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A B S T R A C T   

Lesion studies are an important tool for cognitive neuroscientists and neurologists. However, while brain lesion 
studies have traditionally aimed to localize neurological symptoms to specific anatomical loci, a growing body of 
evidence indicates that neurological diseases such as stroke are best conceptualized as brain network disorders. 
While researchers in the fields of neuroscience and neurology are therefore increasingly interested in quantifying 
the effects of focal brain lesions on the white matter connections that form the brain’s structural connectome, few 
dedicated tools exist to facilitate this endeavor. Here, we present the Lesion Quantification Toolkit, a publicly 
available MATLAB software package for quantifying the structural impacts of focal brain lesions. The Lesion 
Quantification Toolkit uses atlas-based approaches to estimate parcel-level grey matter lesion loads and multiple 
measures of white matter disconnection severity that include tract-level disconnection measures, voxel-wise 
disconnection maps, and parcel-wise disconnection matrices. The toolkit also estimates lesion-induced in
creases in the lengths of the shortest structural paths between parcel pairs, which provide information about 
changes in higher-order structural network topology. We describe in detail each of the different measures pro
duced by the toolkit, discuss their applications and considerations relevant to their use, and perform example 
analyses using real behavioral data collected from sub-acute stroke patients. We show that analyses performed 
using the different measures produced by the toolkit produce results that are highly consistent with results that 
have been reported in the prior literature, and we demonstrate the consistency of results obtained from analyses 
conducted using the different disconnection measures produced by the toolkit. We anticipate that the Lesion 
Quantification Toolkit will empower researchers to address research questions that would be difficult or 
impossible to address using traditional lesion analyses alone, and ultimately, lead to advances in our under
standing of how white matter disconnections contribute to the cognitive, behavioral, and physiological conse
quences of focal brain lesions.   

1. Introduction 

Studies investigating the cognitive and behavioral consequences of 
focal brain lesions are a cornerstone of neurology and cognitive neuro
science (Rorden and Karnath, 2004). Initially, lesion studies were 
limited to post-mortem examinations of patients that presented with 
specific neurological deficits, such as speech production deficits, with 

the aim of localizing these deficits to lesions affecting specific anatom
ical loci (Berker, 1986). Now, modern neuroimaging techniques such as 
magnetic resonance imaging (MRI) and computerized tomography (CT) 
enable researchers to conduct large-scale lesion-behavior studies with 
aims that range from localizing the structural correlates of cognitive and 
behavioral processes (Dronkers et al., 2004; Karnath et al., 2004), to 
making clinical predictions about deficit severity and recovery potential 
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(Aguilar et al., 2018; Corbetta et al., 2015; Herbet et al., 2016; Ramsey 
et al., 2017; Seghier et al., 2016), to making inferences about the 
mechanisms that mediate pathological disruptions of brain physiology 
(Lu et al., 2011; Griffis et al., 2017b; 2019; 2020). 

Traditionally, neuroimaging-based lesion analyses such as voxel- 
based lesion symptom mapping (VLSM) (Bates et al., 2003) have rep
resented brain lesions using binary voxel-wise lesion status maps that 
simply encode the presence vs. absence of damage to each voxel in the 
brain (Bates et al., 2003). These binary maps encode detailed informa
tion about a lesion’s spatial topography within the voxel-space coordi
nate system, but they do not indicate the lesion’s spatial relationship to 
the underlying brain anatomy (e.g., cortical sulci and gyri or subcortical 
structures). Therefore, the statistical maps obtained from group-level 
lesion-behavior analyses are typically overlaid onto an anatomical T1- 
weighted brain template to localize lesion-behavior effects to specific 
brain loci. Importantly, while binary voxel-wise lesion representations 
are sufficient to characterize a lesion’s immediate spatial topography, 
they cannot account for the fact that this spatial topography is 
embedded within the dense and highly distributed network of white 
matter connections that together comprise the brain’s structural con
nectome. Accordingly, failure to account for the effects of lesions on the 
brain’s white matter connections may obscure or distort the relation
ships of interest in group-level lesion analyses, particularly when white 
matter disconnections are directly relevant to the outcome(s) of interest 
(Griffis et al., 2019; Pacella et al., 2019; Rudrauf et al., 2008; Thiebaut 
De Schotten et al., 2014). 

More generally, binary voxel-wise lesion status representations are 
limited because they cannot account for the fact that different brain 
lesions may affect the same anatomical structure(s) without affecting 
the same voxels (Griffis et al., 2019; Sperber, 2020). Anatomical struc
tures often span many voxels, and in the case of white matter connec
tions or distributed brain networks, the voxels associated with the 
structure(s) of interest may be spatially distributed across entire lobes or 
hemispheres. Thus, traditional lesion analyses that use binary voxel- 
wise lesion status representations may fail to detect relationships that 
involve damage to spatially distributed anatomical structures such as 
white matter connections, particularly when patients with damage to 
the same anatomical structure(s) vary with regard to the specific voxels 
within those structures that are lesioned (i.e., when inter-individual 
voxel-level lesion overlap is low). While binary voxel-wise lesion rep
resentations provide detailed information about a lesion’s spatial 
topography, this information only represents the “tip of the iceberg”: a 
surface-level description of the lesion that is largely blind to its impact 
on the underlying network of white matter connections (Catani et al., 
2012). 

Importantly, in addition to enabling large-scale lesion studies, 
modern neuroimaging techniques have also enabled researchers to 
create detailed population-scale brain atlases that delineate the 
boundaries of regional grey matter parcels and map the trajectories of 
inter-regional white matter connections (Power et al., 2011; Rojkova 
et al., 2016; Yeh et al., 2018; Yeo et al., 2011). These atlases can be 
integrated with empirical lesion data to quantify a lesion’s expected 
impact on specific grey matter regions and white matter connections 
(Carter et al., 2012; Catani et al., 2012; Foulon et al., 2018; Fridriksson 
et al., 2013; Griffis et al., 2020; 2019; 2017a; 2017b; 2016;; Hope et al., 
2015; Kuceyeski et al., 2015; Pacella et al., 2019; Thiebaut De Schotten 
et al., 2014), enabling advanced, anatomically-informed lesion analyses 
that can account for both the focal damage and distributed disconnec
tions caused by lesions. These approaches typically involve first regis
tering a patient’s lesion to the same brain coordinate space as the desired 
brain atlas, and then embedding the lesion into the atlas to estimate the 
amount of damage/disconnection sustained by the structures of interest 
(Catani et al., 2012; De Schotten and Foulon, 2018; Forkel and Catani, 
2018). By contextualizing the lesion in terms of a priori anatomical in
formation, these approaches allow for the explicit attribution of effects 
to specific anatomical structures, which can increase power in situations 

where patients have damage to different voxels that are associated with 
the same structures. Further, they allow for the dimensionality of the 
lesion data to be substantially reduced (i.e. from n voxels to n struc
tures), which may be necessary for certain analysis approaches that can 
only handle a limited number of input features (Sperber, 2020), and 
which also has the advantage of reducing the number of statistical tests 
performed in group-level analyses and consequentially reducing the 
severity of multiple comparisons corrections. 

The application of atlas-based approaches for quantifying white 
matter disconnections has enabled researchers to obtain novel insights 
into the distributed impacts of focal brain lesions. Recent studies have 
highlighted important roles of white matter disconnections in deter
mining the cognitive, behavioral, and physiological deficits observed in 
brain-damaged patients (Catani et al., 2012; De Schotten and Foulon, 
2018; Fox, 2018). For example, recent studies have linked deficits in 
broad cognitive and behavioral domains such as language (Basilakos 
et al., 2014; Fridriksson et al., 2013; Griffis et al., 2017a; Kümmerer 
et al., 2013), visuo-spatial attention (He et al., 2007; Malherbe et al., 
2018; Smith et al., 2013; Thiebaut De Schotten et al., 2014), motor 
function (Carter et al., 2012; Feng et al., 2015; Findlater et al., 2019), 
and general cognition (Kuceyeski et al., 2016; 2015) to the disruption of 
specific white matter pathways. Other studies have employed similar 
approaches to test hypotheses about the effects of white matter dis
connections on the structural (Foulon et al., 2018; Kuceyeski et al., 
2014) and functional (Griffis et al., 2020; 2019; 2017b) properties of 
disconnected brain regions – research questions that would be difficult 
or impossible to meaningfully approach using traditional lesion ana
lyses. For example, in recently published work, we developed and 
implemented novel atlas-based measures of white matter disconnection 
to test hypotheses about how stroke disrupts resting-state functional 
connectivity (Griffis et al., 2020; 2019), a functional MRI measure of 
inter-regional signal coherence in the resting (i.e. task-free) state that is 
thought to reflect ongoing neural signaling (Biswal et al., 1995; Friston 
et al., 2014), and that predicts behavioral deficits after stroke (e.g. 
Carter et al., 2012; Siegel et al., 2017). Similarly, other recent studies 
have linked white matter disconnections to neurodegenerative changes 
in disconnected grey matter regions (Foulon et al., 2018; Kuceyeski 
et al., 2014). Anatomically-informed lesion quantification methods are 
therefore an increasingly important tools for brain lesion research. 

However, despite the growing interest in and importance of 
anatomically-informed lesion quantification methods, relatively few 
publicly available software tools exist to aid researchers in implement
ing them in their own research (Foulon et al., 2018; Greene et al., 2019; 
Kuceyeski et al., 2013). Further, existing software tools tend to be 
relatively restricted in terms of the types of measures that they can 
produce, and they often rely on atlases defined based on data from 
relatively small samples (i.e. N (100) of healthy individuals (Foulon 
et al., 2018; Kuceyeski et al., 2013), which may limit the generalizability 
of the measures that they produce. As noted above, we have recently 
developed and implemented novel atlas-based approaches for quanti
fying the severity of white matter disconnections in patients with focal 
brain lesions (Griffis et al., 2020; 2019). Here, we make these methods 
available to the broader research community by implementing them in 
the Lesion Quantification Toolkit, which is a publicly available MATLAB 
software package designed to comprehensively quantify the effects of 
focal brain lesions on grey matter regions and white matter connections. 
Unlike existing tools (Foulon et al., 2018; Greene et al., 2019; Kuceyeski 
et al., 2013), the Lesion Quantification Toolkit produces a comprehen
sive set of atlas-derived, anatomically-informed lesion measures that 
include measures of grey matter damage, white matter disconnection, 
and alterations of higher-order brain network topology. Importantly, the 
measures produced by the toolkit are based on population-scale (i.e. N 
> 800) atlases of grey matter parcel boundaries and white matter 
connection trajectories that were constructed from high-quality resting- 
state functional MRI and diffusion MRI datasets using state-of-the-art 
methods (Schaefer et al., 2018; Yeh et al., 2018). In the remainder of 
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this paper, we specify the toolkit requirements and usage, provide 
detailed descriptions of each of the measures produced by the toolkit, 
and finally conclude by presenting example results obtained from real 
lesion-behavior analyses conducted using the measures produced by the 
toolkit. 

2. Methods 

2.1. Patient data 

All example lesion and behavioral data that are reported in the paper 
were obtained from a sample of 132 sub-acute stroke patients that 
participated in the Washington University Stroke Project (Corbetta 
et al., 2015). Data were collected after obtaining informed consent ac
cording to procedures established by the Washington University Insti
tutional Review Board and in accordance with the Declaration of 
Helsinki. Detailed descriptions of the patient sample, data collection, 
and data processing can be found in the original publication describing 
this dataset (Corbetta et al., 2015). 

2.2. Required software 

The toolkit runs in MATLAB versions 2012 and later (TheMath
Works). The toolkit requires the DSI_Studio software package in order to 
function correctly (freely available for download at http://dsi-studio. 
labsolver.org/), as MATLAB calls to DSI_Studio’s command line inter
face are used to create the white matter disconnection measures. All 
other required software packages and files (other than user-specified 
inputs) are included with the toolkit. These packages consist of the 
following: the Brain Connectivity Toolbox (Rubinov and Sporns, 2010), 
the Graph Theoretical Network Analysis Toolbox (Wang et al., 2015), 
and the matlab_nifti package (Shen, 2021). In addition, the HCP-842 
diffusion MRI streamline tractography template and curated tract seg
mentations (Yeh et al., 2018) are also included with the toolkit, along 
with regional grey matter parcellations developed by Schaefer and col
leagues (Schaefer et al., 2018). Additionally, while not required, 
external visualization packages such as MRIcroGL (https://www.nitrc. 
org/projects/mricrogl) or SurfIce (https://www.nitrc.org/project 
s/surfice) may be used to produce high-quality visualizations of the 
toolkit outputs. 

2.3. Toolkit usage 

The user can interact with the toolkit either via simple MATLAB 
scripts or via a graphical user interface (GUI) that can be accessed via the 
MATLAB command window. To facilitate script-based usage, example 
scripts for both single-subject and multi-subject (i.e. batch) processing 
are included with the toolkit. User-defined inputs such as the specific 
regional brain parcellation and threshold parameters are saved for each 
run (i.e. patient) as a MATLAB structure contained within a .mat file, 
which we refer to as the “configuration file”. The information contained 
within the configuration file can be used to recreate the full set of out
puts for each patient, thus ensuring that all outputs are easily repro
ducible. At any time after a patient’s lesion has been processed, 
summary figures illustrating the various outputs can be produced 
automatically using the information contained within the configuration 
file for that patient. Patient summary figures can be created using either 
the GUI or via MATLAB scripts. Detailed information about using the 
toolkit, including step-by-step guides for using the GUI and visualizing 
the outputs in external software packages, can be found in the toolkit’s 
accompanying User Manual (see Supplementary Material). We note 
that this toolkit is a lesion image processing toolkit that is designed to 
facilitate the measurement of grey matter damage and white matter 
disconnections in patients with brain lesions, and it does not include 
built-in functionality for performing statistical analyses on the measures 
that it outputs. Further, the toolkit is not intended for use with non-adult 

(e.g. pediatric) populations, as the tractography atlas is based on data 
obtained from a healthy adult population. Toolkit runtime using MAT
LAB R2020b on a Windows 10 Home computer (Core i7 processor, 8 GB 
RAM) for a single patient is 2.61 min, allowing for quick creation of 
damage and disconnection measures. 

2.4. Toolkit inputs 

The inputs provided by the user correspond to (1) a binary lesion 
segmentation that is registered to the Montreal Neurological Institute 
(MNI) template brain co-ordinate space (Fig. 1A), and (2) a regional grey 
matter parcellation that is also registered to the MNI brain template 
space and that has identical image dimensions to the lesion segmenta
tion (Fig. 1B). We note that the modality of the original images used to 
obtain the lesion segmentation is not relevant so long as the final lesion 
segmentation that is input to the toolkit is registered to the MNI brain 
template and has identical dimensions to the user-selected brain par
cellation. Registration of lesions to the brain template space must be 
performed prior to running the toolkit, as the toolkit does not currently 
perform lesion-to-template registrations itself. Registration to template 
space can be accomplished using standard neuroimaging processing 
software such as FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) or SPM 
(https://www.fil.ion.ucl.ac.uk/spm/), although special care should be 
taken to minimize registration errors introduced by the lesion (Brett 
et al., 2001; Griffis et al., 2017b; Ripollés et al., 2012; Seghier et al., 
2008; Siegel et al., 2017). 

While the user may select any regional brain parcellation that meets 
the criteria defined above, a comprehensive set of regional brain par
cellations is included with the toolkit. Specifically, the toolkit includes 
the full set of multi-resolution cortical parcellations developed by 
Schaefer and colleagues (Schaefer et al., 2018), which were constructed 
by applying a gradient-weighted Markov random field technique to 
high-quality resting-state functional connectivity MRI data collected 
from 1489 healthy individuals. These parcellations span multiple reso
lutions from 100 parcels to 1000 parcels and include resting-state 
network assignments for each parcel. In addition, because these par
cellations only include cortical areas by default, augmented versions of 
these parcellations that include additional subcortical and cerebellar 
parcels from the Automated Anatomical Labeling (AAL) atlas (Tzourio- 
Mazoyer et al., 2002) and a brainstem parcel from the Harvard-Oxford 
Subcortical atlas (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) are 
also included with the toolkit to allow for complete modeling of the 
structural connectome, analogous to our previous work (Griffis et al., 
2020; 2019). To use the included parcellations, the input lesion seg
mentations must have 1 mm3 voxel dimensions and the standard MNI 
template image dimensions of 182x218x182. For reference, an MNI 
template brain volume with these dimensions is included with the 
toolkit, and this can be used as a registration target for external software 
if necessary. Alternately, the user may supply their own MNI-space brain 
parcellation. In any case, the lesion segmentation and brain parcellation 
must have identical image dimensions. 

2.5. Toolkit outputs 

2.5.1. Grey matter parcel lesion loads 

2.5.1.1. Background. It is increasingly common for researchers to 
employ brain parcellations that divide the grey matter into a set of 
functionally or anatomically defined grey matter parcels (i.e. regions). 
In the context of lesion-symptom mapping, this allows researchers to 
utilize prior knowledge about regional boundaries to reduce the 
dimensionality of lesion data by summarizing it in terms of the amount 
of damage sustained by each grey matter parcel (Fridriksson et al., 2018; 
Griffis et al., 2019; Shahid et al., 2017; Sperber, 2020), often referred to 
as “lesion loads”. Accordingly, the toolkit includes functionality to 
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output grey matter lesion loads for each parcel in the user-selected brain 
parcellation. 

2.5.1.2. Method. The toolkit estimates lesion loads for each grey matter 
parcel in the user-selected brain parcellation according to the same 
methods used to create the “region-based damage” measure in our 
previous study (Griffis et al., 2019). For a given lesion and grey matter 
parcellation, the toolkit computes the percentage of voxels within each 
grey matter parcel that overlap with the lesion, resulting in grey matter 
lesion loads for each grey matter parcel in the brain (Fig. 1). The 
resulting parcel-wise lesion load estimates are output as both (1) a 3-D 
nifti volume where the values assigned to each grey matter parcel 
correspond to the percentage of voxels within that parcel that were 
damaged by the lesion (Fig. 1A), and (2) a .mat file containing the same 
information stored in a 1 × n parcels MATLAB array (visualized in 
Fig. 1B). The former can be used to visualize the severity of damage to 
each parcel, and the latter is formatted so that it can be easily vertically 
concatenated across patients to form input matrices for group-level 
statistical analyses. 

2.5.1.3. Applications and considerations. Reducing the dimensionality of 
lesion data by summarizing voxel-level grey matter damage in terms of 
parcel lesion loads contextualizes voxel-level lesion status information 
by incorporating a priori information about regional boundaries. 
Importantly, parcel lesion loads can be combined with measures of 
white matter disconnection (discussed in subsequent sections) to obtain 
a “complete” but relatively low-dimensional representation of a lesion’s 
impact on brain structure (Fridriksson et al., 2013; Griffis et al., 2019, 
2017a; Pustina et al., 2017a; 2017b;; Smith et al., 2013). Additionally, 
because the default grey matter parcellations used by the toolkit include 
resting-state network assignments for each grey matter parcel, parcel- 
level damage estimates can also easily be contextualized in terms of 
resting-state networks, as shown in Fig. 1B where parcel network as
signments are plotted as colored bars across the x-axis of the bar graph. 
The plot in Fig. 1B shows that the lesion shown in Fig. 1A primarily 
damaged parcels associated with the right somato-motor network along 
with parcels associated with various networks involved in attention and 
cognitive control. 

It should be noted that parcel definitions vary across different par
cellation schemes, and parcellations defined based on anatomical fea
tures (e.g. AAL) may differ substantially from those based on functional 
properties (e.g. Schaefer). In general, we encourage the use of functional 
parcellations due to the fact that they are explicitly defined to maximize 
regional homogeneity in terms of functional signals and/or connectivity 
patterns. Nonetheless, even for functional parcellations such as those 
included with the toolkit, parcel definitions vary (albeit typically in 
minor ways) across parcellation resolutions (Schaefer et al., 2018). 
Further, because there is no ground truth brain parcellation, there is no 
definitively correct parcellation scheme or parcellation resolution for all 
contexts and applications. Thus, the most appropriate parcellation and 
parcel resolution for a given analysis will likely depend on the expected 

granularity of the effects of interest, and this choice should be given 
careful consideration by the user. 

2.5.2. White matter tract disconnection severities 

2.5.2.1. Background. The white matter connections of the human brain 
are often described in terms of canonical macroscale white matter tracts 
(Catani et al., 2002; Yeh et al., 2018) that include association pathways 
such as the arcuate fasciculus (AF) and superior longitudinal fasciculus 
(SLF), projection pathways such as the cortico-spinal tract (CST) and 
cortico-thalamic (CT) projections, and commissural pathways such as 
the corpus callosum (CC) and anterior commissure (AC). It is therefore 
common for researchers to measure white matter disconnections at the 
level of these macroscale white matter tracts (Forkel and Catani, 2018; 
Fridriksson et al., 2013; Griffis et al., 2019, 2017a; Hope et al., 2015; 
Pacella et al., 2019; Thiebaut De Schotten et al., 2014). Accordingly, the 
toolkit includes functionality to output white matter tract disconnection 
severities. 

2.5.2.2. Method. The toolkit estimates tract-level disconnection sever
ities for each of 70 canonical macroscale white matter tracts (Fig. 2A) 
included in the HCP-842 population-averaged streamline tractography 
atlas (Yeh et al., 2018), as in our previous work (Griffis et al., 2019). 
Detailed descriptions of the atlas construction methods can be found in 
the original publication by Yeh et al., (2018). Briefly, the HCP-842 atlas 
used by the toolkit was built using high spatial and high angular reso
lution diffusion MRI data collected from N = 842 healthy Human Con
nectome Project participants. These data were reconstructed in the MNI 
template space using q-space diffeomorphic reconstruction (Yeh and 
Tseng, 2011), and the resulting spin distribution functions (SDFs) were 
averaged across all 842 individuals to estimate the normal population- 
level diffusion patterns. Whole-brain deterministic tractography was 
then performed on the population-averaged dataset using multiple 
turning angle thresholds to obtain 500,000 population-level streamline 
trajectories (i.e., estimated white matter fiber trajectories based on 
directional diffusion information), and the streamline trajectories were 
finally manually vetted and assigned to known white matter fiber tracts 
by a team of neuroanatomists (Yeh et al., 2018). Accordingly, the HCP- 
842 atlas is well-suited for use as a reference for the normal population- 
level white matter anatomy. We note that while the original HCP-842 
streamline tractography atlas treats the corpus callosum as single 
tract, we have further divided the corpus callosum into five segments 
based on the Freesurfer corpus callosum segmentation in order to 
improve the interpretability of callosal disconnections, as in our previ
ous work (Griffis et al., 2019). 

The toolkit estimates tract disconnection severities according to the 
same procedures used to create the “tract-based disconnection” measure 
used in our previous study (Griffis et al., 2019). To estimate discon
nection severity for each tract, the lesion is first embedded into the HCP- 
842 streamline tractography atlas as a region-of-interest (ROI) (Fig. 2A). 
Then, .trk files containing the streamline trajectories for each of the 70 

Fig. 1. Grey matter parcel lesion loads. A. A lesion and brain parcellation are used to compute the percentage of voxels within each grey matter parcel that were 
damaged by the lesion. B. The percent damage sustained by each parcel is plotted as a bar graph. Parcels are split by hemisphere, and are color coded according to 
network assignments in the Schaefer et al., (2018) 7-network partition. Damaged parcels were located in right somatomotor, dorsal attention, salience/ventral 
attention, control, and default networks. 
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canonical white matter fiber tracts are iteratively loaded and filtered to 
retain only the subset of streamlines from each tract whose trajectories 
intersect the volume occupied by the lesion (i.e., disconnected stream
lines; Fig. 2B). For each tract, the number of disconnected streamlines is 
then converted to a percentage of the total number of streamlines 
assigned to that tract in the HCP-842 atlas, resulting in an estimate of 
percent disconnection severity for each tract (Fig. 2C). The results are 
output as a .mat file containing a 1 × 70 MATLAB array containing the 
percentage of streamlines within each tract that are expected to be 
disconnected by the lesion, and a 1 × 70 MATLAB cell array containing 
labels for each of the 70 tracts. 

2.5.2.3. Applications and considerations. Like parcel lesion loads, tract 
disconnection measures significantly reduce the dimensionality of lesion 
data by describing them in terms of the disconnections incurred by a 
relatively small number (i.e., typically 〈100) of white matter structures 
(Rojkova et al., 2016; Yeh et al., 2018). Importantly, as noted in the 
previous section, tract disconnection measures can be combined with 
parcel lesion load measures to obtain a complete-but-compact anatom
ically-informed description of the grey matter damage and white matter 
disconnections caused by a given lesion (Fridriksson et al., 2013; Griffis 
et al., 2017a; Pacella et al., 2019; Pustina et al., 2017b; Smith et al., 
2013). This allows the lesion data, typically expressed in terms of several 
hundred thousand voxels, to be represented in terms of several hundred 
(or fewer) anatomical structures. 

We note that the tract disconnection severity approach employed by 
the toolkit differs conceptually from many common approaches to 
estimating tract-level disconnections. Specifically, it produces an 

explicit measure of tract disconnection severity rather than a measure of 
tract lesion load or disconnection “probability” (Foulon et al., 2018; 
Thiebaut De Schotten et al., 2014). Analogous to parcel lesion load 
measures, tract lesion load measures are based on the percentage of 
voxels contained within each tract that overlap with the voxels con
tained within lesion. However, lesion load measures assume that the 
fundamental units composing the structure(s) of interest can be 
adequately summarized in terms of individual voxels. While this may be 
a reasonable assumption to make about the fundamental units that 
compose grey matter regions (i.e., populations of neuronal cell bodies), 
it is not a reasonable assumption to make about the fundamental units 
that compose white matter tracts (i.e., mathematically: streamlines; 
biologically: axons), since these units have directional spatial trajec
tories that often span multiple voxels (Hope et al., 2015). Accordingly, 
the fundamental elements of white matter tracts can be equivalently 
interrupted by a lesion anywhere along their trajectory, and damage to 
the same fundamental element across multiple voxels is essentially 
redundant in terms of its anticipated effects on signal transmission along 
that element. In other words, a lesion that destroys the entire length of 
an axon (i.e., has high lesion load on that axon) should, in principle, 
have essentially the same effect on that axon’s ability to carry a signal as 
a lesion that only bisects the axon at a single point in its trajectory (i.e., 
has low lesion load on that axon). Measures of tract lesion load, how
ever, assume that the effects of the former should be more severe than 
the effects of the latter, and they therefore conflate the amount of voxel- 
wise overlap with the severity of disconnection. In principle, measures 
of tract disconnection severity, which account for the fact that the 
fundamental elements of white matter tracts have multi-voxel 

Fig. 2. White matter tract disconnection severity. A. The process for estimating white matter tract disconnection severity is illustrated using the same lesion 
shown in Fig. 1. For each of the 70 tracts in the HCP-842 tractography atlas (Yeh et al., 2018), the tract is loaded (i.e. right SLF) and the streamline trajectories are 
then intersected with the atlas-embedded lesion to identify the subset of streamlines whose trajectories intersect the volume occupied the lesion. Note: streamline 
trajectories are colored according to direction, as indicated by the legend. B. Streamlines that intersect the lesion-occupied volume are considered disconnected (red), 
while streamlines that do not intersect the lesion-occupied volume are considered spared (blue). C. The proportion of streamline trajectories that are disconnected 
(relative to the total number of streamline trajectories) is converted to a percentage to allow for interpretation in terms of disconnection severity. The bar graph 
shows the percent disconnection severities for the 10 most severely affected tracts, ordered by severity. The arrow shows the percent disconnection severity for the 
right SLF, which indicates that nearly 70% of the streamlines associated with the right SLF were disconnected by the lesion (see arrow). D. Estimates of right SLF 
disconnection are shown when estimated using the disconnection severity approach employed by the toolkit (x-axis: Severity) vs. when estimated using the lesion 
load approach commonly employed in the literature (x-axis: Load). Tract disconnection severity for the right SLF estimates differ substantially from tract lesion load 
estimates, and lesion load estimates vastly underestimate the effect of the lesion on the right SLF. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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directional trajectories, should therefore provide a more biologically 
realistic measure of disconnection than measures of tract lesion load 
(Hope et al., 2015). Nonetheless, it should also be noted that because 
fiber tracts may carry multiple distinct inter-regional connections, dis
connections of different portions of a given tract may still have different 
effects on inter-regional signal transmission, although this potential 
limitation can be addressed by modeling inter-regional disconnections 
explicitly (see next section). The discrepancy between tract disconnec
tion severity and tract lesion load measures is illustrated in Fig. 2D. 

In addition, it is worth noting that while measures of tract discon
nection “probability” are also commonly used in the literature (Foulon 
et al., 2018; Pacella et al., 2019; Thiebaut De Schotten et al., 2014), they 
are also conceptually problematic. This is because they do not actually 
measure the probability that a specific tract will be disconnected given a 
specific lesion topography (Forkel and Catani, 2018). Instead, tract 
disconnection “probability” measures represent the maximum (i.e., 
across voxels) prior probability that a streamline associated with a given 
tract will occupy at least one voxel that overlaps with the lesion, where 
the prior probabilities at each voxel are defined based on the group-level 
streamline visitation frequencies in a healthy reference group. Thus, a 
patient whose lesion overlaps with only a single voxel that has a 50% 
group-level tract prior probability in the healthy reference group can be 
assigned a 50% disconnection “probability” for the entire tract (Forkel 
and Catani, 2018). While this approach attempts to account for indi
vidual anatomical variability, it ultimately conflates the prior proba
bility that a streamline associated with a given tract will be present at a 
given voxel in healthy individuals with the probability that a lesion 
affecting that voxel will disconnect the entire tract. Additionally, like the 
tract lesion load approach, it also ignores the fact that white matter 
tracts have multi-voxel directional trajectories that carry relevant in
formation about the expected effects of a given lesion on signal 

transmission. While the disconnection severity approach used here ig
nores individual anatomical variability under the assumption that the 
locations and trajectories of the HCP-842 atlas tract reconstructions 
represent stable and conserved features of the white matter anatomy at 
the population level, this assumption is not unreasonable given the 
extremely large dataset used to construct the HCP-842 atlas (N = 842) 
and the law of large numbers. Importantly, unlike tract lesion loads or 
tract disconnection “probabilities”, tract disconnection severities are 
conceptually aligned with principles of neural signal transmission. 

2.5.3. White matter disconnection maps 

2.5.3.1. Background. In some circumstances, it may be preferable to 
represent white matter disconnections in terms of their 3-dimensional 
spatial topographies encoded in white matter disconnection maps. For 
example, disconnection maps allow for the efficient visualization of the 
entire disconnection topography associated with a given lesion. 
Accordingly, the toolkit includes functionality to output 3-dimensional 
white matter disconnection maps. 

2.5.3.2. Method. The toolkit outputs 3-dimensional streamline trac
tography maps of the disconnections associated with a given lesion. 
These maps are created by embedding the lesion segmentation into the 
full set of streamlines aggregated over all 70 tracts in the HCP-842 
streamline tractography atlas, and then filtering the streamlines to 
retain only the subset of streamlines that intersect the lesion (Fig. 3A). 
The resulting disconnected streamline map is then output as a 3-dimen
sional .trk file that can be loaded into DSI_Studio or other tractography 
viewers for high-quality visualization of the disconnected streamline 
topographies associated with a lesion (Fig. 3A, right image). The 
disconnected streamline map is also output as a 3-dimensional nifti file 

Fig. 3. White matter disconnection maps. A. The process for creating white matter disconnection maps is illustrated using the same lesion shown in previous 
figures. Streamline trajectories for all 70 tracts from the HCP-842 streamline tractography atlas are combined into a single aggregate whole-brain streamline atlas. 
The lesion (black) is then embedded into the whole-brain streamline atlas and intersected with the streamline trajectories to identify the subset of streamlines whose 
trajectories intersect the volume occupied the lesion, producing a 3D map of disconnected streamlines. Note: streamline trajectories are colored according to di
rection, as indicated by the legend. B. The disconnected streamline map shown in (A) is output as a tract density image (TDI) volume in voxel-space and converted to 
a voxel-wise percent disconnection map. The map shown in (B) is smoothed with a 2 mm full-width half-maximum Gaussian kernel. 
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containing a tract density image (TDI) volume that represents the 
disconnected streamlines in voxel space (Calamante et al., 2010). This 
file is a raw voxel-wise disconnection map, where voxel values corre
spond to the densities of disconnected streamlines within each voxel. 
This raw voxel-wise disconnection map is then converted into a voxel- 
wise percent disconnection severity map where the voxel values corre
spond to the percentage of all of the streamlines contained within each 
voxel (i.e., computed from the HCP-842 streamline tractography atlas) 
that are expected to be disconnected by the lesion (Fig. 3B). Optionally, 
spatial smoothing may be applied to the final output depending on user- 
specified options. 

2.5.3.3. Applications and considerations. Map-based representations of 
white matter disconnections can be particularly useful for visualizing 
the entire pattern of white matter disconnections associated with a given 
lesion, including fiber endpoints in the grey matter (Fig. 3). In addition, 
when white matter disconnection maps are represented in voxel space, 
they can be used as inputs into voxel-based analyses such as voxel-based 
lesion-symptom mapping or voxel-based morphometry to identify voxel- 
level disconnection topographies that are associated with an outcome of 
interest (Ashburner and Friston, 2000; Bates et al., 2003). 

The percent voxel-wise disconnection severity map can be used to 
form inputs for traditional voxel-based analyses such as voxel-based 
morphometry (Calamante et al., 2010). It is important to note, howev
er, that a given voxel may contain streamlines associated with multiple 
white matter pathways (Jones et al., 2013; Yeh et al., 2018), and this 
information is lost when the streamline maps are converted to voxel- 
wise TDI maps. The results of group-level analyses based on voxel- 
wise disconnection severity maps, which encode the expected percent 
reduction in streamline density for each voxel relative to the atlas due to 
the lesion, may therefore be best interpreted in terms of percent ex
pected voxel-wise white matter loss. Accordingly, while voxel-wise 
disconnection maps can be used to infer the voxel-wise topographies 
of affected/implicated connections, they typically should not form the 
sole basis for inferences about the involvement of specific pathways due 
to the potentially degenerate mapping between voxel-level streamline 
densities and specific white matter connections. 

Conceptually, the voxel-wise disconnection severity maps output by 
the toolkit should be more informative than the voxel-wise disconnec
tion “probability” maps produced by other tools (Foulon et al., 2018). 
Similar to tract disconnection “probabilities”, disconnection “probabil
ity” maps simply quantify the probability that each voxel will contain at 
least one streamline that intersects the lesion based on the group-level 
voxel-wise streamline visitation frequencies in a healthy reference 
group (Foulon et al., 2018). However, since each voxel may contain 
streamlines associated with multiple pathways, two patients whose le
sions disconnect separate white matter pathways that always intersect 
the same voxel in the healthy reference group could nonetheless both be 
assigned disconnection probabilities of 100% at that voxel. Voxel-wise 
disconnection probabilities are therefore difficult to meaningfully 
interpret. 

2.5.4. Parcel-wise disconnection severities 

2.5.4.1. Background. White matter disconnections can also be repre
sented in terms of pair-wise disconnections between grey matter parcels. 
Under this representation, disconnections between parcel pairs are 
represented as edges between nodes (i.e., grey matter parcels) in a 
graph. This information can be organized as an adjacency matrix (i.e., 
disconnection matrix) where each cell of the matrix contains informa
tion about the severity of disconnections sustained between a pair of 
grey matter parcels. Disconnection matrices therefore capture the entire 
pattern of pair-wise white matter disconnections between grey matter 
parcels. Accordingly, the toolkit includes functionality to output parcel- 
wise disconnection matrices based on the user-selected brain 

parcellation. 

2.5.4.2. Method. Parcel-wise disconnection matrices are computed in 
the same way as the “region-based disconnection” measure used in our 
previous study (Griffis et al., 2019). Prior to estimating the parcel-wise 
disconnection severities for a given lesion, an atlas structural connec
tivity matrix is first created using the aggregate (i.e., all 70 tracts) HCP- 
842 streamline tractography atlas and the user-selected brain parcella
tion (Fig. 4A). By default, structural connections between a parcel pair 
are defined as the number of atlas streamlines that bilaterally terminate 
within both parcels. Alternatively, the user may select a more liberal 
“pass-through” criterion to define parcel-wise structural connections as 
the number of atlas streamlines whose trajectories simply intersect a 
pair of parcels, although this definition may be biologically implausible 
and lead to interpretative difficulties. Once the atlas structural connec
tivity matrix has been created, the lesion is embedded into the aggregate 
HCP-842 streamline tractography atlas as a region-of-interest (ROI), and 
the atlas is filtered to retain only the subset of streamlines whose tra
jectories both intersect the volume occupied by the lesion (i.e., discon
nected streamlines) and terminate bilaterally within a parcel pair. This 
results in a raw parcel-wise disconnection matrix where each entry 
corresponds to the number of disconnected streamlines between a parcel 
pair. Finally, this raw disconnection matrix is converted to a percent 
disconnection severity matrix relative to the atlas structural connectivity 
matrix (Fig. 4B). That is, the number of disconnected streamlines be
tween each parcel pair is converted to a percentage of the total number 
of streamlines connecting that parcel pair in the atlas structural con
nectivity matrix. The values for each cell (i.e., parcel pair) in the final 
percent disconnection severity matrix therefore correspond to the esti
mated disconnection severities for each pair of parcels. The atlas 
structural connectivity matrix, patient disconnected streamline matrix, 
and patient disconnection severity matrix are output as n parcels × n 
parcels MATLAB matrices contained in .mat files, and as .edge and .node 
files to allow for high-quality network visualizations using external 
software (Fig. 4C). 

2.5.4.3. Applications and considerations. Disconnection severity 
matrices capture the entire pattern of pair-wise white matter discon
nections between grey matter parcels, and they can be straightforwardly 
interpreted in terms of the expected disconnection severity between 
each parcel pair. Unlike other representations of white matter discon
nections, disconnection matrices allow for the application of network 
analysis approaches based on graph theory and network science such as 
those implemented in the BCT toolbox included with the toolkit (Rubi
nov and Sporns, 2010). Accordingly, similar matrix-based representa
tions of parcel-to-parcel white matter (dis)connectivity are commonly 
employed by studies investigating region-level structure–function re
lationships in the healthy brain (Adachi et al., 2012; Goni et al., 2014; 
Honey et al., 2007), and we have also recently employed parcel-wise 
disconnection matrices to investigate how the inter-regional functional 
connectivity disruptions observed after stroke relate to inter-regional 
white matter disconnections (Griffis et al., 2020; 2019). In addition, 
because they provide a parametrizable representation of the full struc
tural (dis)connectome, matrix-based representations of white matter 
(dis)connectivity are also commonly employed by studies modeling the 
expected effects of brain lesions on the structural and functional con
nectomes (Alstott et al., 2009; Cabral et al., 2012; Saenger et al., 2017). 
Relatedly, it is worth noting that while previous lesion-connectome 
modeling studies have often simulated the effects of lesions on the 
structural connectome using parcel-wise or random connection deletion 
approaches, these simulation approaches cannot account for the fact 
that real lesions often damage the white matter and cause correlated 
disconnections among regions that are located within the same vascular 
territory (e.g. as in stroke) and/or whose connections travel in close 
proximity to each other (Griffis et al., 2019). To overcome these 
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limitations, future lesion-connectome modeling studies might utilize the 
toolkit to more realistically simulate the disconnections expected to 
result from hypothetical lesions. 

Like tract disconnection measures, disconnection matrices can be 
combined with parcel lesion load measures to obtain a “complete” 
representation of the grey matter damage and white matter disconnec
tions caused by a lesion. While disconnection matrices will necessarily 
have higher dimensionality than tract disconnection measures, they 
have the advantage of allowing for a unified representation of damage 
and disconnections at the parcel level. Accordingly, parcel lesion load 
measures can also be directly integrated with disconnection matrices to 
differentiate between white matter disconnections involving damaged 
vs. undamaged grey matter parcels, and this may be important for 
addressing certain research questions, such as questions concerning the 
properties of disconnected but largely undamaged brain regions (Griffis 
et al., 2020). 

2.5.5. Parcel-wise increases in shortest structural path lengths 

2.5.5.1. Background. The white matter disconnections caused by focal 
brain lesions can disrupt communication between brain regions that are 
indirectly connected via a series of direct white matter connections 
through intermediary regions (Griffis et al., 2020; Lu et al., 2011). For 
example, pontine lesions disrupt a serial poly-synaptic relay connecting 
the somatomotor cortex with the contralateral cerebellum through an 
intermediate relay through the pons, and damage to the pons disrupts 

ongoing cortico-cerebellar functional interactions (Lu et al., 2011). 
Importantly, the minimum number of direct parcel-to-parcel white 
matter connections that must be traversed in order to establish a 
structural pathway between a pair of grey matter parcels, referred to as 
the shortest structural path length (SSPL) between those parcels, can be 
directly computed from a parcel-wise structural connectivity matrix 
(Goni et al., 2014). Intuitively, parcel pairs with direct white matter 
connections have SSPLs equal to 1, while parcel pairs that are only 
structurally connected via a series of direct connections through inter
mediary parcels (i.e. indirectly connected parcel pairs) have SSPLs that 
are equal to the number of connections in the series. Lesions that 
interrupt direct connections between intermediary parcels along the 
shortest structural path between an indirectly connected parcel pair will 
therefore increase the SSPL between the indirectly connected parcel 
pair, resulting in an “indirect disconnection” (Griffis et al., 2020). 
Importantly, just like directly disconnected parcel pairs (Griffis et al., 
2019), indirectly disconnected parcel pairs reliably show disrupted 
resting-state functional connectivity (Griffis et al., 2020; Lu et al., 2011), 
which is a physiological predictor of cognitive and behavioral deficits in 
patients with focal brain lesions (Carter et al., 2012; Siegel et al., 2017). 
This indicates that these indirect disconnections are biologically rele
vant and contribute to the pathological disruptions of functional con
nectivity that have been previously linked to deficits in brain-lesioned 
patients (see Griffis et al., 2020 for a more thorough discussion of this 
topic). Accordingly, the toolkit includes functionality to output parcel- 
wise increases in SSPLs. 

Fig. 4. Parcel-wise disconnection matrices. A. The brain parcellation and aggregate HCP-842 streamline atlas (i.e. shown in Fig. 3A) are used to create an atlas 
structural connectivity matrix. Each cell in the matrix encodes the number of streamlines (log-transformed for visualization) that terminate within a pair of grey 
matter parcels. Matrices shown are organized into blocks corresponding to left hemispheric cortical (LH), right hemispheric cortical (RH), and subcortical/cerebellar 
(SC) parcels (blue lines), and cortical parcels are further organized into sub-blocks corresponding to their resting-state network assignments (colored bars along 
matrix axes – see Fig. 1; black lines). B. The brain parcellation, along with the disconnected streamline map (i.e., shown in Fig. 3) and atlas structural connectome, are 
then used to create a percent disconnection severity matrix (i.e., disconnection matrix). C. The disconnection severity matrix is visualized using a ball-and-stick 
representation in the external SurfIce viewer. Nodes (spheres) are sized and colored according to the total disconnection severity for each node (i.e., sum of 
disconnection severities over all edges). Edges (lines) are colored according to disconnection severity. Connectivity matrices were computed using the Schaefer et al., 
(2018) 200-region parcellation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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2.5.5.2. Method. Parcel-wise SSPL increases are computed according to 
the same procedure used in our previous study (Griffis et al., 2020). 
First, the atlas structural connectivity matrix is binarized to produce a 
binary matrix encoding the presence vs. absence of structural connec
tions between each parcel pair in the brain parcellation. Then, a breadth- 
first search algorithm (Rubinov and Sporns, 2010) is applied to the 
binarized atlas structural connectivity matrix to obtain an atlas SSPL 
matrix (Fig. 5A). Next, a percent spared connection matrix is created for 
the patient by subtracting the raw (i.e., streamline count) parcel-wise 
disconnection matrix from the raw atlas structural connectivity ma
trix, and converting the resulting values to the percentage of streamlines 
spared (i.e., relative to the atlas structural connectivity matrix). A user- 
defined binarization threshold, which defines the minimum percentage 
of streamlines between two parcels that must be spared in order for a 
connection to be considered a viable link in a shortest path, is then 
applied to the percent spared connection matrix, producing a binary 
matrix where all parcel pairs have values of either 1 (i.e., spared 
connection) or 0 (i.e., disconnected or no direct connection). Because 
the patient SSPL matrix is subsequently computed based on the binar
ized spared connection matrix, the spared connection binarization 
threshold has the potential to influence analysis results. By default, the 
threshold value is set to 50% (i.e., at least half of the streamlines must be 
spared for a connection to be considered in SSPL computations), but it 
can be adjusted by the user, and we recommend comparing analysis 
results across thresholds to assess threshold dependency. After binar
ization, the breadth-first search algorithm is then applied to the binar
ized spared connection matrix to produce a patient-specific SSPL matrix 
where each cell encodes the SSPL between each pair of grey matter 
parcels in the brain parcellation. This matrix is then converted into an 
SSPL increase matrix by subtracting out the atlas SSPL matrix (Fig. 5B). 
In the resulting SSPL increase matrix, cells corresponding to parcel pairs 

with preserved SSPLs have values of 0, and parcel pairs with increased 
SSPLs have values equal to the magnitude of the SSPL increase. If an 
SSPL is no longer defined between a parcel pair (i.e., no structural path 
between them exists, resulting an Inf value), then the SSPL between that 
parcel pair is assigned a value equal to 1 greater than the maximum 
value in the atlas SSPL matrix as in our previous work (Griffis et al., 
2020). Since the SSPL increase matrix includes the magnitudes of SSPL 
increases for both directly and indirectly connected parcel pairs, an 
indirect-only SSPL increase matrix is also created by setting the SSPLs 
between directly connected parcel pairs equal to 0. The patient spared 
connection matrix, atlas SSPL matrix, patient SSPL matrix, patient SSPL 
increase matrix, and patient indirect-only SSPL increase matrix are 
output as n parcels × n parcels MATLAB matrices stored in .mat files, and 
as .edge and .node files that can be used to produce network visualiza
tions using external software (Fig. 5C). 

2.5.5.3. Applications and considerations. Parcel-wise SSPL increases 
provide information about how white matter disconnections alter the 
higher-order network topology of the structural connectome. Impor
tantly, they provide a means for identifying “indirect” disconnections 
that occur due to the loss of intermediary connections along the shortest 
structural path between two parcels that lack direct structural connec
tions. As noted previously, we initially developed the SSPL increase 
measure as an indicator of indirect disconnection in order to test hy
potheses about how focal brain lesions disrupt resting-state functional 
connectivity after stroke (Griffis et al., 2020), and to our knowledge this 
measure has not otherwise been applied in the context of lesion 
research, although at least one other study has used a closely related 
measure of propagation speed to study the contribution of indirect dis
connections to chronic post-stroke aphasia (Del Gaizo et al., 2017). 
Because we believe that this measure has the potential to enable 

Fig. 5. Parcel-wise SSPL increases. A. The atlas structural connectivity matrix is binarized and used to compute an atlas SSPL matrix. B. The patient spared 
structural connection matrix is also binarized and used along with the atlas SSPL matrix to compute an SSPL increase matrix, and parcel pairs with direct structural 
disconnections are removed to produce an “indirect” disconnection matrix. C. The “indirect” disconnections contained within the SSPL increase matrix are visualized 
as a ball-and-stick representation using the external SurfIce viewer. Nodes (spheres) are sized and colored according to the total SSPL increase each node. Edge (lines) 
are colored according to the magnitude of the SSPL increase (rescaled as % max SSPL increase across all edges). Connectivity matrices were computed using the 
Schaefer et al., (2018) 200-region parcellation. 
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researchers to address novel questions about how lesions disrupt the 
higher-order structural network topology, we felt that it was important 
to include this measure among the toolkit outputs. 

It is worth noting that the method employed by the toolkit computes 
SSPLs from binarized structural connectivity matrices, as in our previous 
work (Griffis et al., 2020). While the breadth-first search algorithm for 
SSPL computation was initially chosen due to its simplicity of imple
mentation and interpretation with respect to identifying indirectly 
connected parcel pairs for the purposes of our previous work (Griffis 
et al., 2020), other algorithms can be used to estimate SSPLs from 
weighted structural connectivity matrices (Goni et al., 2014). However, 
unlike SSPLs estimated from binary matrices, SSPLs estimated from 
weighted matrices cannot be straightforwardly interpreted as the 
number of connections along the shortest path between two regions, and 
we have found that SSPL increase estimates obtained using binary and 
weighted matrices are highly correlated (Supplementary Fig. 1). 
Accordingly, the toolkit currently only includes functionality for 
computing SSPLs from binary matrices. 

2.6. Damage and disconnection summary report 

At any time after the damage and disconnection measures have been 
created for a patient, a summary report can be automatically generated 

from the configuration file and output files for that patient. The sum
mary report consists of several MATLAB figure windows that each 
summarize different outputs from the toolkit to provide a comprehen
sive overview of the damage and disconnections associated with a given 
lesion without requiring the use of external viewing software. An 
example summary report is shown in Fig. 6. 

2.7. Example analyses with real behavioral data 

2.7.1. Behavioral data 
Finally, to illustrate how the measures output by the toolkit might be 

used in practice, we performed several example analyses using real 
behavioral and lesion data from the sample of sub-acute stroke patients 
originally described in Corbetta et al., (2015). Patients completed a 
battery of 42 neuropsychological tests assessing function within motor, 
language, attention, verbal memory, spatial memory, and visual do
mains (Corbetta et al., 2015). Principal component analyses (PCA) with 
oblique rotation were used to obtain factor scores for each domain, as 
described in detail by the original publication (Corbetta et al., 2015). 
Factor scores for the first components obtained from PCAs of the lan
guage (n = 124), attention visual field (n = 100), and left motor (n =
117) domains were used for the example analyses reported here. The 
language factor captured general language deficits involving 

Fig. 6. Damage and disconnection summary report. A. The parcel damage map is shown overlaid on three orthogonal slices from the corresponding brain 
parcellation in an interactive figure window. B. The voxel-wise disconnection severity map is shown overlaid on three orthogonal slices from the HCP-842 quan
titative anisotropy volume in an interactive figure window. C. The direct parcel disconnection matrix (left) and indirect parcel SSPL increase matrix (right) are 
summarized using ball-and-stick graph brain representations in an interactive figure window. For visualization, the “indirect” disconnection matrix is thresholded to 
retain the top 25% of edges, although this threshold can be adjusted by the user. D. The tract-level disconnections are shown as a bar graph, sorted by disconnection 
severity. Parcel lesion loads and connectivity matrices were computed using the Schaefer et al., (2018) 200-region parcellation. Summary figures were generated 
using data from the same patient shown in previous figures. 
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comprehension, naming, and reading, the attention visual field factor 
captured a contralesional visual field bias consistent with hemi-spatial 
neglect, and the left motor factor captured motor deficits affecting the 
left side of the body (see Table 1 in Corbetta et al., 2015). 

These measures were chosen because post-stroke deficits in the 
associated behavioral domains have been reliably linked to the discon
nection of specific white matter pathways, making them well-suited for 
assessing the face validity of results obtained from analyses using the 
measures produced by the toolkit. Specifically, language deficits have 
been consistently linked to disconnections of the left arcuate fasciculus 
(AF) and left inferior fronto-occipital fasciculus (IFOF) (Catani and 
Mesulam, 2008; Griffis et al., 2017a; Hope et al., 2015; Ivanova et al., 
2016; Kümmerer et al., 2013). In addition, hemi-spatial neglect has been 
linked primarily to disconnections of the right superior longitudinal 
fasciculus (SLF) (Shinoura et al., 2009; Thiebaut De Schotten et al., 
2014; Toba et al., 2018), while contralesional motor deficits have been 
linked to disconnections of the ipsilesional cortico-spinal tract (CST) 
(Feng et al., 2015; Karnath and Rennig, 2017; Lin et al., 2018). 

2.7.2. Lesion data 
Lesions were manually segmented on structural MRI (T1, T2, T2- 

FLAIR) using the ANALYZE software package (Robb and Hanson, 
1991), and the lesion segmentations were reviewed by two board- 

certified neurologists (Maurizio Corbetta and Alex Carter). The final 
lesion segmentations were registered to the MNI template space using 
FSL’s FLIRT and FNIRT tools and resampled to 1 mm3 voxel dimensions 
as described in our previous publication (Griffis et al., 2019). The MNI- 
registered lesion segmentations, along with the augmented (i.e., to 
include subcortical and cerebellar regions) 200-region cortical parcel
lation by Schaefer and colleagues (2018), were then input into the 
Lesion Quantification Toolkit to create measures of grey matter damage 
and white matter disconnection for each patient using the endpoint- 
based criterion for determining parcel-wise structural (dis)connections 
and a 50% spared connection threshold for computing parcel-wise 
SSPLs. Additional analyses were also performed using a 100% spared 
connection threshold as a robustness check (Supplementary Fig. 2). 

2.7.3. Statistical analyses 
For each behavioral measure, separate mass-univariate Pearson 

correlation analyses were performed using the parcel-wise grey matter 
lesion load, tract-wise disconnection severity, voxel-wise disconnection 
severity, parcel-wise disconnection severity, and parcel-wise indirect 
SSPL increase measures described in the previous sections. Because of 
the small range (i.e., 1–5) and the observation that most SSPL increases 
had magnitudes of 1 (Supplementary Fig. 3), the parcel-wise indirect 
SSPL increase measures were binarized prior to analysis. Supplemental 

Fig. 7. Example lesion-behavior analysis results. A. Significant relationships between parcel lesion loads and behavioral deficits for language (left) and left motor 
(right) deficits. No significant effects were identified for the attention VF measure (middle). B. Top 3 significant relationships between tract disconnection severities 
and each behavioral deficit. C. Top 20% of significant relationships between voxel-wise disconnection severities and each behavioral deficit. D. Top 5% of significant 
relationships between parcel-wise disconnection severities and each behavioral deficit. E. Top 0.5% of significant relationships between indirect parcel-wise dis
connections (i.e., as indicated by SSPL increases) and each behavioral deficit. Results shown in B-E are restricted to strongest effects for visualization purposes. For 
ball-and-stick visualizations in D-E, ball sizes are proportional to the sum of all significant positive disconnection-deficit correlations (i.e., where disconnection 
correlates with more severe deficits) involving each parcel. IFOF – inferior fronto-occipital fasciculus; CT – cortico-thalamic tract; AF – arcuate fasciculus; FAT – frontal 
aslant tract; SLF – superior longitudinal fasciculus; FPT – fronto-pontine tract; PPT – parieto-pointine tract; CST – cortico-spinal tract; SSPL – shortest structural path length. 
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analyses using the un-binarized measures nonetheless revealed similar 
results (Supplementary Fig. 2). Additional analyses were also performed 
using the voxel-wise lesion maps for completeness (Supplementary 
Fig. 4). All analyses were restricted to variables (i.e., parcels/tracts/ 
voxels/connections) that were sufficiently affected (i.e., at least 10% 
damage/disconnection) in at least 4 patients (Supplementary Fig. 5). To 
adjust for lesion volume effects on deficit severity, linear regressions 
were performed to regress the effects of lesion volume out of the 
behavioral factor scores, and the residual factor scores were used in the 
subsequent mass-univariate correlation analyses. False discovery rate 
(FDR) correction was applied to the results obtained from each analysis 
(Benjamini and Hochberg, 1995), and results that survived an FDR 
threshold of 0.05 were considered statistically significant. Due to the 
large number of significant effects observed for the various disconnec
tion measures, percentile-based thresholds were applied to the FDR- 
corrected correlation results for display and visualization purposes 
(specified in Fig. 7). 

3. Results 

3.1. Grey matter parcel lesion loads 

Only the analyses of the language and left motor factor scores 
revealed significant correlations with parcel grey matter lesion loads at 
corrected statistical thresholds (Fig. 7A). The severity of language def
icits most strongly correlated with lesion loads for parcels in the left 
posterior superior/middle temporal cortex and left temporo-parietal 
cortex including the supramarginal and angular gyri, while the 
severity of left motor deficits most strongly correlated with grey matter 
lesion loads in the right putamen, caudate, and insular cortex. 

3.2. White matter tract disconnection severities 

The relationships observed between tract disconnection severities 
and behavioral deficits were highly consistent with our expectations 
based on the prior literature (Fig. 7B). The severity of language deficits 
was strongly correlated with the severity of disconnections sustained by 
the left AF and left IFOF. Language deficits were also strongly correlated 
with the severity of left cortico-thalamic disconnections, consistent with 
recent evidence implicating cortico-thalamic projections in language 
deficits after stroke (Griffis et al., 2017a; Mirman et al., 2015). The 
severity of hemi-spatial neglect, as estimated by the attention visual 
field factor scores, was most strongly correlated with the severity of 
disconnections sustained by the right SLF. Hemi-spatial neglect severity 
also correlated with the severity of disconnections sustained by the right 
AF and right frontal aslant tract (FAT), which have also been previously 
implicated in post-stroke visuo-spatial neglect (Carter et al., 2017; 
Thiebaut De Schotten et al., 2014). Left motor deficit severity was most 
strongly correlated with the severity of disconnections sustained by the 
right CST. Left motor deficit severity was also strongly correlated with 
the severity of disconnections sustained by the right fronto-pontine and 
parieto-pontine pathways, which are part of a poly-synaptic relay link
ing ipsilesional cortical regions to the contralesional cerebellum (Lu 
et al., 2011; Middleton and Strick, 2001) that has been implicated in 
motor deficits after stroke (den Ouden et al., 2019) and that is likely 
important for motor control (Stoodley et al., 2012). 

3.3. Voxel-wise disconnection severities 

The results of analyses performed using the voxel-wise disconnection 
severity maps were highly consistent with those obtained using the 
tract-wise white matter disconnection severity measures (Fig. 7C). The 
thresholded maps shown in Fig. 7C clearly show that language deficits 
were most strongly correlated with disconnection severities for voxels 
located along the trajectories of the left AF and left IFOF, while hemi- 
spatial neglect was most strongly correlated with disconnection 

severities for voxels located along the trajectory of the right SLF, and left 
motor deficits were most strongly correlated with disconnection sever
ities for voxels located along the trajectory of the right CST (Fig. 7C, 
third row). 

3.4. Parcel-wise disconnection severities 

Highly consistent results were also obtained from analyses per
formed using the parcel-wise disconnection severity matrices (Fig. 7D). 
The severity of language deficits was most strongly correlated with the 
severity of white matter disconnections between parcels in left inferior 
frontal cortex and parcels in left temporal, parietal, and occipital 
cortices, consistent with disconnections of the left AF and left IFOF. The 
severity of hemi-spatial neglect was most strongly correlated with the 
severity of white matter disconnections between parcels in right lateral 
pre-frontal cortices and parcels in right temporal and parietal cortices, 
consistent with disconnections of the right SLF and right AF. The 
severity of left motor deficits was most strongly correlated with the 
severity of white matter disconnections between parcels in right soma
tomotor cortex and parcels in the right thalamus, putamen, and the 
brainstem, consistent with disconnections of the right CST and right 
cortico-thalamic/cortico-striatal projections. 

3.5. Parcel-wise indirect disconnections identified by SSPL increases 

Finally, analyses revealed significant correlations between behav
ioral deficits and indirect parcel-wise disconnections (i.e., as identified 
by SSPL increases between indirectly connected parcel pairs) for all 
three behavioral measures (Fig. 7E). The severity of language deficits 
was most strongly correlated with indirect disconnections between left 
temporal/temporo-parietal/temporo-occipital parcels and parcels 
distributed throughout the left frontal lobe, presumably reflecting dis
ruptions of indirect pathways connecting these parcels with distributed 
frontal regions via direct connections to the left inferior frontal gyrus 
(Fig. 7D) through canonical fiber tracts such as the left AF and IFOF 
(Fig. 7B-C). This interpretation is consistent with models that posit the 
left IFG as a cortical hub in frontal cortex that directly interfaces with 
posterior supramodal convergence zones to select and retrieve infor
mation (Binder and Desai, 2011) that may then be passed to other 
frontal regions such as pre-motor cortex (Basilakos et al., 2018). 

The severity of hemi-spatial neglect was most strongly correlated 
with indirect disconnections between a parcel located near the right 
inferior frontal junction (IFJ) (Muhle-Karbe et al., 2016) associated with 
the ventral attention/salience networks (i.e. per the Schaefer et al., 2018 
7-network partition) and parcels distributed throughout the right fron
tal, right temporal, right parietal, and right occipital lobes (Fig. 7E, 
middle), suggesting that the direct disconnections associated with 
spatial neglect (Fig. 7B-D, middle) tend to disrupt indirect pathways 
between the right IFJ and parcels distributed throughout the right 
hemisphere. Interestingly, this finding is consistent with previous work 
suggesting that this region may integrate information between the 
ventral and dorsal attention systems and implicating its long-range 
functional interactions in the pathogenesis of spatial neglect (Asplund 
et al., 2010; He et al., 2007). Strong correlations were also observed 
between indirect disconnections among right frontal regions and be
tween right frontal regions and the left parietal lobe. 

Finally, the severity of left motor deficits was most strongly corre
lated with indirect disconnections between parcels in right somatomotor 
cortex and parcels in the left/medial cerebellum (Fig. 7C, bottom row), 
consistent with disruptions of the poly-synaptic cortico-pontine-cere
bellar pathway by the direct disconnection of cortico-pontine pro
jections (Lu et al., 2011). Left motor deficits were also correlated with 
indirect disconnections between right somato-motor cortex and parcels 
in right pre-frontal cortex. 
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4. Discussion 

Over the past two decades, the development and implementation of 
advanced techniques for non-invasively measuring brain connectivity 
has revolutionized the fields of neuroscience and neurology by shifting 
their focus towards understanding how cognition, behavior, and clinical 
symptoms relate to distributed brain networks and their connections. 
Accordingly, researchers in these fields are increasingly interested in 
quantifying the effects of focal brain lesions on the brain’s structural 
connectome. To address this need, we developed the Lesion Quantifi
cation Toolkit, a publicly available MATLAB software package designed 
to comprehensively characterize the grey matter damage and white 
matter disconnections associated with pathologies such as brain tumors, 
traumatic brain injuries, and stroke. Here, we presented the toolkit, 
provided detailed descriptions of the different outputs that it creates, 
and demonstrated the utility of the measures produced by the toolkit by 
incorporating them into example analyses of real behavioral data ob
tained from a large sample of sub-acute stroke patients. We anticipate 
that this toolkit will constitute an important resource that facilitates the 
integration of white matter disconnection measures into studies of pa
tients with focal brain lesions. 

4.1. Comparisons with other software tools 

As noted in the Introduction, relatively few dedicated tools exist to 
facilitate anatomically-informed lesion analyses. While all existing tools 
employ principally similar atlas-based approaches to quantifying lesion- 
induced white matter disconnections, the Lesion Quantification Toolkit 
offers several advantages over existing tools. 

First and foremost, the Lesion Quantification Toolkit produces a 
comprehensive set of measures that include parcel-wise grey matter 
lesion loads and multiple measures of white matter disconnection that 
include tract-wise, voxel-wise, and parcel-wise disconnection severities. 
Importantly, it also estimates parcel-wise SSPL increases that can be 
leveraged to obtain insights into the “indirect” disconnections caused by 
a lesion (e.g., Fig. 6, Fig. 7 – bottom row). This is in contrast to other 
existing tools that typically produce only one or two measures. 

For example, the Network Modification (NeMo) Tool, one of the first 
tools developed for quantifying white matter disconnections in patients 
with focal brain lesions, only produces two measures for each lesion 
input: parcel-level scores summarizing the total (i.e., across all pair-wise 
connections) change in connectivity for each grey matter parcel, and 
whole-brain summary statistics summarizing changes in global network 
topology (Kuceyeski et al., 2013). Importantly, neither of these sum
mary measures provide information about the specific white matter 
connections (i.e., fiber tracts, parcel-wise connections) that are affected 
by a lesion. Further, because the NeMo Tool does not produce any 
measures of parcel grey matter lesion loads, it cannot be determined 
whether the connectivity change scores obtained for a given parcel 
reflect the effects of direct damage to that parcel or the effects of damage 
to that parcel’s white matter connections. While the Lesion Quantifi
cation Toolkit does not directly output global network summary statis
tics, these measures can be easily computed from the parcel-wise 
disconnection, spared connection, and SSPL measures using functions 
implemented in the included Brain Connectivity Toolbox (Rubinov and 
Sporns, 2010). 

Similarly, another recently developed tool, the Brain Connectivity 
and Behavior (BCB) Toolkit, only produces measures of tract-wise lesion 
loads, tract-wise disconnection “probabilities”, and voxel-wise discon
nection “probabilities” (Foulon et al., 2018). However, as discussed 
previously in the Methods, lesion load measures are inappropriate for 
measuring white matter disconnections because they ignore the multi- 
voxel directional trajectories of white matter fibers and their stream
line representations and inappropriately assume that greater overlaps 
between the lesion- and tract-occupied volumes will necessarily trans
late to more severe disconnections (Fig. 2D). Similarly, the tract 

disconnection “probability” measures produced by the BCB toolkit do 
not actually reflect the probability that a given white matter tract is 
disconnected, but instead reflect the maximum prior probability that a 
streamline associated with a given tract in a healthy reference group will 
be present within at least one lesioned voxel (Forkel and Catani, 2018). 
In contrast, the white matter disconnection measures produced by the 
Lesion Quantification Toolkit are uniformly expressed in terms of 
disconnection severities, which are conceptually sound and can be 
interpreted in straightforward and biologically relevant terms. While 
one other recently developed tool does measure white matter discon
nections in terms of disconnection severity (which it refers to as “con
nectivity loss”), this tool is still relatively limited in scope, as it only 
produces parcel-wise disconnection matrices (Greene et al., 2019). By 
outputting multiple complementary measures of white matter discon
nection severity, the Lesion Quantification Toolkit allows the user to 
select the most appropriate measure(s) to address the question of in
terest and/or to assess the consistency of results across multiple com
plementary perspectives (Fig. 7). 

Another advantage of the Lesion Quantification Toolkit is that it 
computes white matter disconnection measures based on the 
population-scale HCP-842 streamline tractography atlas. This atlas was 
constructed from group-averaged high spatial and high angular resolu
tion diffusion MRI data from 842 healthy individuals, and the final 
streamline reconstructions were expert-vetted to improve anatomical 
fidelity and reduce the prevalence of false positive streamlines (Yeh 
et al., 2018). In contrast, the tractography atlases used by other existing 
methods are based on atlases constructed from much smaller diffusion 
MRI datasets (NeMo: N = 70; BCB toolkit: N = 10; Greene et al., 2019: N 
= 200), and it is unclear whether the underlying data used by other tools 
have been explicitly vetted to maximize correspondence with the known 
white matter anatomy, which may influence the quality of the measures 
(Supplementary Fig. 6). This may be particularly important given the 
high prevalence of false positive connections in diffusion MRI tractog
raphy analyses (Maier-Hein et al., 2017). In addition, whereas the 
atlases utilized by other tools consist of multiple, separate, subject-level 
streamline sets that were each constructed from single-subject diffusion 
MRI data, the HCP-842 atlas consists of only a single group-level 
streamline set that was constructed from population-averaged diffu
sion data (i.e., averaged over all 842 subjects) in the MNI template 
space. While the HCP-842 atlas (and subsequently, any measure derived 
from it) does not explicitly account for inter-individual anatomical 
variability, it should nonetheless represent the most stable features of 
the population-level white matter anatomy due to large sample aver
aging of high-quality data (Yeh et al., 2018). 

4.2. Considerations related to atlas-derived lesion measures 

As with other similar tools, all of the measures produced by the 
Lesion Quantification Toolkit are necessarily derived from reference 
datasets and atlases, and so they cannot capture patient-specific 
anatomical features (e.g., variations in the spared anatomy), which 
may be relevant for explaining variability in outcomes across patients 
with similar lesions (Forkel et al., 2014; Forkel and Catani, 2018). 
Nonetheless, the use of independent reference datasets is advantageous 
in the sense that it reduces the potential for confounding influences from 
sources such as inter-individual variation in diffusion MRI data quality 
and/or data reconstruction, which may be particularly relevant for 
studies of patients with gross anatomical abnormalities such as brain 
lesions (Gleichgerrcht et al., 2017; Jones et al., 2013). 

The measures output by the toolkit have the desirable property of 
being defined relative to a common reference, which makes them 
directly comparable across individuals and even across independent 
studies. Notably, we have previously used the different measures that 
are produced by the toolkit with great success in our recent studies on 
the structural bases of functional connectivity disruptions caused by 
stroke (Griffis et al., 2020; 2019), and similar atlas-derived measures 
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have been successfully employed to investigate the structural correlates 
of deficits in various behavioral domains including attention (Smith 
et al., 2013; Thiebaut De Schotten et al., 2014), language (Fridriksson 
et al., 2018; Griffis et al., 2017a; 2017b;; Hope et al., 2015), and general 
cognition and daily living (Kuceyeski et al., 2016; 2015). The results of 
the example analyses presented here also align closely with results re
ported in the prior literature and provide evidence to support the face 
validity of the measures produced by the toolkit (Fig. 7). Importantly, 
the results of these analyses demonstrate that the different white matter 
disconnection measures provide complementary perspectives that 
nonetheless yield consistent conclusions about the white matter dis
connections implicated in different behavioral deficits (Fig. 7). 

It nonetheless remains unclear whether or not atlas-derived discon
nection measures can consistently provide additional power to predict 
outcomes beyond that provided by traditional lesion measures. While 
some studies have reported that white matter disconnection measures 
are superior to traditional lesion measures for explaining behavioral and 
physiological disruptions in patients with focal brain lesions (Griffis 
et al., 2019; Kuceyeski et al., 2016, 2015; Pacella et al., 2019), other 
studies have found little-to-no difference in performance between 
lesion-based vs. disconnection-based models (Hope et al., 2018; Salva
laggio et al., 2020). Several factors likely contribute to these discrepant 
results across studies, including variability in the sample sizes and lesion 
characteristics of the samples under study, variability in how discon
nection measures are defined, and variability in the degree to which the 
outcomes of interest actually depend directly on distributed white 
matter disconnections vs. focal damage to specific structures. We briefly 
explore these possibilities below. 

For example, it may be possible for machine learning algorithms to 
recover implicit disconnection information when applied to voxel-level 
lesion data from extremely large patient samples if the group-level lesion 
coverage, voxel-level lesion frequencies, and inter-patient lesion vari
ability is sufficiently high. This, along with the very coarse nature of the 
parcellation (i.e., AAL) employed, could potentially explain why Hope 
and colleagues (2018; N = 818) did not identify substantial differences 
in predictive power between damage-based and disconnection-based 
models of chronic language deficits. It is also possible that certain 
types of disconnection information are less informative than others. For 
example, Salvalaggio and colleagues (2020) found only minor differ
ences in the predictive power of behavioral deficit models based on 
voxel-wise lesion maps vs. voxel-wise disconnection “probability” maps. 
Speculatively, it is possible that this might reflect the loss of connection- 
level information incurred by representing disconnections as binary 
voxel-level streamline visitation maps, especially given that the maps in 
question conflate voxel-level streamline visitation probabilities with 
disconnection probabilities (see section 2.5.3) and may feature biolog
ically implausible disconnections (Supplementary Fig. 6). Finally, 
different outcomes may differ in the extent to which they actually 
directly depend on white matter disconnections. For example, there is 
strong a priori evidence that functional connectivity, at least in part, 
depends directly on the underlying structural connections through the 
white matter (Adachi et al., 2012; Goni et al., 2014; Johnston et al., 
2008; O’Reilly et al., 2013; Roland et al., 2017; Van Den Heuvel et al., 
2009), but the degree to which complex cognitive/behavioral processes 
depend directly on white matter structural connections is less clear. This 
could also potentially explain why we found white matter disconnection 
measures to consistently outperform parcel lesion load and voxel-wise 
lesion status measures for explaining variability in the severity of 
functional connectivity disruptions caused by stroke (Griffis et al., 
2019), while other studies focusing on behavioral outcomes have not 
identified such consistent advantages (e.g. Hope et al., 2018; Salvalaggio 
et al., 2020; but see also Kuceyeski et al., 2015; 2016;; Pacella et al., 
2019). Nonetheless, the relative utility of traditional lesion measures vs. 
atlas-derived white matter disconnection measures for predicting indi
vidual clinical outcomes remains an important topic of ongoing study, 
and more dedicated work on this topic is necessary to ultimately 

determine if and/or when disconnection measures will provide addi
tional explanatory and/or predictive power. By making this toolkit 
publicly available, we aim to facilitate further research in this domain. 

5. Conclusions 

The Lesion Quantification Toolkit is, to our knowledge, the most 
comprehensive software tool available for enabling anatomically- 
informed quantification of grey matter damage and white matter dis
connections in patients with focal brain lesions. Accordingly, we antic
ipate that it will constitute a valuable tool that will empower researchers 
to obtain novel insights into how both the focal damage and distributed 
disconnections caused by focal brain lesions relate to cognition, 
behavior, and brain function. 

6. Data and software availability 

The final Lesion Quantification Toolkit software can be downloaded 
at https://wustl.box.com/v/LesionQuantificationToolkit. The current 
version is also available via request to the corresponding author. 

Lesion and behavioral data can be accessed at http://cnda.wustl.edu 
/app/template/Login.vm. 
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Foulon, C., Cerliani, L., Kinkingnéhun, S., Levy, R., Rosso, C., Urbanski, M., Volle, E., de 
Schotten, M.T., 2018. Advanced lesion symptom mapping analyses and 
implementation as BCBtoolkit. Gigascience 7, 1–17. https://doi.org/10.1093/ 
gigascience/giy004. 

Fox, M.D., 2018. Localizing symptoms to brain networks using the human connectome. 
N. Engl. J. Med. 2237–2245 https://doi.org/10.1056/NEJMra1706158. 

Fridriksson, J., den Ouden, D.-B., Hillis, A.E., Hickok, G., Rorden, C., Basilakos, A., 
Yourganov, G., Bonilha, L., 2018. Anatomy of aphasia revisited. Brain 1–15. https:// 
doi.org/10.1093/brain/awx363. 

Fridriksson, J., Guo, D., Fillmore, P., Holland, A., Rorden, C., 2013. Damage to the 
anterior arcuate fasciculus predicts non-fluent speech production in aphasia. Brain 
136, 3451–3460. https://doi.org/10.1093/brain/awt267. 

Friston, K.J., Kahan, J., Razi, A., Stephan, K.E., Sporns, O., 2014. On nodes and modes in 
resting state fMRI. Neuroimage 99, 533–547. https://doi.org/10.1016/j. 
neuroimage.2014.05.056. 

Gleichgerrcht, E., Fridriksson, J., Rorden, C., Bonilha, L., 2017. Connectome-based 
lesion-symptom mapping (CLSM): A novel approach to map neurological function. 
NeuroImage Clin. 16, 461–467. https://doi.org/10.1016/j.nicl.2017.08.018. 

Goni, J., van den Heuvel, M.P., Avena-Koenigsberger, A., Velez de Mendizabal, N., 
Betzel, R.F., Griffa, A., Hagmann, P., Corominas-Murtra, B., Thiran, J.-P., Sporns, O., 
2014. Resting-brain functional connectivity predicted by analytic measures of 
network communication. Proc. Natl. Acad. Sci. 111 (2), 833–838. https://doi.org/ 
10.1073/pnas.1315529111. 

Greene, C., Cieslak, M., Volz, L.J., Hensel, L., Grefkes, C., Rose, K., Grafton, S.T., 2019. 
Finding maximally disconnected subnetworks with shortest path tractography. 
NeuroImage Clin. 23, 101903. https://doi.org/10.1016/j.nicl.2019.101903. 

Griffis, J.C., Metcalf, N.V., Corbetta, M., Shulman, G.L., 2020. Damage to the shortest 
structural paths between brain regions is associated with disruptions of resting-state 
functional connectivity after stroke. Neuroimage 210, 116589. https://doi.org/ 
10.1016/j.neuroimage.2020.116589. 

Griffis, J.C., Metcalf, N.V., Corbetta, M., Shulman, G.L., 2019. Structural disconnections 
explain brain network dysfunction after stroke. Cell Rep. 28, 2527–2540. https:// 
doi.org/10.1101/562165. 

Griffis, J.C., Nenert, R., Allendorfer, J.B., Szaflarski, J.P., 2017a. Damage to white matter 
bottlenecks contributes to language impairments after left hemispheric stroke. 
NeuroImage Clin. 14, 552–565. https://doi.org/10.1016/j.nicl.2017.02.019. 

Griffis, J.C., Nenert, R., Allendorfer, J.B., Szaflarski, J.P., 2017b. Linking left hemispheric 
tissue preservation to fMRI language task activation in chronic stroke patients. 
Cortex 96, 1–18. https://doi.org/10.1016/j.cortex.2017.08.031. 

He, B.J., Snyder, A.Z., Vincent, J.L., Epstein, A., Shulman, G.L., Corbetta, M., 2007. 
Breakdown of functional connectivity in frontoparietal networks underlies 
behavioral deficits in spatial neglect. Neuron 53 (6), 905–918. https://doi.org/ 
10.1016/j.neuron.2007.02.013. 

Herbet, G., Maheu, M., Costi, E., Lafargue, G., Duffau, H., 2016. Mapping neuroplastic 
potential in brain-damaged patients. Brain 139 (3), 829–844. https://doi.org/ 
10.1093/brain/awv394. 

Honey, C.J., Kotter, R., Breakspear, M., Sporns, O., 2007. Network structure of cerebral 
cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci. 
104 (24), 10240–10245. https://doi.org/10.1073/pnas.0701519104. 

Hope, T.M.H., Leff, A.P., Price, C.J., 2018. Predicting language outcomes after stroke: Is 
structural disconnection a useful predictor? NeuroImage Clin. 19, 22–29. https:// 
doi.org/10.1016/j.nicl.2018.03.037. 

Hope, T.M.H.H., Seghier, M.L., Prejawa, S., Leff, A.P., Price, C.J., 2015. Distinguishing 
the effect of lesion load from tract disconnection in the arcuate and uncinate 
fasciculi. Neuroimage 125, 1169–1173. https://doi.org/10.1016/j. 
neuroimage.2015.09.025. 

Ivanova, M.V., Isaev, D.Y., Dragoy, O.V., Akinina, Y.S., Petrushevskiy, A.G., Fedina, O.N., 
Shklovsky, V.M., Dronkers, N.F., 2016. Diffusion-tensor imaging of major white 
matter tracts and their role in language processing in aphasia. Cortex 85, 165–181. 
https://doi.org/10.1016/j.cortex.2016.04.019. 

Johnston, J.M., Vaishnavi, S.N., Smyth, M.D., Zhang, D., He, B.J., Zempel, J.M., 
Shimony, J.S., Snyder, A.Z., Raichle, M.E., 2008. Loss of Resting Interhemispheric 
Functional Connectivity after Complete Section of the Corpus Callosum. J. Neurosci. 
28 (25), 6453–6458. https://doi.org/10.1523/JNEUROSCI.0573-08.2008. 
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Chamberland, M., Yeh, F.-C., Lin, Y.-C., Ji, Q., Reddick, W.E., Glass, J.O., Chen, D.Q., 
Feng, Y., Gao, C., Wu, Y.e., Ma, J., He, R., Li, Q., Westin, C.-F., Deslauriers- 
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