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Aktivní učení pro klasifikaci textů
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Abstrakt: Modely strojového učení pro klasifikaci jsou založené na učení parametrů black box modelu,
které popisují vztah mezi vzorky dat a jejích třídou. Proces sběru dat a jejích labelů pro účely tréno-
vání modelu může být komplikovaný a drahý. Množina dat je v mnoha případech větší než množina
dostupných labelů, ale našim předpokladem je to, že nové labely můžou být obdržené prostřednictvím
dotazu anotátorovi. Aktivní učení je proces výběru takových dat pro anotování, které povedou ke zvý-
šení diskriminability datasetu. Mnoho různých metod aktivního učení v mnoha různých odvětvích bylo
navrženo pro úlohy v nichž se používá učení s učitelem. V tomto projektu jsou popsané a ukázané různé
metody aktivního učení pro klasifikaci textů. Navíc jsou porovnávané už existující black box modely a
jejích reprezentace neurčitosti. Modely aktivního učení jsou formalizované pomocí teorie rozhodování,
kde rozhodnutím je výběr dat bez labelů pro získávání anotace a neurčitost je v parametrech klasifiká-
torů. Entropie predikce klasifikátoru je vybrána jako očekávaná ztrátová funkce pro rozhodovací úlohu.
Modely hlubokého učení dosáhli state-of-the-art výsledků v různých odvětvích zpracování přirozeného
jazyka a také v klasifikaci textu. Kombinace aktivního učení pro výběr dat a navržené reprezentace
neurčitosti založené na ensemblech hlubokých neuronových sítí dosáhla výrazně lepších výsledků než
strategie náhodného výběru nebo aktivní učení s alternativní reprezentací neurčitosti.
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klasifikace textu, teorie rozhodování, zpracování přirozeného jazyka.
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Abstract: Machine learning approach to classification is based on learning parameters of black box
model describing relation between the recorded data samples and their class labels. The process of
data labels collection for the purposes of model training can be complex and costly. Therefore, the
number of data record is often much higher than the number of labels, but the labels can be obtained
by querying an annotator. Active learning is a process of selection of unlabeled data records for which
knowledge of the label would bring the highest discriminability of the dataset. Various methods for
active learning have been proposed in many di↵erent fields that use supervised learning models. In this
project, we study suitability of various approaches for active learning of a text classification problem.
We compare existing black box classifiers, and representations of their uncertainty. We formalize active
learning using decision theory under uncertainty where the decision is which unlabeled data to select for
annotation and the uncertainty is in the parameters of the classifier. The expected loss function of the



decision making is chosen as entropy of the classifier predictions. Neural networks have showed state-
of-the-art performance in di↵erent natural language processing tasks, including text classification. The
proposed combination of active learning data selection and uncertainty representation, based on deep
learning ensembles algorithm achieves significantly better results than random data selection strategy or
active learning with other types of uncertainty represenattion.
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Notation
Symbol Definition
x 2 X vector features, i.e. the instance
y 2 Y one hot encoded label of a specific instance

X = {x1, . . . xM} set of available instances
Y = {y1, . . . , yM} set of labels that can be provided by an annotator

X̃ set of training instances
Ỹ set of training labels

[x1, x2, ..., xS ]T transposed vector
(x, y) tuple of elements x and y

{x1, x2, ..., xR} set of vectors x1, . . . xR
a 2 A action from a set of all possible actions
✓ 2 ⇥ decision theory uncertainty parameter

L loss function
⇡⇤ probability density function of variable ✓

p(y|x) conditional probability density function of label y given instance x
ŷ expected value of y given x,X
w vector of parameters of a classifier (e.g. SVM or decision tree)
b SVM bias (scalar)

W tuple of parameters of a classifier (e.g. Naive Bayes, random forest
or neural network (single layer))

b vector of neural network single layer biases
⌦ tuple of neural network parameters (all weights and biases)
� Dirac delta function
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Introduction

Active learning strategy lets the machine learning models iteratively and strategically query the labels
of some instances for reducing human labeling e↵orts. This project shows how it is possible to connect
active learning and text data. People have already been solving the same problem for anomaly detection
[6], image processing [8], etc.

If we take a look at the modern approach of automating the labeling process of a huge amount of
unlabeled data, it is not optimal. People are randomly choosing unlabeled text data. These data are
annotated by the subject matter experts, and used for training and testing the models. If the model
performance is weak after the training, more text documents are selected and annotated. This approach
is costly because nobody knows how many text documents must be selected to have good model scores.
Our active learning strategy proposes a selection of unlabeled text data that the model is not certain about.
Unlabeled text data are given to a subject matter expert to provide the labels. Discussed problem was
introduced almost two decades ago. Some active learning approaches for text classification dates back to
2001 [24], where are shown di↵erent querying strategies, and superiority of results of the active learning
over random sampling strategies is demonstarted. There is no doubt that active learning strategy brings
a lot of advantages. First of all, we are able to start with lower amount of training data, and iteratively
extend the dataset. The dataset is extended using the data, which the model is not certain about. In
this work, we are extending our dataset with only one sample per active learning iteration. However, it
was also shown that the strategies, which sample batches with more than one sample, also perform good
results [2]. Thus, based on the active learning approach, the model will get much more information from
non-randomly chosen text samples.

The project describes di↵erent algorithms formulation with respect to decision theory, and then the
connection of all the methods to active learning theory. The main focus of this work is on deep neural
networks and ensemble models of their uncertainty. It was shown in [23] that ensemble deep learning
algorithms give the best performance both for text and image processing data. Plenty of alternative
models for active learning for text classifications exits such [8], with use of acquisition functions and
dropout, for uncertainty representation e.g. named entity recognition [22] and text classification [13],
[5]. We will investigate if the ensembles outperform dropout uncertainty representation for text data, as
it was shown in [11] for image classification.

This project also provides the link to Python implementation of active learning algorithms and a
comparison of di↵erent results gathered with respect to di↵erent data. We believe, that the active learning
approach is able to significantly reduce the amount of time and expenses needed for automating the text
labeling process.

10



Chapter 1

Introduction to Decision Theory

The process of decision making is defined as a selection of the optimal action from a set of possi-
bilities that can be applied at some operating conditions. The criteria of optimality are formalized by
a loss function. The process of selection of the optimal action is, thus, formalized as the optimization
problem. However, the operating conditions are often not known exactly, since we have incomplete in-
formation about them. Therefore, we will use the theory of decision making under uncertainty [3], where
the uncertainty is represented by probability density functions. We will now briefly review the theoretical
background.

1.1 Decision Theory

The theory of decision making has three basic elements: i) the set of possible actionsA from which
we should select an optimal action a⇤ 2 A, ii) the vector ✓ 2 ⇥ defining operating conditions under
which we make the decision, where ⇥ is the parameter space, iii) the loss function

L = L(✓, a), (1.1)

that defines our preference of the action, in the sense that action a which has the lowest value from the
action set of the loss function is preferred. For complete knowledge of the operating conditions ✓, the task
is turned into simple optimization of (1.1). However, with incomplete information, we have to consider
a range of possible states ✓. The theory of decision making under uncertainty [3] defines the expected
loss function that takes into account the uncertainty.

Definition 1. [3]If ⇡⇤(✓) is the probability distribution of ✓ at the time of decision making, the Bayesian
expected loss of an action a is

⇢(⇡⇤, a) = E⇡⇤[L(✓, a)] =
Z

⇥
L(✓, a)⇡⇤d✓. (1.2)

Based on definition 1.2, the optimal action is defined as the one that minimizes the expected loss:

a⇤ = argmin
a2A

E⇡⇤[L(✓, a)]. (1.3)

The key task of the application of decision theory is the choice of the action space, parameter space,
loss function, and method of evaluating the probability measure. In the following sections, we discuss
examples of the application of the theory to the problem of supervised learning and active learning,
respectively.

11
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1.2 Decision Theory for Supervised Learning

Supervised learning is defined as learning from the data with a known target value. Specifically, for
the classification problem, the target value is the class, where each data point belongs.

We would like to commence our formal definition with the data. Let x 2 X ⇢ Rn and y 2Y =
{[0, 1]T , [1, 0]T }, where x is the feature vector of size n, and y is its label assigned to the data instance
x from space X. Each value from space Y can be represented using one hot representation, which is a
vector consisting of ones and zeros. In the case of binary classification y 2 {[0, 1]T , [1, 0]T }, where the
first class is represented as y = [1, 0]T and the second class is represented as y = [0, 1]T . As a good
example of the previous definition, x can be a text document (represented as a vector in order to meet
the definition above) and y can be its category, such as sports or comedy. As seen from this example,
the label and the text are forming a tuple. In this work we are considering our data as tuples of variables
(x, y) 2 X ⇥Y.

Basing on the data definitions from the previous part, we can assume that X ⇥Y is an infinite set
and (x, y) is a sample from this set. We assume, that all available data tuples are sampled independently
from a joint probability density function p(x, y). If p(x, y) was known, the optimal classifier p(y|x) can
be obtained by the chain rule of probability

p(x, y) = p(y|x)p(x). (1.4)

However, since we do not know the analytical form of the joint probability distribution, we aim at se-
lecting the best possible approximation within a chosen class. Specifically, we choose a parametric form
p(y|x, a), where a is the parameter to be optimized.

It remains to choose the form of representation of the joint probability distribution. We will consider
the uncertainty ✓ to be represented by empirical distribution:

⇡⇤ = p(x, y) =
1
N

NX

i=1

�(x � xi, y � yi) (1.5)

where xi, yi are elements of training set (X̃ ⇢ X, Ỹ ⇢ Y). The training set is usually a subset of all
available data on which the optimization is performed, the rest of the data is used for validation [26].

1.2.1 Decision Theory and Support Vector Machine Algorithm

In this subsection, we will continue the construction of the decision theory on the example of Sup-
port Vector Machine (SVM) method. For simplicity, let us consider a linearly separable dataset. From
the theoretical perspective, SVM constructs a hyperplane in high dimensional space. In this case, our
decision (action) is a hyperplane that will separate two classes. Equation of the hyperplane can be writ-
ten as f (x,w, b) = wT x + b, where w2 Rn is a set of hyperplane parameters and b 2 R is a bias. As
a result, action space is represented as (Rn,R)= A and as a consequence tuple (w, b) 2 A. From this
knowledge, we consider the uncertainty ✓ described with (1.5) that meets the condition of the limitation
on ⇥ = (X̃ ⇢ X, Ỹ ⇢ Y). Consider loss function (1.1) that can be written as

L = L(x, y,w, b). (1.6)

The following task is to understand how good is our action (hyperplane estimation) with respect to the
dataset. We can choose di↵erent types of loss functions, such as cross entropy, hinge loss, etc.. The most
basic approach for SVM method is the hinge loss function [20] which is defined as

L(x, y,w, b) = max(0, 1 � yŷ(x,w, b)), (1.7)
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where ŷ(x,w, b) = wT x + b and y = y1.
In terms of the SVM method, we want to find such a hyperplane that will label input values as the

first class, if it is “above” the hyperplane and as the second class, if it is “below” the hyperplane. At
this point, a very important assumption will be introduced. In order to find an optimal hyperplane, we
assume, that the data X̃ and its labels Ỹ fully describe spaces X and Y. Thus, the uncertainty of the
decision task can be defined as (1.5).

Using (1.2) we can evaluate expected loss function for SVM as follows

E⇡⇤L =
Z

X⇥Y
L(x, y,w, b)p(x, y)d(x, y),

=

Z

X⇥Y
max(0, 1 � y1ŷ(x,w, b))

1
N

NX

i=1

�(x � xi, y � yi)d(x, y),

=
1
N

NX

i=1

max(0, 1 � y1,iŷ(xi,w, b)),

where ŷ(xi,w, b) = wT xi + b and y1,i is first component of i � th vector yi. Expect loss function for SVM
can be written as

⇢(xi,w, b) =
1
N

NX

i=1

max(0, 1 � yi(wT xi + b)). (1.8)

1.2.2 Decision Theory and Algorithm Based on Neural Network Function

1.2.2.1 Neural Network

Neural Network (NN) is a mapping that has the instance x 2 X on its input predicted value of the
label ŷ on the output. In this part of the work, our prior interest is focused around Feed Forward Neural
Network algorithm, that assigns input value to a specific class.

The first layer of NN is defined as
a1 =WT

1 x + b1, (1.9)
where W1 is matrix of weights and b1 is a vector of bias values. The first layer is called the input layer.

Further layers of NN are formed as

ak =WT
k f
�
ak�1
�
+ bk, k = {2, ...,K � 1}. (1.10)

As seen from equation (1.10), neurons from each layer (except input layer) take linear combination of the
neurons from the previous layer. Function f is an activation function. The activation function is defined
as a non-decreasing, continuous function. The most commonly used activation functions are sigmoid,
relu, elu, and hyperbolic tangence functions [4].

Output values are computed with

ŷ = fsm
⇣
WT

K f
�
aK�1
�
+ bK

⌘
, (1.11)

where fsm is the softmax function, that is typically used for classification problems. The softmax function
is defined as

fsm,i =
exp(zi)

P2
i=1 exp(zi)

,

where
z =WT

K f
�
aK�1
�
+ bK

is an output vector before the activation function is applied. The output vector has the same size as label
y.
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1.2.2.2 Decision Theory

Decision theory construction for the algorithm, based on a neural network function, is mostly the
same as in 1.2.1. However, in this case, our decision is to find estimate ŷ = ŷ(x,⌦) of the probability
density function p(y|x), where x is the input data, ⌦ = (W1, ...WK ,b1...,bK) is a collection of all neural
network function parameters and biases. Action space A will be the parameters’ and biases’ space of
ŷ. Same as in 1.2.1 we can define (x, y) are parameters of the loss function and X ⇥ Y is a parameters’
space. Another example of loss functions that we will use is the cross entropy loss function, which is
defined as

L(x, y,⌦) = �y1 ln
�
ŷ1(x,⌦)

� � y2 ln
�
(ŷ2(x,⌦)

�
, (1.12)

where y = [y1, y2]T and ŷ = [ŷ1, ŷ2]T . With the usage of the given dataset, where 8i 2 {1, ..,N}, (xi, yi) 2
(X̃ ⇢ X, Ỹ ⇢ Y) are independent identically distributed, we can approximate p(x, y) as (1.5). Applying
definition (1), expected loss for the algorithm based on a neural network function is evaluated as

E⇡⇤L =
Z

X⇥Y
L(x, y,⌦)p(x, y)d(x, y),

= �
Z

X⇥Y

⇣
y1 ln

�
ŷ1(x,⌦)

�
+ y2 ln

�
(ŷ2(x,⌦)

�⌘ 1
N

NX

i=1

�(x � xi, y � yi)d(x, y),

= � 1
N

NX

i=1

⇣
y1 ln

�
ŷ1(x,⌦)

�
+ y2 ln

�
(ŷ2(x,⌦)

�⌘
, (1.13)

where y = [y1, y2]T and ŷ = [ŷ1, ŷ2]T .

1.2.2.3 Parameters Estimation

In further sections, we are going to introduce more methods based on Neural Networks, which will
slightly di↵er between each other. Thus, we would like to cover more theory around parameters estima-
tion. The very simple, but e�cient method is Gradient Descent. This method is based on equation

⌦̂n+1 = ⌦̂n � ⌘nrL(X̃, Ỹ, ⌦̂n,Zn), (1.14)

where ⌦̂n is the n�th iteration value of gradient descent of NN weights and its biases that converges to
⌦̂. Value of rL(X,Y, ⌦̂n,Zn) is a gradient of a loss function and ⌘n is the n�th iteration of value, that in
terms of NN is defined as learning rate with a decay. Term Zn represents indices from X and Y , that are
used in the n�th iteration of a loss function. Learning rate decay is not an obligatory feature. It can be
constant as well. However, the best performance is obtained when the learning rate is estimated from the
data, which is the main idea of adaptive methods, such as RMSProp or ADAM [10].

The usual gradient descent is an e�cient method for complex ŷ(x,⌦) but may struggle with local
minima. In this case, the algorithm may stop iterating even in a very shallow local minimum. Due to
the complex functions ŷ(x,⌦), the loss function of its approximation will be non-convex with a large
amount of local minima and maxima. Multiple solutions to this problem have been proposed in the
form of Gradient Descent with momentum, or Stochastic Gradient Descent (SGD) [4]. In comparison
to standard Gradient Descent, the key di↵erence is that SGD allows us to use only a small subset of all
data points (minibatch) from the full training dataset in order to calculate the step [4]. The minibatch
is represented with value Zn that says which training indices to use. The data samples (minibatch) are
picked randomly at each step.

In this work, we are using the ADAM optimization [10], which is a stochastic gradient optimization,
including an adaptation of the learning rate as well as the coe�cient of the momentum.
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1.2.3 Decision Theory and Naive Bayes Algorithm

Naive Bayes algorithm is a bit di↵erent from the algorithm based on neural networks and SVM.
In the case of Naive Bayes, we want to estimate p(W|x, y), where W = (w1,w2, ...,wn) ⇢ W is a
collection of parameters of individual classifiers, and will be used as an action (a = W, a 2 A) it the
following decision task. The reason why we look for an estimate of the p(W|x, y) but not p(y|x,W) is
due to p(y|x,W) normalization constant. The normalization constant would be dependent on the set of
parameters W. That fact would make our computations very complicated. In order to proceed with the
loss function construction, we would like to go through Naive Bayes (NB) method.

1.2.3.1 Naive Bayes

Consider a binary classification problem. With the usage of the Bayes rule, we can rewrite p(W|x, y)
as follows

p(W|x, y) =
p(y)p(x|y,W)p(W)R
W p(x, y|W)p(W)dW

, (1.15)

whereW is the space of possible values of W.
Naive Bayes method introduces a very strong assumption in equation (1.15). This assumption says

that features of vector x = [x1, x2, ..., xn]T are conditionally independent. As a result, the estimation of
p(W|x, y) can be written as

p̃(W|x, y) =
1
Z

p(y)p(W)
nY

i=1

�
p(xi|y1,wi)y1 p(xi|y2,wi)y2

�
, (1.16)

where y = [y1, y2], W = {w1,w2, ...,wn}, and Z is a normalizing constant.

1.2.3.2 Decision Theory

We want to maximize probability p̃(W|x, y). As a result, using (1.16) loss function L will be repre-
sented as

L(y, x,w) = � log
�
p̃(W|x, y), (1.17)

= log(Z) � log
�
p(y)
� � log

�
p(W)

� �
nX

i=1

log
�
p(xi|y1,wi)y1 p(xi|y2,wi)y2

�
. (1.18)

Same as in 1.2.1 and 1.2.2, we will assume that we can approximate p(x, y) as 1.5. From this moment,
everything is ready for expected loss function derivation. The expected loss function for Naive Bayes
method is derived as

E⇡⇤L =
Z

X⇥Y
L(x, y,w)p(x, y)d(x, y),

Z

X⇥Y

⇣
⇠(W, y) �

nX

i=1

log
�
p(xi|y1,wi)y1 p(xi|y2,wi)y2

� 1
N

NX

j=1

�(x � x j, y � y j)d(x, y),

1
N

NX

j=1

⇣
⇠ j(W, y j) �

nX

i=1

log
�
p(xi, j|y1, j,wi)y1, j p(xi, j|y2, j,wi)y2, j

�⌘
, (1.19)

where ⇠(W, y) = log(Z) � log
�
p(y)
� � log

�
p(W)

�
and ⇠ j(W, y j) = log(Z) � log

�
p(y j) � log

�
p(W)

�
.
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1.2.4 Decision Theory and Random Forest Algorithm

In order to work with random forests, we must precisely define decision trees and only then construct
a random forest theory.

1.2.4.1 Decision Tree

In this section, we expect our decision tree to give us an estimate ŷ(x,w) 2 {[0, 1]T , [1, 0]T }, where
w is a vector that describes tree (depth, branches, etc.), for each x 2 X and y 2Y. It is very important to
mention that for di↵erent trees w can have di↵erent dimensionality. Thus, for consistency, we will assume
that for all w 2W exist a single upper bound, whereW is redefined as a space of tree parameters. As a
result, we will make all w to have the same length. If w has spare elements, they will be filled with zeros.
Decision tree parameters space isW. The loss function action a 2 A will be represented as elements of
the action spaceA =W. The loss function of a decision tree is a zero-one loss function, defined as

L(x, y,w) =

8>><
>>:

1, y , ŷ(x,w)
0, y = ŷ(x,w)

. (1.20)

With the use of the given data, where 8i 2 {1, ..,N}, (xi, yi) 2 X̃ ⇥ Ỹ are independent identically dis-
tributed, we can approximate p(x, y) as (1.5). As a result, the expected loss function for a decision tree
can be derived as

E⇡⇤L =
Z

X⇥Y
L(x, y,w)p(x, y)d(x, y),

=

Z

X⇥Y
L(x, y,w)

1
N

NX

i=1

�(x � xi, y � yi)d(x, y),

=
1
N

NX

i=1

L(xi, yi,w),

where
PN

i=1 L(xi, yi,w) is (1.20).
The conventional optimization procedure for decision trees is a heuristic, that works as follows. In

the process of constructing a decision tree, we choose such feature xi 2 [x1, ..., xn]T = x that will bring
the highest information about the system (e.g. highest entropy of the features). This feature will form
the first layer on which a classification rule is designed. Then we add another feature with the highest
information gain and construct the second layer. Using this method, we construct nodes and add more
and more layers (branches). However, such a procedure can be sub-optimal, and improvement was
achieved using a set of decision trees. For this purpose, we will define our decision tree T (x,wl), which
has a one-hot encoded classification, i.e. two-dimensional vector ŷ for the binary classification problem.
Index l represents the set of parameters for the l-th three.

1.2.4.2 Random Forest

Consider x 2 X and y 2Y as random variables with joint probability density function p(x, y). We
will also assume that 8i 2 {1, ..,N}, (xi, yi) 2 X̃ ⇥ Ỹ are independent identically distributed.

We will use the training set (X̃ and Ỹ), as a set from which we sample V 2 N sets, X̃v ⇢ X̃ and
Ỹv ⇢ Ỹ, 8v 2 {1, ...,V}. The data X̃v and Ỹv are created with random uniform sampling of indices of
instances in X̃ and Ỹ without repetition. We, also, want each subset to contain strictly 80% of the data
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from X̃ and Ỹ. As a result, the parameters space for random forests will form tuples of sets (X̃v, Ỹv).
Using this theory, we will construct V decision trees ŷv = T (x,wv). As a result, the expected loss is

E⇡⇤L =
1
V

VX

v=1

1
Nv

NvX

i=1

L(xi,v, yi,v,wv)�(x � xi,v, y � yi,v), (1.21)

where (xi,v, yi,v) 2 (X̃v, Ỹv) and Nv is the number of the data samples in X̃v and Ỹv. If we assume wv to be
a random variable, then V decision trees form samples from the probability density function p(y|x,w).
In other words

p(y|x,wv) = ŷy1v,1ŷ
y2
v,2, (1.22)

where label y is written as a one-hot representation, and the estimate is in the same form ŷv = [ŷv,1, ŷv,2]T .
Thus, we can say that classification probability p(y|x) can be written as

p(y|x) =
Z

w2A
p(y|x,w)p(w)dw, (1.23)

whereA is an action space. With the usage of samples wv we can approximate p(y|x) as

p(y|x) =
1
V

VX

l=1

ŷy1v,1ŷ
y2
v,2, (1.24)

where each decision tree T (x,wv) is constructed with the use of (1.21).
In order to proceed with further sections we define the output of Random Forest as ŷ = ŷ(x,W),

where W = {w1, ...,wV } 2 W is a set of parameters of specific Random Forest algorithm. We define
vector ŷ as

ŷ = 1
V

VX

l=1

ŷv. (1.25)

1.3 Decision Theory for Active Learning

As mentioned in previous sections, the training set X̃ ⇥ Ỹ is only a subset of all available data. It is
important that each point x in the training set has a label y. The labels are expensive to obtain in many
situations, and the number N of all available samples x 2 X is large, while labels are available only for
the initial subset J0 = {1, . . . ,N0},N0 ⌧ N. This problem is known as semi-supervised learning.

We consider a setup in which we can ask for a label for an arbitrary x, that can be provided for
example by a human (annotator). We assume that getting labels needs some time and is very expensive.
The task is to choose which sample we will ask to label.

The active learning problem is defined as a sequence of supervised learning problems. Specifically,
we assume that the initial sets for supervised learning are X0 = {xi}i2J0 and Y0 = {yi}i2J0 . We consider
a sequence of U questions u = {1, . . . ,U}, in each question we select an index ju and ask to obtain the
label y ju for data record x ju . The index set and the data sets are extended as follows

Ju = {Ju�1, ju}, Xu = {Xu�1, x ju}, Yu = {Yu�1, y ju}.

The task of active learning is to optimize the selection of indices ju to reach as good classification
metrics with as low number of questions as possible. As a result, we have to define the expected loss
for each question u that will be dependent on the action and parameter spaces. In this case, we can
define our action space as a space of the data indices of the unlabeled data x, a = ju 2 Au = J\Ju. The
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uncertainty of the decision task, if the parameter space ⇥ of the used classifiers, i.e. ✓ = (w,b) for SVM,
✓ =⌦ for NN, ✓ =W for RF and NB. It is very vital to understand, that point estimate of the parameters
that was designed in supervised learning is not su�cient for this task. We need full distribution on the
parameters because we will integrate over the parameters space. As an example, if we talk about the
SVM method, then parameters space for active learning problem will be defined as a set of weights
that form a hyperplane. If we talk about the algorithm that is based on a neural network function, then
parameters space of the active learning problem will form weights from neurons. We wanted to highlight
that parameters space will be di↵erent for each problem but the idea for each algorithm is the same.

The decision task for this particular problem can be written as

j⇤u = argmin
ju2J\Ju

(E⇡⇤u L⇤), (1.26)

where E⇡⇤u L⇤ is the expected loss that is dependent on an action given question u, and J is the space of all
indices. The expected loss for the active learning problem is defined as

E⇡⇤u L⇤ =
Z

⇥
L⇤( ju, ✓)⇡⇤ud✓, (1.27)

where ju 2 J\Ju, ✓ 2 ⇥ and L⇤ is a loss function for the active learning problem. Character “⇤” is used
only for distinguishing active learning loss from the loss function which is used for di↵erent models.

Using this approach, we will be able sequentially select indices from X and ask for a label from Y,
that will help us to get higher scores faster than in the case of a random choice of indices.

1.3.1 Bayesian Approach of Classifiers’ Parameters Sampling

Consider that y 2 Y. Let ŷ = ŷ(x ju , ✓u) is an estimate of y. However, in this case output estimate ŷ
is represented as a vector of probabilities that x ju is assigned to di↵erent classes. As an example for a
well trained binary classifier, for specific x that is assigned to y = [1, 0]T , classifiers estimate of x can be
ŷ = [0.95, 0.05]T . It is interesting that before we can solve the optimization problem with choosing the
index ju, we have to solve the optimization problem of finding ŷ. This leads us to supervised learning
models that we have discussed in previous sections.

In this section, we would like to construct a theory around ⇡⇤u from equation (1.27). The mentioned
distribution is a distribution of the models’ parameters, given the training data that can be written as

⇡⇤u = pu(✓u|Xu,Yu). (1.28)

We do not have explicit form of the pdf. However, we assume that we have Qu samples ✓u,q 2 {1u, ...,Qu}
from pu(✓u|Xu,Yu). As a result pu(✓u|Xu,Yu) can be approximated as

⇡⇤u =
1

Qu

QuX

q=1

�(✓u � ✓(q)
u ), (1.29)

where �(✓u � ✓(q)
u ) is Dirac delta function centered in ✓(q)

u .

1.3.1.1 Parameters Sampling Based on Training Data Subsets

This method is quite general and can be applied to all types of classifiers in this work (Random
Forest, SVM, neural network). The idea is very simple. We consider that some data samples in training
dataset X̃⇥ Ỹ are noise corrupted. Thus, it is obvious that we do not want our models to learn from noise
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corrupted data. As a result, we would like to randomly sample Qu subsets from X̃ with their labels from
Ỹ. Let us rewrite it in a more mathematical form.

Assume Nu is the number of samples in Xu. Let Zu = {z1, ..., zNsub
u
} ⇢ Ju, where Nsub

u < Nu . Let
p(✓u|Xu,Yu,Zu) be a probability of model parameters ✓u given Xu,Yu and Zu. The conditioning in the
pdf is defined as a restriction of sets Xu, Yu on indices from Zu. As a result, we can approximate (1.28)
as

⇡⇤u = p(✓u|Xu,Yu) (1.30)

=

Z
p(✓u|Xu,Yu,Zu)p(Zu)dZu (1.31)

=
1

Qu

QuX

q=1

p(✓u|Xu,Yu,Z
(q)
u ) (1.32)

=
1

Qu

QuX

q=1

�(✓u � ✓(q)
u ). (1.33)

Sampling from p(Zu) is very simple. The only thing that must be predefined is Nsub
u . After training

the model using Xu and Yu under restriction Zu, the vector of model parameters will represent a single
sample from ⇡⇤u.

1.3.1.2 SGLD

Unlike the previous section method, SGLD sampling is designed only for neural network based
classifiers. SGLD modifies neural network learning algorithm by adding noise in Stochastic Gradient
Descent. The conventional stochastic gradient descent of Feed Forward Neural Network was extended in
[28] by an additive white noise, which is know as the Stochastic Gradient Langevin Dynamics (SGLD)
algorithm. This algorithm provides Bayesian estimate of Neural Network parameters [28]. In essence,
when the algorithm is almost trained, the additional noise samples i.i.d parameter values in a neighbor-
hood of the minimum. Using the Bayes rule we can rewrite (1.28) as

⇡⇤u = p(✓u|Xu,Yu)
/ p(Xu,Yu|✓u)p(✓u). (1.34)

Next, we can approximate (1.34) as

⇡⇤u =
1

Qu

QuX

q=1

p(Xu,Yu|✓(q)
u ) (1.35)

that results in (1.33). However, for this case, ✓ must meet some constraints. If we want to sample pa-
rameters from its distribution, ✓ must be independent identically distributed. Based on [28], the updated
gradient for SGLD can be written as

⌦̂n+1 = ⌦̂n �
N

Nminibatch

⌘n

2

⇣
rL(X̃, Ỹ, ⌦̂n,Zn)

⌘
+ ✏n, (1.36)

✏n ⇠ N(0, ⌘nI), (1.37)

where N is the number of training data, Nminibatch is the number of samples in the minibatch and ⌘n is the
learning rate in n�th iteration of the algorithm.
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1.3.1.3 Dropout

Dropout is another technique similar to SGLD designed to sample from a neural network parameters
distribution [8]. The idea is randomly turn o↵ some neurons while training. Thus, an estimate of ⇡⇤u =
p(✓u|Xu,Yu) is the Dirac function as well 1.29. When the algorithm is almost trained, we are able to start
sampling the i.i.d. parameter masks. Samples ✓(q) are generated after each step of the SGD, where the
di↵erent mask of neural weight and biases is sampled for each q.

1.3.1.4 Deep Ensemble Filter

Deep Ensemble Filter (DENFI) algorithm is an extension of deep ensembles [11]. In case of DENFI
algorithm [25], we can approximate (1.28) with the usage of equations (1.34) and (1.33). The equations
are the same but a sampling from p(✓u) is di↵erent. In this work, we propose a modification of the
initial DENFI algorithm. The idea of this algorithm is to train an ensemble of Qu Feed Forward Neural
Networks using Stochastic Gradient Descent. In theory, each neural network will find a di↵erent local
minimum due to di↵erent initial weights of neurons and Stochastic Gradient Descent. The beauty of this
algorithm is in further training iterations that will be described and shown in further sections. For now,
we are only interested in parameters sampling from p(✓u), that has been already covered and described.

1.3.2 Active Learning Loss Function

The acquisition function is a function that helps us to decide which data sample is the best for model
learning given the model’s uncertainty. A wide overview of di↵erent acquisition functions is shown in [8]
e.g. entropy, information, or mean standard deviation maximization. However, in our work, we decided
to use only the entropy loss.

1.3.2.1 Entropy Based Active Learning Loss

The first approach of defining the Active Learning loss function is negative entropy. Basing on the
formal entropy definition [21], we can write it as

�H(ŷ|x ju , ✓u) =
RX

r=1

ŷr(x ju , ✓u) log
�
ŷr(x ju , ✓u)

�
, (1.38)

where ŷr is r�th element of the output estimate ŷ, and ✓ is a vector of parameters for specific model. As
done in Passive Learning sections we want to find expected loss based on entropy function.

With the usage of previous knowledge, we can derive expected entropy loss as

E⇡⇤u L⇤ =
Z

⇥u

�H(ŷ|x ju , ✓u)pu(✓u|Xu,Yu)d✓u

=

Z

⇥u

�H(ŷ|x ju , ✓u)
1

Qu

QuX

q=1

�(✓u � ✓u,q)d✓u

=
1

Qu

QuX

q=1

�H(ŷ|x ju , ✓u,q))

=
1

Qu

QuX

q=1

RX

r=1

ŷr(x ju , ✓u,q) log
�
ŷr(x ju , ✓u,q)

�
. (1.39)
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As a result, the minimization of the given expected loss will lead us to a sample with the highest entropy.
Thus, we are seeking for the index of the data instance that has maximum predictive entropy. In other
words j⇤u = argmin j2J\Ju

(E⇡⇤u L⇤).

1.3.3 Active Learning

We would like to generalize the active learning part for all described algorithms, in order to estimates
p(y|x,Xu,Yu) basing on samples from ⇡⇤u in (1.28). In the Supervised Learning section we have derived
estimate ŷ of y for SVMs, Random Forests and Feed Forward Neural Networks. Active Learning algo-
rithm requires distribution over the parameters of the algorithms. We will solve this problem the way
that we will get samples from ⇡⇤u, and then approximate probability distribution as (1.28).

In order to estimate p(y|x,Xu,Yu), we define Generalized Ensembles Algorithm. SGLD and DENFI
can be also represented as generalized ensembles models because parameters sampling (neuron weights
sampling) represents di↵erent configurations of neural networks. Thus, each sample from ⇡⇤u can be
assumed as i.i.d. ensemble. As a result, we will use Qu ensembles in each step of Active Learning
algorithm. Therefore, basing on the previous theory we can approximate p(y|x,Xu,Yu) as

p(y|x,Xu,Yu) =
1

Qu

QuX

q=1

ŷq,u. (1.40)

1.4 Conclusion

In this section, we have covered the decision theory for both passive and active learning with respect
to di↵erent algorithms and ensemble approaches. Passive Learning section showed how it is possible
to represent SVM, Random Forest, and neural networks in terms of decision theory problem setup. In
addition to this, the Active Learning section showed how to represent the uncertainty of the model and
parameters sampling for ensembles representation.



Chapter 2

Natural Language Processing Theory

2.1 Text Representation

According to [12], Natural Language Processing (NLP) is a theoretically motivated range of com-
putational techniques for analyzing and representing naturally occurring texts at one or more levels of
linguistic analysis for the purpose of achieving human-like language processing for a range of tasks or
applications.

In this work we are focused on two techniques, such as TF-IDF [19] and Fast Text Word Embeddings
[15]. These methods are used for representation of text in a mathematical form (vectors, matrices). Even
though TF-IDF is quite old method for text representation, it is still widely used. However, primary
method, that is used in the thesis is the Fast Text Word Embeddings. In this project we are working with
text documents (articles and tweets) and their labels. In the beginning of chapter 1 we defined value
x 2 X as text features vector. By features vector we mean any kind of text encoding (TF-IDF, Fast Text
Word Embedding, etc..).

2.1.1 TF-IDF

Term Frequency - Inverse Document Frequency (TF-IDF) is extremely powerful tool. This text
encoding tool is quite simple and e�cient. Method’s advantage is its popularity. Plenty of packages in
di↵erent programming languages have implementations of this algorithm. As mentioned in the name of
this method, it is composed of two parts as Term Frequency and Inverse Document Frequency. Term
Frequency is defined as

T F(t, d) =
ft,dP

t0 ft0,d,
,

where ft,d is number of times of word t in a document d. Inverse Document Frequency is defined as

IDF(t, d) = log
|D|

|{d 2 D : t 2 d}| ,

where numerator stand for total number of documents in the corpus and denominator is number of doc-
uments where the term t appears. We assume words from corpus D. Thus, the denominator is always
greater than zero.

Finally,
T F � IDF(t, d) = T F(t, d) · IDF(t, d).

22
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2.1.1.1 TF-IDF and Information Theory

In this part is shown the connection of TF-IDF to information theory [1]. Let us first take a look on
documents’ entropy given word t,

H(D|T = t) = �
X

d

p(d|t) log p(d|t)

= log
1

|{d 2 D : t 2 D}|
= � log

|{d 2 D : t 2 D}|
D| + log |D|

= �IDF(t, d) + log |D|, (2.1)

where D is a documents’ random variable and T is words’ random variable. Equation (2.1) is correct
under the condition that we have no duplicate documents in the text corpus. Next step is to derive an
equation of mutual information of documents and words as follows

M(D,T ) = H(D) � H(D|T )

= �
X

d

p(d) log p(d) �
X

H(D|T = t) · p(t)t

=
X

t
p(t) ·

⇣
log

1
|D| + IDF(t, d) � log |D|

⌘

=
X

t
p(t) · IDF(t, d)

=
X

t,d

p(t|d) · p(d) · IDF(t, d)

=
1
|D|
X

t,d

T F(t, d) · IDF(t, d). (2.2)

As seen from (2.2) TF-IDF has really good explanatory definition based on information theory. As a
result, it is one more advantage of this method usage. However, here is one big disadvantage that can
be very crucial. The higher amount of words is, the bigger and sparser the vectors that represent each
document, will be.

2.1.2 Fast Text and CBOW Word Embeddings

Term ”embedding” means a set of language modeling and feature learning techniques in natural lan-
guage processing, where words or phrases from the vocabulary are mapped to vectors of real numbers.
Plenty of word embedding methods based on neural networks and co-occurrence matrices exist nowa-
days. Word embeddings are used as pretrained models. Words’ encoding is used to encode the text, and
then text encoding is used for di↵erent purposes, such as classification, clustering, etc..

The principle of word embeddings based on neural networks is explained in this section. We decided
to describe Continuous Bag of Words Model (CBOW) because Fast Text word embeddings model is a
modification of this method, and CBOW covers all main theoretical aspects.

2.1.2.1 CBOW Word Embeddings

The CBOW embeddings have been introduced in [14]. Consider the sentence ”A beautiful cat jumped
over a puddle”. We choose the window of 2m + 1, m 2 N words and try to predict the word with index
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m + 1, basing on the context of size 2m, where m words are before the prediction word and m words are
after the prediction word. We would like to treat tuple ("a", ”beautiful”, "cat", ’over", "a’, "puddle") as
a context, and based on the context we would like to predict or generate the word "jumped". This type
of model is the Continuous Bag of Words (CBOW) model. Let the known parameters in our model be
the contexts, represented with one-hot encoded word vectors. The input one hot encoded word vector
is denoted as c(c), where c is the position of the word in the context. The predicted context word is
defined as cpred. We create two matrices, E 2 RE⇥|v| and U 2 R|v|⇥E . Where E is an arbitrary size which
defines the size of our embedding space and |v| is a vocabulary size of all words from all contexts. E is
the input word matrix, such that the i-th column of E is the E-dimensional embedded vector for word
ci. We denote this E ⇥ 1 vector as ei. Similarly, U is the output word matrix. The k�th row of U is an
E-dimensional embedded vector for word cpred,k when it is an output of the model. We denote this row
of U as uk.

The matrices E and U are obtained by the following sequence of actions:

• We generate our one hot word vectors (c(c�m), ..., c(c), ..., c(c+m)) for the input context of size 2m

• We get our embedded word vectors for the context (ec�m = Ec(c�m), ec�m+1 = Ec(c�m+1), ..., ec+m =

Ec(c+m))

• Average these vectors to get ẽ = ec=m+ec=m+1+...+ec+m
2m

• Generate a score vector z = Uẽ

• Turn the scores into probabilities
ĉpred = softmax(z) (2.3)

• We optimize E and U to maximize the match between the predicted vector ĉpred, and the true vector
cpred, which also happens to be the one hot vector of the actual word.

The described method can be interpreted as a Feed Forward Neural Network with only input and output
layers. The optimization is provided with respect to cross entropy loss function

L =
|v|X

i=1

cpred,i log(ĉpred,i), (2.4)

where ĉpred is softmax (2.3) function. When the weights in a neural network are trained, matrix E
represents |v| word embeddings where i-th word from vocabulary v is i-th row in E.

Previously, we mentioned that all the methods take an instance (text) x as an input value and predict
its class. Instance x is calculated as a mean value from all words embeddings in the text

xi =
1
|Di|
X

j2Di

Ec( j),

whereDi is the set of indices of all words in i-th document in the common vocabulary.

2.1.2.2 Fast Text Word Embeddings

As mentioned previously, the Fast Text method is a CBOW modification. The main modification is
that Fast Text is taking into account not only words but also su�xes of words. The words are split into
su�xes and as a result, they can handle understanding of the context better.

In this thesis, we used pretrained Fast Text models [15] consisting of 1 million word vectors trained
on Wikipedia 2017, UMBC web base corpus and statmt.org news dataset (16B tokens).



Chapter 3

Data and Evaluation Metrics

3.1 Evaluation Metrics

When the models are implemented and trained we have to compare them. This part is very important
because we want to define such metrics that will not be biased and which will have high discriminability.
In this project, experiments are separated into two parts. The first part is a supervised classification with
a big amount of the training data. This is done for classifiers’ maximal upper bound understating. The
upper bounds are used as maxima to which our active learning algorithms should be converging.

3.1.1 Receiver Operating Characteristic Metric

In section 1 we mentioned that we are limiting our problem only on binary classification. Plenty of
metrics, such as recall, accuracy, precision, etc. exists for binary classification scoring. However, we
decided to find a metric that is able to unify all metrics discussed before and do not underperform each of
them. For these purposes, we chose the Receiver Operating Characteristic (ROC) metric. ROC visualizes
the tradeo↵ between the true positive rate (TPR)

TPR =
true positive

true positive + false negative

and the false positive rate (FPR)

FPR =
false positive

false positive + true negative
,

where terminology true/false positive/negative refers to assigned classification being correct or incorrect
with respect to positive or negative category [7]. This means that for every threshold we are able to
calculate TPR and FPR, and plot it in one figure.

We are working with balanced datasets. Thus, there is no problem with using ROC metric. ROC
metric is also quite e�cient when we care equally about positive and negative classes. Another advantage
is that if we notice small changes in ROC, it will not result in big changes in other binary classification
metrics.

The metric results should be aggregated into a single number in order to obtain a unique comparison
value. This is typically done as calculation of the area under the ROC, which is known as the area under
the curve (AUC) metric. The probabilistic interpretation of ROC score means that if a positive case and
a negative case are chosen randomly, the probability that the positive case outranks the negative case,
according to the classifier, is given by the AUC [7].
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3.1.2 Supervised Learning Results Validation

As mentioned above, supervised learning results are used as a maximal upper bound of the specific
classifier. In order to make results statistically valid, we used k-fold cross validation. For each batch from
k-fold cross validation we calculated both ROC and AUC. As an output result of a classifier performance
we calculated mean value over all ROC and AUC scores. All results are calculated with respect to
balanced data classes.

3.1.3 Active Learning Results Validation

Active learning model evolution is based on supervised learning algorithms that are sequentially
retrained. Thus, we are not able to display ROC for active learning algorithms because the amount of
results is too big. We decided to aggregate results and display the evolution of AUC metric for each step
of the active learning sequence. AUC sequences can be well compared over di↵erent classifiers. Another
aspect of data validation is making the results statistically significant. We are not able to use k-fold cross
validation for active learning algorithms. Therefore, we run the active learning algorithm H 2 N times
with di↵erent random selection of the initial training set. Due to the random initializations, we are able
to determine uncertainty bounds that are calculated as standard deviations from the mean values.

3.2 Data

This chapter is dedicated to the dataset description. We used two datasets for algorithms training and
testing. We consider these datasets big and diverse enough for getting unbiased results. We took into
account the size of texts (articles and tweets), diversity and at the same time, similarity of topics.

3.2.1 Hu↵Post 200k Articles Dataset

Hu↵Post 200k Articles Dataset is publicly available at Kaggle competition webpage and can be found
as News Category Dataset [16] here https://www.kaggle.com/rmisra/news-category-dataset.
The described dataset contains around 200k news headlines from the year 2012 to 2018 obtained from
Hu↵Post web journal. The following dataset includes a url address and a label for each article. Hu↵Post
dataset has 200k articles assigned to 41 categories. We used only 10 categories. We are interested in
binary classification, as a result we have to make pairs from chosen categories. These categories and
pairs are listed in table 3.1.

Tuple Id Category Pairs
1 Crime Good News
2 Sports Comedy
3 Politics Business
4 Science Tech
5 Education College

Table 3.1: Hu↵Post Dataset Categories which were chosen for algorithms’ training and testing

Due to the fact that there is no raw article included in the dataset, we used url links in order to find the
articles. For each category, we scraped 500 original articles from www.huffpost.com. Listed categories
are chosen with respect to diversity and classification complexity. We sorted the categories in table 3.1
with respect to the ascending classification complexity order. By classification complexity we mean two
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sets intersection in feature space. If the classification complexity is high, the majority of feature space
dimensions have intersections between two datasets. Thus, it is harder to find such set of features that
can be used for high classification performance.

3.2.2 1600k Tweets Dataset

Another dataset that is used in this work is 1600k tweets dataset, which is publicly available and
is also taken from Kaggle competition webpage. The dataset can be found as sentiment140 dataset
[9] at https://www.kaggle.com/kazanova/sentiment140. This dataset contains 1,600,000 tweets
extracted using Twitter API. The tweets have been annotated as negative (0), positive (4) and they are
used for sentiment detection. Same as with Hu↵Post dataset we used 500 records for each category, for
training and testing purposes. The reason of choosing this dataset is that we wanted to show how our
algorithms can handle data that consist of little texts.



Chapter 4

Project Implementation and Architecture

Even though this work is quite theoretical with experiments that prove theoretical concepts, we con-
sider the implementational part interesting as well. In this chapter, we show the architecture of the project
and explain how di↵erent dependencies cooperate with each other. The codebase of this project can be
easily found at https://github.com/sahanmar/Peony. We expect this project to grow continuously
and be used not only in terms of master thesis.

This project was written in Python 3.7 programming language with the usage of Conda environment.
The project combines a lot of di↵erent tools and programs such as Docker, Docker-Compose, MongoDb,
Jupyter, etc..

In this thesis, we used two main components that represent the database and a computational part.
We tried to unify all methods as much as possible and make the utilization process very easy.

4.1 Database

In order to make everything consistent and let the models work with the same input and output
format we decided to create a database that will store all the data in JSON format. This unification lets
us connect the database to machine learning and visualization components. In this project we decided to
work with NoSQL database. Our choice was MongoDb. The reason why we have chosen MongoDb is
because of its simplicity and possibility of maintaining through Docker. Since Docker and MongoDb is
a perfect combination, the database can be deployed with two lines of code through Docker-Compose as
explained in documentation on GitHub. Of course, it is easier to use MongoDb without Docker but our
motivation was measured on the simplicity of creating and working with the database. All experiments
were run on Google Cloud Platform virtual machine instance. Thus, we could start working with the
models right away without any complications with the installation.

4.1.1 MongoDb Data Format

MongoDb represents the data in BSON format behind the scenes but we insert and get the data in
JSON format. Despite the fact that we are having di↵erent text datasets which we store in the database,
we decided to create a unified JSON scheme that will let us preserve the structure of the data stored
in MongoDb. JSON schema of how the data are stored and what a user will get as an output from a
database is shown in figure 4.1. Deeper explanation of JSON schema format can be found at https:
//json-schema.org/understanding-json-schema/.
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{
" t i t l e " : " D a t a b a s e " ,
" t y p e " : " o b j e c t " ,
" p r o p e r t i e s " : {

" da ta se tName " : {
" t y p e " : " s t r i n g " ,
" d e s c r i p t i o n " : "Name of t h e d a t a s e t "

} ,
" d a t a s e t I d " : {

" t y p e " : " i n t " ,
" d e s c r i p t i o n " : " Unique hash i d t h a t w i l l be c r e a t e d a u t o m a t i c a l l y "

} ,
" r e c o r d " : {

" t y p e " : " o b j e c t " ,
" d e s c r i p t i o n " : " A l l t h e i n f o r m a t i o n a b o u t an i n s t a n c e " ,
" p r o p e r t i e s " : {

" i d " : {
" t y p e " : " s t r i n g " ,
" d e s c r i p t i o n " : " Unique hash i d t h a t w i l l be c r e a t e d a u t o m a t i c a l l y

"
} ,
" s n i p p e t " : {

" t y p e " : " s t r i n g " ,
" d e s c r i p t i o n " : " S n i p p e t o f a t e x t . Can be empty "

} ,
" t e x t " : {

" t y p e " : " o b j e c t " ,
" d e s c r i p t i o n " : " Text i n s t a n c e t h a t i s used f o r a model " ,
" p r o p e r t i e s " : {

" t i t l e " : {
" t y p e " : " s t r i n g " ,
" d e s c r i p t i o n " : " T i t l e o f a t e x t . Can be empty "

} ,
" body " : {

" t y p e " : " s t r i n g " ,
" d e s c r i p t i o n " : " Body of a t e x t "

} ,
} ,

} ,
" l a b e l " : {

" t y p e " : " s t r i n g " ,
" d e s c r i p t i o n " : " Labe l f o r an i n s t a n c e . Can be empty i f t h i s i s

n o t a v a l i d a t i o n d a t a "
} ,
" m e t a d a t a " : {

" t y p e " : " o b j e c t " ,
" d e s c r i p t i o n " : "Any a d d i t i o n a l m e t a d a t a . Can be empty "

} ,
} ,

} ,
} ,

}

Figure 4.1: MongoDb JSON schema visualization
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4.2 Computations

All computations were done with the usage of virtual instance on Google Cloud Platform. We used
configuration with 2 CPU, 7.5Gb memory that was running on Debian GNU/Linux 10. All versions
of python, python packages, docker, mongo, etc. can be found in .yml files in GitHub folder with the
project.

4.3 Machine Learning Component

Machine Learning (ML) Component is fully implemented in Python with the usage of open source
libraries. In order to understand how to use the models, it is possible to find the code and its usage in
Jupyter notebook that is stored in the showcase folder. Showcase folder has four Jupyter notebooks that
show both how to get the data for the models from the database and how to start using the models.

4.3.1 Data Transformers

Before models training and testing, the user has to fit the data transformer that transforms text into
tensors form. Tensors are used as input values for models. As mentioned in chapter 2, we are working
only with Fast Text and TF-IDF text encodings. Both TF-IDF and Fast Text models are fitted from the
documents that are given to the transformer.

4.3.1.1 TF-IDF Transformer

Basic concept is that TF-IDF transformer represents one article as a vector. TF-IDF encoding for
a single document is calculated on the basis of all extracted words that exist in the vocabulary. As a
result, if we make TF-IDF encoding of a set of articles, we will get a matrix where each row represents
a specific document and each column represents a word from a dictionary.

4.3.1.2 Fast Text Transformer

Fast Text model is a pretrained model that consists of one million words mapped to vectors. These
words are stored in MongoDb. When a user starts to use the Fast Text model, ML component creates
a words’ vocabulary from the texts taken for model training/testing. This vocabulary is created in the
form of a hash map (word -> vector) where word embeddings are downloaded from MongoDb. It is
important to remember that Fast Text encoding represents each word as a vector with predefined number
of components. We are using word embeddings that represent each word with 300 float values. We
introduce article encoding as a mean value through all words from a text that is given for encoding.
Thus, if we make Fast Text encoding of a set of articles, we will get a matrix where each row represents
a specific document. A huge advantage of this method in comparison to TF-IDF is that we are working
only with 300 float values than with huge vocabulary (all unique words from a text corpus). Therefore,
we get both lower features dimensionality and better context understanding.

4.3.2 Machine Learning

In this work, we created the Generalized Model that unifies all models. Generalized Model allows
us to work with each Machine Learning algorithm in the same way. Generalized Model is able to take
a data transformer as an input argument. This feature makes it easier to work with models. In the first
chapter of this thesis, we introduced our models the way that we want to sample from their parameters’
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distributions. In other words, we defined ensembles models. In figure 4.2 is shown a generalized diagram
of a machine learning structure.

Figure 4.2: Machine Learning Workflow

We used scikit-learn [18] for basic algorithms such as Random Forests and SVMs. However, the
core of this project is constructed around neural networks. We used PyTorch [17] as a neural networks
framework. In this work, we have implemented and tested five classification algorithms. Three of them,
such as SVM, Random Forest, and Feed Forward Neural Network ensembles are trained on randomly
chosen subsets from the training data. For each ensemble are randomly chosen 80% from training data
that are used for training. Two algorithms such as SGLD and DENFI are using a full training dataset
for their ensembles. The variability in SGLD and DENFI ensembles is reached through adding Gaussian
noise while ensembles training. We hardcoded amount of ensembles for all models to 10, except SGLD
where are used 50 ensembles.

4.3.2.1 SVM and Random Forest Ensemble Setup

Both SVM and Random Forest models were taken and used out of the box. We created 10 SVM and
10 Random Forest ensembles with default scikit-learn setting. No modifications were provided.

4.3.2.2 Feed Forward Neural Network

Despite the fact that we used very simple neural network architecture it showed great results. We im-
plemented Feed Forward Neural Network with the usage of PyTorch python package with only an input
layer that consists of 100 neurons with a sigmoid activation function. We chose the softmax activation
function for an output layer.
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Algoritmus 4.1 DENFI modification algorithm pseudocode

d e f a c t i v e _ l e a r n i n g _ i t e r a t i o n _ t r a i n i n g ( a l l _ e n s e m b l e s , t r a i n i n g _ d a t a ) :
f o r ensemble i n a l l _ e n s e m b l e s :

i f f i r s t _ a c t i v e _ l e a r n i n g _ i t e r a t i o n i s F a l s e :
ensemble . w e i g h t s = ensemble . w e i g h t s _ p r e v _ i t e r a t i o n
t r a i n i n g _ e p o c h s = 500

e l s e :
ensemble . w e i g h t s = g a u s s i a n _ i n i t i a l i z a t i o n ( mean=0 , v a r =0 . 1 )
t r a i n i n g _ e p o c h s = 2000

ensemble . t r a i n ( t r a i n i n g _ d a t a )
ensemble . w e i g h t s = ensemble . w e i g h t s

+ g a u s s i a n _ n o i s e ( mean=0 , v a r =0 . 1 )

4.3.2.3 SGLD

For SGLD we used the same configuration as for Feed Forward Neural Network. One significant
di↵erence is that we used the whole training dataset and were adding Gaussian noise to a Gradient
Descent [28] as shown in (1.36). We used 2000 epochs in order to train the model. Next, we started a
sampling procedure. Each sample was generated with a 50 epochs interval. The precise configuration of
SGLD can be found in GitHub project here https://github.com/sahanmar/Peony/blob/master/
Peony_project/Peony_box/src/peony_adjusted_models/sgld_nn.py.

4.3.2.4 DENFI

In this work, we have simplified the original DENFI algorithm. The pseudocode of this algorithm
is shown in algorithm 4.1. The main idea is that the algorithm finds di↵erent local minimums due to
the random weights initialization in the first active learning iteration. We used 2000 epochs in order to
train the model. When the training is finished, Gaussian noise is added to the output weights in order
to increase the variability. In further active learning iterations, weights from previous iterations with
extended training dataset are used. After the training, we also add Gaussian noise to the weights. We
have empirically discovered that the model shows the best performance with 0.1 variance of an additive
noise. We have also tried di↵erent noise configurations with 0.2 and 0.3 variance. However, Gaussian
noise with 0.1 variance has shown the best scores. The amount of training epochs in hot start loop equals
to 500 epochs. When the learning iterations are done, we can use the algorithm for predicting.
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Passive Learning Classification

Before we can start the active learning part, we have to understand if the implemented algorithms
are capable to solve the classification task. Thus, we decided to test the models on Sports and Comedy
categories from the Hu↵Post Dataset and on tweets from the Tweets Dataset. The classification was done
both for the TF-IDF and Fast Text encodings. We separated experiments with respect to the dataset types.

5.1 Passive Learning Hu↵Post Dataset

In this section, we are illustrating ROC and AUC metrics with respect to 10-fold cross validation and
500 Sports, 500 Comedy articles. Vocabulary, that is created from 1000 articles corpus consists of 20
thousand unique words. We would like to mention that all algorithms are trained and tested with respect
to 10 ensembles. We decided to test the ensemble models on a passive learning problem in order to
see the limit that an active learning strategy will converge to. Moreover, the ratio of randomly chosen
training data for ensembles (SMV, Random Forest, Feed Forward NN ensembles) is set to 80%.

5.1.1 SVM Ensembles

Results for SVM Ensembles are shown in figures 5.1 and 5.2. These are results both for TF-IDF
and Fast Text encodings. As seen on these plots, ROC and AUC values of 10-fold cross validation are
very high. This means that our model works very good. Another interesting point is that the standard
deviation with respect to all runs is very low. It means that SVM ensembles could linearly separate Sports
and Comedy sets with an acceptable classification error.

It is also seen that ROC and AUC metrics are almost the same for TF-IDF and Fast Text encodings.
However, there is one significant di↵erence. The di↵erence is in computational time because Fast Text
encoded text document consists of 300 float components and the TF-IDF encoded text document consists
of 20 thousand float components. Even though we are using algorithms for sparse matrix computations
for the TF-IDF method, computations for Fast Text encoding are approximately five times faster. The
higher amount of unique words is, the higher elapsed time per article for TF-IDF based encoding algo-
rithm will be. Another good aspect of SVM is the algorithm’s simplicity. SVM is trained much faster
than neural network based models.

It is possible to conclude that the model achives good results for this classification problem and can
be used for active learning experiments.
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Figure 5.1: TF-IDF ROC and AUC for 10 SVM ensembles trained and tested on Sports and Comedy
data where each ensemble is trained on 80% of randomly chosen training data

Figure 5.2: Fast Text ROC and AUC for 10 SVM ensembles trained and tested on Sports and Comedy
data where each ensemble is trained on 80% of randomly chosen training data
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Figure 5.3: TF-IDF ROC and AUC for 10 Random Forest ensembles trained and tested on Sports and
Comedy data where each ensemble is trained on 80% of randomly chosen training data

Figure 5.4: Fast Text ROC and AUC for 10 Random Forest ensembles trained and tested on Sports and
Comedy data where each ensemble is trained on 80% of randomly chosen training data

5.1.2 Random Forest Ensembles

Results for the Random Forest ensembles are shown in figures 5.3 and 5.4. The displayed results are
both for the TF-IDF and the Fast Text encodings. Same as in the SVM section, ROC and AUC values
of 10-fold cross validation for Random Forest are high as well. This means that our model works well.
ThesStandard deviation with respect to all runs is also low.

If we compare the results for TF-IDF and Fast Text encodings, it is seen that the Fast Text based
model outperforms the TF-IDF encoding model. ThemMean AUC value for the Fast Text article en-
coding model is higher by 5%. It is interesting that the TF-IDF sparse matrix algorithm application in
Random Forest ensembles model results in almost the same computational time for Fast Text and TF-
IDF encoding algorithms. This observation was made on the basis of processing 1000 articles from the
Comedy and Sports categories. As mentioned in the SVM section, we can also say that the Random
Forest algorithm is trained much faster than the neural network based models.

It is possible to conclude that the model shows good results for this classification problem and can
be used for active learning experiments.
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Figure 5.5: TF-IDF ROC and AUC for 10 neural networks ensembles trained and tested on Sports and
Comedy data where each ensemble is trained on 80% of randomly chosen training data

Figure 5.6: Fast Text ROC and AUC for 10 neural networks ensembles trained and tested on Sports and
Comedy data where each ensemble is trained on 80% of randomly chosen training data

5.1.3 Feed Forward Neural Network Ensembles

In this work, we have implemented three algorithms based on neural networks, such as neural net-
works ensembles, SGLD, and DENFI algorithms. The di↵erence between these methods is in parameters
sampling. Neural networks ensembles take a randomly selected subset from the training data for each
ensemble. On the other hand, SGLD and DENFI require special training. Thus, we decided not to show
SGLD and DENFI results in this section. Consequently, if neural networks ensembles achieve good
results, we assume that SGLD and DENFI will also perform well for the passive learning scenario.

Results for the neural networks ensembles are shown in figures 5.5 and 5.6. The displayed results
are both for the TF-IDF and Fast Text encodings. As seen in the previous section, ROC and AUC values
of 10-fold cross validation for neural networks are high as well.

Comparing the results between the TF-IDF and Fast Text encoding based models we can observe
that the Fast Text based model gives slightly better results. We have already discussed the fastness of
algorithm training with respect to di↵erent embedding models in the Random Forest section. In the
case of neural networks, this di↵erence is even more significant. The model that is based on the Fast
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Text word embeddings takes approximately 20 times less computational time than the TF-IDF encoding
based model.

5.2 Conclusion

All of the tested models achieved really good results in the task of classification documents into the
Sports and Comedy categories. We can not rule out any of them as irrelevant and we will test these
algorithms in the active learning section. We would like to highlight that the Fast Text encoding based
algorithms showed a bit better results than TF-IDF. Fast Text based algorithms also showed significant
improvement in the evaluation speed of algorithm training.



Chapter 6

Active Learning Classification

In the Passive Learning section, we showed that all implemented algorithms are achieve good results
for solving passive text classification tasks. The results of Active Learning are the main contribution of
this thesis. Therefore, we tested all five algorithms on the data mentioned in the Data section. The results
are shown and described in further subsections. However, before starting with text classification results,
we would like to show how our models represent uncertainty. As written in the theoretical introduction
to active learning, we use models’ uncertainty for an active learning loop.

6.1 Active Learning Models’ Uncertainty

Due to the fact that dimensionality of the feature space of both text encoding approaches is extremely
high, we introduce a 2-dimensional toy problem for uncertainty visualization. In figure 6.1 is shown a
conventional two-moon dataset that is used for the toy problem classification. We generated this dataset
by adding Gaussian noise in order to make the task similar to real-world problems.

We generated 1000 data points where 500 are assigned to class 0 and another 500 points are assigned
to class 1. We used 50% randomly chosen data samples as the training dataset. The next step was creating
a two-dimensional grid that will be used for model predictions. We assign data sample to class 1 if the
prediction value is higher than 0.5. If the prediction value is lower than 0.5, then the value is assigned
to class 0. We consider that the model is uncertain about a specific data sample if its prediction values

Figure 6.1: Visualization of the toy problem dataset.
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Figure 6.2: Mean value of posterior prediction of class 1 for SVM ensembles.

is close to 0.5. As a result, sampling values from the maximal uncertainty region will bring maximum
information about the dataset. Setup of models for the toy problem is the same as it is defined in section
4.3 .

6.1.1 SVM Ensembles

Uncertainty for SVM ensembles model is visualized in figure 6.2. Uncertainty bounds are linear and
quite narrow. The linearity of uncertainty bounds is explained with the fact that we are using SVMs
with a linear kernel. Narrowness can be explained with the richness of the training dataset and linear
limitations of the SVM decision boundary.

6.1.2 Random Forest Ensembles

Model uncertainty of the Random Forest ensembles is visualized in figure 6.3. In the case of Random
Forest ensembles, we can see that uncertainty bounds are not linear and lay near the region where the two
classes are split. We see that the uncertainty region is becoming wider near the places where datapoint
of two di↵erent classes lay close to each other. This is a behavior that we wanted to observe.

It is also seen that the curve is not smooth enough. This is caused by the shape of the Random Forest
decision boundary.

6.1.3 Neural Network Ensembles

Model uncertainty of the neural network ensembles is visualized in figure 6.4. In comparison to
the methods that were shown above, uncertainty bounds are quite smooth. We can also observe that
uncertainty bounds become wider when they go further away from the data points. This behavior can be
explained by the fact that in these places the algorithm did not get any training data samples. We could
also see this behavior in SVM ensembles, but the neural network models represent the uncertainties much
better.

6.1.4 SGLD

Model uncertainty of neural network estimated by SGLD is visualized in In figure 6.5. We see that
SGLD algorithm has similar behavior to neural network ensembles. The di↵erence is that all uncertainty
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Figure 6.3: Mean value of posterior prediction of class 1 for Random Forest ensembles.

Figure 6.4: Neural network ensembles posterior predictive mean probability of class 1
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Figure 6.5: SGLD posterior predictive mean probability of class 1

Figure 6.6: DENFI posterior predictive mean probability of class 1

bound curves have similar curvature. This is happening due to the fact that SGLD finds a loss function
minimum and then samples parameters’ values in a neighborhood of the minimum. As a result, we
expect decision bound for each parameters sample to be quite similar to each other.

6.1.5 DENFI

In figure 6.6 is visualized DENFI model uncertainty. We see that uncertainty bounds are very similar
to neural network ensembles algorithms but still a bit di↵erent. As told in pseudocode 4.1, algorithm
founds di↵erent local minimums and then we add some Gaussian noise to parameters values. In further
learning iterations the algorithm continues training using the weights from the previous step.

The last 100 loss function values with respect to each DENFI ensemble are shown in figure 6.7. It is
seen that each ensemble found its own local minimum. Additional Gaussian noise adds more variability
to the algorithm that makes samples more diverse.

6.1.6 Conclusion

To conclude, we can say that the best variability representation was seen in neural network models.
Obviously, we could test SVM algorithm with di↵erent kernels but our prior interest was concentrated
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Figure 6.7: The last 100 loss function values with respect to each DENFI ensemble

on neural networks due to their scalability to larger datasets. We have shown that all models are able to
represent variability and can be used for further tests.

6.2 Active Learning Simulation Set Up

6.2.1 Simulation Loop

The active learning simulation is designed to compare two strategies: i) random, and ii) active (smart)
selection of text documents. We randomly choose an initial training set that has 10 samples. These 10
random samples are chosen from 1000 text documents (500 text documents per category). We reduce
the size of all the above-mentioned datasets to 1000 documents. Each dataset is split into the testing and
training data.

Next, we initialize two runs. The first run is based on a random selection of the text documents
and the second run is based on acquisition function selection of the documents. Both runs start with
the same training dataset, and then they choose additional training documents based on their strategies.
We consider continuous new data selection from 1000 documents dataset and imitating the annotators
labeling process. All in all, we repeat selection of text samples 200 times (U = 200). We select 10
random samples in the beginning, train our model, and make a prediction on the complement to the
training dataset (990 text documents from validation set). As a further step, we select 1 new sample
from the set on which the prediction was done. A new text sample for labeling is chosen with respect to
acquisition function or random choice. Before we extend our training dataset with a new labeled sample,
we calculate the AUC metrics on the complement to the dataset (990 text documents). Thus, by the end
of the simulation, our training set will have 210 text documents and the testing set (complement to a
training set) will have 790 data samples. In order to make our results statistically valid, we repeat the
described simulation loop 10 times.

6.2.2 Epsilon Greedy Strategy

In this work, we decided that we do not want to sample with respect to an acquisition function from
the beginning but follow the epsilon greedy strategy [27]. We decided that both active learning and
random strategy are going to start with random sampling. The algorithms have a coe�cient ✏ 2 [0, 1)
that represents a probability of the data sampling with respect to the acquisition function. In this work,
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Figure 6.8: Comparison of the random and active learning strategies for semi-supervised learning in
terms of the mean and one standard deviation of 10 runs of the SVM ensembles algorithm with TF-IDF
encoding. The initial training set contains 10 samples from the Sports vs. Comedy categories 200 queries
for data annotation were performed

we define ✏ as

✏ =

8>><
>>:

exp(u�40)
exp(u�40)+1 , u 2 {1, ...,U}
0, u = 0,

(6.1)

where u = {0, 1, ...,U} is set of questions that results in the number of text documents which will be
labeled by an annotator. As mentioned in the previous section, the number of iterations (questions U) is
set to 200. From the equation 6.1 is seen that when we reach 40�th document, the probability of random
sampling is 50%. This strategy provides good results which will be shown in further sections.

6.3 Active Learning on Texts with TF-IDF Encoding Based Models

We decided to show the results for the TF-IDF encoding based model because this text encoding
provides high discriminability and it is relatively simple at the same time. However, as mentioned in
the passive learning section, models that are using this type of encoding are harder to train due to the
high dimensionality of features. We were not able to train neural network ensembles because of the high
dimensional feature space. Thus, we decided to show the results only with respect to SVM, Random
Forest and Sports, Comedy categories. Therefore, there is no need to split further section for di↵erent
datasets because all the experiments based on TF-IDF encoding are assumed to be done only for the
Sports and Comedy categories.

6.3.1 SVM Ensembles

In figure 6.8 are shown simulation results of active learning for SVM ensembles with TF-IDF encod-
ing. The active learning strategy is based on the entropy acquisition function.

As seen in figure 6.8, the results for entropy are not better than for random selection. This can be
explained due to the low variability of SVM ensembles. In this case, we can conclude that there is
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Figure 6.9: Comparison of the random and active learning strategies for semi-supervised learning in
terms of the mean and one standard deviation of 10 runs of the Random Forest ensembles algorithm with
TF-IDF encoding. The initial training set contains 10 samples from the Sports vs. Comedy categories
200 queries for data annotation were performed

no significant di↵erence between entropy and random data selection strategy. The first and the second
strategy has almost the same uncertainty bounds and converges to the same AUC results.

6.3.2 Random Forest Ensembles

In figure 6.9 are shown simulation results of active learning for the Random Forest ensembles with
TF-IDF encoding. The active learning strategy is based on the entropy acquisition function.

In comparison to SVM ensembles, the active learning strategy for Random Forest ensembles shows
really poor results. Random data selection overcomes the entropy selection, and it can be said that the
active learning strategy is not working at all for this algorithm. The reason of such behavior can be
explained due to the little amount of training data in the beginning. This fact may make the algorithm to
start selecting the data which have high entropy but are close to each other. As a result, it will not lead to
high-performance results.

6.3.3 Conclusion

Even though we were able to see extremely good results for TF-IDF encoding in the Passive Learning
section, we were not able to train neural networks models and test active learning there, due to the high
dimensionality of the feature space. Moreover, the results of the SVM and Random Forest ensembles
were unsatisfying, and the active learning strategy did not show good results in comparison to random
sampling.

6.4 Active Learning on Texts with Fast Text Encoding Based Models

In this section we show results of all models because the Fast Text encoding maps the texts to a
300-dimensional feature space. This is much lower than in the case of the TF-IDF encoding. Thus, we
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Figure 6.10: Comparison of the random and active learning strategies for semi-supervised learning in
terms of the mean and one standard deviation of 10 runs of the SVM ensembles algorithm with Fast
Text encoding. The initial training set contains 10 samples from the Sports vs. Comedy categories 200
queries for data annotation were performed

were able to provide computations with respect to all models.

6.4.1 SVM Ensemble

6.4.1.1 Sports and Comedy Categories

In figure 6.10 are shown simulation results of active learning for the SVM ensembles with the Fast
Text encoding. The active learning strategy is based on the entropy acquisition function.

The behavior which we observe in figure 6.10 is similar to figure 6.8. We can see that the active
learning strategy is not working for the case of the Fast Text encoding as well.

6.4.1.2 Conclusion

We can conclude that even despite good performance in the Passive Learning section, the active
learning algorithm is not working as expected. Thus, we will not continue testing this algorithm on other
datasets.

6.4.2 Random Forest Ensembles

6.4.2.1 Sports and Comedy Categories

In figure 6.11 are shown simulation results of active learning for the Random Forest ensembles with
the Fast Text encoding. The active learning strategy is based on the entropy acquisition function.

As illustrated in figure 6.10, we can see the strategies results are similar to each other but in active
learning case, the entropy based sampling is outperforming the random sampling strategy. We can also
see that the uncertainty bounds are much more narrow in the active learning case .
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Figure 6.11: .Comparison of the random and active learning strategies for semi-supervised learning in
terms of the mean and one standard deviation of 10 runs of the Random Forest ensembles algorithm with
Fast Text encoding. The initial training set contains 10 samples from the Sports vs. Comedy categories
200 queries for data annotation were performed

6.4.2.2 Conclusion

Even though we could observe that the active learning strategy achieves better results than the random
sampling strategy, we do not continue with further experiments because the results are not significant
enough.

6.4.3 Neural Network Ensembles

6.4.3.1 Sports and Comedy Categories

In figure 6.12 are shown simulation results of active learning for neural networks ensembles with the
Fast Text encoding. The active learning strategy is based on the entropy acquisition function.

If we compare output metrics from figure 6.12 and figures 6.10, 6.10, we can see a significant di↵er-
ence in performance of the algorithms. In comparison to previous methods, the algorithm based on neural
networks achieves the same AUC at 50-th iteration. It means that the probability of using non-random
acquisition function equals to 50%. We are able to observe significant improvement of the entropy based
sampling over the random sampling strategy. We can also see, that the random sampling strategy is con-
verging very slow to the results of the active learning strategy. Moreover, uncertainty bounds of the active
learning strategy are much more narrow than the uncertainty bounds of the random sampling algorithm.

6.4.3.2 Conclusion

One significant disadvantage of this method is that it is very slow and hard to train. Each time, we
have to train 10 neural networks with a cold start. That means training neural networks with random
weights initialization and no prior information from the previous training. Despite the fact, that the
results are really good, we decided not to continue with the algorithm testing because it is very slow and
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Figure 6.12: Comparison of the random and active learning strategies for semi-supervised learning in
terms of the mean and one standard deviation of 10 runs of the Feed Forward Neural Network ensembles
algorithm with Fast Text encoding. The initial training set contains 10 samples from the Sports vs.
Comedy categories 200 queries for data annotation were performed

computationally costly. In the next sections we introduce results based on neural networks but with a
di↵erent way of uncertainty representation.

6.4.4 SGLD

Stochastic Gradient Langevin Dynamics algorithm [28] is one of the two algorithms that are assumed
to improve the ratio of training time consumption and performance. As mentioned previously, Gaussian
noise is added to the gradient while training. This approach helps us to sample di↵erent parameters
vectors around the loss minimum by simply continuing training. In comparison to neural networks en-
sembles, we do not have to train neural network ensembles separately, but train only one neural network
with some additional training epochs.

6.4.4.1 Sports and Comedy Categories

In figure 6.13 are shown simulation results for active learning for SGLD with the Fast Text encoding
and Sport vs. Comedy categories dataset. The active learning strategy is based on the entropy acquisition
function.

We can see that in figure 6.13 both mean and uncertainty bound curves are not smooth enough
in comparison to neural network ensembles. This behavior can be explained with a low number of
samples from the SGLD training. However, we are able to observe the same analogy as with neural
network ensembles. The active learning strategy improves over the random sampling and has narrower
uncertainty bounds. Moreover, the SGLD was trained almost three times faster than the neural network
ensembles algorithm.
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Figure 6.13: Comparison of the random and active learning strategies for semi-supervised learning in
terms of the mean and one standard deviation of 10 runs of the SGLD algorithm with Fast Text encoding.
The initial training set contains 10 samples from the Sports vs. Comedy categories 200 queries for data
annotation were performed

6.4.4.2 Crime and Good News Categories

In figure 6.14 are shown simulation results of active learning for SGLD with the Fast Text encoding
and the Crime vs. Good News datasets. The active learning strategy is based on the entropy acquisition
function.

We expect the Crime and Good News categories to have only a small intersection. As seen from 6.14
it is really true, because the first iteration of the simulation starts at around 85%�90% AUC. It means that
only 10 training data samples algorithm could reach high-performance results. The evolution of the two
strategies is quite the same as in figure 6.13. We would like to pay attention to the place where the upper
uncertainty bound reaches the value that is greater than one. It is not possible for the AUC to be greater
than one because AUC 2 [0, 1]. However, as mentioned previously, we construct uncertainty bounds as
one standard deviation from the mean value. In this case, it is possible that the upper uncertainty bound
is greater than one. Thus, while interpreting the results, a reader has to keep in mind that AUC metric
must be truncated to one.

6.4.4.3 Politics and Business Categories

In figure 6.15 are shown simulation results for active learning for SGLD with the Fast Text encoding
and the Politics vs. Business datasets. The active learning strategy is based on the entropy acquisition
function.

These two categories have a larger intersection, what means that it is a harder classification task. The
results show again that the active learning strategy easily exceeds the random sampling strategy. Even
though the topics are harder to distinguish, the active learning strategy finds the patterns in the data and
shows much better results with narrower uncertainty bounds.
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Figure 6.14: Comparison of the random and active learning strategies for semi-supervised learning in
terms of the mean and one standard deviation of 10 runs of the SGLD algorithm with Fast Text encoding.
The initial training set contains 10 samples from the Crime vs. Good News categories 200 queries for
data annotation were performed

Figure 6.15: Comparison of the random and active learning strategies for semi-supervised learning in
terms of the mean and one standard deviation of 10 runs of the SGLD algorithm with Fast Text encoding.
The initial training set contains 10 samples from the Politics vs. Business categories 200 queries for data
annotation were performed
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Figure 6.16: Comparison of the random and active learning strategies for semi-supervised learning in
terms of the mean and one standard deviation of 10 runs of the SGLD algorithm with Fast Text encoding.
The initial training set contains 10 samples from the Tech vs. Science categories 200 queries for data
annotation were performed

6.4.4.4 Tech and Science Categories

In figure 6.16 are shown simulation results for active learning for SGLD with the Fast Text encoding
and Tech vs. Science categories. The active learning strategy is based on the entropy acquisition function.

We observe once again that the active learning strategy is better even though the categories are quite
similar. As seen from the plot, the upper uncertainty bound reaches the values which is greater than one.
This is exactly the case which was already covered in 6.4.4.2.

6.4.4.5 College and Education Categories

In figure 6.17 are shown simulation results of active learning for SGLD, with the Fast Text encoding
and the College vs. Education categories. The active learning strategy is based on the entropy acquisition
function.

The collected results based on the College and Education category do not di↵er from the results
from the previous experiment with the SGLD algorithm. We can still see that active learning strategy
outperforms the random sampling, even despite the fact that these categories are very similar.

6.4.4.6 Positive and Negative Tweets Categories

In figure 6.18 are shown simulation results of active learning for SGLD with the Fast Text encoding
and the Positive vs. Negative tweets categories. The active learning strategy is based on the entropy
acquisition function.

In previous sections, we tested the SGLD algorithm on the data from the Hu↵Post dataset. In figure
6.18 are illustrated results with respect to the tweets dataset. Due to the fact that the tweets are really
short, it is quite hard to find the patterns that can be used for high performance separation of categories.
Thus, we can see that our classification results (AUC) are not as high as they were in previous datasets.
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Figure 6.17: Comparison of the random and active learning strategies for semi-supervised learning in
terms of the mean and one standard deviation of 10 runs of the SGLD algorithm with Fast Text encoding.
The initial training set contains 10 samples from the College vs. Education categories 200 queries for
data annotation were performed

Figure 6.18: Comparison of the random and active learning strategies for semi-supervised learning in
terms of the mean and one standard deviation of 10 runs of the SGLD algorithm with Fast Text encoding.
The initial training set contains 10 samples from the Positive vs. Negative tweet categories 200 queries
for data annotation were performed
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Moreover, we observed that for this dataset there is no di↵erence between active learning and random
sampling strategy.

6.4.4.7 Conclusion

To sum up, we can say that the SGLD algorithm exhibit really impressive results and proved that
the active learning strategy outperforms the random sampling. However, there are several disadvantages.
The first disadvantage is that the resulted curves were not smooth. We think that this problem can be
eliminated by sampling more parameters vectors while training the model. Another problem is that the
algorithm does not show better active learning results when it is tested on short and quite general text
data. We believe that this problem can be solved with a di↵erent encoding approach.

6.4.5 Deep Ensemble Filter

Deep Ensemble Filter (DENFI) algorithm is the second algorithm which is not partitioning the train-
ing dataset. In addition to this, we use a modification of the DENFI algorithm. A huge advantage of this
algorithm is that it uses prior information from the previous training round. In the first training round,
the DENFI algorithm follows almost the same strategy as the neural network ensembles method. It trains
10 ensembles with respect to all training data. The variability in ensembles is reached with di↵erent
weights initialization. After the training is finished, we add some Gaussian noise in order to increase
the variability. When we add some training samples, we continue training using the weights from the
previous iteration with the addition of Gaussian noise in the end. Moreover, we are using a lower number
of epochs. The hot start approach gives su�cient variability that is manifested in the quality of results in
the subsequent sections.

6.4.5.1 Sports and Comedy Categories

In figure 6.19 are shown simulation results of active learning for DENFI with the Fast Text encoding
and the Sport vs. Comedy categories. The active learning strategy is based on the entropy acquisition
function.

The active learning result, displayed in figure 6.19, outperforms all the algorithms that were tested
before. We observe that the uncertainty bounds are extremely narrow. In addition to this, we see that the
active learning strategy has much higher AUC metrics and the curves are quite smooth. Moreover, due to
the hot start training, the time needed to fit the algorithm is much lower in comparison to neural network
ensembles.

6.4.5.2 Crime and Good News Categories

In figure 6.20 are shown simulation results of active learning for the DENFI with Fast Text encoding
and the Crime vs. Good News categories. The active learning strategy is based on the entropy acquisition
function.

We have already discussed in the SGLD section that the Crime and Good news categories can be well
separated from each other. In this case, we see the same behavior for active learning strategy as in the
previous section. The uncertainty bounds are narrow and the AUC scores are very high in comparison to
the random sampling strategy.
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Figure 6.19: Comparison of the random and active learning strategies for semi-supervised learning in
terms of the mean and one standard deviation of 10 runs of the DENFI algorithm with Fast Text encoding.
The initial training set contains 10 samples from the Sports vs. Comedy categories 200 queries for data
annotation were performed

Figure 6.20: Comparison of the random and active learning strategies for semi-supervised learning in
terms of the mean and one standard deviation of 10 runs of the DENFI algorithm with Fast Text encoding.
The initial training set contains 10 samples from the Crime vs. Good News categories 200 queries for
data annotation were performed
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Figure 6.21: Comparison of the random and active learning strategies for semi-supervised learning in
terms of the mean and one standard deviation of 10 runs of the DENFI algorithm with Fast Text encoding.
The initial training set contains 10 samples from the Politics vs. Business categories 200 queries for data
annotation were performed

6.4.5.3 Politics and Business Categories

In figure 6.21 are shown simulation results of active learning for the DENFI with Fast Text encoding
and the Politics vs. Business categories. The active learning strategy is based on the entropy acquisition
function.

The behavior, observed in figure 6.21, is the same as in the previous DENFI results. Moreover, we
see good active learning performance, even though it is not easy to separate these categories. If we
compare the results in figure 6.21 to the SGLD results in figure 6.15, we can see the DENFI is better not
only because its less corrupted with noise but also in terms of higher AUC scores.

6.4.5.4 Tech and Science Categories

In figure 6.22 are shown simulation results of active learning for the DENFI with Fast Text encoding
and the Tech vs. Science categories. The active learning strategy is based on the entropy acquisition
function.

The active learning strategy results for the DENFI algorithm are much better in comparison to the
SGLD method that are shown in figure 6.16. We see that for the active learning strategy, the DENFI
easily found the patterns which helped it to learn faster and show better scores with narrower uncertainty
bounds.

6.4.5.5 College and Education Categories

In figure 6.23 are shown simulation results of active learning for the DENFI with Fast Text encoding
and the College vs. Education categories. The active learning strategy is based on the entropy acquisition
function.

Last but not least of the Hu↵post dataset, results for the College and Education categories also prove
that success of the DENFI active learning strategy is not dependent on size of the intersection between
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Figure 6.22: Comparison of the random and active learning strategies for semi-supervised learning in
terms of the mean and one standard deviation of 10 runs of the DENFI algorithm with Fast Text encoding.
The initial training set contains 10 samples from the Tech vs. Science categories 200 queries for data
annotation were performed

Figure 6.23: Comparison of the random and active learning strategies for semi-supervised learning in
terms of the mean and one standard deviation of 10 runs of the DENFI algorithm with Fast Text encoding.
The initial training set contains 10 samples from the College vs. Education categories 200 queries for
data annotation were performed
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Figure 6.24: Comparison of the random and active learning strategies for semi-supervised learning in
terms of the mean and one standard deviation of 10 runs of the DENFI algorithm with Fast Text encoding.
The initial training set contains 10 samples from the Positive vs. Negative tweets categories 200 queries
for data annotation were performed

the categories. The uncertainty bounds for the active learning strategy are still narrow and the AUC score
is much higher than for the random sampling case.

6.4.5.6 Positive and Negative Tweets Categories

In figure 6.24 are shown simulation results of active learning for the DENFI with Fast Text encoding
and the Positive vs. Negative tweets categories. The active learning strategy is based on the entropy
acquisition function.

In comparison to SGLD, the DENFI algorithm shows better active learning performance for the
tweets dataset. The DENFI active learning strategy is also working on tweets whereas the SGLD active
learning strategy was not able to overcome the random sampling. We can also see that the DENFI AUC
scores for active learning are higher with narrower uncertainty bounds than those for thes SGLD.

6.4.5.7 Conclusion

To conclude we can say that the DENFI algorithm achieved by far the best results for all problems
which it was tested on. In all cases, the active learning strategy outperformed the random sampling.
The algorithm was tested both on the data that are easy and hard to separate. In addition to this, the
AUC scores for all active learning results with the DENFI were higher than for all other algorithms.
That makes the DENFI algorithm the best one, with the highest performance and the lowest uncertainty
bounds, from all approaches tested within this project.



Conclusion

This project demonstrate how an active learning strategy of querying unlabeled text documents for
further labeling and training can beat the random selection strategy. We have provided not only a high-
level theoretical description of the problem but also testing results that cover di↵erent scenarios and text
document categories. Github link for Python implementation is also available in this project.

Based on the achieved results that were gathered from testing on 12 di↵erent categories, we were
able to see that a modification of the DENFI algorithm shows excellent performance and overcomes
other algorithms in all aspects. The DENFI algorithm outperforms all other models, both in higher AUC
scores and narrower uncertainty bounds. Another considerable advantage of DENFI is that it is the fastest
neural network model that was implemented and tested in this thesis.

We see a plenty of further opportunities how to improve the algorithm, starting from a better text
representation and ending using other modification of the DENFI algorithm. To conclude, we would like
to say that the ensembles showed their power in solving an active learning problem, and in our opinion,
it is a good field for continuing the research.
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