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Abstract

Background: Smoking is associated with colorectal cancer (CRC) risk. Previous studies suggested this association may be
restricted to certain molecular subtypes of CRC, but large-scale comprehensive analysis is lacking. Methods: A total of 9789
CRC cases and 11 231 controls of European ancestry from 11 observational studies were included. We harmonized smoking
variables across studies and derived sex study–specific quartiles of pack-years of smoking for analysis. Four somatic colorec-
tal tumor markers were assessed individually and in combination, including BRAF mutation, KRAS mutation, CpG island
methylator phenotype (CIMP), and microsatellite instability (MSI) status. A multinomial logistic regression analysis was used
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to assess the association between smoking and risk of CRC subtypes by molecular characteristics, adjusting for age, sex, and
study. All statistical tests were 2-sided and adjusted for Bonferroni correction. Results: Heavier smoking was associated with
higher risk of CRC overall and stratified by individual markers (Ptrend < .001). The associations differed statistically
significantly between all molecular subtypes, which was the most statistically significant for CIMP and BRAF. Compared with
never-smokers, smokers in the fourth quartile of pack-years had a 90% higher risk of CIMP-positive CRC (odds ratio¼1.90,
95% confidence interval ¼ 1.60 to 2.26) but only 35% higher risk for CIMP-negative CRC (odds ratio¼1.35, 95% confidence inter-
val ¼ 1.22 to 1.49; Pdifference ¼ 2.1 x 10-6). The association was also stronger in tumors that were CIMP positive, MSI high, or
KRAS wild type when combined (Pdifference < .001). Conclusion: Smoking was associated with differential risk of CRC subtypes
defined by molecular characteristics. Heavier smokers had particularly higher risk of CRC subtypes that were CIMP positive
and MSI high in combination, suggesting that smoking may be involved in the development of colorectal tumors via the
serrated pathway.

Colorectal cancer (CRC) is one of the most common and fatal
cancers (1). In the United States, there were an estimated 145
600 new cases and 51 020 deaths in 2019 (2). In addition, CRC is
a disease with considerable genetic and molecular heterogene-
ity (3). Molecular classification of CRC using clinically informa-
tive genetic and epigenetic features has potential prognostic (4)
and treatment implications (5). Mutations in the KRAS gene
have been shown to promote the growth of colorectal adeno-
mas in 30%-40% of sporadic CRC (6). Microsatellite instability
(MSI), characterized by frequent alterations in tandemly re-
peated DNA sequences, has been reported to occur in 10%-15%
of CRC and associated with a favorable prognosis (7,8). In addi-
tion, many MSI-high CRC also present the CpG island methyla-
tor phenotype (CIMP) or BRAF c.1799T>A (p.V600E) mutations
(9).

Cigarette smoking has been established as a risk factor for
CRC (10,11). Meta-analysis showed that current smokers had a
17% higher risk of developing CRC and 40% higher risk of CRC
mortality than never-smokers (11). Recent evidence suggests
that the association between smoking, including current smok-
ing status, cumulative pack-years, duration of smoking or ces-
sation periods, and CRC risk may differ by molecular
characteristics. Several studies have found that smoking status
has stronger associations with higher risks of MSI-high, CIMP-
positive, or BRAF-mutated colorectal tumors but is less pro-
nounced among MSI-low or microsatellite stable, CIMP-
negative, or BRAF–wild-type CRC (12–19). In addition, heavier
smoking was found to be associated with an increased risk for
KRAS–wild-type CRC but not KRAS-mutated tumors (20,21).
However, 2 studies found no statistically significant difference
in the association between smoking and CRC risk by KRAS mu-
tation (15,22). Recent meta-analyses showed a statistically sig-
nificant positive correlation between ever-smoking and BRAF
mutation, MSI high, and CIMP positivity in CRC (23,24).

However, most studies assessed CRC molecular subtypes
only by individual marker status. In this study, we aimed to
comprehensively assess the association between smoking and
CRC risk both by individual markers (MSI status, CIMP status,
KRAS and BRAF mutations) and by combinations of all 4
markers, using pooled individual-level data from a large
consortium.

Methods

Study Participants

This study consisted of 9789 patients diagnosed with CRC and
11 231 controls from 11 observational studies within the
Genetics and Epidemiology of Colorectal Cancer Consortium

and the Colon Cancer Family Registry with available tumor
marker and smoking data. Participating studies were previously
described and summarized in Table 1 (25,26). All participants
provided written informed consent, and each study was ap-
proved by the relevant research ethics committee or institu-
tional review board.

CRC cases were confirmed by medical record, pathology re-
port, or death certificate by study protocol. Controls were indi-
viduals without history of CRC at the time of case selection and
were selected per study-specific matching criteria. Participants
of non-European ancestry were excluded from the analysis be-
cause of small sample size.

Assessment and Harmonization of Tumor Marker Data

Details on data collection and harmonization of tumor marker
data were summarized and published previously (25–27).
Briefly, testing for MSI, BRAF gene mutations, KRAS gene muta-
tions, and CIMP status was conducted previously by each study
and according to individual study protocols. To harmonize
markers across all studies, we created 2 categories for each
marker for downstream analyses. In instances where studies
categorized as MSI high (MSI-H), MSI low (MSI-L), and microsat-
ellite stable (MSS), we collapsed MSI-L and MSS into an MSI-L/
MSS category. In instances where studies categorized as CIMP
high, CIMP low, and CIMP negative, we collapsed CIMP-low and
CIMP-high into the CIMP-positive (CIMPþ) category. We in-
cluded any mutation identified by a study for BRAF and KRAS
genes.

Additionally, we combined markers to create subtype classi-
fications: subtypes 1-5 were created according to JASS classifica-
tion (28), and type 6-16 were numbered consecutively by the
status of MSI, CIMP, BRAF, and KRAS (summarized in Figure 1).
Only cases with all markers assessed are included in combined
molecular classifications and corresponding analysis.

Smoking and Other Exposure Data

Data collection and harmonization of epidemiologic data have
been described elsewhere (29,30). Briefly, demographic and en-
vironmental risk factors were self-reported at in-person inter-
views or via structured self-administered questionnaires. Data
were collected at study entry, blood draw, or 1 to 2 years prior to
sample ascertainment. A multistep, iterative data harmoniza-
tion procedure was applied, and multiple quality-control checks
were performed, reconciling each study’s unique protocols.
Variables were combined into a single dataset with common
definitions, standardized coding, and standardized permissible
values.
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Smoking status was categorized into never-, former, and
current smokers at baseline in each study. In addition, sex
study–specific quartiles were created for smoking pack-years
among ever-smokers. Never-smokers were used as a reference
group in all analyses.

Demographic variables included age and sex. Age was de-
fined as age at diagnosis for cases and age at selection for con-
trols. Other lifestyle covariates included body mass index (BMI;
defined as weight[kg]/height[cm2]), regular use of non-steroidal
anti-inflammatory drugs (NSAIDs), history of colorectal screen-
ing, alcohol intake, and physical activity.

Statistical Analyses

All statistical tests were 2-sided. The distributions of individual
tumor markers were summarized among CRC cases, and
Pearson correlation test was used to assess the correlation
among markers. We used multinomial logistic regression mod-
els to estimate odds ratios (OR) and 95% confidence intervals
(CIs) for the association of smoking with the risk of CRC sub-
types. To account for multiple testing in case-control analysis,
we used a Bonferroni corrected P value threshold of .05/16 (4
markers x 2 status x 2 smoking comparisons) ¼ 3.1 x 10-3 for cat-
egorical smoking status and .05/8 (4 markers x 2 status x 1 group
linear comparison) ¼ .006 for smoking pack-years. We used lo-
gistic regression models to assess the differences in the associa-
tions between smoking and molecularly mutated subtypes
(BRAF mutated [mut], KRAS-mut, MSI-H, or CIMPþ), as compared
with wild-type subtypes (BRAF-wild type [wt], KRAS-wt, MSI-L/
MSS, or CIMP negative [CIMP-], respectively) among cases only
(Bonferroni corrected Pdifference threshold: .05/8¼ 6.3 x 10-3 for
categorical smoking status and .05/4¼ 0.013 for smoking pack-

years). Age at diagnosis, sex, and study were adjusted as covari-
ates in the models. According to a priori knowledge about CRC
risk factors that have been associated with smoking, we further
simultaneously adjusted for BMI, use of NSAIDs, history of
screening, alcohol intake, and physical activity as sensitivity
analyses.

In analysis of combined marker status, CRC subtypes with at
least 50 cases were assessed in their association with smoking.
Similarly, we used multinomial logistic regression models,
adjusting for age, sex, and study. The subtype with MSI-L/MSS,
CIMP-, BRAF-wt and KRAS-wt was used as a reference group in
the case-only analysis (Bonferroni corrected Pdifference threshold:
.05/10¼ 5.0 x 10-3).

Exploratory analysis of smoking–CRC association stratified
by sex, colonic locations, and study design was also conducted
for both individual and combined markers. All analyses were
performed using R version 3.5.1 .

Results

Overall Distributions of Tumor Markers

Among the 21 020 participants, there was a larger proportion of
never-smokers among controls (48.7%) than among CRC cases
(43.6%; Table 1). Among the 9789 CRC cases with tumor data
available, 11% of the tumors were BRAF-mut, 34% KRAS-mut,
15% MSI-H, and 18% CIMPþ (Table 2). In addition, the MSI-H,
CIMPþ, and BRAF-mut subtypes were highly positively corre-
lated with each other (Pearson correlation> 0.4; frequency pre-
sented in Supplementary Table 1, available online). KRAS-mut
tumors were inversely correlated with other markers (Pearson
correlation < �0.1).

Table 1. Demographic characteristics of participating studiesa

Study
Country (enrollment

year) Study design

Cases Controls
Mean (SD)

age, y Female, No. (%)No. % never-smokers No. % never-smokers

CCFR United States,
Canada, Australia
(1996-2015)

Case-control 2636 45.5 2083 47.2 54.0 (11.7) 2477 (52.5)

CPSII United States (1992-
1999)

Cohort 858 40.2 969 45.6 74.3 (6.6) 912 (49.9)

DACHS Germany (2003-2016) Case-control 2322 46.7 3428 50.0 68.7 (10.6) 2291 (39.8)
DALS United States (1990-

1993)
Case-control 1096 42.7 1163 49.4 65.4 (9.7) 1017 (45.0)

EDRN United States (2012-
2013)

Case-control 195 56.9 349 73.1 60.5 (11.4) 262 (48.2)

EPIC Sweden (1992-1998) Case-control 115 49.6 318 54.1 67.2 (7.7) 206 (47.6)
HPFS United States (1986-

2012)
Cohort 584 37.5 433 46.2 71.0 (8.9) 0 (0)

MCCS Australia (1990-1994) Cohort 490 51.2 674 53.0 68.9 (8.8) 553 (47.5)
NFCCR Newfoundland (2000-

2004)
Case-control 477 28.3 458 37.6 59.9 (9.1) 376 (40.2)

NHS United States (1976-
2013)

Cohort 783 40.0 1071 44.1 67.7 (8.3) 1854 (100)

NSHDS Sweden (1995-2005) Case-control 233 38.2 285 45.6 62.6 (8.2) 250 (48.3)
Total 9789 43.6 11 231 48.7 64.8 (11.9) 10 198 (48.5)

aCCFR ¼ Colorectal Cancer Family Registry; CPSII ¼ Cancer Society Cancer Prevention Study II; DACHS ¼ Darmkrebs: Chancen der Verhütung durch Screening Study;

DALS ¼ Diet, Activity and Lifestyle Study; HPFS ¼ Health Professionals Follow-up Study; Kentucky ¼ the Kentucky case-control study; MCCS ¼Melbourne Case-Control

Study (in Melbourne Collaborative Cohort); NFCCR ¼ NewFoundland Case-Control Study; NHS ¼ Nurses’ Health Study; NSHDS ¼ the Northern Sweden Health and

Disease Study.
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Association Between Smoking and Individual Marker
Subtypes

In case-control analysis, individuals who smoked were associ-
ated with a higher risk of CRC overall and stratified by individ-
ual marker subtypes except for KRAS-mut tumors (P < 3.1 x 10-3;
Table 2). Associations were stronger among current smokers.
For instance, current smoking was associated with a 2-fold risk
in MSI-H CRC (OR¼ 2.01, 95% CI ¼ 1.68 to 2.40), whereas former
smoking was associated with higher risk in MSI-H CRC
(OR¼ 1.27, 95% CI ¼ 1.11 to 1.46), compared with never-smokers.
In case-only analyses, the association between smoking status
and CRC risk was statistically significantly stronger for BRAF-

mut, KRAS-wt, MSI-H, and CIMPþ CRC subtypes among current
smokers only but not among former smokers, after Bonferroni
correction (Pdifference < 6.3 x 10-3; Table 2).

We further assessed the dose-response relationship
between smoking and CRC subtypes. Compared with non-
smokers, higher pack-years of smoking were associated with
higher risk of CRC among all subtypes in case-control analysis
(P < 1.6 x 10-3; Ptrend < .001; Table 3). In case-only analysis, the
association between pack-years and molecular subtypes was
statistically significantly stronger for BRAF-mut, CIMPþ, and
MSI-H subtypes compared with wild-type or negative CRC cases
after Bonferroni correction (Pdifference < 6.3 x 10-3; Table 3). The
largest difference in case-control risk estimates were seen for

Figure 1. Associations between former and current smokers and risk of CRC subtypes defined by combined marker status. Two-sided Wald test was used to calculate

the P values from the case-control analysis (N controls ¼ 11 231) and case-only analysis (Pdifference). A Bonferroni corrected P value threshold of 5.0 x 10-3 was used for

both case-control and case-only analyses. Error bars represent the 95% confidence intervals (CIs). CIMP ¼ CpG island methylation phenotype; CRC ¼ colorectal cancer;

MSI ¼microsatellite instability; MSS ¼microsatellite stable; mut ¼mutated; OR ¼ odds ratio; wt ¼wild type.
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BRAF-mut and CIMPþ CRC. Participants in the highest quartile
of smoking pack-years had nearly a 2-fold risk for CRC if they
had BRAF-mut (OR ¼ 1.92, 95% CI ¼ 1.58 to 2.33) or CIMPþ
tumors (OR¼ 1.90, 95% CI ¼ 1.60 to 2.26), compared with non-
smokers, respectively. In comparison, the risk of BRAF-wt or
CIMP- CRC was increased by only 36.9% (Pdifference ¼ 2.7 x 10-6)
and 34.8% (Pdifference ¼ 2.4 x 10-6) among heaviest smokers, re-
spectively. There was no statistically significant difference after
Bonferroni correction in the associations of pack-years of smok-
ing with KRAS-mut or KRAS-wt CRC (Pdifference ¼ 9.6 x 10-3).
Sensitivity analysis that additionally adjusted for BMI, family
history of CRC, CRC screening history, NSAID use, or alcohol in-
take did not meaningfully change our conclusions (data not
shown).

Association Between Smoking and Combined Marker
Subtypes

Overall distribution of CRC cases by smoking status and com-
bined marker subtypes are summarized in Supplementary
Figure 1 (available online). Of 16 possible combined CRC sub-
types, 10 had 50 or more cases and were included in the analy-
sis. Among them, former smoking was statistically significantly
associated with higher risk of 4 CRC subtypes after Bonferroni
correction (types 4, 3, 14, 1; Figure 1, A) compared with never-
smokers. Comparatively, current smoking was associated with
higher risk of CRC for 6 subtypes, but only 3 remained statisti-
cally significant after Bonferroni correction (types 5, 14, 1; Figure
1, B). The strongest association for both former and current
smoking was observed in type 14 (MSI-H, CIMPþ, BRAF-wt, and
KRAS-wt), where former and current smoking was associated
with 87% and 264% higher risk of type 14 CRC compared with
never-smokers, respectively. Using type 4 (all markers wild
type/negative) as reference in case-only analyses, we observed
no statistically significant differences between risks of CRC sub-
types among former smokers. However, cases with current
smoking were statistically significantly more likely to be type 5

(only MSI-H; Pdifference ¼ 4.8 x 10-3) and type 14 CRC (Pdifference ¼
7.3 x 10-8) compared with never-smokers after Bonferroni cor-
rection (Figure 1, B).

Higher smoking pack-years was also statistically signifi-
cantly associated with higher risk of 4 CRC subtypes after
Bonferroni correction (types 4, 3, 14, and 1; Figure 2). Similarly,
the association between smoking pack-years and CRC risk was
strongest in type 14 (OR per quartile¼ 1.37, 95% CI ¼ 1.22 to
1.53). When compared with type 4 in case-only analyses, higher
smoking pack-years was associated only with higher risk of
type 14 (Pdifference ¼ 1.8 x 10-5) and type 1 CRC (MSI-H, CIMPþ,
BRAF-mut, and KRAS-wt; Pdifference ¼ 2.5 x 10-4).

Exploratory Stratified Analysis

When stratified by colonic location, BRAF-mut, CIMPþ, and MSI-
H status were more frequent in proximal colon cancer, com-
pared with distal colon or rectal cancer (Supplementary Table 2,
available online). For proximal colon, current smoking and
higher pack-years were associated with higher risk of BRAF-
mut, KRAS-wt, CIMPþ, and MSI-H tumors (Supplementary
Tables 3 and 4, available online) and higher risk of type 14
(Supplementary Figures 2 and 3, available online). Although
sample sizes were limited, a similar trend of smoking–CRC asso-
ciation was observed in distal colon and rectal cancer. Current
smoking was associated with higher risk of type 8 distal colon
cancer (only CIMPþ), but this did not remain statistically signifi-
cant after Bonferroni correction (Supplementary Figure 2, avail-
able online). Interaction analysis between smoking and colonic
location was not statistically significant.

When stratified by sex, similar trends of associations were
observed, although the risk estimates varied slightly between
sexes. For instance, current smoking was associated with a 90%
and 66% increase in CIMPþ tumors among females and males,
respectively (Supplementary Tables 5 and 6, available online). In
addition, the dose–response association was stronger for BRAF-
mut and CIMPþ CRC among females. In combined marker

Table 2. Association between former or current smoking and individual molecular subtypes of colorectal cancer, compared with never-
smokers

Marker and
status No. of cases

Never-smokers

Smokers

Former smokers Current smokers

OR (95% CI) OR (95% CI) Pa Pdifference
b OR (95% CI) Pa Pdifference

b

BRAF
mut 1008 1.00 (Referent) 1.43 (1.23 to 1.66) 3.9 x 10-6 1.89 (1.54 to 2.33) 1.5 x 10-9

wt 7695 1.00 (Referent) 1.17 (1.09 to 1.25) 7.5 x 10-6 .03 1.28 (1.16 to 1.41) 1.7 x 10-6 1.0 x 10-4

KRAS
mut 2484 1.00 (Referent) 1.16 (1.05 to 1.28) 3.6 x 10-3 1.11 (0.95 to 1.29) .18
wt 4892 1.00 (Referent) 1.21 (1.12 to 1.31) 1.8 x 10-6 .36 1.40 (1.25 to 1.56) 5.0 x 10-9 3.3 x 10-3

CIMP
þ 1382 1.00 (Referent) 1.37 (1.20 to 1.56) 2.1 x 10-6 1.82 (1.52 to 2.18) 8.6 x 10-11

� 6232 1.00 (Referent) 1.16 (1.08 to 1.25) 5.2 x 10-5 .03 1.22 (1.09 to 1.36) 3.7 x 10-4 5.6 x 10-7

MSI
MSI-H 1334 1.00 (Referent) 1.27 (1.11 to 1.46) 5.4 x 10-4 2.01 (1.68 to 2.40) 1.1 x 10-14

MSI-L/MSS 7828 1.00 (Referent) 1.18 (1.10 to 1.26) 2.1 x 10-6 .43 1.27 (1.15 to 1.40) 3.8 x 10-6 1.2 x 10-6

aTwo-sided Wald test was used to calculate the P values from the case-control analysis (N controls ¼ 11 231). A Bonferroni corrected P value threshold of 6.3 x 10-3 was

used for case-control analyses. CI ¼ confidence interval; CIMP ¼ CpG island methylation phenotype; MSI ¼ microsatellite instability; MSI-H ¼ MSI-high; MSI-L ¼ MSI-

low; MSS ¼microsatellite stable; mut ¼mutated; OR ¼ odds ratio; wt ¼wild type.
bTwo-sided Wald test was used to calculate the P values from the case-only analysis. A Bonferroni corrected P value threshold of 3.1 x 10-3 was used for case-only

analyses.
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analysis, current smoking was most strongly associated with
type 14 CRC in both sexes (Supplementary Figures 4 and 5, avail-
able online). Interaction analysis between smoking and sex was
not statistically significant. Further stratification by sex in prox-
imal colon tumors did not suggest statistically significant differ-
ence (data not shown). In addition, similar trends were also
observed when stratified by study design (Supplementary
Tables 7 and 8 and Supplementary Figures 6 and 7, available
online).

Discussion

In this large study, we found that smoking was associated with
higher risk of all molecular CRC subtypes, and the association
was statistically significantly stronger for BRAF-mut, MSI-H, or
CIMPþ CRC cases. We also found that smoking had a statisti-
cally significantly stronger association with CRC subtypes that
display MSI-H and CIMPþ status.

Our results are consistent with previous evidence that smok-
ing is associated with higher risk of CRC subgroups classified by
individual marker status, including similar findings from 1 of
the participating studies (19). Current smoking was associated
with almost 2-fold higher risk of CRC with MSI-H, CIMPþ, or
BRAF-mut compared with never smoking (12). A study in 2 pro-
spective cohorts found that a longer cessation period was asso-
ciated with MSI-H and CIMPþ CRC, but not with MSS or CIMP-
CRC, compared with current smokers (13). In addition, longer
duration of smoking was found to be associated with increased
risk of MSI-H CRC (14). Several cohort and case-control studies
also found that higher smoking pack-years were associated
with higher risks of CRC with MSI-H, CIMPþ, or BRAF-mut, com-
pared with wild-type or negative CRC subtypes (12–14,17). In a
population-based, case-control study, current cigarette smoking
and higher pack-years were found to be statistically signifi-
cantly associated with higher risk of MSI-H than MSS colon
tumors (16). Similar to our results on KRAS mutation status, sev-
eral observational studies found that smoking status and pack-
years were associated only with higher risk of KRAS-wt but not
KRAS-mut tumors, although the differences were not

statistically significant (6,20,21). In contrast, a case-cohort study
(648 cases) in the Netherlands observed a non–statistically sig-
nificant increase in KRAS-wt CRC risk among former smokers
but not among current smokers (20).

Individual markers were not independent from each other.
CIMPþ CRC tumors tend to have a high frequency of MSI and
BRAF mutation (9,31–34). However, few studies have assessed
the combined subtypes of CRC. A prospective cohort study
found that smoking 20 or more cigarettes per day was associ-
ated with higher risks of MSI-L/MSS and CIMPþ CRC, regardless
of BRAF mutation status (17). No statistically significant associa-
tion was found in CIMP- tumors. Another analysis in 2 prospec-
tive cohorts also found that smoking 40 or more pack-years of
cigarettes was associated with higher risk of CIMPþ and MSI-H
CRC compared with never-smokers (13). Consistent with previ-
ous findings, we found that higher smoking pack-years were
statistically significantly associated with higher risk of CIMPþ
and MSI-H CRC, regardless of BRAF mutation status.

Smoking is a well-established carcinogen for CRC (35). Meta-
analyses of epidemiological studies have consistently found a
statistically significant association, and dose-response relation-
ships, between smoking and CRC risk (10,11,36). However,
knowledge on the underlying mechanisms of smoking in CRC
molecular subtypes is limited. In general, tobacco smoke con-
tains a variety of toxic chemicals (37), many of which can induce
DNA damage (38). Tobacco exposure has also been associated
with CIMP in other cancer types, including lung (39,40), bladder
(41), and head and neck cancer (42). Therefore, it is biologically
plausible that smoking promotes colorectal tumor growth and
progression by epigenetic alterations. In addition, the detoxifi-
cation of smoking-induced carcinogens are metabolized by
phase I and phase II enzymes such as CYP (P-450) family genes,
which lead to the production of abnormal DNA and mutations
in genes such as KRAS and BRAF (43).

Furthermore, the CIMPþ and MSI-H tumors are more likely
to arise from serrated polyp pathways, as compared with tradi-
tional adenoma-carcinoma pathways. It is estimated that 10%-
20% of CRCs arise via serrated polyp-carcinoma pathway (44).
DNA methylation is key to the development of this type of

Table 3. Association between quartiles of smoking pack-years and individual molecular subtypes of colorectal cancer compared with
nonsmokers

Marker and
status No. of cases

Smoking, pack-years

Ptrend
a Pdifference

b

Quartile 1 OR
(95% CI)

Quartile 2 OR
(95% CI)

Quartile 3 OR
(95% CI)

Quartile 4 OR
(95% CI)

BRAF
mut 921 0.81 (0.62 to 1.06) 1.49 (1.20 to 1.84) 1.69 (1.37 to 2.08) 1.92 (1.58 to 2.33) 1.0 x 10-14

wt 7233 0.99 (0.89 to 1.11) 1.21 (1.09 to 1.34) 1.16 (1.05 to 1.29) 1.37 (1.24 to 1.51) 2.5 x 10-11 2.7 x 10-6

KRAS
mut 2331 1.04 (0.89 to 1.21) 1.12 (0.96 to 1.29) 1.17 (1.01 to 1.35) 1.23 (1.07 to 1.41) 1.0 x 10-3

Wt 4547 0.93 (0.82 to 1.06) 1.28 (1.14 to 1.43) 1.22 (1.09 to 1.37) 1.48 (1.33 to 1.65) 2.1 x 10-14 9.6 x 10-3

CIMP
þ 1247 1.05 (0.85 to 1.30) 1.33 (1.09 to 1.62) 1.62 (1.34 to 1.95) 1.90 (1.60 to 2.26) 8.9 x 10-16

� 5966 1.00 (0.89 to 1.12) 1.20 (1.08 to 1.33) 1.15 (1.03 to 1.28) 1.35 (1.22 to 1.49) 2.1 x 10-9 2.4 x 10-6

MSI
MSI-H 1239 1.10 (0.90 to 1.35) 1.26 (1.04 to 1.53) 1.53 (1.28 to 1.84) 1.66 (1.39 to 1.99) 9.0 x 10-11

MSI-L/MSS 7255 0.98 (0.89 to 1.09) 1.24 (1.12 to 1.36) 1.16 (1.05 to 1.29) 1.38 (1.25 to 1.52) 7.0 x 10-12 3.9 x 10-3

aTwo-sided Wald test was used to calculate the P values from the case-control analysis (N controls ¼ 10 199). A Bonferroni corrected P value threshold of 6.3 x 10-3 was

used for case-control analyses. CI ¼ confidence interval; CIMP ¼ CpG island methylation phenotype; MSI ¼ microsatellite instability; MSI-H ¼ MSI-high; MSI-L ¼ MSI-

low; MSS ¼microsatellite stable; mut ¼mutated; OR ¼ odds ratio; wt ¼wild type.
bTwo-sided Wald test was used to calculate the P values from the case-only analysis. A Bonferroni corrected P value threshold of .013 for case-only analyses.
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cancer (45). CIMPþ phenotype is frequently observed in precur-
sor serrated lesions and colorectal polyps, ranging between 40%
and 80% (46,47). MSI-H phenotype has also been observed in
20%-36% of serrated adenomas (48,49). Consistent with previous
evidence, our exploratory analysis showed that BRAF-mut,
CIMPþ, and MSI-H were preferentially located in the proximal
colon. However, we observed similar associations with small
variations, when stratified by location, suggesting that our find-
ing cannot be explained by tumor location. It is also estimated
that serrated adenocarcinoma has a less favorable survival than
traditional adenocarcinoma (50), which could be partially be-
cause of the interaction between smoking and the enrichment
of BRAF mutations and CIMP expression levels. Therefore, better
understanding of the risk factors of these molecular character-
istics may help provide insights to the trajectory of serrated car-
cinogenesis and preventive and therapeutic implications.

Several features in our study provided the opportunity to
systematically evaluate associations between smoking and mo-
lecular subgroups of CRC. First, this is the largest study to inves-
tigate these associations with sufficient statistical power for
primary analysis. In addition, we combined CRC subtypes by all
4 tumor markers, providing a more comprehensive analysis for
tumor characteristics. With sufficient sample size, we were the
first to extend the combined subtype analysis beyond 5 previ-
ously defined subtypes (28) and thus found a statistically signifi-
cant association between smoking and new subtypes,
suggesting a stronger impact of smoking on the serrated polyp-
carcinoma pathway. Furthermore, smoking variables and other
CRC risk factors were assessed and harmonized among all par-
ticipating studies, which allowed us to further adjust for poten-
tial confounders in sensitivity analysis.

There are also limitations. We did not investigate all 16 pos-
sible combinations of CRC subtypes, and the conclusions could
not be inferred for the rarer subtypes. Both case-control and co-
hort studies were included. There is a possibility of misclassifi-
cation of smoking status, especially in case-control studies

because of recall bias. However, we observe similar trends of
smoking-CRC associations when stratified by study design We
also found almost identical estimates using random-effect
meta-analysis across study-specific estimates of smoking–CRC
associations (data not shown). In exploratory stratified analysis,
we found potential variation in smoking–CRC association by sex
or colonic locations. However, these exploratory results warrant
further investigation in the future. Although we adjusted for
several potential confounders in sensitivity analysis, we could
not rule out the possibility of unmeasured confounding. Lastly,
our study population was of European ancestry only. Therefore,
our conclusions may not be generalizable to other race and eth-
nicity groups.

In conclusion, we found that heavier smoking was associ-
ated with higher risk among all subtypes of CRC, particularly for
those that may arise from serrated polyp pathways. These find-
ings may help better understand the tumorigenesis of serrated
adenomas and provide insights to targeted CRC prevention and
treatment.
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