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Simple Summary: Co-clinical trials are an emerging area of investigation in which a clinical trial
is coupled with a corresponding preclinical trial to inform the corresponding clinical trial. The
preclinical arm aids in assessing therapeutic efficacy, patient stratification, and designing optimal
imaging strategies. There is much interest in harmonizing preclinical and clinical quantitative
imaging pipelines. Radiomics is widely explored in clinical imaging to predict response to therapy.
In preclinical imaging, high-throughput radiomic analysis is limited by manual delineation of tumor
boundaries, which is labor intensive with poor reproducibility. Our proposed deep-learning-based
system was trained to automatically segment tumors from multi-contrast MR images and extract
radiomic features. The proposed method is highly reproducible with significant correlation in
radiomic features. The deployment of this pipeline in the preclinical arm would provide high
throughput and reproducible radiomic analysis.

Abstract: Preclinical magnetic resonance imaging (MRI) is a critical component in a co-clinical
research pipeline. Importantly, segmentation of tumors in MRI is a necessary step in tumor pheno-
typing and assessment of response to therapy. However, manual segmentation is time-intensive
and suffers from inter- and intra- observer variability and lack of reproducibility. This study aimed
to develop an automated pipeline for accurate localization and delineation of TNBC PDX tumors
from preclinical T1w and T2w MR images using a deep learning (DL) algorithm and to assess the
sensitivity of radiomic features to tumor boundaries. We tested five network architectures including
U-Net, dense U-Net, Res-Net, recurrent residual UNet (R2UNet), and dense R2U-Net (D-R2UNet),
which were compared against manual delineation by experts. To mitigate bias among multiple
experts, the simultaneous truth and performance level estimation (STAPLE) algorithm was applied
to create consensus maps. Performance metrics (F1-Score, recall, precision, and AUC) were used to
assess the performance of the networks. Multi-contrast D-R2UNet performed best with F1-score =
0.948; however, all networks scored within 1–3% of each other. Radiomic features extracted from
D-R2UNet were highly corelated to STAPLE-derived features with 67.13% of T1w and 53.15% of T2w
exhibiting correlation ρ≥ 0.9 (p ≤ 0.05). D-R2UNet-extracted features exhibited better reproducibility
relative to STAPLE with 86.71% of T1w and 69.93% of T2w features found to be highly reproducible
(CCC ≥ 0.9, p ≤ 0.05). Finally, 39.16% T1w and 13.9% T2w features were identified as insensitive
to tumor boundary perturbations (Spearman correlation (−0.4 ≤ ρ ≤ 0.4). We developed a highly
reproducible DL algorithm to circumvent manual segmentation of T1w and T2w MR images and
identified sensitivity of radiomic features to tumor boundaries.
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1. Introduction

Triple-negative breast cancer (TNBC) is a highly heterogeneous and aggressive cancer
characterized by poor outcomes and higher relapse rates compared to other subtypes of
breast cancer. Pathological complete response (pCR) is often used as a critical endpoint in
the treatment of TNBC following neoadjuvant chemotherapy (NAC) as it is often associated
with favorable long-term outcomes. Therefore, it is critical to identify patients who will
respond to NAC therapy to avoid the use of ineffective treatments. To support this effort,
co-clinical trials are an emerging area of investigation, whereby a clinical trial is coupled
with a corresponding preclinical trial to inform the corresponding clinical trial [1–7]. The
emergence of patient-derived tumor xenografts (PDXs) as a co-clinical platform is largely
motivated by the realization that established cell lines do not recapitulate the heterogeneity
of human tumors and the diversity of tumor phenotypes [8] and that better oncology
models are needed to support high-impact translational cancer research [9–11].

In this context, preclinical imaging is a critical component in the co-clinical research
pipeline, both in academia as well as in industry, to validate imaging biomarkers, to detect
disease, and to assess therapeutic efficacy. To that end, T1- and T2-weighted MR images are
routinely used to extract morphological and pathological information from tumor lesions.
Contrast-enhanced MR is additionally used to derive functional information on tumor
perfusion [12–14]. In this context, accurate localization and delineation of tumor boundaries
is vital for assessing treatment response. Manual segmentation by experts, however, is time-
and labor-intensive and suffers from inter- and intra-observer variability along with limited
reproducibility. In order to mitigate the observer variability, semi-automatic and automatic
methods have been employed to segment tumors, primarily in the clinical research setting
with fewer for preclinical applications. Recently, DL algorithms based on convolutional
neural network (CNN) have shown efficacy in accurately locating and segmenting tumor
boundaries in clinical settings. They outperform other traditional automated algorithms
for MR tumor segmentation in clinical settings [15–17]. The U-Net [18] architecture is one
of the most widely used approaches in medical image segmentation, which involves both
encoder and decoder layers along with skip connections. Several variants of the U-Net
architecture have been developed, including the residual U-Net (Res-UNet) [19] and the
recurrent residual U-Net (R2UNet) [20], for better feature representation and to mitigate
the vanishing gradient problem in training deep architecture.

The objective of this study was to develop and evaluate the performance of DL-
based tumor segmentations algorithm in multi-contrast preclinical MR imaging to alleviate
manual effort in tumor segmentation and to circumvent observer variability in tumor
delineation. An overview of the proposed pipeline is depicted in Figure 1. U-Net [18],
Res-Unet [19,21], and R2Unet [20] architectures were implemented to that end. In addition,
recent works have suggested that dense interconnections may alleviate the vanishing gra-
dient problem, strengthen feature propagation, encourage feature reuse, and substantially
reduce the number of parameters [22]. For this reason, dense interconnections of U-Net [23]
and R2UNet [24] was implemented as well. Advanced quantitative imaging methods, such
as radiomics [25], facilitate the extraction of higher dimensional data from the radiological
images to characterize tumor heterogeneity and to assess treatment response [26]. To en-
hance translational insight, the imaging biomarkers derived from radiomic analysis should
be robust and reproducible to exhibit clinical relevance. To assess the reproducibility of
the features, it is essential to analyze sensitivity of the features to intra- and inter-observer
variability arising from manual segmentation. To that end, we extracted radiomic features
from the segmented tumor regions to analyze the level of agreement between and within
manual and automated methods. In doing so, we examined the sensitivity of the features
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to tumor boundaries and the reproducibility of the algorithm, signifying its reliability and
robustness to that of manual annotation.
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Figure 1. Overview of the pipeline of the project.

2. Materials and Methods
2.1. Generation of TNBC PDXs

Gene expression analyses of 93 TNBC PDXs (29,657 unique genes/probes) were
performed to identify six TNBC subtypes, which included 2 basal-like (BL1 and BL2), an
immunomodulatory (IM), a mesenchymal (M), a mesenchymal stem—like (MSL), and
a luminal androgen receptor (LAR) subtype [27]. Details regarding animals, surgeries,
and tumor xenografts were reported previously [28] and are publicly available at https:
//c2ir2.wustl.edu/ (accessed on 26 July 2021). All animal experiments were conducted in
compliance with the Guidelines for the Care and Use of Research Animals established by
Washington University’s Animal Studies Committee.

2.2. MR Image Acquisition

MR image acquisition was performed using a MR Solutions small animal simultaneous
7T MR/PET scanner (MR Solutions, Guildford, UK). MR imaging included T1-weighted
(T1w) and T2-weighted (T2w) sequences acquired in axial oblique planes perpendicular
to the spine of the mouse. PDX mice were anesthetized with 1–2% isoflurane throughout
imaging sessions. MR imaging data were obtained for forty-nine mice with TNBC PDX
tumors implanted in the inguinal mammary fat pad. The spatial resolution was 0.25 mm ×
0.25 mm × 1 mm with a 0.1 mm gap between the slices. The imaging field of view (FOV)
was fixed at 32 mm by 24 mm to cover the entire tumor and four repetitions were acquired
and averaged for improved SNR and to reduce motion artifacts. For each PDX, 12–16 T1w
and T2w trans-axial slices were obtained with an image dimension of 128 × 128, and were
retrieved from the scanner in DICOM format. The multi-parametric MR image acquisition
protocol was as follows: T1w—2D T1-weighted fast spin echo (FSE) multi-slice images
were acquired with echo train length 4, echo spacing 11 ms, effective echo time (TE) = 11 ms,
respiratory gated with effective repetition time (TR) = 833 ms, respiration rate of about
60 breaths/min. T2w—2D T2-weighted FSE multi-slice images were obtained with echo
train length 4, echo spacing 15 ms, effective echo time (TE) = 45 ms, respiratory gated with
effective repetition time (TR) = 5000 ms, respiration rate of about 60 breaths/min.
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2.3. Manual Segmentation of the MR Images

An in-house GUI portal was developed using MATLAB R2020a (MathWorks, Natick,
MA, USA) for manual delineation of tumor boundaries from the DICOM MR images.
Four experts with experience in drawing ROIs on preclinical MR images were selected
to annotate the imaging data. The readers were instructed to delineate the boundaries of
the tumor from the T2w MR images axially through sections of the tumor as deemed by
the expert. Each of the readers annotated all the test cases in a single continuous setting
and identical display device and lighting conditions were used for each reader. Labels
annotated by one expert were used as ground truth for training of the neural network,
while the labels delineated by four experts were used to test the performance of the network.
For test–retest, the tumor boundary delineation was performed by the same set of experts
within a one-week gap under identical conditions.

2.4. CNN Model for Automatic Segmentation
2.4.1. Network Architecture

A fully CNN-based on U-Net architecture was implemented to generate the segmen-
tation maps from the PDX MR images using Keras and TensorFlow framework written in
Python. The basic U-Net [18] architecture combines a down-sampling (encoder) path to
capture the contextual information followed by a symmetrical up-sampling (decoder) path
for accurate localization of the features. To increase the amount of contextual information
in the up-sampling path, skip connections [29] are implemented to directly concatenate
the feature maps from the encoder to the decoder portion of the network. Our imple-
mented model utilized recurrent convolutional layers (RCL) [20] with two time steps, i.e.,
it performed two subsequent recurrent convolutions and additions following the regular
convolution layer. It also used the residual connections for direct addition of the previous
layer’s output to alleviate the vanishing gradient problem [21]. Dense interconnections
were applied to facilitate direct concatenation of the previous layer’s information into
current layer output, enhancing feature reuse [22].

Convolutional layers used kernels of size 3 × 3 with a max pooling operation of 2 × 2
for detection of multiscale features in the encoder portion. Deconvolutional layers of kernel
size 3 × 3 were used in the decoder portion of the network. Activation layers after each
convolution operation were set as non-linear rectilinear activation units (i.e., ReLU) and a
sigmoid function was used for the final activation function, setting the network’s output in
the range of 0 and 1. In order to mitigate the effect of overfitting of the network due to the
small dataset size available for training, spatial dropouts were implemented. The dropout
layers [30] were applied prior to the max pooling in the deeper layers of the network in the
main architecture and between the RCL blocks to force the network to efficiently learn the
finer image features without overfitting to the peculiarities of just the training data. In all,
five network architectures were tested: U-Net, dense U-Net, Res-Net, recurrent residual
UNet (R2UNet), and dense R2U-Net (D-R2UNet). The architectures of the D-R2UNet and
the recurrent convolutional layer unit are depicted in Figure 2a,b respectively.

2.4.2. Preprocessing and Training of the Network

All input images were normalized such that the intensity distribution had zero mean
and unit standard deviation for consistent CNN processing. Data augmentation was
performed to make the network more robust against the degree of enlargement, rotation,
and parallel shift. Each image was rotated 90◦, 180◦, and 270◦ horizontally and vertically,
shifted by a factor of 0.05 and a shear range factor of 0.05. In order to perform multi-
contrast segmentation and to evaluate the training efficacy, we used two images (i.e., T1w
and T2w) concatenated together as channels of a single image, i.e., the network takes a
single, 3-dimensional tensor (image dimension, image dimension, and channel). A fivefold
cross-validation was performed on the training dataset. The dataset was split into five
parts and each part was utilized for training and validation. The training set was used
to train the network while the validation set was used to monitor the effectiveness of the
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training and fine-tuning of the hyperparameters to prevent the network from overfitting to
the training data. The mean training and validation loss across the fivefold cross-validation
curve is depicted by Figure 2c and the mean dice accuracy curve is depicted in Figure 2d. The
validation standard deviation is also depicted in Figure 2c,d by the purple shaded region.
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The training was performed on a standalone workstation equipped with a Quadro
P8000 (NVIDIA) graphics processing unit. The networks were trained using the stochastic
gradient descent Adam optimizer method [31] with a fixed learning rate of 1 × 105. The ini-
tial weights of the filters were initialized using Xavier initialization [32]. The F1-score was
used as an accuracy measure for testing the network performance during training and the
dice loss was used for the loss function, which was back-propagated through the CNN for
the update of the weights after each epoch. The models were trained for 250 epochs and the
segmentation probability maps were obtained. In order to obtain the optimized threshold
for maximizing the F1-score of the predicted segmentation, we ran the training data through
the trained network to generate precision and recall curves. The intersection of the curves
gives the optimum threshold value, which maximizes segmentation performance by giving
the highest true positives and lowest false positives. The D-R2UNet takes approximately 3.5 h
to train for 250 epochs and 100 s to make predictions on the testing dataset.

2.4.3. STAPLE Algorithm to Generate Consensus among Experts

The STAPLE (simultaneous truth and performance level estimation) [33] algorithm
was applied to compute the probability estimate of the true segmentation by simultaneously
measuring performance level of each segmentation from a collection of raters using the
expectation maximization algorithm. The STAPLE algorithm helps in creating a consensus
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map, taking into account the variability among the individual experts. The segmentation
mask obtained from applying the STAPLE algorithm to the expert-generated masks was used
for the assessment of the DL algorithm. Out of the 49 PDX scanned in the study, image data
from 41 mice were used to train, validate, and optimize the hyperparameters of the network
and image data from 8 mice were used for testing the network performance and for further
radiomic analysis of the tumor region. The overview of the data is summarized in Table 1.
The STAPLE estimation and the actual manual delineations are depicted in Figure 3.

Table 1. Overview of the dataset used for the network training and testing.

Total No. of
Mice Used for

Study

No. of Mice Used
for Training and
Validation of the

CNN

No. of Mice Used
for Testing the
Performance of

the CNN

No. of MR
Slices for

Training and
Validation

No. of MR
Slices Used
for Testing

49 41 8 255 39
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STAPLE algorithm to the manually delineated expert map represented in T2w image.

2.4.4. Performance Assessment of the Network

We evaluated the performance of the model in predicting tumor boundaries by using
an independent testing dataset. The segmentation performance was calculated before
post-processing the tumor segmentation maps by removing all but the largest continuous
segmentation regions in each 2D slice for radiomic analysis. The segmentation performance
of the UNet [18], Res-Net [21], DenseU-Net [23], and D-R2UNet algorithms were assessed
relative to STAPLE maps. The following performance metrics expressed in terms of true
positive (TP), true negative (TN), false positive (FP), and false negative (FN) were compared:

• F1-score—the F1-score measures the spatial overlap between the predicted image and
the ground truth and is given by Equation (1).

F1 Score =
2 TP

2 TP + FP + FN
(1)
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• Precision—precision signifies the fraction of true positives (TP) in relation to that of
the segmented tumor region by the algorithm and is given by Equation (2).

Precision =
TP

TP + FP
(2)

• Recall—recall signifies the fraction of true positives (TP) in relation to that of the
ground truth segmentation by experts and is given by Equation (3).

Recall =
TP

TP + FN
(3)

• Accuracy—accuracy signifies the fraction of correctly classified voxels in relation to
that of the total number of voxels and is given by Equation (4).

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

2.5. Extraction of Radiomic Features and Correlation between STAPLE and D-R2UNet

The segmented maps obtained from the CNN along with the manually delineated
maps of the experts obtained from STAPLE were arranged to create a 3D volume to perform
the radiomic analysis. The radiomic features were extracted using an in-house developed
program written in MATLAB (R2020a) based on the publicly available “Radiomic-Develop”
repository [34] following ISBI [35]. In total 144 radiomic features were extracted for both
T1w and T2w MR images. Features were divided into morphological, statistical, and
histogram features, as well as GLCM, GLRLM, GLSZM, GLDZM, NGLDM, and NGTDM
and were generated from 3D segmented tumor regions with 26-voxel connectivity (see
Supplementary Material 1). Shape-based features were extracted from the 3D segmented
volume, the intensity-based features (i.e., the first order statistics) were directly extracted
from the intensity matrix generated directly from the tumor segmentation maps. Sixty-
four-level fixed bin grey quantization was used to extract the histogram analysis of first
order statistics. For the texture-based higher order features, a 64-level quantization was
performed using the Lloyd–Max quantization algorithm [36], which iteratively calculates
the optimum quantizer level and interval by utilizing the principle of probability density
function. Four features were excluded as they directly correlated to some other features, like
Compactness 1, Compactness 2, and Spherical Disproportion are correlated to Sphericity,
while Sum Average is correlated to Joint Average [37].

The Spearman correlation coefficient (SCC, ρ) was used to determine the degree
of correlation between radiomic features extracted from the STAPLE algorithm and the
automated D-R2UNet algorithm. All correlation values with p ≤ 0.05 were considered
significant. This process was repeated for both T1w and T2w and a threshold of ρ > 0.9
was determined to assess which radiomic features showed high correlation between the
STAPLE and D-R2UNet maps.

2.6. Reproducibility of Radiomic Features by Experts

The reproducibility of segmentation and radiomic features was characterized by
test/retest of manual segmentation. Test–retest of tumor boundary delineation was per-
formed by the experts within a one-week gap in an identical setting on a randomly shuffled
version of the same test dataset to check for the reproducibility. After the retest delineation,
the STAPLE algorithm was applied to the segmentation maps to generate a single prob-
ability estimate map for multiple experts and it was used for reproducibility analysis of
radiomic features. To test the reproducibility of the network, the model was retrained using
a randomly reshuffled training and validation dataset with identical hyperparameters
and then tested on the same dataset as that of the experts. Bland–Altman (BA) analysis
was performed on the tumor volumes between the test–retest measurements obtained
from the STAPLE algorithm (i.e., the experts) and the D-R2UNet algorithm to infer the
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degree of agreement between test–retest. The reproducibility of the radiomic features for
both the STAPLE and D-R2UNET segmentations was investigated using the concordance
correlation coefficient (CCC) [38,39].

2.7. Sensitivity of Features to Tumor Probability Boundaries

To evaluate the sensitivity of the features to change in tumor boundaries, we computed
the SCC of the change in feature values (∆Feature) to that of the difference in volume
(∆V) between STAPLE and D-R2UNet maps. A hierarchical clustering of the features
was performed using complete linkage based on the correlation of the differences of the
feature values with respect to volume change. We also extended the correlation analysis
and clustering to assess the sensitivity of the radiomic features to each other i.e., cross-
correlation subject to boundary change. Complete linkage was chosen for the clustering
due to its highest cophenetic correlation coefficient. All of the above-mentioned statistical
analyses were performed using Python 3.0 and MATLAB 2020b.

3. Results
3.1. Performance of CNN Segmentation

The measure of agreement between the automated segmentation maps obtained
from four different networks, i.e., U-Net, dense U-Net, residual U-Net (Res-UNet), and
the proposed D-R2UNet relative to that of the STAPLE maps generated from the expert
delineation are summarized in Table 2. The performances of the networks are given in
terms of DSC, precision, recall, and AUC.

Table 2. Performance metrics (mean ± SD) of PDX tumor segmentation for different network models relative to STAPLE map.

Input Data Network F1-Score Recall Precision AUC

T2w and T1w

U-Net 0.929 ± 0.072 0.928 ± 0.040 0.935 ± 0.098 0.962 ± 0.019
Dense U-Net 0.923 ± 0.066 0.960 ± 0.025 0.897 ± 0.116 0.977 ± 0.012

Res-Net 0.922 ± 0.074 0.947 ± 0.034 0.910 ± 0.117 0.971 ± 0.017
R2U-Net 0.929 ± 0.072 0.933 ± 0.037 0.937 ± 0.128 0.965 ± 0.018

Dense R2U-Net 0.948 ± 0.026 0.928 ± 0.032 0.970 ± 0.042 0.963 ± 0.016

T2w

U-Net 0.927 ± 0.076 0.950 ± 0.031 0.919 ± 0.119 0.973 ± 0.016
Dense U-Net 0.910 ± 0.077 0.932 ± 0.033 0.900 ± 0.130 0.963 ± 0.017

Res-Net 0.913 ± 0.079 0.884 ± 0.079 0.943 ± 0.091 0.943 ± 0.040
R2U-Net 0.924 ± 0.067 0.959 ± 0.026 0.902 ± 0.116 0.977 ± 0.012

Dense R2U-Net 0.935 ± 0.064 0.954 ± 0.023 0.925 ± 0.107 0.975 ± 0.011

The segmentation performance varied for single-channel (T2w only) and multichannel
input (T1w and T2w). Multichannel input exhibited marginally better performance when
compared to single-channel input. Among the different networks tested for multichannel
input, the D-R2UNet with dice loss as loss function exhibited a better performance in terms
of its mean F1-score of 0.948 (95% CI, 0.939–0.956) with respect to the other networks. The D-
R2UNet also exhibited the highest precision value, signifying its efficiency in decreasing the
number of false positives in detection. From the fivefold cross-validation of the different
networks, D-R2UNet exhibited a greater mean F1-score, as depicted in Table 3, and thus
was selected as an optimal model for further analysis. The F1-score was chosen as the
primary metric for model selection and evaluating segmentation performance because it is
regarded as a harmonic mean between precision and recall. Representative examples of
T1w and T2w images are given in Figure 4a,b, respectively, with a STAPLE-generated map
in Figure 4c. The performance of the D-R2UNet-generated segmentation map with respect
to the STAPLE-generated map is depicted in Figure 4d, while the segmentation error of the
D-R2UNet relative to the STAPLE algorithm is depicted in Figure 4e.

The segmented tumor volumes were used to construct the 3D tumor volume after
post-processing the largest continuous area from each slice. The tumor volume extracted
from the experts and the automated algorithm exhibited a high degree of correlation with
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CCC equal to 0.991, as depicted in Figure 4f. The BA analysis was also performed between
the STAPLE and D-R2UNet algorithm tumor volume, where the bias was calculated as
the difference of expert volume to that of algorithm delineated volume. The mean bias of
4.6% was obtained from the BA analysis, signifying that the algorithm underestimated the
tumor volume by a mean of around 4% relative to STAPLE, which is shown in Figure 4g.
The tumor volumes extracted from the D-R2UNet algorithm segmentation are correlated
with the tumor volumes STAPLE-contoured by the experts (ρ = 0.99, p < 0.001). From the BA
analysis, we also inferred that the mean tumor volume between the STAPLE and D-R2UNet
was negatively correlated to the bias, with a correlation value ρ= −0.739. This means that
the bias between the STAPLE and D-R2UNet decreased with increase in tumor volume.

Table 3. Performance metrics (mean ± SD) of fivefold cross-validation for the different network models.

Network F1-Score Recall Precision AUC

U-Net 0.906 ± 0.022 0.907 ± 0.027 0.914 ± 0.015 0.961 ± 0.013
Dense U-Net 0.911 ± 0.016 0.903 ± 0.025 0.930 ± 0.016 0.960 ± 0.012

Res-Net 0.909 ± 0.010 0.902 ± 0.030 0.925 ± 0.028 0.961 ± 0.012
R2U-Net 0.917 ± 0.013 0.909 ± 0.030 0.933 ± 0.008 0.960 ± 0.013

Dense R2U-Net 0.922 ± 0.009 0.937 ± 0.005 0.928 ± 0.016 0.963 ± 0.008
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Figure 4. Results from the CNN segmentation by using multi-contrast MR imaging: (a) single slice of T2w image, (b) single
slice of T1w image, (c) segmentation map derived from all the manual experts by using a EM-based algorithm called
STAPLE (ground truth), (d) segmentation map generated by D-R2UNet, (e) the difference map of the D-R2UNet (algorithm)
relative to the STAPLE(manual) (f) Lin’s concordance correlation plot between the tumor volume segmented from the
D-R2UNet algorithm in relation to that of STAPLE, (g) BA plot between the tumor volumes segmented by D-R2UNet vs.
STAPLE. The relative difference is expressed in percentage relative to ground truth and mean volume change is 4.6%.

3.2. Robustness of Radiomic Parameters Extracted from the D-R2UNet Algorithm

Despite the high correlation between the STAPLE- and D-R2UNET-derived tumor
volumes, the extracted radiomic parameters varied significantly due to the difference in
tumor boundaries. The SCC (ρ) between the STAPLE- and D-R2UNET-algorithm-generated
segmentations are reported separately for each category of radiomic features and are pro-
vided in Supplementary Material 2. All 12 morphological features (shape-based) showed a
high degree of correlation (0.83 ≤ ρ ≤1, p ≤ 0.05). The global intensity features showed a
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consistently high degree of correlation (0.95 ≤ ρ ≤1, p ≤ 0.05) for T1w and high to mod-
erate correlation for T2w (0.66 ≤ ρ ≤ 1, p ≤ 0.05). For the histogram-based intensity, the
degree of correlation varied significantly for both T2w (0.45 ≤ ρ ≤ 0.97, p ≤ 0.05) and T1w
(0.69 ≤ ρ≤ 0.97, p ≤ 0.05) because of the feature value’s dependence on the binning process,
which is sensitive to segmentation boundaries. The correlation for the textural features
also varied widely across the parameters due to the binning, with GLCM (0.61 ≤ ρ ≤ 1,
p ≤ 0.05), GLRLM (0.83 ≤ ρ ≤ 1, p ≤ 0.05), GLSZM (0.73 ≤ ρ ≤ 1, p ≤ 0.05), GLDZM
(0.73 ≤ ρ ≤ 1, p ≤ 0.05), NGTDM (0.8 ≤ ρ ≤ 1, p ≤ 0.05), and NGLDM (0.73 ≤ ρ ≤ 1,
p ≤ 0.05). Textural features that exhibited ρ < 0.7 were found to be statistically insignificant,
and hence were not considered. Figure 5a depicts the heatmap representing the degree of
correlation between the D-R2UNet- and STAPLE-generated maps for each subcategory of
features. A correlation ρ > 0.8 is generally considered an indication for strong correlation [40]
between radiomic features and STAPLE, but we opted for a stricter threshold of ρ > 0.9 due
to the relatively smaller size of our study dataset. Figure 5b,c depicts the distribution of the
percentage of features from each class having high correlations. Percent of radiomic features
exhibiting a correlation ρ ≥ 0.9 by class of features is depicted in Figure 5d.
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Figure 5. (a) Heatmap depicting the SCC between the radiomic features extracted from the D-R2UNet segmentation maps
and the STAPLE-generated maps (ground truth) grouped by radiomic sub-category for T1w and T2w, (b) frequency of
SCC between STAPLE and D-R2UNET for T1w, along with the cumulative sum percent of features in each binning range,
(c) frequency of SCC between STAPLE and D-R2UNet for T2w, along with the cumulative sum percent of features in each
binning range, (d) percentage of radiomic features that are highly correlated, i.e., ρ ≥ 0.9 (p ≤ 0.05) grouped by feature
sub-category.

3.3. Reproducibility Analysis of the Radiomic Parameters

We evaluated the reproducibility of the radiomic features for both STAPLE-generated
maps and for D-R2UNet-generated maps. BA analysis was performed on the test–retest
tumor volumes for both cases, which calculated the agreement between two measurements.
The mean bias of measurement for tumor volume for test–retest among the experts ranged
from −2.2% to 8.37% relative to the first delineation. This wide range of variation was
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solved by using STAPLE for test–retest, which gave a mean bias of −2.8% relative to
first delineation, as depicted in Figure 6a. D-R2UNet outperformed every expert and
the STAPLE by achieving a mean bias of measurements equal to 1.02% relative to first
training run of the D-R2UNet, as depicted in Figure 6b. The CCC were used to assess
test–retest performance of radiomic features for both T1w and T2w MR images. A feature
was considered to be highly reproducible if it had CCC > 0.9 [41,42]. For both D-R2UNet-
and STAPLE-generated radiomic features, greater than 80% of morphological and greater than
90% of statistical features were highly reproducible. For higher order textural features, the
number of reproducible features decreased due to quantization. The percent of reproducible
features varied around 70–80% for T1w and 60–70% for T1w with respect to each higher order
radiomic subcategory (Supplementary Material 3) and is given in Figure 6c,d, respectively.
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Figure 6. Reproducibility analysis of the D-R2UNet relative to the STAPLE: (a) Bland–Altman plot for test–retest for the
expert delineation after application of STAPLE. The experts delineated the same set of tumor volume within a one-week gap
under identical conditions. (b) Bland–Altman plot for test–retest for the D-R2UNet algorithm. The algorithm was re-trained
in randomly shuffled data and tested on the same test data to evaluate the robustness of the algorithm. (c) Percentage of
T1w radiomic features having CCC ≥ 0.9 extracted from STAPLE generated maps and automated maps (d) Percentage of
T2w radiomic features having CCC ≥ 0.9 extracted from STAPLE-generated maps and D-R2UNet maps.

3.4. Sensitivity of Radiomic Features to Tumor Boundaries

To evaluate the sensitivity of the radiomic features to change in the tumor boundaries,
the SCC between changes in the radiomic features relative to the changes in tumor volume
were calculated. The frequency distributions and their underlying probability density
functions are depicted in Figure 7a,b for T1w and T2w, respectively. Features that had
SCC values in the range of −0.4 to 0.4 were considered to be robust to perturbations.
Ninety-five T1w radiomic features and fifty T2w radiomic features were found to be robust
to perturbations in the tumor boundary (Supplementary Material 4).



Cancers 2021, 13, 3795 12 of 17
Cancers 2021, 13, x 13 of 18 
 

 

Figure 7. (a) Frequency distribution of the SCC between the change in radiomic features (ΔFea-

tureValue) to change in volume (ΔV) along with the underlying probability density function (PDF) 

of the distribution (in red) for T1w. (b) Frequency distribution of the SCC between the change in 

radiomic features (ΔFeatureValue) in relation to change in volume (ΔV) along with the underlying 

PDF of the distribution (in red) for T2w. The yellow line signifies the −0.4 to 0.4 interval, i.e., where 

ΔFeatureValues are considered insensitive to ΔVolume. 

 

Figure 8. (a) Clustergram for correlation between the ΔFeatureValues for T1w. (b) Clustergram for correlation between 

the ΔFeatureValues for T2w. (c) The PDF for T1w and T2w for the distribution of the ΔFeatureValues’ Spearman correla-

tion coefficient by radiomic sub-category. 

  

a b

ca

b

Figure 7. (a) Frequency distribution of the SCC between the change in radiomic features (∆FeatureValue) to change in
volume (∆V) along with the underlying probability density function (PDF) of the distribution (in red) for T1w. (b) Frequency
distribution of the SCC between the change in radiomic features (∆FeatureValue) in relation to change in volume (∆V) along
with the underlying PDF of the distribution (in red) for T2w. The yellow line signifies the −0.4 to 0.4 interval, i.e., where
∆FeatureValues are considered insensitive to ∆Volume.

The hierarchical clustering of the cross-correlation of change in feature values resulted
in 23 and 26 independent clusters for T1w and T2w, respectively, using complete linkage
and dendrogram length = 4, as depicted by the clustergram in Figure 8a,b, respectively,
for T1w and T2w. The PDF for the sub-categorical distributions of cross-correlation of the
change in feature values are given in Figure 8c. The features representing each independent
cluster for T1w and T2w are given in Supplementary Material 5.
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Figure 8. (a) Clustergram for correlation between the ∆FeatureValues for T1w. (b) Clustergram for correlation between the
∆FeatureValues for T2w. (c) The PDF for T1w and T2w for the distribution of the ∆FeatureValues’ Spearman correlation
coefficient by radiomic sub-category.
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4. Discussion

In this paper, we implemented CNN-based methods for automatic segmentation of
tumors in multi-contrast preclinical MR imaging. All CNN methods proposed within this
study performed better than previously published preclinical tumor segmentation methods,
including fast k-means-based level-set method [43], which achieved a F1-score = 0.82 in
segmenting TNBC PDX MR images, and multi-contrast U-Net, which achieved a F1-score
= 0.84 in segmenting sarcoma tumors in MR [44]. Of the five networks tested in the current
work, DR2U-Net exhibited marginally better performance in terms of F1-score compared
to other DL methods implemented in this work. The dense residual interconnections and
the recurrent convolutional units (RCL) facilitated faster learning of features from limited
data space and fewer parameters by gradient propagation and feature reuse.

The use of multi-contrast MR imaging instead of single contrast has significantly
shown performance improvement in brain segmentation using DL [45]. Our segmentation
model was also in agreement with this fact and achieved the best performance for multi-
contrast data versus T2w-only data (Table 1). The multi-contrast data combined features
from T1w and T2w and facilitated better learning of features. Our approach mimics the
clinical scanning protocols where multi-contrast MR are used by radiologists to assess
tumor boundaries. One principal issue with manual tumor delineation is the variability
of delineation among multiple experts, which leads to lack of reproducibility [46,47]. In
this study, as expected, the tumor volume differed substantially between the experts,
demonstrating the need to develop a reproducible pipeline. Even after the application
of the STAPLE algorithm, which creates a probabilistic map, taking into consensus all
the expert delineations, there was variability in repeated delineations among the ground
truth delineated by experts. The algorithm was found to be more robust on train–retrain
measures, with only 1.02% mean volume bias between two runs. Though the training of DL
networks a takes considerable amount of time and resources, it is still less labor intensive
and more reproducible than manual intervention.

The fully automated method also accelerated high-throughput extraction of quan-
titative radiomic features, enabling extraction of mineable data from segmented tumors.
Intensity and shape-based (first order) features were highly corrected between the STAPLE
and D-R2UNet algorithms. However, the correlation of texture-based features between
STAPLE the D-R2UNet varied widely. The textural features were more sensitive to the
change in segmentation boundaries as they were extracted by intensity binning of the
intensity histogram into different quantization levels. The intensity quantization levels
were drastically affected due to the change in boundaries, as change by a few voxels of
delineation can affect the intensity quantization process, hence affecting higher-order fea-
tures. We observed that there was a greater degree of correlation for T1w features than T2w
higher-order features because T2w has more variability in texture than T1w, and hence
even small perturbations had greater impact on the quantization process. The reduction in
number of bins would result in a higher correlation in radiomic features between STAPLE
and D-R2UNet, but would fail to capture the dynamic texture of the tumor.

Reproducibility and repeatability are essential elements to enhance the translation
of radiomics to clinical practice [48]. Manual delineations are particularly prone to repro-
ducibility issues [49–51]. Haarburger et al. compiled a set of robust features by analyzing
reproducibility of features for both manual segmentation and probabilistic automated
segmentation for clinical CT images [52]. Zwanenburg et al. assessed the robustness of
radiomic features to image perturbations associated with test–retest measures [53]. The
CCC [41,42,54–56] is widely used as a metric to quantify reproducibility of the features.
A suitable threshold value has not yet been established as different studies have used
different thresholds. The value of CCC > 0.75 is an indicative of good reliability between
two measurements [57,58]. We selected a stricter threshold of 0.9 to signify reproducibility
for CCC [41,42], owing to our small number of datapoints to avoid the Type I and Type
II errors. The D-R2UNet showed more consistent results with minimal volume bias of
1.02% when subjected to test–retest measures relative to the STAPLE algorithm, which had
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a volume bias of 2.8%. Even though the volume was is minimal, due to the sensitivity of
the features, the number of reproducible features varied widely across for STAPLE and
D-R2UNet algorithms. We also observed a greater number of features to be reproducible
for T1w than T2w for D-R2UNet because of its less heterogenic texture.

Since variability in delineation of tumor boundaries is inevitable, we attempted to
characterize features that are less sensitive to perturbations in tumor boundaries. Among
these robust features, we further characterized features that were highly correlated to
STAPLE maps (ρ ≥ 0.9, p ≤ 0.05) and were also reproducible for D-R2UNet (CCC ≥ 0.9,
p ≤ 0.05) (Supplementary Material 4). We found that for T1w 56 features, i.e., 36.16%, and
for T2w 20 features, i.e., 13.9%, features fit all criteria. These groups of features can be used
as biomarker indicators in studying treatment response in the preclinical setting using the
DL pipeline.

5. Conclusions

In conclusion, we have implemented and tested DL-based pipelines for accurate
and automatic localization of TNBC PDX in multi-contrast small animal MR imaging.
DR2UNet performed marginally better than other implemented networks. Nevertheless,
the automated methods ensure high throughput tumor segmentation and minimize manual
intervention, which in turn enhances reproducibility. Furthermore, we have implemented
a radiomics pipeline to characterize the sensitivity of the features to perturbations in
tumor boundary. The automated generated maps were found to be highly correlated
and reproducible relative to the STAPLE maps and thus can be used for high throughput
phenotyping of preclinical MR images in co-clinical trials.

Supplementary Materials: The following Supplementary Material are available online at https://
www.mdpi.com/article/10.3390/cancers13153795/s1, Supplementary Material 1: Radiomic feature
descriptions, Supplementary Material 2: Spearman correlation coefficient between STAPLE and D-
R2UNet maps, Supplementary Material 3: Reproducibility analysis by CCC, Supplementary Material
4: List of the features that are robust to tumor boundary perturbations, Supplementary Material 5:
List of features in each individual clusters formed by the cross-correlation of change in feature values.
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