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Pancreatic lipase is critical for the digestion and absorption of dietary fats. The most
abundant lipolytic enzymes secreted by the pancreas are pancreatic triglyceride lipase
(PTL or PNLIP) and its family members, pancreatic lipase-related protein 1 (PNLIPRP1or
PLRP1) and pancreatic lipase-related protein 2 (PNLIPRP2 or PLRP2). Unlike the family’s
other members, PNLIPRP2 plays an elemental role in lipid digestion, especially for
newborns. Therefore, if genetic factors cause gene mutation, or other factors lead
to non-expression, it may have an effect on fat digestion and absorption, on the
susceptibility to pancreas and intestinal pathogens. In this review, we will summarize
what is known about the structure and function of PNLIPRP2 and the levels of
PNLIPRP2 and associated various pathological states.

Keywords: pancreatic lipase related protein 2, pancreatic lipase, fat digestion, intestinal absorption,
polymorphism

INTRODUCTION

Effective digestion and absorption of dietary fats is important, which begins in the stomach by
preduodenal lipase with a small amount of dietary triglyceride (Miller and Lowe, 2008). Then, the
partially digested emulsion particles empty into the duodenum, where it mixes with the pancreatic
lipase secreted from the pancreas. In addition, the common bile duct from the gallbladder merges
with the pancreatic duct, supplementing bile salts to the duodenum. The emulsion particles
subsequently are hydrolyzed into liquid crystals containing monoglycerides, fatty acids, and
cholesterol. Then, the digestion products are transformed by bile salts to the small intestine, taken
up by enterocytes, or enter into lymphatic system (Berton et al., 2009; Lindquist and Hernell,
2010). Hence, pancreatic lipase is critical for the digestion and absorption of dietary fats. The most
abundant lipolytic enzymes secreted by the pancreas are pancreatic triglyceride lipase (PNLIP or
PTL) and its family members, pancreatic lipase-related proteins 1 and 2 (PNLIPRP1/PLRP1 and
PNLIPRP2/PLRP2). However, PNLIP is not expressed in neonatal humans and rodents; PNLIPRP1
has no lipase activity (Roussel et al., 1998a; Bakala et al., 2012). Therefore, PNLIPRP2 should have
some different properties with PNLIP and plays a pivotal role in lipid digestion, especially for
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newborns. The purpose of this paper is to review the structure
and function of PNLIPRP2 and the relationship between the
expression of PNLIPRP2 and various pathological states.

THE BIOCHEMICAL PROPERTIES AND
FUNCTION OF PNLIPRP2

PNLIPRP2 (GenBank Accession No. HSA149D17) is a
member of the classic triglyceride lipase family. PNLIPRP1
and PNLIPRP2, respectively, have 68 and 65% homologous
amino acid sequence with PNLIP (Giller et al., 1992). The
biggest difference in exons between PNLIP, PNLIPRP1, and
PNLIPRP2 is that both PNLIP and PNLIPRP1 have 13 exons
(Figure 1), whereas PNLIPRP2 only has 12 exons, but contains
a larger exon I (157 bp) (Lowe, 2000). The larger exon I in
PNLIPRP2 is even bigger than the sum of exon I and exon
II of PNLIP or PNLIPRP1. The remaining exons are highly
conserved (Lowe, 2000). PNLIPRP2 is expressed in various
tissues of different species. It was detected in the pancreas of
animals including guinea pig, coypu, rabbit, horse, human, and
rat; however, it was not expressed in the following species: ox,
goat, sheep, dog, and cat (De Caro et al., 2008). The length of
human, rat, and mouse PNLIPRP2 mRNAs is 1,500 bp and its
protein molecular weight is 53 kDa (Lowe, 2000). PNLIPRP2
lipase has two domains: an N-terminal domain and a C-terminal
domain from residues 18 to 353 and 354 to 466, respectively.
The N-terminal domain consists of α/β hydrolase fold and the
C-terminal has a β-sandwich structure (Ollis et al., 1992). The
length of the signal peptide may be 16 or 30 amino acids. It
is a 30-amino acid signal peptide in the mouse and rat and a
16-amino acid signal peptide in human and coypu, but less 5′
sequence than the cDNAs isolated from the mouse or rat (Payne
et al., 1994; Lowe et al., 1998). Our colleagues’ findings suggest
that PNLIPRP2’s expression can be detected before birth, at
15 weeks of gestation in humans and 17 days of gestation in rats
and mice (Yang et al., 2000).

With the development of X-ray 3D structure technology,
scholars can understand the interfacial recognition sites in the
molecular structure of these enzymes and the conformational
changes in the presence of lipids and amphiphiles (Winkler
et al., 1990; van Tilbeurgh et al., 1993). The active sites of many
lipases are contained in the N-terminal domain and controlled
by a so-called lid formed by a surface loop, β5 loop, and β9
loop. There is a catalytic triad, Ser152-His263-Asp176, at the
bottom of this crevice (Berton et al., 2007). This kind of lid
makes lipase a special catalytic and interfacial activity at the
water/oil interface, but shows low or no activity in a single water
and oil phase. In the presence of lipase inhibitors, it undergoes
conformational changes, then the solvents in the 3D structure
of several lipases can be exposed to the active sites (Egloff et al.,
1995; Yang and Lowe, 2000; Eydoux et al., 2008). Nevertheless,
the lid structure, β5 loop, and β9 loop act differently among
various species. First is the difference between β5 loop and β9
loop, and second is whether the lid is an open conformation or
not. Our previous studies show that the structural determinants
of human PNLIPRP2 (HPNLIPRP2) lipase activity are the β5
loop and the lid domain, and the β9 loop inversely had smaller

effects on activity (Figure 2; Xiao and Lowe, 2015). In contrast,
Eydoux et al. (2008) obtained different outcomes by making a
crystal structure of HPNLIPRP2 in the absence of amphiphiles
and found that the β9 loop is a crucial structural component
involved in substrate binding. Dridi et al. (2013) confirmed the
role of the β9 loop in the stabilization of the leaving acyl chain
in lipolysis reaction on guinea pig PNLIPRP2 (GPNLIPRP2). In
addition to the loop structure, another structural determinant of
PNLIPRP2 lipase activity is the lid conformation. Eydoux et al.
(2008) and our colleagues (Xiao and Lowe, 2015) confirmed that
the lid of HPNLIPRP2 adopts an open conformation in solution,
contrary to what is observed with the human PNLIP. Therefore,
the active site of HPNLIPRP2 might be directly accessible to a
substrate. In contrast, the lid of rat PNLIPRP2 (RPNLIPRP2)
lipase is in the closed conformation (Mancheño et al., 2004; Valek
et al., 2019). Many researchers, including our research group,
illustrate the essential role of the lid in determining the substrate
specificity and the mechanism of action of lipases (Roussel et al.,
1998b; Yang et al., 2000; Berton et al., 2007; Eydoux et al., 2008),
and the theory is that closed lid means interfacial activation.
Consequently, RPNLIPRP2 lipase displayed interfacial activation
at the water/oil interface, while HPNLIPRP2 lipase did not,
which was considered a galactolipase. GPNLIPRP2 is the only
PNLIPRP2 identified so far with a deletion in the lid domain
(Withers-Martinez et al., 1996), but it shows similar kinetic
properties with HPNLIPRP2.

Studying the relationship between the structure and function
of lipase is of great significance for understanding the role of
lipolysis and providing new targets for regulating lipase activity.
Although three genes share most of the same structure but differ
in their 3D structure and some amino acid sequences, their
enzymatic properties are different among them.

HYDROLYZED SUBSTRATE

Substrate specificity is strongly based on the supramolecular
organization of the lipid substrates present in oil-in-water
emulsions, membranes, micelles, monolayers, or vesicles.
PNLIPRP2 had a high activity on all phospholipid–bile salt
micelles. They can modify the properties of lipid/water interfaces
and promote the enzyme–micelle interaction, thus initiating the
effective mass transfer between micelles and enzymes during
lipolysis reaction (Mateos-Diaz et al., 2018). PNLIPRP2 has a
broader substrate specificity and can hydrolyze triglycerides,
phospholipids, and galactolipids. PNLIP has no effect on
activity against the phospholipid and galactolipid substrates,
except triglycerides (Lowe, 2002; Mancheño et al., 2004), and
PNLIPRP1 shows no lipase activity against all known substrates
(Roussel et al., 1998).

EFFECTS OF COLIPASE AND BILE
SALTS ON KINETIC PROPERTIES

Neonatal and lactating infants express colipase and PNLIPRP2,
but not PNLIP. PNLIP is inhibited by normal components of
the duodenum, for example, bile acids, phospholipids, or dietary
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FIGURE 1 | The gene structure for PTL (PNLIP), PLRP1 (PNLIPRP1), and PLRP2 (PNLIPRP2). The exons are numbered with roman numerals. The number of
nucleotides in each exon is given in each box. The biggest difference in exons is that PTL (PNLIP) and PLRP1 (PNLIPRP1) both have 13 exons, whereas PLRP2
(PNLIPRP2) only has 12 exons, but it contains a larger exon I (157 bp). PTL (PNLIP), pancreatic triglyceride lipase; PLRP1 (PNLIPRP1), pancreatic lipase-related
protein 1; PLRP2 (PNLIPRP2), pancreatic lipase-related protein 2.

FIGURE 2 | Structure of human PTL (PNLIP) and PLRP2 (PNLIPRP2) and the corresponding lid, β5, and β9 loops. (A) Superimposed α-carbon structure of PNLIP
(blue) and PNLIPRP2 (yellow). (B) Surface structure of PNLIP showing the catalytic site cavity and the location of the lid domain (orange), β5 loop (blue), and β9 loop
(yellow). (C) Superimposed β5 loops of PNLIP (blue) and PNLIPRP2 (yellow). The labeled amino acids are PNLIPRP2 residues. (D) Superimposed β9 loops of PNLIP
(blue) and PNLIPRP2 (yellow). The labeled amino acids are PNLIPRP2 residues. PTL (PNLIP), pancreatic triglyceride lipase; PLRP2 (PNLIPRP2), pancreatic
lipase-related protein 2.
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proteins, and colipase can reverse the inhibition of PNLIP (Lowe,
1994; D’Agostino and Lowe, 2004; De Caro et al., 2004; Xiao et al.,
2013). The activity of PNLIPRP2 varies greatly among species.
HPNLIPRP2 is considered to be a galactolipase, which was
inhibited by bile salts when against long-chain triglycerides, with
poor activity against diglycerides (Eydoux et al., 2007; Amara
et al., 2009; Pang et al., 2011). Horse PNLIPRP2 is the same with
HPNLIPRP2 (Jayne et al., 2002b). On the contrary, our research
(Xiao et al., 2011) found that HPNLIPRP2 had sufficient activity
against long-chain triglycerides and diolein in the presence of bile
salt micelles, in vitro, and depended on colipase. Under optimal
conditions, the activity of mouse PNLIPRP2 (MPNLIPRP2) is
about seven-fold greater than HPNLIPRP2 when against long-
chain triglycerides and 10-fold higher than HPNLIPRP2 when
against short- and medium-chain triglycerides. RPNLIPRP2 and
MPNLIPRP2 have activity in the presence of bile salt micelles,
and their activity can be increased by colipase (Jennens and Lowe,
1995a,b; D’Agostino and Lowe, 2004). MPNLIPRP2 had full
activity in the presence of bovine serum albumin (BSA), whereas
BSA completely inhibited MPNLIP except for the presence of
colipase (D’Agostino and Lowe, 2004). Why are the effects
of colipase and bile salts different among these structurally
enzymes? Lowe and Jayne (Jayne et al., 2002a,b; Johnson et al.,
2013) suggested that colipase stimulates the activity of PNLIPRP2
by acting on the substrate rather than by anchoring PNLIPRP2
to the substrate interface as the colipase–PNLIP complex does.
Therefore, PNLIPRP2 has activity with or without colipase and
the degree of activity stimulated by colipase depended on the
substrate and PNLIPRP2 species.

FUNCTION OF PNLIPRP2

Pancreatic lipase is usually secreted by the pancreas and
transferred to the duodenum to participate in the hydrolysis
and digestion of fat, cholesterol esters, and fat-soluble vitamins
(Carrière et al., 1994). The temporal pattern of PNLIPRP2
mRNA expression confirmed by many experimental data
suggests that PNLIPRP2 may play an important role in
milk fat digestion in lactating mammals (Li et al., 2007;
Andersson et al., 2011). Sucking PNLIPRP2-deficient mice
were found to have steatorrhea and fat malabsorption, and
the undigested and partially digested triglycerides in feces
were significantly increased, accompanied by a significant
decrease in weight gain curve (D’Agostino et al., 2002;
Huggins et al., 2003; De Caro et al., 2004; Gilham et al.,
2007). Intriguingly, as a presumed galactolipase, the main
enzyme of HPNLIPRP2 was involved in the digestion of
those common vegetable lipids in the gastrointestinal tract,
but there is dissimilarity in various species (Bourne et al.,
1994; Carrière et al., 1998; Aloulou et al., 2006; Amara et al.,
2010). It was detectable in the pancreas of both omnivorous
and monogastric herbivorous animals, but not of carnivorous
and ruminant herbivorous species, turkey, pigs, and ostrich
(De Caro et al., 2008). Galactolipids in the plant kingdom
are much more abundant than triacylglycerols, which are
ingested by galactolipase-PNLIPRP2. Hence, HPNLIPRP2 likely

has some relationships with various races which have diverse
component diets.

BETWEEN PNLIPRP2 LEVELS AND
VARIOUS PATHOLOGICAL STATES

PNLIPRP2 Levels and Pancreatitis
More and more lines of evidence show that the expression
level of HPNLIPRP2 is related to chronic pancreatitis (CP).
It was significantly lower in patients with chronic calcifying
pancreatitis (CCP) than in the control group, and the ratio
of HPNLIPRP2 to HPNLIP was 23.96% (W/W) and 28.3%
(W/W) in CCP patients and controls, respectively (Eydoux et al.,
2006). On the contrary, Khatua et al. (2019) found that the
expression level of PNLIPRP2 was elevated in fat necrosis and
might regulate lipolysis and lipotoxic injury during pancreatitis.
The possible explanation is that the secretion of lipase and
the occurrence and development of pancreatitis are dynamic
processes. Anyway, hPNLIPRP2 is abnormally expressed in
subjects with pancreatitis. Intriguingly, more recent studies have
shown that genetic variants in pancreatic lipases are associated
with an increased risk of CP. One report showed that two
brothers with PNLIP deficiency were found to be homozygous
for missense mutation in PNLIP and associated with CP (Behar
et al., 2014). The PNLIPRP2 W358X (the same with p.W357X
and p.W340X) SNP is also of particular interest since it is
a common non-sense polymorphism and present in different
ethnic groups at a high allele frequency from 0.3 to 0.5. The
genetic polymorphism results in a truncated protein, premature
truncation of about −24% of the gene product, lacking nearly
the entire C-terminal domain of HPNLIPRP2, which is necessary
for its stability, efficient secretion, and full activity (Jennens and
Lowe, 1995b; Cao and Hegele, 2003). The experience of our
research group (Xiao et al., 2013) concluded that the aberrant
folding of W358X mutant may cause chronic cellular stress in
pancreatic exocrine cells and increase susceptibility to other
metabolic stressors. However, Németh et al. (2018) found that
the p.W358X truncation variant of HPNLIPRP2 is expressed
poorly and has no significant effect on the risk of CP. As a
result, it deserved further investigations or more data to elucidate
the discrepancy.

PNLIPRP2 Levels and Other Pathological
States
PNLIPRP2 was secreted not only from the pancreas but also
from various tissues and cell types under certain conditions,
such as cytotoxic T lymphocytes (CTL). It may play an
auxiliary role in some types of cytotoxic T-cell-mediated lysis
(Alves et al., 2009). Rabbit PNLIPRP2 (also named GP-3)
associated with the zymogen granule membranes was detected
in enterocytes and Paneth cells (Grusby et al., 1990; Wagner
et al., 1994). In the rat hypothalamus, compared with the control
group, it was downregulated during fasting (seven-fold) and
upregulated (1.8-fold) during conditions of metabolic excess
(Rippe et al., 2007). Moreover, it was also regulated by a
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high-fat (HF) diet at the post-transcriptional level in C57BL/6J
mice (Birk et al., 2014). MPNLIRP2 is associated with the
hydrolysis of hepatic retinyl esters for the utilization of vitamin
A in the mouse liver (De Caro et al., 2004; Reboul et al.,
2006) and is responsible for the increased hepatic retinyl ester
hydrolases in mice fed vitamin A-deficient diet (Gao et al.,
2019). Goat PNLIPRP2 (GoPNLIPRP2) might be regulated by
the sexual hormones, because its expression in seminal plasma
was significantly increased during the breeding season, parallel
to the increase in the plasmatic levels of testosterone (Sias et al.,
2005). The low expression of lipases resulted in the delivery of
undigested lipid components to the distal ileum, where their
intracellular accumulation can lead to the generation of reactive
oxygen species (ROS) oxidative stress and the inflammatory
characteristics of necrotizing enterocolitis (NEC) (Sodhi et al.,
2018). All these data raised the possibility that PNLIPRP2 has
other significant functions than just hydrolyzing dietary fats.

CONCLUSION

The structural parameters are responsible for the substrate
specificity among these structural enzymes, and the degree of
activity depends on the substrate and PNLIPRP2 species. These
points remain, however, speculations and will deserve further
structural studies to determine the conformational state of the
PNLIPRP2 lid more precisely and also further investigations to
elucidate the molecular mechanisms of PNLIPRP2 processing
along with detailed analysis of the digestion products. It might

pave the way for exploiting the different expressions and
functions of PNLIPRP2 among species, different mutations of
PNLIPRP2 among various races, and the relationship between
PNLIPRP2 levels and various pathological states and for
providing a new drug target to modulate lipase activity.
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