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METHODS: STRUCTURAL & FUNCTIONAL MRI DATA PROCESSING 
The preprocessing stream, individual-specific cortical surface generation, mapping of BOLD 
data to individual-specific cortical surfaces, and Infomap-derived individual-specific for the MSC 
rs-fMRI data have all been previously described in published articles (1–3). Here, we describe 
the relevant details. 
 
MRI image acquisition 
Participants were scanned on a Siemens TRIO 3T with whole brain coverage, which allowed for 
the examination of the hippocampus’ functional connectivity to all of cortex, not just to cortex 
proximate to the hippocampus. Structural images included four T1-weighted scans (TE = 
3.74ms, TR = 2400ms, TI = 1000ms, flip angle = 8°, 0.8mm isotropic voxels, 224 sagittal slices) 
and four T2-weighted images (TE = 479ms, TR = 3200ms, 0.8mm isotropic voxels, 224 sagittal, 
224). 
 
Functional images included 300 minutes of eyes-open resting state fMRI BOLD data (10 
sessions x 30min/session) and 350 minutes total of task fMRI BOLD data using a gradient-echo 
EPI BOLD sequence (TE = 27ms, TR = 2.2s, flip angle = 90°, 4mm isotropic voxels, 36 axial 
slices). Gradient echo field map images (one per session) were acquired with the same 
parameters. See Gordon et al. for more details (2).  
One participant (MSC06) underwent an additional 87 imaging sessions on a Siemens Prisma 3T 
MRI scanner, consisting of fMRI scans with higher resolution (gradient-echo EPI BOLD 
sequence: multiband factor 4, TE = 33ms, TR = 1.1 s, flip angle = 84°, 2.6mm isotropic voxels, 
56 axial slices). These additional resting state fMRI scans were conducted as part of another 
study independent of the MSC data collection (4), but are labeled as MSC06-Rep in this article. 
See (4) for more details on image acquisition parameters and procedures. We used MSC06-
Rep to validate the results from the original 10 MSC subjects, and as a way to assess the 
effects of spatial resolution. 
 
Structural MRI 
Cortical surfaces were generated according to procedures described in Laumann et al. (5). 
Each participant’s averaged T1-weighted image was run through FreeSurfer v5.3’s recon-all 
processing pipeline to create the anatomical surface, which was double-checked and manually 
edited using Freeviewer. Surfaces were then registered into fs_LR_32k surface space with the 
Multi-modal Surface Matching algorithm (6). 
 
Functional MRI (fMRI) preprocessing 
All fMRI data were preprocessed to maximize cross-session registration, which involved slice-
time correction, intensity normalization, and within-run head motion correction. The functional 
MRI data were registered to Talairach atlas space using the subject-specific averaged T2-
weighted and T1-weighted structural image. We used the mean field map to apply a distortion 
correction for each participant before resampling into 2mm isotropic resolution. These steps 
were combined into a single interpolation using FSL’s applywarp tool (7). 
 
Resting state fMRI (rs-fMRI) data preprocessing 
We further preprocessed the rs-fMRI data to reduce spurious effects that are likely unrelated to 
neural activity using a motion censoring procedure described in Power et al. (8) in line with 
current best practices for reducing motion artifacts (9). Motion-contaminated frames were 
identified based on a framewise displacement (FD) > 0.2mm or a temporal derivative of the root 
mean squared variance over voxels (DVARS) > 5.36. Two subjects (MSC03, MSC10) required 
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additional correction for artifactual high-frequency motion in the phase encoding direction 
(anterior-posterior) as previously described (2, 3).  
 
After motion censoring, the data were further preprocessed with the following additional steps: 
(1) demeaning and detrending, (2) interpolating censored frames with least-squares spectral 
estimation, (3) temporal band-pass filtering (0.005 Hz < f < 0.01 Hz), and (4) multiple regression 
of nuisance variables, which include the global signal, principle components of ventricular and 
white matter signals (described below in ‘‘Component-based nuisance regression’’), and motion 
estimates derived from the Volterra expansion (10), applied in a single step to the filtered, 
interpolated BOLD time series. Finally, censored volumes were removed from the data for all 
subsequent analyses. Application of the temporal masks resulted in retention of 5704 ± 1548 
volumes per subject (range of 2691-7530) or ~209 ± 57 min.  
 
For MSC06’s additional 2.6mm resolution data, the data were processed in the same manner 
described above. However, (1) FD measurements were corrected for artifactual high-frequency 
motion in the phase encoding direction, (2) the FD threshold for motion censoring was 0.1mm, 
and (3) the DVARS threshold for motion censoring was 6. 
The cortical data were then registered to the surface (see above “Structural MRI”). The cortical 
surface data and volumetric subcortical and cerebellar data were combined into CIFTI data 

format using the Connectome Workbench toolbox (11). Two independent atlas spaces are 
used: (1) a volumetric atlas (Talairach) and (2) a surface atlas (fs_LR_32k) to allow for 
comparison across subjects for both the subcortical volumes and cortical surfaces.  
 
Voxels in the cerebellum and the subcortical structures were derived from the FreeSurfer 
segmentation of each subject’s native averaged T1-weighted image and manually edited by 
expert neuroanatomists to ensure utmost accuracy in grey matter segmentation. These were 
then transformed into Talairach atlas space. Finally, the cortical surface functional data were 
smoothed (2D geodesic, Gaussian kernel, σ = 2.55mm). Due to the small size of subcortical 
structures, we did not spatially smooth data within the subcortical volume and we up-sampled 
the fully processed data to 2mm isotropic voxels. 
 
Component-based nuisance regression  
The temporally filtered BOLD time series underwent a component-based nuisance regression 
approach (1, 12, 13). We built nuisance regressors based off of individual-specific white matter 
and ventricle masks, which were segmented by FreeSurfer (14), spatially resampled, and 
registered to the fMRI data. As voxels at the edges of the brain are highly susceptible to motion 
and CSF artifacts (15, 16), we created another nuisance mask specifically for the extra-axial 
compartment by thresholding the temporal standard deviation image (SDt>2.5%), excluding a 
dilated whole brain mask (17, 18). 
 
We applied dimensionality reduction to the voxel-wise nuisance time series as outlined in 
CompCor (18). However, the number of retained regressors was determined for each noise 
compartment by orthogonalizing the covariance matrix and retaining components ordered by 
decreasing eigenvalue up to a condition number of 30 (λmax/ λmin > 30). The columns of the 
design matrix X comprised the retained components across all compartments, the global signal 
and its first derivative, and the six motion correction time series. Since the columns of the 
design matrix X may exhibit collinearity, we applied a second level SVD to XXT to overcome 
potential rank-deficiency in the design matrix. This imposed an upper limit of 250 on the 
condition number. The regressors were applied in a single step to the filtered, interpolated 
BOLD time series. 
 



 
 

4 
 

Distance-based regression of adjacent grey matter cortical tissue 
The hippocampus is in close proximity to cortex, which results in signal contamination and 
spurious correlations between hippocampal voxels and adjacent grey matter vertices. 
Therefore, we quantified the Euclidean distance between every hippocampal voxel and every 
grey matter vertex. For each hippocampal voxel, we then generated the average BOLD signal 
time course of adjacent gray matter vertices within 20 mm and removed it by regression. This 
follows similar strategies taken in previous work on subcortical functional connectivity (1, 12, 
19). 
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FIGURES 

 

Figure S1. individual-Specific Cortical Resting State Networks. Using the Infomap 
community detection algorithm, cortical resting state networks were defined for each individual 
MSC subject as well as the MSC Average. These individually-specific networks were then used 
for the winner-take-all parcellation of the hippocampus. 
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Figure S2. Hippocampal Parcellation Using a Winner-Take-All Approach. Winner-Take-All 
parcellation of the hippocampus based on its functional connectivity to all cortical networks for 
the MSC Average and each subject. Parasagittal slices are shown.  
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Figure S3. Replication of Winner-Take-All Parcellation in Higher-Resolution, Higher-
Sampled Resting State fMRI Data from MSC06. (A) Top panel shows the original network 
localization in the hippocampus for MSC06 using all potential winner networks (left) and two 
networks (DMN vs. PMN) as reference. The bottom panel (MSC06-Rep) shows a replication of 
MSC06’s winner-take-all parcellation using higher-resolution data (2.6mm isotropic voxels). (B) 
Displayed are the runner-up or second-place winning networks of the winner-take-all 
parcellation of the hippocampus for MSC06 and MSC06-Rep. (C) Functional connectivity seed 
maps of right hippocampal DMN and PMN parcels replicate across MSC06 and MSC06-Rep. 
(D) The amount of variance in functional connectivity differences explained by the gradient 
(grad) and parcel (par) models are noted, suggesting equal variance explained, and thereby, 
both a gradient and parcel organization. Functional connectivity values z(r) are Fisher z-
transformed. 
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Figure S4. Runner-up Winner-Take-All Parcellation of the Hippocampus. Displayed are the 
runner-up or second-place winning networks of the winner-take-all parcellation of the 
hippocampus for all 10 MSC subjects. Not all hippocampal voxels were categorized as having 
multiple network connectivity; hence, some voxels are not colored. Voxels that were categorized 
as having runner-up network connectivity was based on if the runner-up correlation strength 
was at least 66.7% of the winning correlation following previously-established procedures (34, 
36).  
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Figure S5. Hippocampal Parcellation Using a Two-Network Winner-Take-All Approach. 
Anterior-posterior dichotomy in default mode network (DMN, red) and parietal memory network 
(PMN, blue) representations in the left and right hippocampus for the MSC Average and each 
subject. Parasagittal slices shown.  
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Figure S6. Functional Connectivity Strength of Winner-Take-All Parcellations in the Left 
Hippocampus. The 2-network (DMN vs. PMN) winner-take-all parcellation (left) of the left 
hippocampus is shown side by side with the DMN (center) and PMN (right) Fisher z-transformed 
functional correlation strength [z(r)] to their respective winner networks.  
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Figure S7. Functional Connectivity Strength of Winner-Take-All Parcellations in the Right 
Hippocampus. The 2-network (DMN vs. PMN) winner-take-all parcellation (left) of the right 
hippocampus is shown side by side with the DMN (center) and PMN (right) Fisher z-transformed 
functional correlation strength [z(r)] to their respective winner networks. 
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Figure S8. Mean Functional Connectivity of Winner-Take-All Parcels to Cortical Resting 
State Networks. The DMN (top) and PMN (bottom) parcels’ mean functional connectivity to all 
cortical resting state networks for the left and right hippocampus for each MSC subject. In 
addition to the parcels’ Fisher z-transformed functional connectivity z(r) to its winning network. 
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Subject Gradient Parcel 

MSC01 0.063 0.046 

MSC02 0.183 0.018 

MSC03 0.108 0.065 

MSC04 0.003 0.279 

MSC05 0.034 0.119 

MSC06 0.118 0.076 

MSC07 0.095 0.054 

MSC08 0.003 0.142 

MSC09 0.047 0.056 

MSC10 0.075 0.011 

MSC06-Rep 0.061 0.090 

 

Table S1. Amount of Variance in Hippocampal Functional Connectivity Explained by 
Gradient and Parcel Factors. ANCOVA testing both the gradient (AP axis) and parcel factors 
head-to-head. The table depicts the amount of variance explained in functional connectivity 
difference (DMN - PMN) by one factor, while accounting for the other for all MSC subjects and 
MSC06-Rep. The amount of variance explained by each factor alone is shown in Figure 4 for 
the MSC subjects and in Figure S3D for MSC06-Rep.  
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Figure S9. Significance Testing of Two-Network (CAN & FPN) Winner-Take-All 
Parcellation of the Hippocampus. We first defined the (A) winner-take-all parcellation of the 
hippocampus using the CAN and FPN, which demonstrates an anterior-posterior axis of 
organization. The anterior hippocampus is connected to the CAN and the posterior to the FPN. 
Using the defined CAN and FPN parcels, we found that (B) the parcels’ Fisher z-transformed 
functional connectivity z(r) to their winner networks is significantly different from a participant-
specific null distribution.  
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Figure S10. Functional Connectivity of 
Individual-Specific Hippocampal DMN 
and PMN parcels for right hippocampus. 
Right hemisphere is shown. (A) The 
functional connectivity patterns of the 
anterior, default mode network (DMN) and 
(B) the posterior, parietal memory network 
(PMN) parcels in the hippocampus are 
shown. (C) The difference maps of 
functional connections for the right 
hippocampus. The warm colors in the color 
scale represent greater DMN correlation 
and the cool colors represent greater PMN 
correlation. Functional connectivity values 
z(r) are Fisher z-transformed. 
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Figure S11. Discriminability of Within- and Between-parcels’ Functional Connectivity to 
the Cortex. The distribution of similarity in functional connectivity seed maps between pairs of 
voxels that are within the same hippocampal parcel vs. between different hippocampal parcels 
are discriminable as defined by a receiver-operator characteristic (ROC) curve. The area under 
the curve (AUC) represents the probability that an ideal observer would be able to adjudicate 
between these two distributions.  
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Figure S12. Anatomical Segmentation of the Hippocampus into Head/Body and Tail. We 
used two methods for an anatomical segmentation: a percentage-based approach (80%-20% 
for head/body vs. tail) as well as anatomical landmarks to segment the hippocampal body from 
the tail for each individual according to their unique hippocampal anatomy. Anatomical 
segmentations for all subjects shown for the right hippocampus, demonstrating a high degree of 
agreement (Dice coefficient median: 0.92, range: 0.85-0.96). Anatomical segmentations were 
then used to generate spatial correlation maps with the cortex in Figure 5. 
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Figure S13. Functional Connectivity 
of Anatomically Defined 
Hippocampal Segments (Head/body 
vs. Tail). Functional connectivity seed 
map for (A) head/body parcel, (B) tail 
and (C) the difference between the two 
for all subjects (head/body − tail). 
Functional connectivity maps for 
anatomical parcels (from the 
landmark-based approach) 
recapitulate winner-take-all-derived 
seed maps. Functional connectivity 
values z(r) are Fisher z-transformed. 
 

  



 
 

19 
 

SI REFERENCES 

 
1.  S. Marek et al., Spatial and Temporal Organization of the Individual Human Cerebellum. 

Neuron. 100 (2018), doi:https://doi.org/10.1016/j.neuron.2018.10.010. 
2.  E. M. Gordon et al., Precision Functional Mapping of Individual Human Brains. Neuron. 95, 

791-807.e7 (2017). 
3.  C. Gratton et al., Functional Brain Networks Are Dominated by Stable Group and Individual 

Factors, Not Cognitive or Daily Variation. Neuron, 439–452 (2018). 
4.  D. J. Newbold et al., Plasticity and Spontaneous Activity Pulses in Disused Human Brain 

Circuits. Neuron. 107, 580-589.e6 (2020). 
5.  T. O. Laumann et al., Functional System and Areal Organization of a Highly Sampled 

Individual Human Brain. Neuron. 87, 658–671 (2015). 
6.  M. F. Glasser et al., A multi-modal parcellation of human cerebral cortex. Nature. 536, 171–

178 (2016). 
7.  S. M. Smith et al., Advances in functional and structural MR image analysis and 

implementation as FSL. Neuroimage. 23, 208–219 (2004). 
8.  J. D. Power et al., Methods to detect, characterize, and remove motion artifact in resting 

state fMRI. Neuroimage. 84, 1–45 (2014). 
9.  R. Ciric et al., Benchmarking of participant-level confound regression strategies for the 

control of motion artifact in studies of functional connectivity. Neuroimage. 154, 174–187 
(2017). 

10. K. J. Friston, S. Williams, R. Howard, R. S. J. Frackowiak, R. Turner, Movement-related 
effects in fMRI time-series. Magn. Reson. Med. 35, 346–355 (1996). 

11. D. S. Marcus et al., Informatics and Data Mining Tools and Strategies for the Human 
Connectome Project. Front. Neuroinform. 5, 1–12 (2011). 

12. D. J. Greene et al., Integrative and Network-Specific Connectivity of the Basal Ganglia and 
Thalamus Defined in Individuals. Neuron. 105, 1–17 (2020). 

13. R. V. Raut, A. Mitra, A. Z. Snyder, M. E. Raichle, On time delay estimation and sampling 
error in resting-state fMRI. Neuroimage. 194, 211–227 (2019). 

14. B. Fischl, FreeSurfer. Neuroimage. 62, 774–781 (2012). 
15. C. G. Yan et al., A comprehensive assessment of regional variation in the impact of head 

micromovements on functional connectomics. Neuroimage. 76, 183–201 (2013). 
16. T. D. Satterthwaite et al., An improved framework for confound regression and filtering for 

control of motion artifact in the preprocessing of resting-state functional connectivity data. 
Neuroimage. 64, 240–256 (2013). 

17. R. Patriat, E. K. Molloy, R. M. Birn, Using Edge Voxel Information to Improve Motion 
Regression for rs-fMRI Connectivity Studies. Brain Connect. 5, 582–595 (2015). 

18. Y. Behzadi, K. Restom, J. Liau, T. T. Liu, A component based noise correction method 
(CompCor) for BOLD and perfusion based fMRI. Neuroimage. 37, 90–101 (2007). 

19. D. J. Greene et al., Developmental Changes in the Organization of Functional Connections 
between the Basal Ganglia and Cerebral Cortex. J. Neurosci. 34, 5842–5854 (2014). 

 


