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The prevalence of the two most common neurodegenerative diseases, Parkinson’s
disease (PD) and Alzheimer’s Disease (AD), are expected to rise alongside the
progressive aging of society. Both PD and AD are classified as proteinopathies with
misfolded proteins α-synuclein, amyloid-β, and tau. Emerging evidence suggests that
these misfolded aggregates are prion-like proteins that induce pathological cell-to-
cell spreading, which is a major driver in pathogenesis. Additional factors that can
further affect pathology spreading include oxidative stress, mitochondrial damage,
inflammation, and cell death. Nanomaterials present advantages over traditional
chemical or biological therapeutic approaches at targeting these specific mechanisms.
They can have intrinsic properties that lead to a decrease in oxidative stress or an ability
to bind and disaggregate fibrils. Additionally, nanomaterials enhance transportation
across the blood-brain barrier, are easily functionalized, increase drug half-lives, protect
cargo from immune detection, and provide a physical structure that can support cell
growth. This review highlights emergent nanomaterials with these advantages that target
oxidative stress, the fibrillization process, inflammation, and aid in regenerative medicine
for both PD and AD.

Keywords: Parkinson’s disease, Alzheimer’s disease, nanotechnology/nanomaterials, oxidative stress,
nanozymes

INTRODUCTION

Protein aggregation is a typical histopathological hallmark in Parkinson’s disease (PD) and
Alzheimer’s Disease (AD). PD is characterized by the aggregation of misfolded α-synuclein (α-syn)
protein in inclusions called Lewy bodies (LB) in dopaminergic neurons, resulting in severe
motor dysfunction. Alzheimer’s Disease is characterized by abnormal accumulation of amyloid-β
(Aβ) plaque and tau neurofibrillary tangles, resulting in brain damage affecting critical cognitive
processes. Emerging clinical and experimental results support the hypothesis that pathological
α-syn, Aβ, and tau are prion-like peptides/proteins that can induce the propagation of endogenous
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monomers, and cause proteinopathy spreading from cell-to-cell
(Braak et al., 2003; Kordower et al., 2008; Li et al., 2008; Luk et al.,
2012; Guo et al., 2016; Mao et al., 2016; Tyson et al., 2016; He
et al., 2018; Kam et al., 2018; Kim et al., 2019).

Native α-syn undergoes a misfolding process from soluble
and random conformation to the insoluble and fibrillar form
in pathological conditions. When misfolded α-syn aggregates,
it localizes in the mitochondria, inducing mitochondrial
fragmentation and decreased membrane potential (Li et al.,
2007; Devi et al., 2008; Ganjam et al., 2019). The aggregation
of Aβ peptide is thought to be a result of dysfunctional
mitochondrial reactive oxygen species (ROS) production and
dyshomeostasis of metals from oxidative stress (Tönnies and
Trushina, 2017; Gupta et al., 2019; Poulson et al., 2019). In
AD, microtubule-associated tau protein is known to undergo
abnormal hyperphosphorylation, leading to tau tangles with
prion-like activity. Though the mechanism and effects of tau
tangles are not yet well understood, there is some promise that
tau is an effective therapeutic target (Binder et al., 2005; Gong
and Iqbal, 2008; Iqbal et al., 2016; Takeda, 2019).

Similar pathological mechanisms in both diseases cause
enhanced production of ROS leading to a cascade of oxidative
stress (Li et al., 2007; Devi et al., 2008; Goedert, 2015;
Tönnies and Trushina, 2017; Hassanzadeh and Rahimmi, 2018;
Ganjam et al., 2019; Gupta et al., 2019). With increased
cell stress, microglial reactions, and increased expression of
inflammatory cytokines, both diseases significantly increase
neuronal inflammation, which is thought to promote cell death
and further protein/peptide aggregation (Tufekci et al., 2012;
Lema Tomé et al., 2013; Rivest, 2015; Gupta et al., 2019).
The biological mechanisms that affect both PD and AD as
described are misfolded protein aggregation, oxidative stress,
inflammation, and cell death (de Bem et al., 2021).

Despite decades of clinical trials using traditional therapeutics,
highly successful treatment of both oxidative stress and
protein misfolding in neurodegenerative diseases has been
elusive (Querfurth and LaFerla, 2010). Combating amyloidosis
in both AD and PD with small molecules, peptides, and
monoclonal antibodies especially, has resulted in little success.
This leaves the door open for nanomaterials with appealing
physicochemical properties, tenability, and multifunctionality
to improve understanding and treatment of the diseases
(Andrikopoulos et al., 2020; Chen P. et al., 2020; Ke et al., 2020;
Pichla et al., 2020; Kakinen et al., 2021).

Nanotechnologies are increasingly being used in biomedical
applications, and more treatments for neurodegenerative
disorders are expected to emerge. Nanomaterial formulations
have shown the ability to alleviate oxidative stress and
inflammation directly (Wang et al., 2019; Eleftheriadou et al.,
2020), and to overcome barriers in passage across the blood brain
barrier (BBB) (Ulbrich and Lamprecht, 2010; Leyva-Gómez
et al., 2015), although the specific mechanism for delivery
across the BBB varies and has not yet been fully elucidated.
Traditional therapeutic drugs are also likely to have off-target
effects. Nanomaterials demonstrate the ability to improve
localized targeted delivery of disease therapeutics by enhancing
the dosing efficacy of delivered drugs, controlling cargo release

profiles, and by being functionalized for the specific biological
target of interest (Su and Kang, 2020). Additionally, composite
nanomaterials are being developed to improve regenerative
medicine techniques and encourage new cell growth in PD and
AD (Bordoni et al., 2020).

Nanoparticles (NPs) can enhance the transport of therapeutics
across the BBB during pathological conditions in PD and AD.
Characteristics of disease-afflicted BBB include greater vascular
permeability, decreased expression of tight junctions and BBB
transporters, and the build-up of blood-derived debris and
cells into perivascular spaces (Sweeney et al., 2018; Huang
et al., 2020). Such pathological conditions impair concentration
gradient-driven diffusion, decreasing the function of carrier-
mediated transport (CMT) and receptor-mediated transport
(RMT) (Sweeney et al., 2018). These conditions pose additional
concerns due to the increased chance of agents getting trapped
in the enlarged perivascular spaces (Wang et al., 2018). Although
CMT has been a difficult transport route for NP systems due to
the high selectivity of carrier proteins (Curley and Cady, 2018),
RMT has been found to be more conducive to NP systems and is
currently the most common type of transport for NP entry into
the brain (Saraiva et al., 2016). To use RMT for transport into the
brain parenchyma for NP systems, NPs can be coated with ligands
(such as insulin, transferrin, lactoferrin) or surfactants (such as
polysorbate 80) capable of undergoing RMT (Saraiva et al., 2016;
Lopalco et al., 2018). Nanoparticles functionalized by cationic
substances such as albumin can cross the BBB by adsorptive
transcytosis (AMT) (Lu et al., 2012), or travel across the BBB
via cell-mediated transcytosis, a form of transport that relies on
immune cell phagocytosis of the NPs (Chen and Liu, 2012).

In this mini-review article, we will explore the current field
of nanomaterials for therapeutic application in PD and AD and
highlight emerging trends and materials that appear to be forging
a path toward a multifaceted approach to the similar pathologies
of the diseases. The present review is divided into major
sections describing important therapeutic trends: addressing
oxidative stress and mitochondrial damage, prevention of α-syn,
Aβ, and tau aggregation and cell-to-cell spreading, addressing
inflammation, and aiding cellular regeneration (Table 1).

NANOMATERIAL APPROACHES TO
RELIEVING OXIDATIVE STRESS IN PD
AND AD

Direct Antioxidant Nanoparticles
This section focuses on metal nanomaterials that directly relieve
oxidative stress by serving as ROS and nitric oxide (NO)
scavengers, mimicking the major antioxidant enzymes involved
in oxidative-stress response including metal oxides, and redox
nanozymes that mimic redox enzymes catalase, superoxide
dismutase (SOD), and other antioxidants (Ambani et al., 1975;
Riederer et al., 1989; Abraham et al., 2005; Li et al., 2020).

Nanozymes are nanomaterials with enzyme-like properties,
tunable catalytic activity, high stability, and often the ability to
simultaneously mimic multiple enzymes (Liang and Yan, 2019).
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TABLE 1 | Nanotechnology addressing mechanisms of PD and AD.

Biological target Therapeutic approach References

Oxidative stress ROS scavengers Antioxidant mimicking metal
oxide NPs and other
nanozymes, enhancing
oxidative stress tolerance

Singh et al., 2017; Liu et al., 2020; Ma et al., 2020; Ruotolo et al., 2020;
Yu et al., 2020

Antioxidant drug delivery Antioxidant liposomes
(resveratrol, baicalein,
curcumin, EGCG), lipoic acid
capped gold, tunable
hydrogels, catalase exosomes

Wang et al., 2011; Elnaggar et al., 2015; Haney et al., 2015; Ethemoglu
et al., 2017; Rajput et al., 2018; Huang et al., 2019; Lai et al., 2019;
Adnet et al., 2020; Chen W. et al., 2020; Piersimoni et al., 2020; Kuo
et al., 2021

Nanoemulsions Intranasal delivery of vitamin E,
coenzyme Q10 through nasal
mucosa

Gupta et al., 2018; Gaba et al., 2019

Protein Aggregation Protein degradation Graphene quantum dots, gold
NPs, light sensitive
nanoassemblies

Lee et al., 2018; Tanimoto et al., 2012; Gao et al., 2016, 2019; Zhang
et al., 2016; Chung et al., 2017; Kim et al., 2018; Javed et al., 2019;
Zhang H. et al., 2020

Fibrillization inhibition Metal oxide NPs, solid lipid
NPs, cerium oxide NPs,
siRANA exosomes, hydrogels

Hossain and Mukherjee, 2013; Cooper et al., 2014; Jiang et al., 2016,
2018; Vakilinezhad et al., 2018; Yau and Tycko, 2018; Ma et al., 2020;
Mahapatra et al., 2020; Ruotolo et al., 2020; Simpson et al., 2020

Inflammation Lipoic acid capped gold NPs, ibuprofen nanoemulsion,
loaded NPs, mitochondria targeting nanozymes

Testa et al., 2014; Mandal et al., 2016; Ganesan et al., 2019; Piersimoni
et al., 2020; Zhang L. et al., 2020

Regenerative Medicine Neutrophic factor particles and hydrogel scaffolds,
self-assembling peptides

Yu et al., 2014; Cui et al., 2016; Adil et al., 2017; Moriarty et al., 2017;
Struzyna et al., 2018; Moriarty et al., 2019; Bordoni et al., 2020

Reaction mechanisms of nanozymes may vary based on their
specific composition. Non-metallic nanozymes, such as carbon-
based nanozymes, contain an aromatic ring that facilitates
electron transfer, imitating the function of the porphyrin ring
present in natural enzymes (Gao et al., 2020). Metal oxide
nanozymes contain metal sites that imitate the metal catalytic
active site of natural metalloenzymes. Metal oxide nanozymes
tend to exhibit peroxidase-like activity, catalyzing the oxidation
of a chromogenic substrate in the presence of hydrogen peroxide
(Gao et al., 2020). Certain metal oxide nanoparticle systems
such as cerium oxide can mimic multiple enzymes at once,
and display a mechanism resembling that of redox enzymes
due to their ability to switch between oxidation states (Yang
et al., 2016; Hegazy et al., 2017). Metal-based nanozymes
can be optimized by forming bimetallic nanoparticles, such
as the PtCu system discussed below. Bimetallic nanozymes
can mimic single or multiple enzymes simultaneously, and
the catalytic activity of a bimetallic nanozyme system can be
controlled by adjusting the ratio of the metals (He et al., 2017;
Liu et al., 2020).

Cellular PD models demonstrate the potential of
nanomaterials to reduce oxidative stress. A study by Ruotolo
et al. examined the effects of cerium oxide NPs (CeO2 NPs)
on a yeast cell model overexpressing human α-syn. Results
showed that CeO2 NPs significantly reduced α-syn cytotoxicity
in a dose-dependent manner through inhibition of α-syn
cytoplasmic inclusion formation, and counteracted α-syn-
induced mitochondrial damage. Upon treatment with CeO2
NPs, α-syn-expressing yeast cells possessed lower levels of
mitochondrial fragmentation, considerably higher amounts of
actively functioning mitochondria, and a significantly smaller
pool of free radicals (Ruotolo et al., 2020). Hao et al. (2019)

demonstrated the ability of copper-based NPs (particularly
Cu2O and CuO) to eliminate ROS in a neuronal cell model
of PD induced by 1-methy-4-phenylpyridinium (MPP+). Hao
continues the study with mice, inducing PD with 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP). The study results
showed that CuxO nanoclusters mimic the activity of peroxidase,
superoxide dismutase, catalase, and glutathione peroxidase,
thus inhibiting neurotoxicity (Hao et al., 2019). In another
cellular study using a PD model induced by MPP+, Singh
et al. (2017) found that Mn3O4 nanozymes effectively mimic
SOD, catalase, and glutathione peroxidase, which are three
major antioxidant enzymes with normally cytoprotective roles
that are hampered in PD. The ability of Mn3O4 nanozymes
to simultaneously mimic all three major antioxidant enzymes
is significant, as each antioxidant enzyme serves a different
role in combating oxidative stress. Moreover, simultaneous
expression of all three major antioxidant enzymes has been
found to enhance tolerance oxidative stress in plant-based
models (Lee et al., 2007; Sharma et al., 2012). Liu et al. (2020)
injected preformed fibrils (PFF) of α-syn to create a sporadic PD
model in neuronal cells and mice. PtCu bimetallic nanoalloys
(NAs) were formulated and their antioxidant capacity was
quantified using standard radical 2,2-diphenyl-1-picrylhydrazyl
(DPPH). Liu et al. (2021) demonstrated that PtCu NAs display
peroxidase, catalase, and SOD-like activity, and can scavenge
DPPH, making them promising antioxidants. Results of their
study showed that the PtCu nanozyme is significantly efficient
at preventing prion-like α-syn spreading in PD (Liu et al.,
2020; Figure 1E). The study demonstrated by proof of concept
that redox nanozymes can be promising therapeutic strategies
against the pathological spread of α-syn. Further study into the
optimization of nanozymes against prion-like propagation would
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be worthwhile, as nanozyme therapy may serve as an effective
strategy against PD and other prion-like proteinopathies.

In recent studies with transgenic mice, metal oxides are
used as antioxidant foundations of nanozymes, functionalized
with Aβ targeting molecules. Ma and colleagues encapsulate
CuO NPs in erythrocyte membranes incubated with a construct
made from peptides, PEG, and phospholipid. The assembly was
shown to have SOD-like activity and H2O2 and superoxide
removal capacity in a 3xTg-AD mouse model (Ma et al., 2020;
Figure 1C). Yu et al. (2020) also used the 3xTg-AD mouse
model to test metal oxide frameworks to relieve AD-related
oxidative stress. Yu took cerium oxide NPs and retinoic acid
(RA) and enclosed them in MIL-100 (Fe) frameworks made
from iron and trimesic acid. The framework preferentially breaks
down in inflammatory environments with H2O2 allowing RA
to upregulate neurogenesis genes while the ceria particles act
as H2O2 antioxidants (Yu et al., 2020; Figure 1F). Carbon-
based nanomaterials hold some promise for use as antioxidants,
neuroprotectants and radical species scavengers. Like NPs,
carbon based nano assemblies can pass through the BBB. These
include carbon nanotubes, PEG functionalized carbon clusters,
and fullerenes (Eleftheriadou et al., 2020). For example, Dal
Bosco found PEGylated single walled carbon nanotubes induce
a delayed antioxidant response in rat hippocampus without any
lasting effects on memory or locomotion (Dal Bosco et al., 2015).
However, some CNT formulations have been found to have
opposite effects depending on their structural features, such as
ROS formation or antioxidant depletion (van Berlo et al., 2012).

Antioxidant Drug Delivery Nanomaterials
In this section, we focus on nanomaterials that are indirectly
targeting oxidative stress and mitochondrial damage by the
delivery of antioxidants. Materials discussed include NPs,
nanoemulsions, liposomes, and exosomes. The materials
improve localized delivery to the brain through better BBB
penetration, functionalization to better target α-syn, or by
escaping immune detection.

Nanoparticles (NPs) have potential for use as effective carriers
of therapeutics to improve BBB penetration. The potential of
NPs to increase the efficacy of PD therapies is exemplified by
the case of lipoic acid, a molecule naturally present in the
mitochondria with powerful anti-inflammatory and antioxidant
properties capable of attenuating oxidative stress (Moura et al.,
2015; Molz and Schröder, 2017; Andreeva-Gateva et al., 2020).
The administration of lipoic acid is challenging due to the
molecule’s short-half life and limited bioavailability caused by
hepatic degradation (Teichert et al., 2003; Salehi et al., 2019).
NPs can enhance the yield of intracellular lipoic acid delivery.
Piersimoni et al. found that lipoic acid capped gold NPs
(GNPs-LA) were biocompatible, capable of easily entering cells,
and increased the efficacy of drug-delivery in vitro. GNPs-
LA restored intracellular physiological conditions by preventing
ROS formation and restoring normal mitochondrial function
(Piersimoni et al., 2020). However, further study is still necessary
to elucidate the exact molecular mechanism behind the GNPs-
LA system.

In addition to NPs, nanoemulsions are a colloidal particulate
system that can improve delivery across the BBB through
noninvasive and direct delivery of lipophilic drug either through
the mucosa intranasally or by improving the solubility and oral
bioavailability of lipophilic drugs. Antioxidants, vitamin E, and
coenzyme Q10, have both been incorporated in nanoemulsions
for intranasal and oral delivery, respectively (Gupta et al., 2018;
Gaba et al., 2019). Both were shown to improve behavior effects
and reduce oxidative stress in PD rat models, with no signs
of ciliotoxicity.

Additional carriers for antioxidants include nanoliposomes
and exosomes, which can enhance BBB penetration. Antioxidants
resveratrol (RES), baicalein, and epigallocatechin gallate (EGCG)
have additionally been found to inhibit α-syn aggregation
(Stojanoviæ et al., 2001; Wu et al., 2011; Xu et al., 2016; Aliakbari
et al., 2018). Resveratrol-loaded liposomes performed better than
free RES in protection from oxidative stress in rat models, and
similarly, baicalein-loaded nanoliposomes exhibited increased
delivery, stability, and internalization of baicalein in vitro.
Liposomes have also been used to deliver drugs in combination,
including curcumin paired with RES and EGCG paired with
RES (Huang et al., 2019; Kuo et al., 2021). Functionalization of
the RES-EGCG loaded liposomes with leptin and 1-palmitoyl-
2-oleoyl-sn-glycero-3-phosphate (PA) increased BBB penetration
and α-syn targeting through binding to the leptin receptor
and PA binding to α-syn, with increased delivery, reduced
apoptosis and oxidative stress, and neuronal rescue (Kuo et al.,
2021). Exosomes additionally can be embedded with adhesive
proteins and avoid phagocytosis by the immune system. An
antioxidant catalase loaded exosome was developed by Haney
et al. (2015), which resulted in high loading efficiency, sustained
release, and catalase preservation against protease degradation.
These exosomes were readily taken up by neuronal cells in vitro
and were substantially detected in PD mouse brains after
intranasal administration with significant neuroprotective effects
(Haney et al., 2015).

There have been recent studies that use hydrogel-
nanomaterial composites or nanogels to improve antioxidant
drug delivery in AD. Rajput et al. (2018) developed xanthan and
gellan gum gels containing nanostructured lipid formations to
solubilize RES for treatment of AD using a nasal route. In the
work of Elnaggar et al., chitosan nanogels were shown to aid
in the delivery of a neuroprotectant used to treat AD, piperine,
intranasally. The chitosan gels have mucoadhesive properties
which allowed effective, non-invasive piperine delivery with a
fraction of the oral dose in AD rat models (Elnaggar et al., 2015).
Cardia and colleagues use chitosan hydrogel NPs to improve the
delivery of neuroprotective progesterone and found increased
progesterone concentration in rats that took the hydrogels
intranasally (Lai et al., 2019).

Enhanced nasal delivery could allow the use of normally
minimally bioavailable anti-AD drugs such as Timosaponin
BII. Chen administered timosaponin BII to mice intranasally
in a formulation of in-situ gellan gum hydrogels (Chen W.
et al., 2020). Salatin et al. use a surfactant (F-127) hydrogel
to embed NPs made from Eudragit RL-100 polymer. The
hydrogel acts as a thermoreversible delivery system that enables
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controlled, intranasal delivery of the AD drug, Rivastigmine
(Salatin et al., 2020).

NANOTECHNOLOGY APPROACHES
TARGETING FIBRILLIZATION
PROCESSES

Nanomaterials Approaches Targeting
α-Synuclein Aggregation in PD
Strategies to decrease α-syn aggregation involve targeting the
misfolded α-syn fibrils themselves or preventing increased
expression of them. Here we discuss graphene quantum dots
and cerium oxide NPs, which bind to α-syn and disaggregate
fibrils directly, as well as a modified exosome that targets the
central nervous system to deliver α-syn siRNA and prevent α-
syn translation.

Graphene quantum dots (GQDs) are NPs composed of
layers of graphene and are approximately 100 nm in size.
Kim et al. (2018) found that GQDs successfully pass through
the BBB and bind to α-syn fibrils, a process which inhibits
α-syn fibrillization and disaggregates fibrillated α-syn in a
time-dependent manner. GQDs also inhibited transmission of
α-syn PFFs. Kim et al. additionally demonstrated that GQDs
display neuroprotective properties. After treatment of α-syn
PFFs induced synaptic dysfunction and mitochondrial damage,
GQDs were found to restore reduced synaptic protein levels,
relieve the effects of α-syn-induced mitochondrial damage, and
reduce the formation of Lewy body/neurites. Additionally, GQDs
did not cause any significant long-term toxicity in vitro or
in vivo (Kim et al., 2018). Although studies have demonstrated
the protective effect of GQDs, further studies are needed to
understand the mechanisms.

Additionally, the cerium oxide NPs, as previously discussed
in section 2.1, have been shown to fit best into the active site
of α-syn and disaggregate fibrillar α-syn in vivo compared to
other biomaterials such as gold and superparamagnetic iron-
oxide NPs through recent molecular docking studies (Kaushik
et al., 2018; Zand et al., 2019). In Ruotolo’s study, CeO2
NP treatment on a yeast model with cells overexpressing
human α-syn significantly reduced α-syn cytotoxicity in a dose-
dependent manner through inhibition of α-syn cytoplasmic
inclusion formation and decreased mitochondrial damage as
discussed (Ruotolo et al., 2020).

Altering the gene expression of α-syn is an additional
approach to decreasing misfolded α-syn levels. Exosomes can be
modified to enhance delivery as Cooper et al. did with the central
nervous system-specific rabies virus glycoprotein peptide (RVG)
to deliver siRNA to reduce α-syn expression. The modified RVG-
exosome has therapeutic potential in delivery of α-syn siRNA to
delay and reverse alpha synucleinopathies (Cooper et al., 2014).

Nanomaterials Approaches Targeting Aβ

and Tau Aggregation in AD
In older studies, water soluble gold NPs (AuNP) synthesized in
the presence of sodium citrate and functionalized with a peptide

to form AuNP-Cys-Leu-Pro-Phe-Phe-AspNH2 were found to
block amyloid fibril growth in a gel media when irradiated
in a magnetic field. When the surfaces of the gold particles
were heated using inductive coupling in a magnetic field, they
transmitted their heat to surrounding tissues, consequently
disrupting amyloid deposits (Kogan et al., 2006).

B-casein (βCas) proteins have chaperone-like activity,
stemming from their lack of tertiary structure, existence as
heterogeneous oligomers, and ability to bind to a range of
partially folded proteins thus preventing their aggregation
(Thorn et al., 2009). Coating βCas with AuNPs and delivering
them intracardially has been found to control the toxicity of Aβ42
when induced in the brain of zebrafish larvae and adults. βCas
alone does not exhibit any controlling activity on Aβ42 activity,
suggesting that AuNPs are critical in delivering βCas to Aβ42
aggregate regions in the brain (Javed et al., 2019). AuNPs serve
as the foundation for the design of a polyoxometalate-based
nanozyme with a multifaceted approach to AD mitigation (Gao
et al., 2016). Gao and colleagues functionalized AuNPs with
a serine protease-like complex consisting of polyoxometalate
conjugated to an octapeptide motif which was found to
simultaneously target Aβ fibrilization, ROS, and metal ion
accumulation through protease-like activity, Cu scavenging, and
metal chelation, respectively (2016).

The CuO-based nanozymes of Ma and colleagues were
functionalized with a KLVFF-modified PEG with phospholipid
to embed the construct into erythrocyte membrane. The KLVFF
motif binds to Aβ in blood circulation and the biomimetic
construct was found to improve peripheral Aβ clearance
when injected into mice (Ma et al., 2020). Recent cellular
and mouse model study shows some promise that selenium-
chondroitin sulfate NPs could be a multifunctional agent for AD
treatment, inhibiting both Aβ aggregation and attenuating the
hyperphosphorylation of tau at Ser396 and Ser404 by regulating
glycogen synthase kinase 3 β (Guo et al., 2016; He et al., 2018).

Protein-capped (PC) metal NPs were synthesized by
Sonawane et al. (2019) by exposing the fungal species
F. oxysporum and Verticillium spores to various metal solutions
to create different types of NPs. Aqueous mixtures of ferricyanide
or ferrocyanide were used to create magnetite NPs, and Cd2+

and SO4
2− were used to create CdS NPs. PC-metal NPs

inhibit tau fibrillization by reducing hyperphosphorylation.
Sonawane et al.’s study showed the direct effect of PC-metal
NPs on tau aggregates, as they were quantifiably inhibited, and
mature fibrils readily dissolved. Uncapped CdS NPs are toxic
to bacterial and HeLa cells, due to oxidative stress caused by
increased concentrations of reactive oxygen species (Hossain
and Mukherjee, 2013). However, capping the NP makes them far
more biocompatible and represents a viable therapeutic route.

Vakilinezhad et al. (2018) found that nanoformulations of
histone deacetylase (HDAC) inhibitor, nicotinamide also inhibits
tau hyperphosphorylation. While large doses of nicotinamide
may be hepatotoxic (Knip et al., 2000), the researchers used
solid lipid NPs (SLN) to provide localized, controlled release
of nicotinamide by making them in different sizes. The SLNs
were made from the physiological lipids, phosphatidylserine, and
phosphatidic acid. Inhibition of hyperphosphorylation of tau in
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a rat model was confirmed by an enzyme-linked immunosorbent
assay, making it a possible candidate for AD treatment.

Photosensitizing materials are a recent area of study in the
development of anti-Aβ therapies. These materials can have
high affinity for Aβ and generate oxidative stress in response
to light, thereby impeding Aβ aggregates (Hirabayashi et al.,
2014; Mangione et al., 2015). Several nanoassemblies are
being developed as light-responsive anti-Aβ agents. Fullerene
is known to block Aβ aggregation. Tanimoto et al. (2012)
hybridized fullerene with hydrophilic moieties to increase
solubility while lowering cytotoxicity. When exposed to
UV, the fullerene denatures Aβ42 monomers and oligomers
(Tanimoto et al., 2012). Chung et al. (2017) used 10 nm,
carbon nanodots functionalized with polyethyleneimine
to inhibit the aggregation of Aβ42 using only visible light.
Graphitic carbon nitride nanosheets have been used with
visible light to suppress amyloidosis through the generation
of reactive oxygen species from photochemical reactions.
These reactive oxygen species then oxidize Aβ42 (Chung
et al., 2016). Zhang and colleagues use photodynamic micelles
functionalized with light-sensitive chlorin e6 to inhibit and
degrade Aβ in 655 nm light (Zhang et al., 2016). In recent
work, iron copper selenide NPs have had success preventing
amyloidopathy in mouse models with near-infrared illumination
(Zhang H. et al., 2020).

Common hydrogels made from collagen, agarose, HA,
and PEG were all found to have neuroprotective effects in
the presence of Aβ. However, Simpson et al. (2020) found
that non-functionalized hydrogels thermodynamically favor
Aβ aggregation due to confinement effects. In the work of
Jiang, hydrogels made from conjugated hyaluronic acid (HA)
and curcumin were observed to slow down Aβ aggregation
through opposing forces caused by its hydrophobic binding
of curcumin and electrostatic repulsion of HA (Jiang et al.,
2016, 2018). Yau and colleagues seeded Aβ fibril fragments
in N,N’−methylene−bis−acrylamide and bis−acryloylcystamine
hydrogels and found it successfully sequestrated excess Aβ in
solution (Yau and Tycko, 2018).

NANOTECHNOLOGY TARGETING
INFLAMMATION

Anti-inflammatory drugs have been used to treat both PD and
AD, but nanoemulsions and NPs can improve delivery through
direct delivery from nasal mucosa or improved BBB penetrance.

Lipophilic anti-inflammatory medication, ibuprofen, has
neuroprotective effects, and to improve its delivery to the brain,
Mandal et al. (2016) loaded ibuprofen into sodium hyaluronate
based mucoadhesive nanoemulsion (MNEI). This intranasal
nanoemulsion can more directly deliver ibuprofen to the brain
through nasal mucosa than traditional oral routes. 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine mice models were treated
with ibuprofen for two weeks as an intranasal plain drug
solution and with the nanoemulsion. Nanoemulsion delivery
of ibuprofen significantly reduced MPTP-mediated dopamine
depletion (Mandal et al., 2016).

For the treatment of AD, NPs of anti-inflammatory molecule
quercetin encapsulated in β-cyclodextrin-dodecylcarbonate were
shown to have increased anti-inflammatory effects compared to
free quercetin in vitro with the goal of improving permeation
and bioavailability (Testa et al., 2014). Curcumin loaded solid
lipid NPs showed improved bioavailability, a greater inhibition
of NO production and reduced inflammatory markers compared
to conventional curcumin in a dose-dependent manner in vitro
(Ganesan et al., 2019). A modified Poly(lactic-co-glycolic acid)
(PLGA) NP was conjugated with CD47 extracellular domain
via ROS-responsive phenylborate ester bond, which acts as
a “do not eat me” signal, and a BBB penetrating peptide
(CRT) encapsulating a microglia modulation agent necrostatin-
1 (Nec-1). The NP efficiently increased the half-life of Nec-1
via prevention of phagocyte engulfment as well as increased
brain distribution. The encapsulated Nec-1s are released as the
ROS-sensitive bond between CD47 and the NPs are broken
in AD mouse brains, allowing microglia engulfment of Nec-1
to modulate pathogenic microglia, reducing neuroinflammation
(Zhang L. et al., 2020). Additionally, mitochondria-targeted
quantum dot nanozymes were designed to switch microglia
from proinflammatory M1 phenotype to the anti-inflammatory
M2 phenotype, which can mitigate Aβ aggregate-mediated
neurotoxicity. These nanozymes effectively crossed the BBB,
escaped from lysosomes, targeted the mitochondria, and
prevented spontaneous neuroinflammation through regulation
of proinflammatory mediators in vitro and in AD mouse models
(Ren et al., 2020).

NANOTECHNOLOGY FOR
REGENERATIVE MEDICINE

Currently, there is no cure for PD or AD, but efforts in
regenerative medicine are aimed at promoting neuronal growth
and axonal extension to repair cell damage of both diseases.
To stimulate guidance of axonal growth and cellular survival,
neurotrophic factors can be delivered via nanomaterials to extend
their half-life and enhance delivery to the brain. Additionally,
scaffolds not only provide a vehicle to deliver neurotrophic
factors but are also an ideal physical structure with optimal
microenvironment to promote cell growth of host neurons or
implanted neurons.

Glial cell derived neurotrophic factor (GDNF) has a
short in vivo half-life, but delivery in PLGA microparticles
increased half-life, improved motor function and dopaminergic
neuron restoration, with no adverse effects on immunogenicity,
cerebellar degeneration, or weight loss in vivo (Garbayo et al.,
2016). GDNFs delivered in hydrogel scaffolds have additional
physical support and promote cell survival and axonal growth
in vivo and in vitro (Wang et al., 2016; Ucar and Humpel,
2019). In addition to collagen hydrogel scaffolds, cryogels and
microcontact printing also showed enhancement of axonal fiber
growth in vitro (Ucar et al., 2021). As hydrogel scaffolds provide
favorable environments for neuronal growth and protection
from host immune responses, the encapsulation of dopaminergic
neurons in scaffolds for transplantation present improved graft
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survival in PD. The hydrogel can be functionalized with RGD
cell adhesion peptide and heparin to secure cells and immobilize
growth factors for in vitro maturation of neurons (Adil et al.,
2017). Hydrogel scaffolds can additionally be structured to mimic
the nigrostriatal pathway architecture with micro-columns of
dopaminergic neurons as in the work of Struzyna et al. (2018).

Self-assembling peptides have the potential to improve
the benefits of neural stem cell (NSC) transplantation to
treat AD (Bordoni et al., 2020). Alternating amino acid
sequences can be designed to create a nanofibril scaffold
that can support neuronal growth and differentiation. Guo-
hong Cui and colleagues designed a self-assembling peptide
to successfully treat AD in a mouse model. Cui observed
improved NSC survival, improved NSC differentiation, and
lowered Aβ levels using peptides modeled after laminin (Cui
et al., 2016). Yu et al. (2014) used lactoferrin peptides in a
polymersome (PEG-PLGA) assembly to enhance delivery of
humanin, a peptide known to inhibit AD-related cell death
caused by Aβ.

Dongqin Yu used the previously mentioned metal oxide
frameworked nanozymes functionalized with siRNA to
downregulate SOX9, known to cause gliogenesis (2020). At the
same time, RA within the framework was released to upregulate
neuronal genes, creating a vital balance for neurogenesis without
excessive glial response (Yu et al., 2020).

CONCLUSION AND FUTURE
PERSPECTIVES

Amid contemporary challenges in targeted drug delivery and
barriers to transport of drugs across the BBB, nanomaterials
are emerging as promising approaches for the treatment of
neurodegenerative disorders. This review provides insights
into the role nanomaterials can play in improving the
delivery of therapeutics to patients of PD and AD, the two
most common neurodegenerative diseases, by targeting the
pathological mechanisms of oxidative stress or mitochondrial
damage, protein fibrillization, inflammation, and cell
death (Table 1).

Current and emerging challenges in NP research include
concerns regarding the toxicity of NPs. Research has shown that
the very properties that account for the benefits of NPs may
also contribute to toxic effects (Aillon et al., 2009; Song et al.,
2016; Mohammadi and Nikkhah, 2017). Generally, neurotoxicity
from NPs stems from their production of reactive oxygen
species, causing oxidative stress (Teleanu et al., 2018). However,
some NP biocompatibility improves with certain modifications.
Looking forward, NP toxicity must be researched and thoroughly
addressed, and efforts must be made to reduce or eliminate any
toxic effects during the development phase.

The effect of NPs on pathological protein aggregation are
found to vary depending on their composition, size, shape, and
charge. Further study is necessary in identifying how NPs act
under various combinations of these factors. In vitro and in vivo
studies are both crucial to the study and identification of the best
NP-based treatment for neurodegenerative diseases.

Additionally, the recent innovations in nanozymes present
exciting new possibilities of addressing oxidative stress and
inflammation in AD and PD, but more work needs to be
done for safe clinical use. Further research on the catalytic
mechanisms of nanozymes will be necessary to have the
understanding to optimize the structure, function, and regulation
of catalytic activity. Additionally, the biocompatibility and nano-
bio interactions of nanozymes should be further explored to
ensure safety and efficacy of nanozyme treatment (Wang et al.,
2018; Tian et al., 2020).

The modifiability and freedom in design of various
nanomaterials present a wide variety of delivery strategies for
medications by enhancing transport across the BBB and enabling
targeted delivery or additional functions while accommodating
drug chemistries and solubilities and avoiding immune system
detection. In regenerative medicine, which aims to reverse
the damage of neurodegeneration, materials, such as hydrogel
scaffolds, could play a crucial role in creating an optimal physical
and microenvironment to support neuronal growth and axonal
extension. However, the most ideal microenvironments and drug
combinations must be better understood.

Nanomaterials represent an ever-growing field to approach
neurodegenerative disease treatment, both in transforming the
delivery of therapeutic agents and in creating an entirely new class
of therapies targeting canonically challenging disorders.
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