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A B S T R A C T   

Chronic low back pain (LBP) is a very common health problem worldwide and a major cause of disability. Yet, 
the lack of quantifiable metrics on which to base clinical decisions leads to imprecise treatments, unnecessary 
surgery and reduced patient outcomes. Although, the focus of LBP has largely focused on the spine, the literature 
demonstrates a robust reorganization of the human brain in the setting of LBP. Brain neuroimaging holds promise 
for the discovery of biomarkers that will improve the treatment of chronic LBP. In this study, we report on 
morphological changes in cerebral cortical thickness (CT) and resting-state functional connectivity (rsFC) 
measures as potential brain biomarkers for LBP. Structural MRI scans, resting state functional MRI scans and self- 
reported clinical scores were collected from 24 LBP patients and 27 age-matched healthy controls (HC). The 
results suggest widespread differences in CT in LBP patients relative to HC. These differences in CT are correlated 
with self-reported clinical summary scores, the Physical Component Summary and Mental Component Summary 
scores. The primary visual, secondary visual and default mode networks showed significant age-corrected in
creases in connectivity with multiple networks in LBP patients. Cortical regions classified as hubs based on their 
eigenvector centrality (EC) showed differences in their topology within motor and visual processing regions. 
Finally, a support vector machine trained using CT to classify LBP subjects from HC achieved an average clas
sification accuracy of 74.51%, AUC = 0.787 (95% CI: 0.66–0.91). The findings from this study suggest wide
spread changes in CT and rsFC in patients with LBP while a machine learning algorithm trained using CT can 
predict patient group. Taken together, these findings suggest that CT and rsFC may act as potential biomarkers 
for LBP to guide therapy.   

1. Introduction 

Chronic low back pain (LBP) represents a significant public health 
problem and is a major cause of disability globally (Vos et al., 2017). 
Health care costs for LBP in the United States have ballooned to nearly 
$1 trillion dollars (Dieleman et al., 2016). The diagnosis and treatment 
of chronic LBP has been complicated by heterogenous etiologies and 
neuroimaging modalities that fail to measure central mechanisms of 
pain (Rudisch et al., 1998; Thomsen et al., 2001; Vaccaro et al., 1994). 
Spinal magnetic resonance imaging (MRI) techniques are actively uti
lized in the investigation of biomarkers of LBP but are often limited by 

artifacts imposed by spinal implants necessary for stabilization and also 
do not measure central pain processing mechanisms (Rudisch et al., 
1998; Thomsen et al., 2001). In fact, it is well known that many in
dividuals with LBP show no significant abnormalities in modern spinal 
imaging (Rubinstein and van Tulder, 2008). These hurdles and the 
complex pathophysiology of chronic LBP make its prognostication and 
clinical management challenging (Last and Hulbert, 2009). 

Brain imaging has identified regions that are involved in the pro
cessing and perception of pain (Martucci and Mackey, 2018; Yarkoni 
et al., 2011). The cortical areas identified are involved in motor pro
cessing (primary motor cortex, supplementary motor area), 
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multisensory integration (temporal-parietal junction), cognitive 
perception of pain (anterior cingulate cortex, ventromedial prefrontal 
cortex, dorsolateral prefrontal cortex), and act as nociceptive centers of 
pain (insula, thalamus). However, neural correlates of LBP remain 
poorly understood. Cortical thickness (CT) appears to reflect the func
tional organization of the human cortex and act as a potential marker for 
the development of LBP. Regional changes in grey matter have been 
reported in several pain studies (Bagarinao et al., 2014; Bernabéu-Sanz 
et al., 2020). Baliki et al. demonstrated a global reduction in grey matter 
volume and a disruption of the whole-brain morphological organization 
in LBP patients (Baliki et al., 2011). They also showed that subjects who 
clinically recovered had normal gray matter volumes, but subjects with 
persistent LBP demonstrated global and regional reductions in gray 
matter volume (Baliki et al., 2012). 

In addition to biomarkers derived from structural MRI, resting state 
functional MRI (rsfMRI) has gained immense popularity in measuring 
functional connectivity between brain regions and resting state networks 
(RSN) in patients with LBP (Shen et al., 2019). Experiments have reported 
disruptions in connectivity within the visual processing stream (Shen 
et al., 2019) and between the insula and pain processing areas (Wiech 
et al., 2014) of LBP patients. Similar observations have been reported on 
connectivity between the nucleus accumbens and medial prefrontal 
cortex (Baliki et al., 2012; Hashmi et al., 2013). Furthermore, there is 
increasing evidence from other neurological disorders that damage to 
one part of the central nervous system (CNS) can disrupt connectivity 
patterns within other CNS structures (Carrera and Tononi, 2014). This 
can lead to disturbances in network connectivity on a global brain level. 
However, previous studies lack a systematic analysis of global patterns of 
rsFC, and the brain’s intra- and inter-network interactions in LBP. 

Patterns of resting state connectivity can also be modeled using 
graph theoretical measures consisting of nodes (brain parcels) and edges 
(functional interactions between brain regions). The organization of 
these RSNs is critical to the flow of information between nodes and its 
resulting efficiency. Hubs play a key role in facilitating more efficient 
integration of information between nodes by adopting a highly con
nected and functionally central role within a network (van den Heuvel 
and Sporns, 2013). Changes have been reported in the network orga
nization of individuals with chronic pain disorders (Balenzuela et al., 
2010; De Pauw et al., 2020; Liu et al., 2012) and LBP (Mansour et al., 
2016) However, these studies did not examine hubs specifically. Instead, 
they assessed the variability in node community membership. The 
highly-connected nature of hubs creates an inherent vulnerability in the 
event of a disruption to its organization. This can result in significant 
interruption in the flow of information. In fact, hubs are dispropor
tionally affected in neurological disorders as changes in CT are more 
likely to occur in hubs (Crossley et al., 2014; Stam, 2014). 

When taken together, the literature demonstrates that LBP patients 
show differences on a structural and functional level within the brain. 
We hypothesized that patients with LBP will show disruptions in func
tional connectivity between brain regions involved in the processing and 
perception of pain. We further hypothesized that LBP patients would 
show aberrations in the CT within regions previously implicated in the 
processing of pain and that these changes would predict subject- 
reported clinical pain scores. Additionally, we set out to examine if 
variations in CT could be used as an imaging biomarker to train machine 
learning algorithms to classify LBP from healthy controls. Thus, the aims 
of this study were to 1) characterize the cortical areas that showed age- 
corrected differences in cortical thickness between patient groups, 2) 
determine associations between CT with self-reported clinical summary 
scores, 3) characterize differences in functional connectivity on a 
cortical area and network level, 4) examine global network properties 
and hub topology, and 5) train a support vector machine to accurately 
predict LBP from healthy controls and support a clinical translation of 
this technique. 

We collected high-resolution structural and resting state scans and 
self-reported clinical data for the 36-Item Short Form healthy survey 

(SF-36). We used the Human Connectome Project’s (HCP) multi-modal 
surface-based cortical parcellation (MMP) which contains 180 sym
metric cortical parcels per hemisphere (Glasser et al., 2016a). This 
parcellation is defined in terms of surface vertices and used across 
multiple modalities to define cortical areal borders, making it possible to 
accurately map the parcellation to individual subjects. 

2. Methods 

2.1. Participants 

Participants were recruited through the Washington University 
School of Medicine Research Participant Registry (Volunteer for Health) 
and direct patient contact during hospital visits at the Barnes Jewish 
Hospital, Washington University School of Medicine, and Barnes Jewish 
West County Hospital. Prior to enrollment in the study, a trained 
physician screened prospective participants. LBP patients with a history 
of LBP over 6 months without lower extremity symptoms were recruited 
for this study. LBP subjects had a diagnosis of chronic low back pain due 
to lumbar spondyloarthropathy without history of lumbar spine surgery. 
All eligible healthy controls (HC) in the study had no history of neuro
logical injury or disease at the time of scanning. 

All procedures used in this study were approved by the Washington 
University in St. Louis Institutional Review Board. Written informed 
consent was obtained from all participants prior to MRI scanning and 
administration of clinical surveys. A sample of 27 HC and 24 LBP sub
jects (age matched; p = 0.21, Wilcoxon rank-sum test) were recruited for 
the study (refer Supplementary Information Methods for inclusion and 
exclusion criteria). 

2.2. Clinical surveys and factor analysis 

Data for the Short-Form 36-item (SF-36) health survey questionnaire 
(Ware and Sherbourne, 1992) was collected from each participant. The 
SF-36 is summarized into 8 sub-categories 1) physical functioning (PF), 
2) role limitations due to physical health problems (RLP), 3) bodily pain 
(P), 4) general health (GH), 5) energy fatigue (EF), 6) social functioning 
(SF), 7) role limitations due to emotional problems (RLE) and 8) 
emotional well-being (E) (Ware, 1993). A higher score for any of these 
categories represents a better health condition for these 8 subcategories. 

These eight scales can be aggregated into physical and mental 
component summary scores (Ware et al., 1994). Scores for the eight SF- 
36 subscales were calculated following the standard guideline (Ware, 
1993; Ware and Sherbourne, 1992). A factor analysis approach was then 
applied to these scores to get the Physical Component Summary (PCS) 
factor score, and the Mental Component Summary score (MCS) as used 
in previous studies (Farivar et al., 2007; Ware et al., 1994, 1995). 

2.3. MRI and fMRI data acquisition and pre-processing 

All MRI data were collected in a 3T Siemens Prisma and 32-channel 
head coil; 0.8 mm isotropic T1-weighted and T2-weighted scans were 
obtained. The functional runs were collected using multi-band gradient 
echo EPI (Multi band accel. factor =6). The entire brain was scanned with 
high spatial (2.4 × 2.4 mm × 2.4 mm) and temporal (TR = 800 ms) res
olution (repetition time [TR] = 800 ms, echo time [TE] = 33 ms and flip 
angle =52◦). A 2.4 mm isotropic spin echo field map that is matched to the 
fMRI acquisition was obtained to correct the fMRI data for distortion. Six 
resting state fMRI scans, each approximately 5 min long, with AP/PA 
phase encoding directions (60 axial slices each) were collected. T1- and 
T2-weighted sequences were collected using volumetric navigator se
quences which prospectively corrected for motion by repeating scans 
(Tisdall et al., 2012). While collecting the resting scans, subjects were 
asked to focus their attention on a visual cross-hair and remain awake. 

Preprocessing of multi-modal MRI data was done using the Human 
Connectome Project’s minimal preprocessing pipeline (v4.0.0) (Glasser 
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et al., 2018, 2016a, 2016b, 2013; Robinson et al., 2018) including the 
PreFreeSurfer, FreeSurfer, and PostFreeSurfer HCP Structural Pre
processing Pipelines for generating subcortical segmentation and 
cortical surfaces; functional preprocessing and denoising pipelines, 
which include the fMRIVolume, fMRISurface, and multi-run spatial ICA 
+ FIX pipelines that correct for motion and distortions within fMRI data 
by mapping it into a standard CIFTI grayordinate space and removing 
spatially specific structured noise; and the MSMAll areal-feature-based 
cross-subject surface registration pipeline for precisely aligning the in
dividual subjects’ cortical areas to the HCP’s multi-modal parcellation. 
Temporal ICA (Glasser et al., 2019, 2018) was used to clean the MSMAll 
aligned resting state fMRI data of global noise after spatial ICA had been 
used to clean the data of spatially specific noise (see Supplementary 
Information Methods). 

2.4. Acquisition and analysis of cortical thickness (CT) data 

To sample data at the areal level, we used the HCP’s MMP (Glasser 
et al., 2016a). This parcellation contains 180 symmetric cortical areas 
per hemisphere totaling 360 parcels. For each subject, the average 
cortical gray matter thickness value was extracted (Fischl and Dale, 
2000; Greve and Fischl, 2018) from each of the 360 parcels that had 
been functionally aligned to the individual data with MSMAll. Multiple 
regression was used to determine if each cortical area’s thickness 
differed significantly (p < 0.05) between patients with LBP and healthy 
controls while controlling for age. 

2.5. Resting state functional connectivity (rsFC) analysis 

A functional connectome for each subject was generated by taking 
the average timeseries in each of 360 cortical areas and taking the 
Fisher-z transformed Pearson’s correlation between each pair of cortical 
areas. The functional connectome was reordered so that cortical areas 
were grouped within one of 12 RSNs from Ji et al.(Ji et al., 2019). These 
RSNs were the primary visual (VIS1), secondary visual (VIS2), auditory 
(AUD), somatomotor (SOM), cingulo-opercular (CON), default-mode 
(DMN), dorsal attention (DAN), frontoparietal cognitive control (FPN), 
posterior multimodal (PML), ventral multimodal (VML), language 
(LAN), and orbito-affective (OA) networks. 

Differences in parcel-to-parcel connectivity were tested using a 
Wilcoxon rank-sum test and the corresponding z values determined. To 
assess differences in connectivity between networks, the parcels of the 
Fisher-z transformed Pearson’s correlation matrix were reorganized 
based on its membership in a specific network and the corresponding 
average connectivity was computed for each network. The differences in 
network connectivity were then tested using a Wilcoxon rank-sum test. 

2.6. Graph theoretical analyses 

Each parcel of the HCP’s MMP was modelled as a node, resulting in 
a total of 360 non-overlapping nodes. Thresholding a connectivity 
matrix based on correlation strength can yield different network 
densities which can in turn influence network properties that bias 
graph metric comparisons between patient populations (Bassett et al., 
2012; Ginestet et al., 2011; Schwarz and McGonigle, 2011). Therefore, 
we decided to threshold all graphs at the same network densities by 
taking a percentage of all the positive connections and binarizing the 
graphs prior to calculating any graph theory metrics. Binarization is 
used in functional graphs (Achard and Bullmore, 2007; Supekar et al., 
2008) to preserve only the most probable functional connections and 
treat these connections equivalently. As there is no accepted cutoff for 
functional connectivity strength to determine whether a functional 
connection is nontrivial, we thresholded connections in Fisher-z 
transformed matrices within the top 15% for each individual, in 
steps of 2.5% up to 30% density, to create binary undirected graphs for 
each network density. 

Using the Brain Connectivity Toolbox (Rubinov and Sporns, 2010), 
we calculated the global graph metrics: global efficiency, clustering 
coefficient, and characteristic path length for each patient which pro
vide an estimate of how easily information can be integrated across the 
network. The characteristic path length (the average smallest number of 
edges between all pairs of nodes in the graph that never visit a single 
node more than once) measures how easily information can be trans
ferred across the network. The global efficiency (the average inverse 
shortest path length in the network) is a test of the ability of parallel 
information processing over brain networks. The clustering coefficient 
(the fraction of triangles around a network) is a measure of how well 
connected the neighbors of a node are to each other. We averaged these 
metrics across thresholds for each node as previously published (Achard 
et al., 2012; Kaplan et al., 2019; Lynall et al., 2010). 

We determined the network efficiency, at the global level, of each 
RSN for each patient by calculating its global efficiency. This provides an 
estimate of parallel information transformation and global functioning 
within a specific RSN. We extracted the thresholded and binarized 
connectome for each intra-network interaction at each network density 
and calculated the global efficiency of each RSN rsFC matrix for each 
patient using the Brain Connectivity Toolbox (Rubinov and Sporns, 
2010). Differences in the global efficiency of each RSN were tested using 
a Wilcoxon rank-sum test and the corresponding z values determined. 

2.7. Identification of hubs 

Hubs can be identified using different graph theory measures such as 
degree (number of connections a node has) or centrality (relative 
importance of a node with respect to its surrounding nodes in propa
gating the information to other nodes in the network). Eigenvector 
centrality is a centrality measure of how well connected one node is to 
other nodes that are well connected (Fornito et al., 2016). We chose 
eigenvector centrality to classify hubs due to its more self-referential 
nature. We calculated the eigenvector centrality for each parcel in 
each patient using the Brain Connectivity Toolbox (Rubinov and Sporns, 
2010). These values were then averaged across patients for each parcel 
to form a group average for LBP patients and HC. Hub status was 
assigned to nodes whose eigenvector centrality was one standard devi
ation above the group mean (Kaplan et al., 2019). We identified parcels 
that were found to be hubs in 1) both LBP patients and HC, 2) only HC 
and not in LBP patients, and 3) only LBP patients and not in HC. 

2.8. Machine assisted classification 

A support vector machine (SVM) classifier, with a linear kernel, was 
used due to its established predictive power with relatively small sample 
sizes (Arslan et al., 2016). We used the caret package available within 
RStudio (rstudio.com) to implement our machine learning classifier 
(Kuhn, 2008). We used leave-one-out (LOO) cross-validation to test the 
performance of our SVM due to the limited number of patients in the 
present study. The steps involved in the SVM classification analysis are 
briefly discussed below. It is important to note that the feature selection, 
parameter optimization and final model training, in each LOO iteration, 
was performed on the training dataset which included all subject data 
except for one (the left-out subject or the test subject). 

2.8.1. Feature reduction 
We used 360 features (one cortical thickness value for each of the 

360 parcels) with a relatively small sample size (subject number = 51). 
We used a dimensionality reduction approach as the dimensions 
(number of features) of the data were much larger than the sample size. 
This method is called feature selection (or reduction) and is essential to 
high-dimensional data, a common problem in neuroimaging (Saeys 
et al., 2007), to avoid over fitting. We aimed to keep relevant features 
and remove relatively insignificant feature variables to achieve a higher 
classification performance when testing data and a better generalization 
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to independent datasets. We used recursive feature elimination (RFE) 
(Guyon et al., 2002) in this study. RFE is a popular feature selection 
approach that is effective in data dimension reduction, increases effi
ciency of MRI datasets (Arbabshirani et al., 2017; Blum and Langley, 
1997; Hall and Smith, 1998; Kohavi and John, 1997), and is applied in 
many neuroimaging studies (Qiao et al. 2019). RFE aids in the elimi
nation of redundant features without incurring substantial loss of in
formation and enables set important features to be used in SVM model 
training. Within the RFE framework, we used 4-fold cross-validation 
with ten repetitions to get most of the data patterns from the training 
set and to obtain a best predicting feature subset. 

2.8.2. Model training and classification of test subject(s) 
In the model-training phase, RFE-selected features were used to train 

the SVM model. As with many other supervised machine learning ap
proaches, the SVM algorithm performs poorly on experimental data 
when the default parameter values are used. Accordingly, the training 
set was utilized to determine the optimal parameters of the SVM clas
sifier and to build the best performing SVM model. The model parameter 
(the cost in the case of linear SVM) is optimized to maximally discrim
inate one group from another (HC from LBP group) by using the grid- 
search algorithm. In the present study, the search scale was c = 1:10. 
After the grid-search, the best performing cost was used in the final 
model. The performance of the SVM model was trialed using a testing 
data set (left-out subject’s data) in each LOO iteration. 

2.8.3. Evaluation of overall performance (accuracy, sensitivity, specificity 
and AUC) 

The output of a binary classifier is viewed as a confusion matrix 
(Supplementary Information, Table S1). The accuracy percentage (%) 
is defined as the ratio of the number of accurately classified subjects to 
the total number of subjects {(TP + TN)/(TP + TN + FP + FN)}. In 
addition to accuracy, the specificity and the sensitivity values are also 
reported. Sensitivity (the proportion of correctly classified positive 
samples out of all positive returns, or the true positive rate) indicates the 
accuracy of the prediction group {TP/(TP + FN)}, which in this case is 
the HC group. Specificity (the proportion of correctly classified negative 
samples out of all negative returns, or true negative rate), calculated as 
{TN/(TN + FP)}, indicates the accuracy of the prediction of the absence 
group, which in this case is the LBP group. To evaluate overall model 
performance, we performed an area under the ROC (Receiver Operating 
Characteristics curve) analysis, more commonly referred to as an area 
under the curve (AUC) analysis. 

2.9. Statistical tests 

An unpaired two-sample Wilcoxon rank-sum test with p < 0.05 was 
used to evaluate statistically significant differences for group compari
sons in both structural and functional data. To correct for multiple 
comparisons, we used False Discovery Rate Correction (FDR) with q <
0.05. 

3. Results 

3.1. Clinical surveys 

We compared the LBP SF-36 summary scale scores to HC using a non- 
parametric Wilcoxon rank-sum test. There were statistically significant 
(p < 0.05) differences in sub-scores between patient groups except for 
the RLE sub-score (Table 1). Higher differences were seen in the physical 
domains (PF, RLP, P, and GH) than in the emotional domain (EF, SF, 
RLE, EW). This shows that LBP leads to greater impairment of physical 
than mental functioning. 

To reduce the dimensionality of the SF-36 data, we then calculated 
factor summary scores (PCS and MCS) for the eight SF-36 subscales (see 
methods Section 2.2 for more details). The oblique two-factor solution 

indicated that physical functioning (PF), role limitations due to physical 
health problems (RLP), bodily pain (P), general health (GH), and social 
functioning (SF) loaded heavily on the Physical Component Summary 
(PCS) factor score whereas energy and fatigue (EF), role limitation due 
to emotional problem (RLE) and emotional well-being (EW) loaded most 
heavily on the Mental Component Summary (MCS) scores (Supple
mentary Information Table 2). 

We computed the summary scores for the PCS and MCS scores for 
each subject to use in further analysis as pain and emotion scores. 
Multivariate analyses were used to assess the relationship between CT, 
and PCS and MCS scores separately after correcting for age (see Section 
3.3 for details). 

3.2. Changes in cortical thickness 

There were widespread differences, both thinning and thickening, in 
CT between the two groups. The age-corrected beta parameters for the 
group differences (the group- as predictor) from the multiple regression 
analysis (see Section 2.4) were plotted in Fig. 1. The parcels colored in 
red are thinner in LBP (LBP < HC). The parcels that are thicker in LBP 
(LBP > HC) are colored blue. The parcels with a significant group dif
ference (p < 0.05, uncorrected) are outlined in black, and parcels that 
survived multiple comparison correction (q < 0.05) are outlined in 
green. In general, LBP subjects had widespread regions of thicker cortex 
within the bilateral occipital, temporal and parietal lobes. Notably, the 
posterior cingulate and temporal parietal junction in both hemispheres 
and the left motor and premotor sortices showed thicker cortex in LBP 
patients. (see Supplementary Information, Table S2 for more details on 
significant parcels). These findings were also replicated by a vertex-wise 
analysis of CT (see Supplementary Information, Fig. S1). 

3.3. Association between cortical thickness and clinical summary scores 

We tested the relationship of the PCS and MCS scores with CT using a 
linear regression model while controlling for age. Both clinical summary 
factors were independently found to be significant predictors (see Sup
plementary Information Tables 4 and 5 for more details) of the CT of 
multiple cortical areas (Fig. 2, p < 0.05, age-controlled). There were 
widespread associations which were neither limited to specific func
tional networks nor specific cortical locations. We also tested the rela
tionship of the PCS and MCS scores with CT within the LBP group (see 
Supplementary Information, Fig. S2A and S2B). 

A higher score for either the PCS or MCS suggests healthier func
tioning (see Section 2.2). A negative beta value from the regression (Fig. 2, 
blue regions) represents a region that shows a positive association 

Table 1 
Participant demographic and clinical information. A Wilcoxon rank-sum test 
was used to find differences in SF-36-subscores between HC and LBP. Higher 
scores indicate healthier functioning. PF = physical functioning, RLP = role 
limitations due to physical health problems, P = bodily pain, GH = general 
health, EF = energy and fatigue, SF = social functioning, RLE = role limitations 
due to emotional problems, EW = emotional well-being. (* = p < 0.05, ** = p < 
0.01, *** = p < 0.001; p values have been corrected for multiple comparisons 
using FDR).  

Variable Healthy Controls LBP 

Participants (n) 27 24 
Sex (M/F) 15/12 9/15 
Age (in years) 46.9 ± 17.3 53.5 ± 10.2 
SF-36 PF score*** 53.47 ± 28.5 92.3 ± 17.7 
SF-36 RLP score*** 46.87 ± 43.5 94.4 ± 14.4 
SF-36P score*** 48.96 ± 17.22 86.57 ± 16.7 
SF-36 GH score*** 58.86 ± 19.22 80.56 ± 15.1 
SF-36 EF score* 53.95 ± 19.4 66.30 ± 18.2 
SF-36 SF score** 70.83 ± 24.90 91.67 ± 14.7 
SF-36 RLE score 83.32 ± 32.6 95.05 ± 17.8 
SF-36 EW score* 72.67 ± 17.1 82.81 ± 11.4  

B. Lamichhane et al.                                                                                                                                                                                                                           



NeuroImage: Clinical 29 (2021) 102530

5

between the summary score and CT in LBP. Similarly, a positive beta 
value (red regions) represents a region that shows a negative association 
between the respective summary score and CT in LBP. 

3.4. Parcel and network rsFC analysis 

Differences in rsFC between LBP and HC were calculated as 
described in Section 2.5. Fig. 3A shows the parcels reordered by network 
that showed significant (p < 0.05 uncorrected) differences in connec
tivity. We also computed group differences of inter- and intra-network 
functional connectivity. There were multiple statistically significant 
differences in inter network connectivity interactions as shown in 
Fig. 3B (see Supplementary Information, Tables S6 and S7 for more 
details). We determined that age was not a significant predictor of the 
network functional connectivity interactions (shown in Fig. 3B) using a 
linear regression analysis. Fig. 3C shows the resting state networks 
plotted on the cortical surface as outlined by the Cole-Anticevic Brain 
Network Parcellation (Ji et al., 2019). 

3.5. LBP and HC had similar global graph metrics 

There were no significant differences in global efficiency or clus
tering coefficient, of the reconstructed brain networks between LBP 
patients and HC (all p > 0.05, see Supplementary Information, 
Table S8). However, there was a significant difference in the charac
teristic path length of the reconstructed brain networks between LBP 
patients and HC (z = 2.236, p = 0.0253). Global efficiency places a 
smaller influence on parcels that are isolated from the network when 
compared to characteristic path length (Latora and Marchiori, 2001; 
Rubinov and Sporns, 2010). Since we didn’t observe a significant dif
ference in the global efficiency between both patient cohorts, we can 
conclude that the reconstructed brain networks of LBP patients had 
more isolated parcels than HC. 

3.6. Changes in network efficiency 

We next investigated changes in network efficiency within each of 
the 12 resting state networks in LBP when compared with HC. There was 
a statistically significant decrease (z = -2.10, p = 0.0320 uncorrected) in 
the network efficiency of the default mode network (Fig. 4) in LBP and 
trending significant differences in the frontoparietal and ventral multi
modal networks as shown in Table 2. 

3.7. Nature of brain’s hub structure in LBP 

We calculated the eigenvector centrality of each node to investigate 
the nature of its connections with surrounding nodes. A hub was defined 
as a node whose eigenvector centrality was one standard deviation 
above the group mean. As a result, we identified hubs that were found in 
1) both LBP and HC (see Supplementary Information, Table S9), 2) HC 
but not in LBP (see Supplementary Information, Table S10), and 3) LBP 
but not in HC (see Supplementary Information, Table S11) and then 
matched each of the corresponding hubs to their respective resting state 
networks. The hubs for each of the three conditions were then projected 
onto a brain mesh surface (shown in Fig. 5). 

3.8. Machine learning classification of LBP and HC groups 

We used the cortical thickness (CT) as the feature to train a support 
vector machine to accurately classify each subject to their respective 
patient group (see methods Section 2.8). Table 3 summarizes the overall 
classification results. When classifying LBP from HC, we achieved a 
classification accuracy of 74.51%, AUC of 0.787 (95% CI: 0.66–0.91), 
sensitivity of 74.07%, and a specificity of 75.00%. 

The receiver operating characteristic (ROC) curves for stratifying 
patients is shown in Fig. 6A. The cortical areas contributing to the 
classification and their corresponding frequency values, repetitions out 
of total (51 iterations in this study) LOO iterations, were plotted on a 
brain mesh surface (Fig. 6B, see Supplementary Information, Table S12 
for more details on individual parcels). 

4. Discussion 

In this study we identify structural and functional biomarkers in LBP 
patients by applying a multi-modal approach using a surface-based 
cortical parcellation. The results revealed the following in LBP pa
tients: 1) Differences in CT between LBP and HC, 2) associations be
tween CT and self-reported clinical scores, 3) decreased functional 
connectivity between multiple networks, 4) lower network efficiency of 
the default mode network, and 5) changes to hub topology of the brain. 
In addition, a support vector machine trained using CT values achieved a 
very high level of accuracy differentiating LBP from HC. 

4.1. Cortical thickenss as a predictor of pain and emotion scores 

Several studies have observed grey matter decreases with longer pain 

Fig. 1. Consequences of LBP on cortical 
thickness. The cortical map summarizes the 
weight (beta parameter) of group effect in 
CT. The positive beta (red) represents areas 
of thicker cortex in controls. The negative 
beta (blue) represent the cortex that is 
thicker in LBP compared to HC. The parcels 
outlined with a black boundary show signif
icant group differences between HC and LBP 
(p < 0.05, uncorrected) and those outlined in 
green show significant group differences that 
survive FDR correction (q < 0.05). (For 
interpretation of the references to color in 
this figure legend, the reader is referred to 
the web version of this article.)   
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duration in the dorsolateral prefrontal cortex, insular cortex, and ante
rior and dorsal anterior cingulate cortices (Apkarian et al., 2004; Kim 
et al., 2008; Lutz et al., 2008; Rocca et al., 2006; Schmidt-Wilcke et al., 
2005; Valet et al., 2009). These areas have been described as vulnerable 
due to stress (Lutz et al., 2008; Schmidt-Wilcke et al., 2005; Valet et al., 
2009), which may indicate that gray matter decreases are a consequence 
of chronic pain and anxiety that is not unique to LBP (Schmidt-Wilcke 
et al., 2005). In our study, decreases in the CT of these regions were not 
statistically significant in our LBP population. As reported in previous 
studies (Kong et al., 2013; Teutsch et al., 2008), there were significant 
increases in CT of the posterior parietal junction, temporal parietal 
junction, and visual-processing stream (FDR corrected p < 0.05, Fig. 1 
and Supplementary Information, Table S3) in our LBP cohort. In 
addition, the cortical areas contributing to the classification of patients 
using CT (Fig. 6B and Supplementary Information, Table S12) were 
similar to findings by Ung et al. (Ung et al., 2014) in chronic LBP pa
tients. These included regions such as the temporal, sensory-motor, 
cingulate and prefrontal cortices which are commonly implicated in 
pain processing. 

We also tested the relationship between the degree of pain and 
emotion with CT (Burgmer et al., 2009; Ruscheweyh et al., 2011). The 

CT in the left dorsolateral prefrontal cortex, anterior cingulate cortex, 
midcingulate cortex, posterior cingulate cortex, posterior parietal cor
tex, and lateral temporal cortices predicted clinical pain scores (Sup
plementary Information, Table S4). LBP patients commonly exhibit 
emotional and cognitive disorders, including depression, anxiety, and 
sleep disturbances (Baliki et al., 2008). Appropriately, the parcels which 
predicted the subject-reported pain scores are known to be involved in 
the limbic processing of emotion and affective control in LBP patients 
(Baliki et al., 2008; Grachev et al., 2002; Letzen and Robinson, 2017). 

There were many parcels showing significant correlations with both 
pain and emotion summary scores. The effects of pain and emotion are 
known to coexist in LBP and thus this overlap was expected to be seen in 
the neuronal circuitry of the brain. However, it is not known whether 
this overlap in pain and emotional scores reflects a common underlying 
pathophysiological process or mutually exclusive process. Few studies 
have documented increases in gray matter volume in the premotor 
cortex, midcingulate cortex, S1, inferior parietal lobule, and the medial 
temporal gyrus (Teutsch et al., 2008) in the presence of pain stimuli. 
Regions within the temporal lobe, including the medial and inferior 
temporal gyrus are associated with pain and emotion in studies using 
different paradigms, such as during emotion anticipation (Erk et al., 

Fig. 2. Cortical thickness predicts subject- 
reported pain scores. The figure summarizes the 
beta parameter of the clinical factor score when 
predicting CT in a general linear model after cor
recting for age (age-adjusted regression analysis). A) 
Beta parameter of Physical Component Summary 
(PCS) factor scores, and B) Beta parameter of Mental 
Component Summary (MCS) factor scores. The par
cels outlined in black are significantly correlated 
(predicted) with clinical factor scores (p < 0.05, 
uncorrected) and those outlined in green show sig
nificant group differences that survive FDR correc
tion (q < 0.05). Since a higher clinical score suggests 
a better health condition, a negative beta (blue re
gions) suggests a thinner cortex in the HC group 
compared with LBP (thicker cortex in LBP). Simi
larly, the positive beta (red regions) suggests thicker 
cortical regions in HC (thinner cortex in LBP pa
tients). (For interpretation of the references to color 
in this figure legend, the reader is referred to the web 
version of this article.)   
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Fig. 3. Group differences in rsFC (Fisher’s Z transformed) between LBP and HC groups. Note that red regions represent cortical areas or networks with reduced rsFC 
in LBP when compared to HC and blue regions represent increases. A) The lower triangle shows the z-scores for differences in rsFC between cortical areas grouped by 
network. A color code was assigned to significant (p < 0.05, uncorrected) differences. B) Difference in average connectivity between each pair of resting state 
networks in terms of z-values (* = p < 0.05, uncorrected; ** = p < 0.001, uncorrected). C) Mapping resting state networks as outlined by the Cole-Anticevic Brain 
Network Parcellation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. The DMN network consists of the medial prefrontal cortex, posterior cingulate cortex, inferior parietal cortex and precuneus.  
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2006) and facial expression of pain (Simon et al., 2006). Based on our 
findings, we believe these regions may also be involved in the affective 
component of LBP (Vogt, 2005). 

4.2. Visual network plasticity during LBP 

In humans, spatial navigation is a complex process that involves the 
processing of multiple incoming sensory stimuli based on surrounding 

spatial landmarks to determine the optimal route to a specific goal 
(Brodbeck and Tanninen, 2012). In a recent systematic review (Tong 
et al., 2017), one factor common to all chronic LBP patients was 
impaired proprioception. Impaired proprioception was also far worse in 
patients with severe chronic LBP (Mitchell et al., 2009; Sheeran et al., 
2012). Proprioception is an important sensory input that functions to 
provide perception of the body (i.e. physical self-awareness) and 
judgement of alignment relative to one’s environment (Moseley, 2008). 
Due to impaired cortical processing of proprioceptive input, patients 
with chronic LBP exhibit aberrant perception, and consequently align
ment of their bodies relative to their surroundings (Wand et al., 2011). 

To compensate for proprioception impairment, vision becomes the 
next reliable sensory feedback that helps in spatial orientation, move
ment coordination, and balance (Guerraz et al., 2001). In patients with 
chronic LBP, several studies have demonstrated that dependence on 
visual input increases in order to maintain a vertical posture (Brumagne 
et al., 2000; Mann et al., 2010; Mazibrada et al., 2008). When visual 
input is removed or reduced, patients with chronic LBP have increased 
postural sway and loss of balance (Mann et al., 2010; Mok et al., 2004). 
These studies support the visual dependence in patients with chronic 

Table 2 
Global efficiency of network in LBP. rsFC data was used to compile binary 
undirected networks for each resting state network that had been thresholded 
within a network density range of 15%-30% in steps of 2.5%. The corresponding 
global efficiency scores for each network rsFC matrix were averaged across 
thresholds. A Wilcoxon rank-sum test was used to assess the statistical signifi
cance and the corresponding z values recorded. (* = p < 0.05, uncorrected).  

Network Names Z-Value p-Value 

Primary Visual  1.60  0.110 
Secondary Visual  1.30  0.180 
Somatomotor  0.0850  0.930 
Cingulo-Opercular  − 0.580  0.560 
Dorsal Attention  0.410  0.680 
Language  0.330  0.750 
Frontoparietal  − 1.80  0.0690 
Auditory  − 0.590  0.550 
Default Mode  − 2.10  0.0320* 
Posterior-Multimodal  1.20  0.230 
Ventral-Multimodal  1.90  0.0640 
Orbito-Affective  − 0.12  0.910  

Fig. 5. Hubs that were A) common to LBP and HC, B) common to HC but not to LBP patients, and C) common to LBP patients but not to HC.  

Table 3 
A summary of the classification accuracy and AUC when cortical thickness was 
used to train the SVM model.  

SVM (LOO) Accuracy Sensitivity Specificity AUC 

LBP vs HC  74.51%  74.07%  75.00%  0.787  

Fig. 6. Machine learning to predict LBP. A) Receiver Operating Characteristic (ROC) curve plot for the LBP vs HC classification. B) Frequency of parcels used to 
train the SVM model using cortical thickness. Parcels outlined in black are the top 40 most frequently contributing parcels to the classification of patient group when 
using CT. Parcels outlined in green have the highest frequency (51, i.e., selected as features in all LOO iterations) when contributing to the classification of all 
patients. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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LBP. Within our LBP cohort, we found multiple parcels from the visual 
networks were highly predictive of LBP when using a classification al
gorithm trained using CT (Fig. 6B and Supplementary Information, 
Table S12). We also found multiple increases in connectivity between 
the visual networks and other RSNs. These increases in connectivity 
could be a result of the visual system prioritizing tasks such as main
taining verticality and posture while placing less emphasis on the con
trol of attentional tasks. The presence of the primary visual cortex as a 
hub in LBP patients and not in HC is essential in coordinating this in
crease in network processing and information exchange to aid in 
proprioception. 

4.3. Role of the DMN network in LBP 

Chronic pain is an attention demanding process, often competing 
with other external stimuli for cognitive resources (Eccleston and 
Crombez, 1999). In fact, individuals across many chronic pain states 
show deficits in attention (Grisart and Van der Linden, 2001; Van 
Damme et al., 2010). The default mode network (DMN) is composed of 
many higher order cognitive processing regions including the medial 
prefrontal cortex, posterior cingulate cortex, inferior parietal cortex and 
precuneus (Raichle et al., 2001; Shulman et al., 1997). While it is still 
unclear what the DMN is responsible for, elements of its networks have 
been implicated in episodic memory (Zysset et al., 2002), modulation of 
pain perception (Kucyi et al., 2013), and monitoring the external envi
ronment (Buckner et al., 2008; Raichle et al., 2001). There have been 
many recent studies which support the reorganization of DMN function 
across many chronic pain states (Baliki et al., 2014, 2008; Tagliazucchi 
et al., 2010). 

In this study, several parcels from the DMN were highly predictive of 
LBP when using a classification algorithm trained using CT (Fig. 6B and 
Supplementary Information, Table S12). The DMN also showed 
increased (both significant and non-significant) connectivity with most 
other RSNs in LBP patients. However, the DMN showed a significant 
decrease in connectivity with nodes within its own network in LBP pa
tients. In addition, there was a significant decrease in network efficiency 
of the DMN. Executive functions are laborsome requiring the availability 
of resources which is achieved by reducing the activation of the DMN 
(Hernández-Álvarez et al., 2020). A decrease in the efficiency of the 
DMN in LBP patients might affect the induced deactivation of this 
network and hence compromise their executive functions (Satterthwaite 
et al., 2013). Recent data from patients with Alzheimer’s disease 
(Brown, 2017) and attention-deficit/hyperactivity disorder (Liddle 
et al., 2011) show the role of the DMN in executive function deficit. This 
decrease in network efficiency explains the hyperactive connectivity we 
observe between the DMN and all other RSNs in LBP patients. 

4.4. Hub reorganization in sensorimotor processing 

Of primary importance is the role of the bilateral primary motor 
cortex in regulating the flow of information specifically by acting as a 
hub within LBP patients but not HC. The motor cortex has been impli
cated in a number of functions beyond motor control such as visuomotor 
transformations (Georgopoulos and Pellizzer, 1995), language process
ing (Moseley et al., 2012), memory retrieval (Kaas et al., 2007), and pain 
processing (Vogt, 2005). It has been proposed that an incongruence 
between motor intention and movement, or sensorimotor conflict, is 
responsible for increased activation of M1 (Roussel et al., 2013). Sys
tems responsible for motor function are closely linked to sensory feed
back systems, which are monitored to detect deviations from the 
predicted response (Frith et al., 2000). In HC, presenting conflicting 
information, such as a mismatch between intention, proprioception, or 
visual feedback induced pain and sensory disturbances (Daenen et al., 

2010; McCabe et al., 2005) and aggravated symptoms in those with 
chronic pain (Daenen et al., 2012). 

Patients with chronic LBP frequently experience proprioception 
deficits (Brumagne et al., 2000) and tactile acuity deficits (Luomajoki 
and Moseley, 2011). A hyper-efficient posterior multimodal network 
combined with abnormal proprioceptive representation of the lower 
back in the primary somatosensory cortex (Wand et al., 2011) may 
contribute to sensorimotor conflicts in patients with chronic LBP. The 
lack of visual input of moving segments (Harris, 1999; Wand et al., 
2011) and reduced activity in vision processing centers can enhance 
sensorimotor conflicts, as vision is the dominant form of perception 
(Jeannerod, 2003). In addition, the lack of visual feedback means that 
atypical cortical proprioceptive representation cannot be corrected 
(Wand et al., 2011). These alterations in proprioceptive representation, 
visual perception, and sensorimotor conflicts lead to downstream effects 
in higher order pain processing centers which may directly produce pain 
and sustain altered motor control strategies. 

4.5. SVM classifier trained using cortical thickness 

A clinically usable finding in this study is the development of a 
machine learning classification engine that can predict patient group 
based on differences in cortical thickness. Recent studies have attempted 
to predict patient group in chronic pain states using structural features 
(Bagarinao et al., 2014; Sevel et al., 2018; Ung et al., 2014). However, 
this is the first study to demonstrate the advantage of using structural 
features derived from brain imaging parcellated using an MMP when 
discerning between LBP and HC patient groups. We trained the classifier 
using CT which achieved a maximum classification accuracy of 74.51% 
(AUC = 0.787, 95% CI: 0.66–0.91). The results validated our hypothesis 
that widespread changes in CT can be used as an imaging biomarker for 
LBP to guide therapy. 

5. Limitations 

We did not explore subcortical areas as the HCP’s MMP only includes 
cortical areas. Despite our attempts to recruit a homogenous population 
of subjects without a history of spine surgery, we were met with diffi
culty, as chronic LBP presents as a syndrome with numerous etiologies, 
wide variability, and countless affecting features. The pitfalls of the 
machine learning methods include, but are not limited to, incomplete, 
biased data or noisy datasets and overfitting. Solutions include recruit
ing larger matched samples and testing the models on unseen data. Due 
to a relatively small sample size and high number of parcels (360), 
many of our results were significant only at uncorrected levels and 
therefore should be considered with due caution. Finally, pain and 
emotion are inherently subjective metrics that depend on the patient 
population. 

6. Conclusion 

In conclusion, our results suggest that low back pain is associated 
with widespread structural and functional changes in the brain. Our data 
shows that localized structural changes are correlated with clinical pain 
and emotional measures. The resting state functional connectivity and 
graph theory network approaches also support the findings of alterations 
of brain structure and functions localized to regions corresponding to 
cognitive functions, visuo-motor and affective dimensions of pain pro
cessing. Importantly, our results also demonstrate how machine-assisted 
classification algorithms can accurately categorize patient specific data 
into their respective cohort using data derived from a multi-modal 
parcellation. 
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Jover, E., 2020. MRI evidence of brain atrophy, white matter damage, and functional 
adaptive changes in patients with cervical spondylosis and prolonged spinal cord 
compression. Eur. Radiol. 30, 357–369. https://doi.org/10.1007/s00330-019- 
06352-z. 

Blum, A.L., Langley, P., 1997. Selection of relevant features and examples in machine 
learning. Artif. Intell. 97, 245–271. https://doi.org/10.1016/s0004-3702(97)00063- 
5. 

Brodbeck, D.R., Tanninen, S.E., 2012. Place learning and spatial navigation. Encycl. Sci. 
Learn. Springer Sci. Bus. Media New York, NY, USA 2639–2641. 

Brown, C.A., 2017. The default mode network and executive function: Influence of age, 
white matter connectivity, and Alzheimer’s pathology. 

Brumagne, S., Cordo, P., Lysens, R., Verschueren, S., Swinnen, S., 2000. The role of 
paraspinal muscle spindles in lumbosacral position sense in individuals with and 
without low back pain. Spine (Phila. Pa. 1976). 25, 989–994. 

Buckner, R.L., Andrews-Hanna, J.R., Schacter, D.L., 2008. The brain’s default network: 
anatomy, function, and relevance to disease. 

Burgmer, M., Gaubitz, M., Konrad, C., Wrenger, M., Hilgart, S., Heuft, G., Pfleiderer, B., 
2009. Decreased gray matter volumes in the cingulo-frontal cortex and the amygdala 
in patients with fibromyalgia. Psychosom. Med. 71, 566–573. 

Carrera, E., Tononi, G., 2014. Diaschisis: past, present, future. Brain 137, 2408–2422. 
https://doi.org/10.1093/brain/awu101. 

Crossley, N.A., Mechelli, A., Scott, J., Carletti, F., Fox, P.T., McGuire, P., Bullmore, E.T., 
2014. The hubs of the human connectome are generally implicated in the anatomy of 
brain disorders. Brain 137, 2382–2395. 

Daenen, L., Nijs, J., Roussel, N., Wouters, K., Van Loo, M., Cras, P., 2012. Sensorimotor 
incongruence exacerbates symptoms in patients with chronic whiplash associated 
disorders: an experimental study. Rheumatology 51, 1492–1499. 

Daenen, L., Roussel, N., Cras, P., Nijs, J., 2010. Sensorimotor incongruence triggers 
sensory disturbances in professional violinists: an experimental study. Rheumatology 
49, 1281–1289. 

De Pauw, R., Aerts, H., Siugzdaite, R., Meeus, M., Coppieters, I., Caeyenberghs, K., 
Cagnie, B., 2020. Hub disruption in patients with chronic neck pain: a graph 
analytical approach. Pain 161, 729–741. 

Dieleman, J.L., Baral, R., Birger, M., Bui, A.L., Bulchis, A., Chapin, A., Hamavid, H., 
Horst, C., Johnson, E.K., Joseph, J., 2016. US spending on personal health care and 
public health, 1996–2013. JAMA 316, 2627–2646. 

Eccleston, C., Crombez, G., 1999. Pain demands attention: a cognitive–affective model of 
the interruptive function of pain. Psychol. Bull. 125, 356. 

Erk, S., Abler, B., Walter, H., 2006. Cognitive modulation of emotion anticipation. Eur. J. 
Neurosci. 24, 1227–1236. 

Farivar, S.S., Cunningham, W.E., Hays, R.D., 2007. Correlated physical and mental 
health summary scores for the SF-36 and SF-12 Health Survey, V. 1. Health Qual. 
Life Outcomes 5, 54. 

Fischl, B., Dale, A.M., 2000. Measuring the thickness of the human cerebral cortex from 
magnetic resonance images. Proc. Natl. Acad. Sci. 97, 11050–11055. 

Fornito, A., Zalesky, A., Bullmore, E., 2016. Fundamentals of brain network analysis. 
Academic Press. 

Frith, C.D., Blakemore, S.-J., Wolpert, D.M., 2000. Abnormalities in the awareness and 
control of action. Philos. Trans. R Soc. London. Ser. B Biol. Sci. 355, 1771–1788. 

Georgopoulos, A.P., Pellizzer, G., 1995. The mental and the neural: psychological and 
neural studies of mental rotation and memory scanning. Neuropsychologia 33, 
1531–1547. 

Ginestet, C.E., Nichols, T.E., Bullmore, T., Simmons, A., 2011. Brain network analysis: 
separating cost from topology using cost-integration. PLoS One 6. 

Glasser, M.F., Coalson, T.S., Bijsterbosch, J.D., Harrison, S.J., Harms, M.P., Anticevic, A., 
Van Essen, D.C., Smith, S.M., 2019. Classification of temporal ICA components for 
separating global noise from fMRI data: Reply to Power. Neuroimage 197, 435–438. 

Glasser, M.F., Coalson, T.S., Bijsterbosch, J.D., Harrison, S.J., Harms, M.P., Anticevic, A., 
Van Essen, D.C., Smith, S.M., 2018. Using temporal ICA to selectively remove global 
noise while preserving global signal in functional MRI data. Neuroimage 181, 
692–717. 

Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E., 
Ugurbil, K., Andersson, J., Beckmann, C.F., Jenkinson, M., 2016a. A multi-modal 
parcellation of human cerebral cortex. Nature 536, 171–178. 

Glasser, M.F., Smith, S.M., Marcus, D.S., Andersson, J.L.R., Auerbach, E.J., Behrens, T.E. 
J., Coalson, T.S., Harms, M.P., Jenkinson, M., Moeller, S., 2016b. The human 
connectome project’s neuroimaging approach. Nat. Neurosci. 19, 1175. 

Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., 
Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., 2013. The minimal preprocessing 
pipelines for the Human Connectome Project. Neuroimage 80, 105–124. 

Grachev, I.D., Fredrickson, B.E., Apkarian, A.V., 2002. Brain chemistry reflects dual 
states of pain and anxiety in chronic low back pain. J. Neural Transm. 109, 
1309–1334. 

B. Lamichhane et al.                                                                                                                                                                                                                           

https://doi.org/10.1016/j.nicl.2020.102530
https://doi.org/10.1016/j.nicl.2020.102530
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0005
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0005
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0010
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0010
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0010
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0015
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0015
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0015
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0020
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0020
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0025
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0025
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0025
https://doi.org/10.1016/j.pain.2014.09.002
https://doi.org/10.1016/j.pain.2014.09.002
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0035
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0035
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0035
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0040
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0040
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0040
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0045
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0045
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0050
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0050
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0050
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0055
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0055
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0060
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0060
https://doi.org/10.1007/s00330-019-06352-z
https://doi.org/10.1007/s00330-019-06352-z
https://doi.org/10.1016/s0004-3702(97)00063-5
https://doi.org/10.1016/s0004-3702(97)00063-5
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0095
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0095
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0095
https://doi.org/10.1093/brain/awu101
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0105
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0105
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0105
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0110
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0110
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0110
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0115
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0115
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0115
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0120
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0120
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0120
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0125
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0125
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0125
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0130
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0130
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0135
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0135
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0140
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0140
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0140
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0145
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0145
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0150
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0150
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0155
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0155
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0160
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0160
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0160
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0170
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0170
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0170
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0175
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0175
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0175
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0175
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0180
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0180
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0180
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0185
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0185
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0185
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0190
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0190
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0190
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0195
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0195
http://refhub.elsevier.com/S2213-1582(20)30367-3/h0195


NeuroImage: Clinical 29 (2021) 102530

11

Greve, D.N., Fischl, B., 2018. False positive rates in surface-based anatomical analysis. 
Neuroimage 171, 6–14. 

Grisart, J.M., Van der Linden, M., 2001. Conscious and automatic uses of memory in 
chronic pain patients. Pain 94, 305–313. 

Guerraz, M., Yardley, L., Bertholon, P., Pollak, L., Rudge, P., Gresty, M.A., Bronstein, A. 
M., 2001. Visual vertigo: symptom assessment, spatial orientation and postural 
control. Brain 124, 1646–1656. 

Guyon, I., Weston, J., Barnhill, S., Vapnik, V., 2002. Gene selection for cancer 
classification using support vector machines. Mach. Learn. 46, 389–422. 

Hall, M.A., Smith, L.A., 1998. Practical feature subset selection for machine learning. 
Harris, A.J., 1999. Cortical origin of pathological pain. Lancet 354, 1464–1466. 
Hashmi, J.A., Baliki, M.N., Huang, L., Baria, A.T., Torbey, S., Hermann, K.M., 

Schnitzer, T.J., Apkarian, A.V., 2013. Shape shifting pain: chronification of back 
pain shifts brain representation from nociceptive to emotional circuits. Brain 136, 
2751–2768. 
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