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Simple Summary: In soft-tissue sarcoma (STS) patients, the decision for the optimal treatment
modality largely depends on STS size, location, and a pathological measure that assesses tumor
aggressiveness called “tumor grading”. To determine tumor grading, invasive biopsies are needed
before therapy. In previous research studies, quantitative imaging features (“radiomics”) have
been associated with tumor grading. In this work, we assessed the possibility of predicting tumor
grading using an artificial intelligence technique called “deep learning” or “convolutional neural
networks”. By analyzing either T1-weighted or T2-weighted MRI sequences, non-invasive tumor
grading prediction was possible in an independent test patient cohort. The results were comparable
to previous research work obtained with radiomics; however, the reproducibility of the contrast-
enhanced T1-weighted sequence was improved. The T2-based model was also able to significantly
identify patients with a high risk for death after therapy.

Cancers 2021, 13, 2866. https://doi.org/10.3390/cancers13122866 https://www.mdpi.com/journal/cancers



Cancers 2021, 13, 2866 2 of 14

Abstract: Background: In patients with soft-tissue sarcomas, tumor grading constitutes a decisive
factor to determine the best treatment decision. Tumor grading is obtained by pathological work-up
after focal biopsies. Deep learning (DL)-based imaging analysis may pose an alternative way to
characterize STS tissue. In this work, we sought to non-invasively differentiate tumor grading
into low-grade (G1) and high-grade (G2/G3) STS using DL techniques based on MR-imaging.
Methods: Contrast-enhanced T1-weighted fat-saturated (T1FSGd) MRI sequences and fat-saturated
T2-weighted (T2FS) sequences were collected from two independent retrospective cohorts (training:
148 patients, testing: 158 patients). Tumor grading was determined following the French Federation
of Cancer Centers Sarcoma Group in pre-therapeutic biopsies. DL models were developed using
transfer learning based on the DenseNet 161 architecture. Results: The T1FSGd and T2FS-based
DL models achieved area under the receiver operator characteristic curve (AUC) values of 0.75 and
0.76 on the test cohort, respectively. T1FSGd achieved the best F1-score of all models (0.90). The
T2FS-based DL model was able to significantly risk-stratify for overall survival. Attention maps
revealed relevant features within the tumor volume and in border regions. Conclusions: MRI-based
DL models are capable of predicting tumor grading with good reproducibility in external validation.

Keywords: deep learning; convolutional neural networks; artificial intelligence; machine learning;
soft-tissue sarcomas; tumor grading; MRI

1. Introduction

Soft-tissue sarcomas (STS) constitute a rare cancer type [1]. Risk stratification is primar-
ily performed using tumor location, pathological tumor grading, tumor size, and certain
histological subtypes [2]. One of the most decisive factors constitutes tumor grading. Two
separate grading systems were originally defined by the French Federation of Cancer
Centers Sarcoma Group (FNCLCC) and the National Cancer Institute (NCI) [3,4]. The FN-
CLCC system, however, showed better predictive values for distant metastases and is used
predominantly worldwide [5]. While FNCLCC G1 (termed “low-grade”) STS are generally
treated with surgery alone, FNCLCC G2/G3 (termed “high-grade”) STS require multi-
modal therapy regimens involving radiotherapy and/or chemotherapy [6–8]. Despite
treatment intensifications, the overall outcome remains poor for high-grade STS [9–11].

Quantitative imaging constitutes an alternative method to characterize tissues. In
contrast to a focal biopsy sample, image analysis is capable of assessing the whole tumor
volume and can enable longitudinal assessment. In recent years, two general analysis
methods have been developed which are summarized under the term “radiomics” [12].
First, predefined handcrafted features are extracted by analyzing the tumor’s shape, inten-
sity distribution, and texture. Afterwards, machine learning models are applied to predict
clinical endpoints [13–16]. Second, approaches such as neural networks can be specifically
trained to directly analyze imaging data to make end-to-end predictions [17]. Convolu-
tional neural networks (CNNs) describe a class of architectures that are especially suited for
image analysis and that are, among others, often referred to by the terms “deep learning”
(DL) or “artificial intelligence” (AI). In DL, the systems can be categorized into supervised,
unsupervised, and semi-supervised learning according to their learning strategy. In this
work, we used deep supervised learning, where the neural network requires annotations
to learn discriminative features directly from the images without need of extra information.
Since the input features are the raw images, there is no need for feature extraction or
feature selection as in traditional machine learning. Both techniques (traditional machine
learning and DL) have been shown to predict prognosis, tumor progression, molecular
aberrations, or spatial infiltration in various cancer subtypes [18–24]. Some studies found
superior predictive performances using CNNs compared to handcrafted features [25,26].
Radiomics-based approaches also enable localization and segmentation of volumes of
interest (VOI) [27,28].
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In STS patients, multiple groups previously demonstrated the possibilities of ra-
diomics and DL to predict patients’ prognosis based on MRI, CT, and PET imaging [29–35].
Wang et al. developed radiomic models to differentiate malignant and benign soft-tissue
lesions [36]. Further research studies evaluated the differentiation of high-grade from
low-grade STS based on MRI and CT imaging scans using radiomic analysis [37–42]. No
study has yet analyzed the possibility of DL-based tumor grading prediction.

The scope of this study was to evaluate the potential of DL to predict tumor grading
based on pre-therapeutic MRI scans. The value of T2-weighted fat-saturated (T2FS) MRI
sequences was compared to contrast-enhanced and fat-saturated T1-weighted (T1FSGd)
MRI sequences. All models were externally validated and tested for significant patient
risk stratification. Attention maps were generated to evaluate relevant qualitative imaging
features and increase explainability of the developed models.

2. Materials and Methods
2.1. Patients

Two independent consecutive patient cohorts from the Technical University of Mu-
nich, Munich, Germany (TUM) and the University of Washington, Seattle, WA, USA (UW)
were collected retrospectively. Inclusion criteria included: histologically proven STS with
available FNCLCC tumor grading information. Exclusion criteria were endoprosthesis-
dependent MRI artifacts, previous radiotherapy, primary bone sarcomas, or Ewing sar-
comas. Patient records were analyzed for FNCLCC tumor grading and basic patient
demographics. The patient cohort with a higher balance between low-grade and high-
grade STS was selected for training (TUM). In the training cohort, for each sequence all
available patients were included (T1FSGd: 148 patients, T2FS: 130 patients). To allow a
better comparison in the test set (UW), all patients that did not have both MRI sequences
were excluded (final test set: 158 patients).

See Figure S1 for a patient workflow. In the final patient cohort, no modeling-specific
data were missing. Overall survival (OS) was calculated from the initial pathologic diag-
nosis to the time point of death or the time point of censoring. Data reporting follows the
STARD recommendations (Table S1: STARD checklist) [40].

2.2. Image Acquisition, Definition of Volumes of Interest and Preprocessing

Pre-therapeutic MRI scans were analyzed for each included patient. See Table S2 for
acquisition parameters and scan planes. For all STS, tumor segmentation was performed
using Eclipse 13.0 (Varian Medical Systems, 3100 Hansen Way, Palo Alto, CA 94304, USA),
MIM software version 6.6 (MIM Software Inc., 25800 Science Park Dr #180, Beachwood,
OH 44122, USA), iplan RT 4.1.2 (Brainlab, Olof-Palme-Straße 9, 81829 Munich, Germany),
and 3D Slicer (3D Slicer, version 4.8 stable release). The primary tumor as the VOI was
manually segmented by JCP, by adapting existing expert segmentations from RT treatment
planning in the TUM cohort. In the UW cohort, segmentation was performed by MBS,
MM, JCP, and TC. Edematous changes were not included in the VOI. N4ITK MRI bias
field correction was applied to each imaging study using the Slicer3D implementation to
compensate for non-uniform intensity caused by field inhomogeneity [43].

2.3. Data Preprocessing

All volumes were resampled to 1 mm3 isotropic resolution and normalized using
z-score normalization. From the 3D VOI, transversal 2D slices were obtained and resized
to 224 × 244 before sending the images to the deep neural networks, according to the
requirements of the pre-trained architecture for the 2D model. Obtaining transversal slices
from one patient allowed us to increase the number of training samples for the deep neural
networks. This means that from every patient in the training set we can generate as many
training samples as transversal slices are available from the patient tumor. When counting
the overall number of training samples, we can then go from hundreds in the original MRI
data to thousands after slicing the patient.
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2.4. MRI-Based DL Models

We developed DL models to differentiate low-grade (G1) and high-grade (G2/3) STS.
For each sequence, a separate DL model was developed: DL-T1FSGd and DL-T2FS. The
base deep learning architecture for this study was based on the ImageNet pre-trained
DenseNet-161 described in Figure 1 [44].
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Figure 1. Deep learning strategy: DenseNet 161 architecture for tumor grading in MRI [44]. The network receives the 2D
transversal slice from the VOI and outputs the probability of the image for the two classes. In the lower part of the figure,
each component of the DenseNet is described. Abbreviations: Avg: Average, T1FSGd: contrast-enhanced and fat-saturated
T1-weighted sequence, T2-weighted fat-saturated (T2FS) sequence.

We empirically found that other architectures, including VGGNet [44], ResNet [26],
WideResNet [45], AlexNet [46], and CBRNet [47] in 2D and 3D resulted in worse-performing
models for our task. DenseNet 161 was the optimal architecture for tumor grading during
optimization. Other architectures as well as deeper or shallower pre-trained networks
obtained sub-optimal results. Similarly, other approaches such as full MR image without
VOI selection, VOI image masked with tumor segmentation, and VOI image and mask as
extra channel were tested with inferior performance compared to the proposed approach.

2.5. Optimization of Deep Learning Models

All models were developed in Pytorch with a 12 GB Titan XP [48]. The models were
trained with a batch size of 30 and a learning rate of 1 × 10−4 with an ADAM optimizer
for 100 epochs. We used early stopping during training, monitoring the validation loss to
select the best model. Categorical weighted cross-entropy was used as the loss function.
Data augmentation was applied at training time and included vertical and horizontal
flip, random rotation, random zoom, elastic transform, and random cropping. Additional
training details and the code can be found online (https://github.com/ferchonavarro/
SarcomaTumorGrading) (accessed on 4 June 2021).

2.6. Evaluation Strategy

To evaluate the performance, reproducibility, and generalizability of the MRI-based
DL models, stratified 5-fold cross-validation with 3 repetitions was performed, producing
15 DL models per image modality. For training and validation of the DL models, the TUM
patient cohort was used (referred to as “training cohort”). All 15 models were externally
tested using the UW cohort (referred to as “testing cohort”). During inference time, to obtain
the tumor grading prediction per patient, the average of all 15 models and all transversal
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slices in the VOI was computed. Finally, the soft-max activation function converted the
average predicted values into the probabilities of low-grade and high-grade STS.

2.7. Interpretability of DL Models

Visualization of attention maps is shown together with the model probabilities to
further gain insights on the model predictions for tumor grading. The attention maps were
obtained from gradient-weighted class activation maps (Grad-CAM) [49].

2.8. Comparison to Baseline Models

To compare the clinical relevance of the developed models, we compared the DL-based
models to regression models using clinical features (TNM T-stage, TNM-N-stage, TNM
M-stage, Age) (Clinical), tumor volume (Tumor-Volume), and the combination of clinical
features and tumor volume (Clinical-Volume-Combined). The same aforementioned strategy
was used for model evaluation.

2.9. Statistical Analysis

Statistical analysis and modeling were performed using Python 3.6. Model perfor-
mances were characterized using calibration curves, receiver operating characteristic curves
(ROC), and additional classification metrics. In addition, 95% confidence intervals were
generated using 1000-fold bootstrapping. Kaplan–Meier survival curves were used to
analyze model-based stratification for OS in the test set. The maximum argument from
the probabilities was used to split patients into low-risk and high-risk patients. Statistical
significance was tested using the log-rank test. Bonferroni correction was performed in
cases of multiple testing as specified. A p-value below 0.05 was regarded as significant.

3. Results
3.1. Patient Characteristics, Histology, and VOI Definition

Overall, patient demographics were similar (Table 1). However, the distribution of
histology subtypes and patients’ age was significantly different between both cohorts
(p < 0.001, p = 0.03) (Table S3). Moreover, the training cohort consisted of 35.1% low-grade
and 64.9% high-grade STS. The testing cohort showed a more uneven distribution with
14.5% low-grade and 85.5% high-grade STS.

Table 1. Patient demographics and outcome.

Institution TUM UW p-Value 1

Total Patients 148 p 158 p

Location 1

Extremity or trunk 141/148 p (95.2%) 154/158 p (97.4%)
Abdomen/retroperitoneal 5/148 p (3.3%) 2/158 p (1.3%)
Thorax 1/148 p (0.6%) 0/158 p (0%)
Head and neck 1/148 p (0.6%) 2/158 p (1.3%)

Age 57.29 ± 17.48 53.91 ± 15.40 0.04 *

Gender

Female 69/148 p (46.6%) 95/158 p (60.2%) 0.2
Male 79/148 p (53.4%) 63/158 p (39.8%)

T-Stage

1 25/148 p (16.8%) 28/158 (17.7%) 0.88
2 123/148 p (83.2%) 130/158 p (83.3%)
a 13/148 p (8.7%) 6/158 p (3.7%) 0.09
b 135/148 p (91.3%) 152/158 p (96.3%)

M-Stage

0 140/148 p (94.6%) 153/158 p (96.8%) 0.40
1 8/148 p (5.4%) 5/158 p (3.2%)
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Table 1. Cont.

Institution TUM UW p-Value 1

Total Patients 148 p 158 p

N-Stage

0 145/148 p (98%) 158/158 p (100%) 0.11
1 3/148 p (2%) 0/158 p (0%)

Grading 2 0.16

1 52/148 p (35.1%) 25/158 p (15.8%)
2 36/148 p (24.4%) 53/158 p (33.6%)
3 60/148 p (40.5%) 80/158 p (50.6%)

Tumor volume 294.52 ± 442.07 320.0 ± 487.04 0.42

AJCC-Stage 3 0.47

IA 10/148 p (6.7%) 5/158 p (3.1%)
IB 42/148 p (28.3%) 20/158 p (12.6%)
IIA 11/148 p (7.4%) 23/158 p (14.5%)
IIB 5/148 p (3.3%) 37/158 p (23.4%)
III 72/148 p (48.6%) 68/158 p (43.0%)
IV 8/148 p (5.4%) 5/158 p (3.16%)

Median OS 37.37 mo 45.8 mo 0.25

Available imaging

T1FsGd 148 158
T2FS 130 158

Abbreviations: *: p-value < 0.05, AJCC: American Joint Committee on Cancer and the International Union for
Cancer Control, m: median, p: patients, r: range, RT: radiation therapy. 1 Wilcoxon rank-sum test for continuous
and ordinal variables, Fisher’s exact test for nominal variables, log-rank test for comparison of survival times.
Corrected for multiple testing by Bonferroni correction (“p-value adjusted”). 2 According to the French Federation
of Cancer Centers Sarcoma Group (FNCLCC). 3 Following AJCC staging system version 7 [50].

3.2. Classification Performance

The results shown in Figure 2 describe the ROC curves and AUCs for the baseline mod-
els and DL-based models classifying patients as low or high-grade STS in the independent
test set. It can be observed that for the baseline models (Clinical, Tumor-Volume, Clinical-
Volume-Combined) the obtained AUCs were 0.54, 0.59, and 0.57, respectively. In contrast, the
developed DL-based models achieved AUC values of 0.75 and 0.76 for DL-T1FSGd and
DL-T2FS, respectively. Table 2 depicts additional classification metrics. All models showed
good precision of at least 0.87. DL-T1FSGd classified with the best accuracy of 0.83. This
was also reflected by the best sensitivity value of 0.91 but with a suboptimal specificity of
0.40. Delta-T2FS had a better specificity of 0.72 but with the cost of a worse sensitivity value
of 0.62, leading to a total accuracy of 0.64. In terms of the less imbalance-biased metric,
F1-Score Delta-T1FSGd achieved the best result (0.90). See Figure S2 for calibration curves.

Table 2. Classification metrics for the test set. In bold, the best result among all models for each
metric is marked.

Precision Sensitivity Specificity F1-Score Accuracy

Clinical 0.87 0.69 0.44 0.77 0.65

Tumor Volume 0.89 0.74 0.52 0.81 0.70

Clinical-Volume-
Combined 0.89 0.54 0.64 0.67 0.56

DL-T1FsGd 0.89 0.91 0.40 0.90 0.83

DL-T2Fs 0.92 0.62 0.72 0.74 0.64
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3.3. Patient Risk Stratification

We used the classification of the developed DL-based grading models for dichotomiza-
tion of the patient cohort into low-risk and high-risk patients to evaluate the stratification
performance for OS. In Figure 3, the Kaplan Meier (KM) survival curves and results of the
log-rank test for the baseline models (Clinical, Tumor-Volume, Clinical-Volume-Combined), the
ground truth tumor grading stratification (Grading), and the DL-based models are shown.
Clinical and Grading achieved significant patient stratification (p-value = 0.028 and 0.02,
respectively). We also found that both DL-based models separated survival curves into
low-risk and high-risk patients. However, only the DL-T2FS achieved significant patient
stratification (p-value = 0.045).
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3.4. Prediction Visualization and Model Interpretability

Figures 4 and 5 depict representative attention maps for the DL-T1FSGd and DL-
T2FS models. Four general patterns can be observed: (1) in many cases, the largest
area of activation was present within the tumor volume depicting the tumors’ “texture”
(e.g., Figure 5a,b); (2) the second most frequent activation was seen in border areas of the
tumor focusing on good or bad confinement (e.g., Figure 4a); (3) within border areas the
interfaces of tumor to bone and tumor to vessel were frequently represented (Figure 4b,c);
(4) in a small number of false cases the network failed to locate the tumor on the cropped
image, focusing instead on normal anatomy or air (Figure 5d). Patterns 1–3 were often seen
in parallel on the same slice (e.g., Figure 4d) or on different slices of the same tumor.
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Figure 4. Attention maps of the DL-T1FSGd model. Green and red squares around images denote correct and false
predictions, respectively: (a) correct prediction with 87% probability: high-grade (G2) synovial sarcoma—focus on tumor
texture and tumor-tissue border with low confinement; (b) correct prediction with 95% probability: low-grade (G1) myxoid
liposarcoma—focus on tumor-vessel interface with good confinement. (c) False prediction with 87% probability: low-grade
(G1) myxoid liposarcoma—focus on tumor-bone interface. (d) False prediction with 98% probability: high-grade (G3)
pleomorphic sarcoma—focus on central tumor parts and tumor-tissue border, low in-plane resolution.
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respectively: (a) correct prediction with 99% probability: high-grade (G3) spindle cell sarcoma—focus on tumor texture;
(b) correct prediction with 97% probability: low-grade (G1) myxoid liposarcoma—focus on tumor texture; (c) false prediction
with 52% probability: low-grade (G1) myofibrosarcoma—focus on tumor texture; (d) false prediction with 97% probability:
high-grade (G3) pleomorphic sarcoma—trunk location, focus on air.
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4. Discussion

In this work, we developed DL-based tumor grading models based on two distinct
MRI sequences. The T2FS-based DL model achieved the best predictive performance in
an independent testing cohort, comparable to a previously published radiomic model.
The contrast-enhanced T1-based model achieved a better performance than a previously
published model. The T2-based model was able to significantly risk-stratify STS patients for
overall survival. Attention maps confirmed tumor-specific features within and surrounding
the tumor volume.

In a previous study, we used similar patient cohorts to develop and externally test
radiomics-based tumor grading models [37]. For T2FS with AUC values of 0.76 (DL)
and 0.78 (handcrafted features), the predictive performance was comparable, although
with a slightly higher performance of the handcrafted feature model in the test set. For
T1FSGd, the DL model showed a higher performance with an AUC of 0.75 while the
handcrafted feature model achieved an AUC of 0.69. It should be noted that both cohorts
have been expanded since then. The skewed proportion of low-grade and high-grade STS,
however, remained similar. The patient numbers in the training set size were enlarged by
6% and 20%, and in the test set by 53% and 53% for T2FS and T1FSGd, respectively. The
training set size also played a role in the comparison of our DL models. To allow direct
comparability, we selected only patients for the test set that had both imaging studies
available. DL-T2FS had a 12% smaller training sample number than the DL-T1FSGd model.
DL-T2FS achieved a higher AUC but worse classification performance (e.g., F1-Score)
than DL-T1FSGd. A previous study, however, showed a correlation between DL model
performance and training sample size on a logarithmic scale [51]. Thus, for significant
model performance improvements, much larger differences in training size would be
beneficial and a large impact of the small differences in training size is rather unlikely.

As previously mentioned, other authors have evaluated tumor grading prediction
using MRI-based radiomics [38–42]. However, only one study validated their models in an
external testing cohort [40]. In this study, Yan et al. used a training cohort of 109 patients to
develop radiomic models based on T2FS and T1-weighted MRI sequences (without contrast-
enhancement). In the 70-patient test set, both models achieved predictive performances
with AUCs of 0.645 (T2FS) and 0.641 (T1). Combining both features significantly increased
the performance up to an AUC of 0.829. In contrast, our study used contrast-enhanced fat-
saturated T1-weighted MRI scans. Both developed models had better performances than
the single sequence models but were inferior to the combined model, although in a similar
range. Interestingly, an additive benefit following a combination of the radiomic feature
sets of both sequences (T1FSGd and T2FS) could not be observed in our previous study.
However, the testing cohort was significantly smaller, increasing the chance-based risk
of falsely optimistic or pessimistic results. Moreover, it had a more balanced distribution
of low-grade and high-grade STS. This may also explain the lack of significant patient
risk stratification of the combined model by Yan et al. Still, combining multiple imaging
modalities for DL models remains a promising approach.

The attention map analysis gave insights into the functioning of the DL models. This
allows a certain amount of semantic explainability which cannot be derived for models
based on handcrafted features. In many cases, the DL model focused on the internal texture
structures of the STS. This may correspond to features implemented in the previously
published radiomic models that were always restricted to the gross tumor volume as
VOI. At the same time, it may represent semantic imaging features, such as necrosis, that
have previously been linked with tumor grading [52]. Interestingly, our DL models also
regularly focused on tumor-surrounding tissue, reflecting, e.g., the confinement of the
tumor-tissue border. In accordance, another semantic feature, “peritumoral enhancement”,
has previously been described as being correlated with tumor grading [52]. Further work
is needed to evaluate associations between attention maps and semantic features.

In a select number of cases the model did not correctly locate the tumor but instead
focused on unrelated areas (e.g., air), restricting a reliable prediction. These cases pre-
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dominantly occurred in rare anatomic locations (e.g., location at the trunk in Figure 5d)
and constitute a limitation when extending the cropped images beyond the VOI. By in-
creasing future training sample sizes, or excluding rare anatomical sites, the resulting
models might learn to perform better. By providing the attention maps alongside each
prediction, the physician could directly assess the technical reliability of the prediction. A
future direction to use attention maps could be to objectively identify regions of concern
for a high risk of positive margins as well as potential internal sub-volumes of high-grade
histology that might inform design of future risk-adaptive, precision clinical trials for
spatial intensification of therapies.

As in many STS studies, a large plethora of histologies was combined to achieve signif-
icantly large patient cohorts. As these different subtypes stem from different mesenchymal
tissue types, one could speculate that histology-specific models may be more effective in
predicting histology-specific tumor grading. Sub-cohorts of patients with relevant histo-
logical groups such as pleomorphic sarcomas or with dominant myxoid or fibrous matrix
comprise only 19–56 patients in the training set. Previous research demonstrated a signif-
icant decrease in classification performance below 100 samples [53]. This would further
be aggravated by the cross-validation approach, a low event-rate, and missing imaging
scans. As a consequence, no histology-specific models could be effectively trained using
the underlying patient cohort. We are currently working on extending our international
collaborations to allow histology-specific models in the future.

The cohorts used in this study were retrospectively gathered from two different
medical centers. For the training cohort, patients were treated in the department of
radiation oncology and the department of orthopedic surgery which led to a relatively
high number of low-grade STS. The testing set was derived only from a radiation oncology
department, leading to an overall lower number of low-grade STS. Overly aggressive STS
with a metastatic state may thus be underrepresented at first diagnosis. As a consequence,
in the future, non-invasive grading models should be tested in less biased cohorts.

This work bears several limitations. Both study cohorts were collected retrospectively,
constituting a reason for a potential source of bias as described above [54]. Due to the
multicentric setting, the patient cohorts presented a large technical heterogeneity, including
different imaging protocols and MRI scanner types. Despite this heterogeneity, successful
reproduction of CNN models was possible, showing effective generalizability. In our
work, we compared the performance of two imaging sequences. To ensure a maximum
amount of information, we used all available imaging studies per sequence leading to
slightly different sizes of the training set. Relative underrepresentation in the training
set of T2FS may have impaired a better classification performance. Moreover, due to
sequence availability from both centers, our analysis was restricted to only fat-saturated
MRI sequences. As fat-dependent signals constitute important semantic features, other
sequences such as T2-weighted could provide complementary information.

5. Conclusions

In conclusion, we demonstrated that both MRI-based DL models were able to classify
tumor grading in soft-tissue sarcoma patients. Attention maps can provide insight into
semantic imaging features relevant for model classification and can function as a valuable
tool for patient-specific quality assurance. Further investigation is warranted to establish
imaging-based biomarkers for non-invasive STS characterization.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13122866/s1, Figure S1 Patients Workflow, Figure S2 Calibration Curves, Table S1
STARD Checkliste, Table S2 MRI acquisition parameters, Table S3 Histologies of Soft-Tissue Sarcomas.
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