking sex into account
more closely.

Women tend to have more severe strokes than men. Previous
methodology did not allow to evaluate whether lesion patterns
contributed to these sex differences in outcomes. By deriving a
low-dimensional lesion representation and employing Bayesian
hierarchical modeling, we here uncovered considerable sex dis-
crepancies in lesion patterns explaining acute stroke severity.
While bilateral subcortical and left-hemispheric inferior frontal,
superior, and middle temporal regions, i.e., presumed motor and
language regions, explained more severe strokes in both men and
women, effects in women were more widespread and similar
lesions underlay more severe strokes in women compared to men.
In particular, lesions in the posterior circulation of the left
hemisphere were associated with a higher stroke severity exclu-
sively in women. These differences were robustly validated in a
second independent, international multisite lesion dataset, and
could not be explained by sex differences in lesion volume or
more severe strokes in women in general.

Methods
Participant recruitment. AIS patients (n= 555), considered as derivation cohort
in this study, were admitted to Massachusetts General Hospital and enrolled as of
part the Genes Associated with Stroke Risk and Outcomes Study (GASROS; mean
age(SD): 65.0(14.8) years, 38% females, c.f., Table 1 for sex-specific numbers)61,67.
Inclusion was generally considered for any AIS patient that met the following
criteria; (i) adult patients ≥18 years of age, (ii) admitted to the emergency
department with signs and symptoms of AIS, and (iii) neuroimaging confirmation
of an acute infarct. Only patients with MRI data obtained within 48 h from
admission, as well as complete phenotypic data, such as stroke severity and stroke
risk factors were included in this study (i.e., complete case analyses, c.f., Supple-
mentary Information for a sample size derivation). Patients gave written informed
consent in accordance with the Declaration of Helsinki. The study protocol was
approved by Massachusetts General Hospital’s Institutional Review Board (Pro-
tocol #: 2001P001186).

Stroke patient characteristics and imaging. Patients were examined by trained,
board-certified vascular neurologists. The recorded sociodemographic and clinical
variables included age, sex, and common vascular risk factors (hypertension, dia-
betes mellitus type 2, atrial fibrillation, coronary artery disease). Stroke severity was
captured by the acute NIHSS (0: no symptoms, 42: maximum stroke severity).

Each patient was scanned within 48 h of admission, standardized clinical
imaging protocols included DWI (in the majority of cases on 1.5 T General Electric
Signa scanners, and a few cases on 1.5 or 3 T Siemens scanners, repetition time
(TR) 5000 ms, minimum echo time (TE) of 62–117 ms, field-of-view (FOV) 220
mm field-of-view, 5-mm slice thickness with a 1-mm gap, and 0 s/mm2 (b-zero)
and 1000 s/mm2 b-values), and axial T2 FLAIR images (TR 5000 ms, minimum TE

of 62–116 ms, TI 2200 ms, FOV 220–240 mm). Ischemic DWI tissue lesions were
manually outlined using semiautomated algorithms68. Raters were blinded to
clinical outcomes.

Magnetic resonance imaging: preprocessing. Individual images were spatially
normalized to standard Montreal Neurological Institute (MNI-152) space: we first
linearly realigned both DWI and FLAIR images with an MNI template. Subse-
quently, we co-registered the DWI image to the FLAIR image, denoised the
images69, and lastly employed the unified segmentation algorithm to nonlinearly
normalize the FLAIR image70. We masked lesioned tissue during this normal-
ization step to mitigate the risk of image distortions71. The same transformation
was applied to the DWI image, as well as the corresponding DWI-derived binary
lesion mask. This preprocessing pipeline, especially featuring the co-registration of
DWI and FLAIR images, was optimized to generate as reliable and accurate spatial
normalizations for as many patients as possible. The quality of normalized DWI-
lesion masks was carefully inspected by two experienced raters (A.K.B. and M.B).
Insufficient quality, predominantly arising from moderate to severe motion arti-
facts and/or moderate to severe normalization errors led to the exclusion of
patients (c.f. Supplementary Information for details). The WMH volume (WMHv)
was computed based on manual WMH outlines onto FLAIR images performed
using the MRIcro software (04/2010, 08/2014, and 2019 versions)72.

Derivation of a low-dimensional lesion representation. We successively com-
bined (1) an automated low-dimensional embedding of high-dimensional lesion
information, and (2) probabilistic modeling to explain the acute stroke severity, as
measured by the NIHSS (c.f. ref. 23, for a comparable analytical approach). While
we initially determined eloquent lesion patterns across all patients, we subsequently
refined analyses to investigate sex differences on different levels of our Bayesian
hierarchical model.

In view of the high-dimensional lesioned voxel space that would inevitably lead
to severe overfitting in our regression analyses, we first captured the number of
lesioned voxels within 109 brain regions, as defined by the Harvard-Oxford atlas58.
More precisely, these brain regions represented 47 cortical and 7 subcortical gray
matter brain regions per hemisphere, as well as the brainstem. White matter
damage was read out in form of lesion load within each one of 20 John-Hopkins-
University (JHU) atlas defined white matter tracts (7 hemisphere-specific tracts, 6
bilateral tracts)59,73. Thus, these steps resulted in 129 parcels in total. To extract
reoccurring, archetypical and directly interpretable lesion patterns in our stroke
population in a data-driven, unsupervised fashion, we performed NMF22 on the
log-transformed brain region- and tract-wise lesion load. By these means, we
obtained ten unique topographical lesion configurations, that we will call lesion
atoms in the following (c.f., Supplementary Information for further details).
Probable vascular territories of lesion atoms were assigned via evaluations by
individuals with several years of neurology and neuroradiology experience (A.K.B.,
M.B., and N.R.).

Explaining interindividual differences in acute stroke outcomes. These ten
NMF-derived lesion atoms, containing information on individual lesion patterns,
served as neuroimaging-derived input to our Bayesian hierarchical linear regres-
sion model74 to explain acute stroke severity. We aimed to obtain fully probabilistic
model parameter estimates that could inform us about each lesion atom’s influence
on the outcome. While we first computed the impact of lesion atoms across all
patients in a first Bayesian model, we refined analyses in a subsequent step and
introduced a hierarchical lesion atom structure for a second model. This hierarchy
allowed the stratification for an individual’s sex, i.e., we could estimate the lesion
atom’s influence on the outcome in women and men separately. Hence, we
obtained separate lesion pattern relevances for men and women.

Prior to carrying out the Bayesian model, lesion atom data, as well as the stroke
severity outcome score were corrected for lesion volume75. In addition, our model
took into account the effects of (normalized) age, age2, sex, and the presence of the
following comorbidities: hypertension, diabetes mellitus type 2, atrial fibrillation,
coronary artery disease, and lastly the log-transformed white matter hyperintensity
lesion volume. In view of women’s overall higher age, we aimed to adjust for age-
specific effects particularly comprehensively by not only taking into account the
basic age, yet also its squared value and therefore U-shaped effects as well.
Importantly, we also included sex as a nonhierarchical, lower-level variable in the
model to capture sex differences in stroke severity that were independent of lesion
patterns. Women may, for example, also present with more severe strokes on
average. They may be of a more advanced age and have a greater prestroke level of
disability when experiencing the stroke, leading to a higher stroke severity, yet
decreased likelihood of acute recanalization treatment. Such sex-specific, but lesion
pattern-independent differences in stroke severity could then be modeled by the
sex variable. It would, however, not have an influence on lesion pattern–sex
interaction effects. In other words, the nonhierarchical sex variable represents the
“residual” sex effects on the outcome that are not already captured by the
hierarchical sex-specific NMF components.

The full Bayesian hierarchical model specification was as follows:
Hyperpriors
hyper_σ_ β ∼Halfcauchy(5)
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σ_ βm,f∼Halfcauchy(hyper_ σ_ β)
hyper_mu_ β ∼Normal(µ= 0, σ= 10)
mu_ βm,f∼Normal(µ= hyper_ mu_ β, σ= 10)
Priors
α∼Normal(µ= 0, σ= 1)
β1-10; m,f∼Normal(µ=mu_ βm,f, σ= σ_ βm,f)
βage∼Normal(µ=0, σ= 10)
βage*age∼Normal(µ= 0, σ= 10)
βsex∼Normal(µ= 0, σ= 1)
βhypertension∼Normal(µ= 0, σ= 1)
βdiabetes∼Normal(µ= 0, σ= 1)
βatrial fibrillation∼Normal(µ=0, σ= 1)
βcoronary artery disease∼Normal(µ= 0, σ= 1)
βWMHv∼Normal(µ= 0, σ= 1)
Likelihood of linear model
NIHSS_est= α+ β1–10[sex]* NMF-Component1-10+ βage* Age+βage*age* Age2

+ βsex* Sex+ βhypertension * hypertension+ βdiabetes * diabetes+ βatrial fibrillation *
atrial fibrillation+ βcoronary artery disease * coronary artery disease+ βWMHv *WMHv

Model likelihood
eps∼Halfcauchy(20)
stroke_severity ∼Normal(µ=NIHSS_est, σ= eps)
We employed the No U-Turn Sampler (NUTS), a type of Monte Carlo Markov

Chain algorithm (setting: draws= 5000)76, to draw samples from the Bayesian
posterior parameter distributions.

Main advantages of our analytical approach may be seen in (i) the enhanced
interpretability of estimated NMF components, i.e., lesion atoms, (ii) the
multivariate nature of the stroke lesion embedding, and (iii) the possibility of
integrating interaction effects between lesion atoms and an individual’s sex in a
statistically sound probabilistic modeling framework. We thus make a step towards
providing an alternative approach to classical VLSM analyses18, that estimate the
magnitude of effects in one brain location at a time and thus fit one model per
voxel. Our approach opens an alternative window to “one voxel at a time” by fitting
a single model to the entire brain. All ten of our lesion atoms were entered into the
regression model at once. Hence, we could estimate the effect of each lesion atom,
while accounting for the effects of all further lesion atoms. By these means, our
approach resembles more machine-learning-based multivariate lesion-symptom
mapping methods, that have been introduced recently to evaluate lesion patterns
instead of single voxels in association to an outcome77. Examples can be seen in
approaches leveraging support vector machines34,78,79, tree-based80, or game
theory-based algorithms81. Importantly, all of these multivariate approaches may
decrease the distortion of functional localization compared to univariate voxel-wise
approaches by considering subcortically and cortically located lesions at once20,82.
We additionally aimed to mitigate confounding effects of excessively correlated
neighboring voxels, as naturally arising due to the stroke lesion-vasculature
dependence, by explicitly combining frequently jointly affected brain regions in
lesion patterns, i.e., our lesion atoms. Despite these methodological innovations, no
currently existing stroke modeling approach may achieve unfailing causal
conclusions20.

Validation analysis. We repeated analyses in an independent dataset of 503
ischemic stroke patients (mean age(SD): 65.0(14.6), sex: 40.6% female, mean
NIHSS(SD): 5.48(5.35), c.f., Supplementary Table 1 for further clinical character-
istics), acquired within the framework of the multisite MRI-GENIE study24, to test
the robustness of our findings (c.f., Supplementary Information for details). To
further ascertain the robustness of our unsupervised lesion embedding, we corre-
lated NMF components as computed for the derivation and validation cohort.
Moreover, we recomputed region-wise relevances in final nonhierarchical analyses
based on the other cohort’s lesion embedding (i.e., we first estimated the NMF
transformation based on one cohort’s imaging data and then applied this trans-
formation to the data of the other cohort). We then ran additional correlation
analyses between region-wise relevances as originating from the cohort-specific
embedding, as well as the other cohort’s embedding to ensure our results were not
substantially altered by the particular embedding.

Ancillary analyses. We performed three ancillary hierarchical analyses. Firstly, we
aimed to reduce potential confounds arising from dispersed time points of data
acquisition and effects of acute recanalization therapies and limited the derivation
cohort sample to only those patients whose data was acquired directly upon
admission (and not within the first 48 h, as for the entire cohort). Thus, their data
acquisition likely preceded the potential administration of any acute recanalization
therapy and their lesion-symptom associations may be considered to be purer.

Conceivably, female-specific lesion effects could be due to a higher frequency of
cardioembolic strokes and associated typical lesion patterns (e.g., more multifocal
stroke lesions)83. In a second ancillary analysis, we therefore sought to disentangle
stroke-subtype- and sex-specific effects, and concurrently performed stroke-
subtype- and sex-aware analyses, featuring two hierarchical levels. Accordingly,
patients were not only stratified into groups of men and women as in main
analyses, yet initially assigned to a group of either cardioembolic or non-
cardioembolic stroke genesis, and then split into men and women (c.f.,
Supplementary Information for a comprehensive display of model specifications).

We then contrasted male- and female-specific lesion pattern effects within the
cardioembolic and non-cardioembolic stroke subgroups. To allow for a reasonably
high number of patients in each of these four subgroups, we here merged data of
the derivation and validation cohorts (c.f., Supplementary Information for further
details).

Lastly, we aimed to explore whether possible sex differences were more likely to
be of organizational or activational hormonal nature. Since we did not have access
to the precise hormonal status in women, we stratified our sample based on an age
cutoff of 52 years, according to the median age at menopause26. As in the ancillary
analysis focused on stroke subtype, we inserted an additional hierarchical level and
build two groups of patients above (≥) 52 and below (<52) years of age within
which we compared lesion pattern effects of men and women. We once again
merged derivation and validation cohort data to maximize the number of available
patients, especially in the subgroup of younger stroke patients.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors agree to make the data of development and validation cohorts available to
any researcher for the express purposes of reproducing the here presented results, and
with the explicit permission for data sharing by Massachusetts General Hospital’s
institutional review board. The Harvard-Oxford and JHU DTI-based white matter atlases
are accessible online (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases). Source data are
provided with this paper.

Code availability
Preprocessing of MRI images was conducted in a Matlab 2019b framework (The Mathworks,
Natick, MA, USA), the packages Statistical Parametric Mapping (SPM12; http://www.fil.ion.
ucl.ac.uk/spm/), and the ancillary package SPM_Superres (https://github.com/brudfors/
spm_superres). Further analyses were implemented in Python 3.7 (primarily packages:
nilearn84 and pymc3; ref. 85). Full code for reproducibility and reuse is available here: https://
github.com/AnnaBonkhoff/BMH_stroke_severity_sex_differences86.
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