
Czech Technical University in Prague
Faculty of Nuclear Sciences and Physical

Engineering

Operator splitting method for
transport reactive problem solution

Metoda štěpení operátoru pro řešení
transportně-reakčních úloh

BACHELOR’S DEGREE PROJECT

Author: Leonid Samoilov
Supervisor: doc. Ing. Jan Šembera, Ph.D.
Language advisor: Mgr. Hana Čápová
Academic year: 2020/2021

Author’s declaration

I declare that this Bachelor’s Degree Project is entirely my own work and I have
listed all the used sources in the bibliography.

In Prague July 6, 2020 Leonid Samoilov

Acknowledgment

I wish to express my sincere thanks to my supervisor doc. Ing. Jan Šembera, Ph.D.
for his invaluable expert guidance and show my gratitude to Mgr. Hana Čápová for
her language assistance. I would also like to thank my friends and family for the
unceasing support and attention.

Leonid Samoilov

Název práce:
Metoda štěpení operátoru pro řešení transportně-reakčních úloh

Autor: Leonid Samoilov

Obor: Aplikovaná informatika

Druh práce: Bakalářská práce

Vedoucí práce: doc. Ing. Jan Šembera, Ph.D.
Fakulta mechatroniky, informatiky a mezioborových studií (FM),
Technická univerzita v Liberci (TUL)

Konzultant: Mgr. Hana Čápová

Abstrakt: Hlavním cílem tohoto projektu je studium a implementace metody
štěpení operátoru pro řešení úloh popsaných soustavou parciálních diferenciálních
rovnic, která spočívá v rozdělení transportně-reakční úlohy na transportní část a
reakční část. V tomto projektu se zabýváme především analýzou metody štěpení
operátoru, návrhem algoritmu automatické volby časového kroku a úpravou existu-
jícího softwaru TRM 2D realizujícího metodu štěpení operátoru pro transportně-
reakční úlohu a jeho testováním.
Klíčová slova: Numerická matematika, parciální diferenciální rovnice

Title:
Operator splitting method for transport reactive problem solution

Author: Leonid Samoilov

Abstract: The main goal of this bachelor project is to study and implement the op-
erator splitting method to solve the problems described by the system of partial dif-
ferential equations, which uses the principle of the division of the transport-reaction
problem into a transport part and a reaction part. In this project we work with the
analysis of the operator splitting method, we construct an automatic time step con-
trol algorithm for the transport-reaction problem, we implement this modification
to the existing TRM 2D software and provide testing.
Key words: Numerical mathematics, partial differential equations

8

Contents

Introduction 11

1 Physico - mathematical model of transport - reaction problem 13
1.1 Basic concepts . 13

1.1.1 Darcy’s law . 13
1.1.2 Balance of quantity equation. Advection. Molecular diffusion.

Mechanical dispersion. 15
1.1.3 Calcite dissolution model in transport reaction equation . . . 17

2 Operator splitting method. Finite difference method. General meth-
ods to solve the reaction part 21
2.1 Operator splitting method (OSM) . 21

2.1.1 Different types of OSM . 21
2.1.2 Application of OSM in transport-reaction problem 22

2.2 Finite difference method . 24
2.3 General methods to solve the reaction part 25

2.3.1 The Euler Method . 25
2.3.2 Discretization error . 26

3 Time step control method for OSM in transport reaction problem
implemented by TRM 2D 29
3.1 TRM 2D . 29

3.1.1 Basic description . 29
3.1.2 Installation . 32

3.2 The time step control method . 33
3.2.1 Basic algorithm . 33
3.2.2 Implementation of time step control method in TRM 2D . . . 34

3.3 Tests . 36
3.3.1 Basic tests . 36
3.3.2 Implemented method tests . 37

Conclusion 39

Bibliography 40

Appendices 42

A TRM 2D installation process decription 43

9

B The time step control method implementation 49

C TRM 2D structure description 53

10

Introduction

There are various methods which solve problems such as a reactive transport prob-
lem, described by a system of the partial differential equations, but the operator
splitting method (OSM) is the most widely used among them. The operator split-
ting method consists in dividing the problem into two parts: the transport part and
the reaction part. The transport part runs in space and is described by a partial
differential equation for each transported component separately. The reaction part,
which runs only in time, is described by a system of ordinary differential equations,
which describe chemical transformations between transported components. Such a
separation allows to solve the problem in parts, using the most appropriate and at
the same time the simplest methods for each part. For instance, the finite differ-
ence method can be used for the transport part, and Runge-Kutta method for the
reaction part. In addition to that, use of the operator splitting method helps to
save computing capacity, which leads to the opportunity to run the implemented
reactive transport problem solver using personal computer. Such a solver, which is
called TRM 2D (or TRM GUI) was created by the DHI company.
TRM 2D is based on the idea of the operator splitting method, which is implemented
in it. Nevertheless, the discretization process of the OSM requires a method to con-
trol time step. Such a method was not the part of the original TRM 2D software
since the TRM 2D calculates the problem using the constant time step.
In this project we scrupulously analyze methods, implemented in TRM 2D software,
propose a time step control method for the operator splitting method discretization
and implement it.
The study is divided into three main chapters: a brief description of the transport
- reaction problem (1), the representation of the most common methods, which are
used in the considered software (2) and the suggestion and implementation of the
time step control method for the OSM inside the TRM 2D (3). The third part
also includes general test presentation and the observations about accuracy of the
calculated results.

11

12

Chapter 1

Physico - mathematical model of
transport - reaction problem

1.1 Basic concepts

This chapter is based on the text of Milan Hokr’s university study book [2] and it pro-
vides the basic mathematical - physical description of transport - reaction processes
in a porous medium using a transport – reaction equation. The equation consists
of parts describing solution flow, advection processes, diffusion, and hydrodynamic
dispersion. It also includes the reaction part.

First of all, the terms porous medium and continuum model must be introduced.
The term porous medium refers to a structure composed of grains or fibers of a solid
substance (matrix) between which there are free spaces (pores) that can be filled
with air or liquid. The term continuum model is meant to simplify the description
of transport processes in a porous medium as a result of the approximation of the
porous medium as continuous. Working with a continuum model, it is necessary to
propose the term representative elementary volume (REV) and the term porosity
ratio. REV is the volume large enough to cover the microscopic inhomogeneity (i.e.,
a size on the order of magnitude larger than the characteristic grain size of the solid
substance) and small enough concerning the size of the examined area. The porosity
ratio n is a value, which is equal to the proportion of pore volume to total material
volume

n =
pore volume in REV

REV volume
(1.1)

for REV surrounding a given point in space.

1.1.1 Darcy’s law

Darcy’s Law was formulated on the basis of an experiment in one-dimensional space,
which describes the flow of water through a longitudinal porous filter in a tube and

13

which can be represented as a tube filled with a porous material placed in a gener-
ally inclined position, connecting two tanks with different water levels. Describing
Darcy’s experiment, the following expression can be used for calculating water flow
Q through the given pipe

Q = K · S · (φ1 − φ2)

L
, (1.2)

where K is the permeability coefficient (depending on the properties of the porous
material and the liquid), S is the cross-sectional area of the pipe, L the length of the
pipe and the term in brackets is the difference in levels in both tanks. The symbol
φ denotes the hydraulic head, the quantity assigned to the places at the ends of the
pipe is defined by the relation

φ = z +
p

ρg
, (1.3)

where z is the vertical coordinate, p is the pressure, ρ is the density and g is the
gravitational acceleration. It is clear that the hydraulic head includes the potential of
the gravitational field (z -position) and the pressure potential (hydro-static pressure
of water above the given place). It is important to say that the term (p

ρg
) of the

equation is defined as the pressure head. Next it is necessary to describe the water
flow at a local point (given place), so the term water flux q was defined as the ratio
of the amount of flowing water and the size of the area which is perpendicular to the
flow direction q = Q

S
. Considering the limit in the longitudinal direction ∇φ = φ2−φ1

L
,

it is possible to get Darcy’s law in the form

q = K∇φ; (1.4)

q has the dimension of speed, so it is commonly called Darcy’s velocity, but this
velocity can not be described as macroscopic motion of any point with speed.
To designate how fast will the selected water particle (or some dissolved substance)
move through the porous medium, it is possible to use

υ =
q

n
. (1.5)

This velocity is called the flow velocity.

In the case of multiple dimensions (2D for TRM 2D software, which is used in
this Bachelor project and 3D for the general case), the hydraulic head and the
Darcy’s velocity vector are functions of spatial coordinates and time. That means
that Darcy’s law equation for multiple dimensions can be described as follows:

q = K∇φ, (1.6)

where ∇ is the gradient (for 3D: ∇φ = ∂φ
∂x
, ∂φ
∂y
, ∂φ
∂z
) and K. is the tensor which

represents hydraulic conductivity, which depends on the properties of the porous
setting and the properties of the liquid itself.
In any chosen volume (REV), the change in the weight of liquid, flowing through the
chosen volume, corresponds to the weight of liquid passed across the border and to

14

the change in slumps and sources. These changes may be explained using the weight
balance equation:

∂

∂t

∫
V

ρn dV = −
∫
∂V

qc dS +

∫
V

(
P+c∗ + P−c

)
dV +

∫
V

r dV, (1.7)

where dS can be represented as ndS, where n is the outer unit normal vector.
Equation (1.7) can be rewritten using Gauss’ theorem to

∂(ρn)

∂t
+ div(ρq) = Pρ. (1.8)

Due to the fact that the simplified model of the solute transport equation was being
used (so density and porosity are constant), equation (1.8) transforms into

div υ =
P

n
. (1.9)

Now it is possible to combine (1.6) and (1.9) equations in the system of two equations
or even unite these two equations into one equation

∇ · (K∇φ) = P, (1.10)

for the unknown function of the hydraulic head φ.

1.1.2 Balance of quantity equation. Advection. Molecular dif-
fusion. Mechanical dispersion.

The balance equation has different forms for each type of process but in the general
schematic way balance equation can be deduced as follows:

accumulation of X in V

dt
= inflow of X to V−outflow of X from V+production of X in V

(1.11)
where the particular parts describe different types of processes (advection, diffusion,
dispersion). Converting the basic schematic description of the equation of balance
(1.11) into a mathematical form (integral), for any chosen volume through which
some water passes, the change in the weight of water needs to correspond to the
weight of water passed across the border and to the change in sinks and sources, i.e.

∂

∂t

∫
V

ρn dV = −
∫
∂V

ρq dS +

∫
V

Pρ dV, (1.12)

where q is Darcy’s velocity, ρ is the density and P is the density of sources (+) or
sinks (-) expressed as the volume of water injected into the unit volume of the porous
material per unit of time [m3/m3/s]. Now there is a need to examine the term of the
equation (1.12) −

∫
∂V

ρq dS as inflow and outflow parts of the basic schematic balance

equation (1.11). The movement and transmission of substance X are described by
physical processes which is called advection and diffusion - dispersion processes.

15

Advection means the transfer of a substance due to the movement of the whole
solution. The amount of transferred substance can be easily expressed using Darcy’s
velocity of flow. The amount of substance passed through a unit of area per unit of
time as follows

qadv = c · q, (1.13)

where c is the concentration of substance and q is Darcy’s velocity.

Diffusion - dispersion processes can be described as processes in which the so-
lute moves due to the concentration gradient, from places of higher concentration
to places of lower concentration. Considering porous environment, it is possible
to present diffusion-dispersion processes as two processes: molecular diffusion and
mechanical dispersion. Molecular diffusion is influenced by the microscopic struc-
ture of the environment and mechanical dispersion, which is caused by inhomo-
geneity of velocity in the pores - in some places the solution moves faster and in
some slower. Molecular diffusion as well as mechanical dispersion is described by
the same law, which is called Fick’s law and is represented by the same equation
∂c
∂t

= D4 c = D
∑
i

∂2c
∂x2i

with one difference in coefficient D. Describing molecular

diffusion it is necessary to introduce molecular diffusion tensor Dm, but for me-
chanical dispersion there is a need to introduce mechanical dispersion tensor Df .
In total, diffusion - dispersion processes, consisting of molecular diffusion and me-
chanical dispersion are called the hydrodynamic dispersion. The hydrodynamic dis-
persion is characterized by a hydrodynamic dispersion tensor Dh, which is defined
as Dh = Dm + Df . So to describe diffusion - dispersion transport processes it is
possible to deduce the equation

qdif−dis = Dh5 c. (1.14)

Now the equation for the total mass flow due to advection and hydrodynamic disper-
sion processes in the porous setting can be presented as the "sum" of two equations
(1.13) and (1.14)

q = ncυ + nDh5 c. (1.15)

Returning to the balance of quantity equation (1.12), it is possible to reduce it to
the form

∂

∂t

∫
V

nc dV = −
∫
∂V

qc dS +

∫
V

(
P+c∗ + P−c

)
dV +

∫
V

r dV, (1.16)

where P+ a P− express the positive and negative parts of the source solution density
function and express the fact that the solution with a given concentration c∗ is
injected, while the solution with concentration c corresponding to the required value
of function c(x, t) is pumped out from a given place and r represents the reaction
part of the equation. By standard adjustment of integral equation (1.16) it is possible
to get the needed differential equation of solute transport as follows

∂c

∂t
= −5 ·(cυ) +5 · (Dh5 c) +

1

n
(P+c∗ + P−c) +

r

n
. (1.17)

Now the equation needs to be transformed according to the amount of different
particular concentration components.

16

To consider transport reactive problem with more concentration components, then
equation (1.17) can be rewritten as

∂ci
∂t

= −5 ·(ciυ) +5 · (Dh5 ci) +
1

n
(P+c∗i + P−ci) +

ri(c1, . . . , cm)

n
, (1.18)

where i ∈ 1, . . . ,m, m ∈ N.

1.1.3 Calcite dissolution model in transport reaction equa-
tion

This subsection is based on Lukáš Zedek’s dissertation [7] and it provides basic
description of the reaction part in the transport reaction equation, which was derived
in subsection 1.1.2. For clarity the example of the calcite dissolution reaction in water
containing CO2 without contact with the atmosphere is used:

• <1> CO2(aq) + H2O � H+ + HCO−
3 , constant K

• <2> CaCO3 + H+ � Ca2+ + HCO−
3 , constants l, L

• <3> H2O � H+ + OH−, constant M .

The constant l is kinetic (refers to slower reactions, which are usually described us-
ing ODE - Ordinary differential equations), while the capital letters K,L,M denote
equilibrium constants (refer to faster reactions, which are usually described using
algebraic equations). To facilitate the perception of the mathematical model, sym-
bols and designations changed according to the table

Table 1.1: Designations change
t = 0 t+ t1, t1 > 0

c1,[CO2(aq)] a = c1(0) a− ξ1
c2,[H+] b = c2(0) b+ ξ1 − ξ2 + ξ3
c3,[HCO−

3] g = c3(0) g + ξ1 + ξ2
c4, [Ca2+] d = c4(0) d+ ξ2
c5, [OH−] e = c5(0) e+ ξ3
c6,[CaCO3] f = c6(0) f − ξ2

The letters ξ1, ξ2, ξ3 in expressions in the table 1.1 indicate the so-called extent
of chemical reactions (usually measured in moles). The expressions with ξ1, ξ2, ξ3
describe the concentration change of the specific specie using extent of reaction and
create the system of equations. Describing equilibrium constants K,L and M it is
possible to denote the following equations:

K =
ce1 c

e
3

ce1
L =

ce4 c
e
3

ce2
M = ce2 c

e
5, (1.19)

17

where letters ce1, ce2, ce3, ce4, ce5 represent the values of the concentrations of the cor-
responding species in the chemical equilibrium. After all needed substitutions in
accordance with table 1.1, the reactions transform into:

< 1 >→ ce1 c
e
3

ce1
,

< 2 >→ dc4
dt

=
d(d+ ξ2)

dt
=
dξ2
dt

= l · (1− c3 c4
c2
· 1

L
),

< 3 >→ ce2 c
e
5.

(1.20)

Mathematical formulation of the calcite dissolution in the form of Differential Alge-
braic Equations system (DAE) looks as follows:

K =
ce1 c

e
3

ce1
=

(b+ ξ1 − ξ2 + ξ3)(g + ξ1 + ξ2)

(a− ξ1)
,

dξ2
dt

= l ·
(

1− (g + ξ1 + ξ2) · (d+ ξ2)

(b+ ξ1 − ξ2 + ξ3) · L

)
,

M = ce2 c
e
5 = (b+ ξ1 − ξ2 + ξ3) · (e− ξ3).

(1.21)

A clear disadvantage of the DAE formulation is the usage of extents of reaction
instead of usual concentrations as a variable. This fact makes it almost impossible
to extend the system of equations with transport, what is exactly the goal of this
part of the project. That is why the DAE system (1.21) was transformed into another
system of equations with new elements Rm and Rk (1.22). These elements express
the contributions of equilibrium reactions to the time change of the concentration
of reacting species and species, generated by reactions. Rm and Rk are unknown
functions of concentrations.

K =
c2 c3
c1

M = c2 c5
dc1
dt

= (−1) ·Rk

dc2
dt

= (−1) · l ·
(

1− c3 c4
c2
· 1

L

)
+Rk +Rm

dc3
dt

= l ·
(

1− c3 c4
c2
· 1

L

)
+Rk

dc4
dt

= l ·
(

1− c3 c4
c2
· 1

L

)
dc5
dt

= Rm

(1.22)

In contrast with the DAE description of the calcite dissolution problem, the purely
differential description presented above can easily be included in the Partial Differ-
ential Equation (PDE) transport equations. Including the transport variable changes

18

the system (1.22) transforms into:

K =
c2 c3
c1

,

M = c2 c5,

∂c1
∂t

= L(c1)−Rk,

∂c2
∂t

= L(c2)− l ·
(

1− c3 c4
c2
· 1

L

)
+Rk +Rm,

∂c3
∂t

= L(c3) + l ·
(

1− c3 c4
c2
· 1

L

)
+Rk,

∂c4
∂t

= L(c4) + l ·
(

1− c3 c4
c2
· 1

L

)
,

∂c5
∂t

= L(c5) +Rm.

(1.23)

where L(ci) is the transport term, which describes advection, diffusion and dispersion
processes.

To calculate Rm and Rk the system of Ordinary Differential Equations, composed
of derivations of equilibrium equations from (1.22) can be used as follows:

0 =
∂K

∂t
· c21 =

∂c2
∂t
· c3 c1 +

∂c3
∂t
· c2 c1 −

∂c1
∂t
· c2 c3

0 =
∂M

∂t
=
∂c2
∂t
· c5 +

∂c5
∂t
· c2.

(1.24)

Now it is possible to insert ODE equations from (1.22) into the system of obtained
derivatives (1.24) and to calculate Rm and Rk corrections of concentrations according
to equilibrium reactions. After all needed mathematical adjustments Rm and Rk may
be represented as follows:

Rm =
(2c1 + c3) · c5 · l ·

(
1− c3 c4

c2
· 1
L

)
(c1 + c3)c2 + c1 c3 + (c1 + c3)c5

,

Rk = −
c1 · (c2 − c3 + c5) · l ·

(
1− c3 c4

c2
· 1
L

)
(c1 + c3)c2 + c1 c3 + (c1 + c3)c5

.

(1.25)

Now it is possible to put Rm and Rk into the system (1.23), which creates the
reactive transport system of equations (1.26) which is used in a solver - in TRM 2D

19

software, which was mentioned above:

∂c1
∂t

= −5 ·(c1υ) +5 · (Dh5 c1) +
c1 · (c2 − c3 + c5) · l ·

(
1− c3 c4

c2
· 1
L

)
)

(c1 + c3)c2 + c1 c3 + (c1 + c3)c5
,

∂c2
∂t

= −5 ·(c2υ) +5 · (Dh5 c2)− l ·
(

1− c3 c4
c2
· 1

L

)
−
c1 · (c2 − c3 + c5) · l ·

(
1− c3 c4

c2
· 1
L

)
)

(c1 + c3)c2 + c1 c3 + (c1 + c3)c5
+

+
(2c1 + c3) · c5 · l ·

(
1− c3 c4

c2
· 1
L

)
(c1 + c3)c2 + c1 c3 + (c1 + c3)c5

,

∂c3
∂t

= −5 ·(c3υ) +5 · (Dh5 c3) + l ·
(

1− c3 c4
c2
· 1

L

)
−
c1 · (c2 − c3 + c5) · l ·

(
1− c3 c4

c2
· 1
L

)
)

(c1 + c3)c2 + c1 c3 + (c1 + c3)c5
,

∂c4
∂t

= −5 ·(c4υ) +5 · (Dh5 c4) + l ·
(

1− c3 c4
c2
· 1

L

)
,

∂c5
∂t

= −5 ·(c5υ) +5 · (Dh5 c5) +
(2c1 + c3) · c5 · l ·

(
1− c3 c4

c2
· 1
L

)
(c1 + c3)c2 + c1 c3 + (c1 + c3)c5

.

(1.26)

20

Chapter 2

Operator splitting method. Finite
difference method. General methods
to solve the reaction part

2.1 Operator splitting method (OSM)

This part is based on [1].
The system (1.26) is constructed and it is obvious that now the main question is
how to solve the system of equations of mixed type and which method would be
appropriate. If two parts of equations (transport and reaction parts) are connected,
then it is very difficult to propose the appropriate method, which could possibly
solve the problem. But if it is possible to suggest to divide each equation from the
system into two parts, then there is an opportunity to use proper methods such
as Finite Difference Method for transport part and the method such as Runge-
Kutta method, which is used in phreeqcRM library (a reaction module for transport
simulators based on the geochemical model Phreeqc)[6].
It is very important to introduce operator splitting methods which will help to
provide “dividing” of transport reaction problem with respect to the time step and
initial and boundary conditions.

2.1.1 Different types of OSM

It is obvious from the previous text that the operator splitting method is based on
the "separation principle". Basically different operator splitting methods separate
the original equation into two or more parts over a specific time step, separately
compute the solution to each part, and then combine the two separated solutions to
form a solution to the original equation.
To introduce most "popular" operator splitting methods let us propose the basic

21

mixed type equation. It will help to to demonstrate the methods considered.

∂U(t)

∂t
= AU(t) +BU(t) with t ∈ [0, T], U(0) = U0. (2.1)

For example, Strang splitting (one of the most popular and widely used operator
splitting methods) is based on the idea that first of all the first sub-problem for a
half time step needs to be solved. Then the second sub-problem must be solved for
a full-time step, and at the end it is necessary return to the first sub-problem and
solve it for a half time step.

∂u∗(t)

∂t
= Au(t) with t ∈ [tn, tn+1/2], u(tn) = unsp

∂v(t)

∂t
= Av(t) with t ∈ [tn, tn+1], v(tn) = u∗(tn+1/2)

∂w(t)

∂t
= Aw(t) with t ∈ [tn+1/2, tn+1], w(tn+1/2) = v(tn+1),

(2.2)

where tn+1/2 = tn+0, 5∆t, and the approximated split solution at the point t = tn+1

is defined as un+1
sp = w(tn+1).

Using Strang splitting it is possible to make the splitting algorithm second order
accurate.

The other method is called Lie-Trotter splitting. Lie-Trotter splitting is a first or-
der accurate splitting method which solves two sub-problems sequentially on sub-
intervals [t, tn+1] where tn+1/2 = tn + 0, 5∆t and ∆t = tn+1 − tn. Different sub-
problems are connected via the initial conditions as follows:

∂u(t)

∂t
= Au(t) with t ∈ [tn, tn+1] and u(tn) = unsp

∂v(t)

∂t
= Bv(t) with t ∈ [tn, tn+1] and v(tn) = u(tn+1),

(2.3)

where unsp = U0. The approximated split solution at the point t = tn+1 is defined as
un+1
sp = v(tn+1).

2.1.2 Application of OSM in transport-reaction problem

It is obvious from the previous section that to solve the reaction transport system
of the equations (1.26) it is very helpful to use the operator splitting method.
So to describe the application of OSM to the problem, the new form of the transport
reaction equation must be introduced.

∂ci
∂t

= L(ci) + R(c), (2.4)

22

where L(ci) represents the transport part of the transport - reaction equation and
R(c) represents the reaction part of the same equation. It is also necessary to rep-
resent the graph below, which describes the process of evolution of the value of one
concentration component over different time steps.

Figure 2.1: Operator splitting method

It is obvious from the graph that now it is possible to rewrite the transport reaction
problem into the form of equation (2.5)

∂ci
∂t

=̇
cn+1
i − cni

∆tn
= L(ci) +R(c). (2.5)

Then it can be transformed to

cn+1
i = cni + ∆tn · (L(ci) +R(c)) = cni + ∆tnL(ci) + ∆tnR(c). (2.6)

Finally, it is possible to divide the equation (2.4) into two parts. Each part may be
solved separately, using the appropriate method.

{
c
(n+1)∗
i = cni + ∆tn · L(c

(n+1)∗
i)

cn+1
i = c

(n+1)∗
i + ∆tn ·R(c(n+1)∗)

(2.7)

General algorithm of the operator splitting method applied to the transport reaction
problem may be formulated as follows:

1 Select a time step and initial/boundary conditions

2 Solve the first equation from the system (2.7)

23

3 Plug the result into the second equation from the same system (2.7) and solve
it

4 Plug the results into the equation (2.5)

5 Repeat the algorithm (from the second point) for the next time step

2.2 Finite difference method

This section is based on Milan Hokr’s university study book [4].
The finite difference method (FDM) consists in replacing derivatives with differences
that approximate derivatives using the values of the searched function at several
other points close to each. In the specific area in which we are looking for a solution,
it is needed to choose a network of a finite number of points, so the result of the
method is the approximated values of the function at these points.
To apply the finite difference method it is important to represent special difference
formulas. Difference formulas are formulas for the approximation of derivatives using
values of the specific function at network points. These formulas could be deduced
using Taylor expansion of the function at adjoining points of the network.
There are three most important difference formulas for the first derivative: forward,
backward and central. As an example it is possible to approximate ∂c

∂t
using three

different difference formulas, considering points n+ 1, n and n− 1:

Forward difference:
∂c

∂t
=
cn+1
i − cni

∆tn
+O(∆tn)

Backward difference:
∂c

∂t
=
cni − cn−1

i

∆tn−1

+O(∆tn−1)

Central difference:
∂c

∂t
=

cn+1
i − cn−1

i

∆tn−1 + ∆tn
+O(∆tn−1 + ∆tn),

(2.8)

where ∆t with index is the irregular time step.
By use of the operator splitting method, possibility to solve transport problem (con-
vection - diffusion equation) separately from the reaction problem, using the finite
difference method appeared. The convection equation (two-dimensional in space and
one-dimensional in time) which is possible to solve using FDM may be represented
in a general way as follows:

∂c

∂t
= −υ1

∂c

∂x
− υ2

∂c

∂y
, (2.9)

where x, y are space coordinates and υ is the velocity, which is constant according
to space.

Considering the transport problem (the convection equation) it is important to rep-
resent the explicit model which helps to simplify the approximation (and which

24

(from the mathematical point of view) makes it necessary to use forward differ-
ence formula on the left side of the convection equation) and the specific upwind
approximation. The upwind approximation is natural for the convection equation.
The physical process of the convection (in the sense of transporting a general quan-
tity) is always associated with the movement in a certain direction and with a given
orientation. The upwind approximation respects the orientation of the process -
the spatial discretization is chosen asymmetrically, so for the calculation the value
"against the direction of movement" is taken into account. The another advantage
of the upwind approximation is better stability of the solution.
Applying the upwind approximation to (2.9) it is possible to deduce the following
system:

For υ1 ≥ 0, υ2 ≥ 0 :
cn+1
i,j − cni,j

∆t
= −υ1

cni,j − cni−1,j

∆x
− υ2

cni,j − cni,j−1

∆y
+O(∆t,∆x,∆y)

For υ1 ≥ 0, υ2 < 0 :
cn+1
i,j − cni,j

∆t
= −υ1

cni,j − cni−1,j

∆x
− υ2

cni,j+1 − cni,j
∆y

+O(∆t,∆x,∆y)

For υ1 < 0, υ2 ≥ 0 :
cn+1
i,j − cni,j

∆t
= −υ1

cni,j+1 − cni,j
∆x

− υ2
cni,j − cni,j−1

∆y
+O(∆t,∆x,∆y)

For υ1 < 0, υ2 < 0 :
cn+1
i,j − cni,j

∆t
= −υ1

cni,j+1 − cni,j
∆x

− υ2
cni,j+1 − cni,j

∆y
+O(∆t,∆x,∆y).

(2.10)

It is important to conclude that system such as (2.10) is implemented in TRM 2D
software which is used in this project.

2.3 General methods to solve the reaction part

This section is based on the Jan Šembera’s university study book [4].
The Phreeqc RM library, which was already mentioned as a "solver" for the reac-
tion part of the transport reaction problem, consists of specific mathematical and
numerical methods. These methods are relatively complicated to present short de-
scription, but they are based on the general mathematical problems and methods.
So it is possible to introduce some of the general methods, which could possibly
solve the reaction part of the transport - reaction problem.
It is important to include initial and boundary conditions into the problem, before
the appropriate method was applied. Discretization and rounding errors should be
also taken into account.

2.3.1 The Euler Method

The most widely known numerical method which can be used as a basis for the
reaction part solver is the Euler Method.

25

For better understanding of the method, it is necessary to introduce the initial value
problem in the form of the following equation and other important terms:

ċ = f(t, c),

c(a) = η,
(2.11)

where c represents the concentration, t is the time and η is the initial condition.

The Euler method is one of the discreet methods. Discreet methods are based on
finding the approximate values of the function c(x) in the finite number of points ti
from the interval < a, b >. Using such a method it is necessary to limit the choice
of the point ti to the equidistant choice:

ti = a+ i∆t, i = 0, 1, 2..., (2.12)

where ∆t is the integration step or the time step.

The Euler Method itself can be introduced in the following way. If the function f is
represented as a directional field in the phase space (t, c) ∈ < a, b > ×(−∞,+∞),
then the graph of the solution of problem (2.11) is such a curve in this space that
the directional field f is tangent to it at each point. Thus, using the Euler method,
we gradually construct an angled line in phase space. The line must be such that
each section between two points (ti, ci) a (ti+1, ci+1) has a direction determined by
the directional field, at the initial point of the section f(ti, ci). The point (t0, c0) is
given by the initial condition. Gradually obtained values of ci are considered as the
approximations of the solution values at points ti, i.e. c(ti). Now it is possible to
represent the Euler Method in the following way:

c0 = η,

ci+1 = ci + ∆t · f(ti, ci), i = 0, ..., n− 1,
(2.13)

where ∆t = b−a
n

is integration step or time step.

2.3.2 Discretization error

Describing discreet methods, it is very important to know the value or at least
the estimate of the total discretization error. For the Euler method, described in
the previous section, total discretization error may be represented by the following
formula

ei = ci − c(ti). (2.14)

That formula, in general, expresses the deviation between the solution derived from
the Euler method and the actual, true solution.

26

Total discretization error can be derived from two types of the local error. Local
discretization error is the error, that is caused by the application of one step of the
method. For the Euler method, the local discretization error may be represented
using the following formula:

L(c(t); ∆t) = c(t+ ∆t)− c(t)−∆t · f(t, c(t)), (2.15)

where the function c(t) is the exact solution of the the given initial value problem.
Total discretization error can be represented as a serie of local discretization errors,
which were made in each integration step and error, which was made with the
accordance to the fact that in each integration step we use inaccurate initial data.

It is necessary to mention that the Phreeqc RM library uses much more complex
numerical methods that are constructed so that their discretization error is much
lower than the one of the Euler methods. Another important remark should be
added. The numerical solutions are influenced not only by the discretization error
but also by the rounding error. The total rounding error can be described as an error,
which was caused by the fact that the computer processor calculates the problem
using the final number of decimal places. That means that the processor actually
adds a little value to the result. This value is called the local rounding error.

27

28

Chapter 3

Time step control method for OSM
in transport reaction problem
implemented by TRM 2D

3.1 TRM 2D

3.1.1 Basic description

The TRM 2D transport-reaction model is based on the "Parallelized reaction-transport
model of contamination spread in groundwater (PaReTran)" component [5]. TRM
2D is a combination of the PhreeqcRM geochemical library with 2D transport in a
regular rectangular network of elements. TRM is implemented as a console applica-
tion that works with settings in an XML file defined according to a specific template.
In a rectangular network, the boundary and initial flow conditions can be set. These
conditions can be changed during the calculation by setting the Border Conditions
Changes. In the same way, boundary and initial conditions for the reaction part,
defined in the Phreeqc configuration files can be set and controlled.
The basic structure of the TRM 2D configuration files can be demonstrated using
the structure according to Fig. 3.1.

Figure 3.1: Configuration file structure. (Adopted from [5])

Within the LogFile element, the level of details of the reports and results is set to

29

the log file. That file is being used to store the information about software run.
The quantities element includes the units and their settings with which the TRM
software works.
The element named "TransportModule" (Fig. 3.2) helps to set data on the required
simulation period, the size of the rectangular grid of flow, transport of substances,
information about individual transport elements, incoming components, transported
and static components.

Figure 3.2: Transport Module definition. (Adopted from [5])

30

The ReactionModule element is used to handle a component built using the Phreeqc
RM library. In this element it is necessary to set the number of threads the li-
brary will work with, initial and border conditions, the possible boundary conditions
change during the simulation and other important conditions according to Fig. 3.3
and Fig. 3.4.

Figure 3.3: ReactionModule definition (part A). (Adopted from [5])

Figure 3.4: ReactionModule definition (part B). (Adopted from [5])

ResultFile is necessary to store the results. The result of the TRM program run is
saved in the form of CSV files.

31

Now it is possible to shortly present the general algorithm of the TRM 2D software
using Fig. 3.5 which illustrates gradual implementation of individual operations.

Figure 3.5: Description of TRM 2D software simulation run. (Adopted from [5])

It is also important to mention that the TRM 2D software includes TRM GUI,
graphical interface, which is more convenient for user.
The figures from this section may be found in Appendix C.

3.1.2 Installation

It is obvious from the previous section that TRM 2D requires specific libraries and
the special approach to installation and building. The original software, which was
created by the DHI company, was intended to be compiled using QT. Working with
the TRM 2D, we managed to install and compile it using Visual Studio 2019 on
Windows. This possibility was not the part of the TRM 2D software before. The
installation process among others included work with specific libraries such as Ar-
madillo (linear algebra library) or PhreeqcRM (the geochemical reaction module).
The detailed description of the TPM installation and compilation process is in Ap-
pendix A.

32

3.2 The time step control method

3.2.1 Basic algorithm

The main goal of this bachelor’s degree project is to suggest the time step control
method for the operator splitting method and implementation of that in TRM 2D
software. To propose such a method, first of all, it was necessary to study the source
code in detail, in search of the information about the methods, classes and variables
we needed to work with. After analyzing the source code of most of the software
files and comparing it with the available information about the program, we came
to the conclusion that lines 19 - 23 from the following listing is the proper place to
implement time step control method.

1 unsigned step_index = 0;
2 for (t = trans.time_init + curr_time_step; t < trans.time_end +

trans.time_end * NUMERIC_EPS; t = t + curr_time_step) {
3 progress_value = static_cast <unsigned >(100 * (static_cast <

double >(t_index) - static_cast <double >(trans.get_time_init_id ())
) / static_cast <double >(time_steps_count));

4 if (trans.is_bc_change_time(t_index)) {
5 current_bc_time = t_index;
6 curr_time_step = trans.get_time_step(current_bc_time);
7 // initial conditions used only at zero time
8 if (t_index == initial_time_index) {
9 vector <double > tmp_values = arma::conv_to <vector <

double >>::from(trans.get_component_data("TransportComponents",
t_index , map_component_id));

10 vector_values init_cond(tmp_values);
11 react.activate(
12 transport_concs , transport_names , init_cond ,

trans.get_component_data("InComponents", t_index ,
map_component_id), t_index , t - curr_time_step , trans.
get_first_component_of_id("0"));

13 trans.init(transport_concs , transport_names ,
initial_time_index);

14 }
15 // transport activation follow -up , maybe make modified

grid flow BC time dependant and move it to transport activation
16 trans.modify_grid_flow(t_index);
17 }
18 t_index ++;
19 trans.calculate(t_index , t, transport_concs ,

transport_names , current_bc_time , mapping);
20 if (react.is_calculated_step(step_index)) {
21 react.calculate(t_index , t, curr_time_step ,

transport_concs , transport_names , mapping);
22 }
23 step_index ++;
24 }

Listing 3.1: The part of trm.cpp file. Original version

This specific place was chosen because this is the part of the "for" cycle (lines 2 - 24)
which is the part of the method void transport_module::calculate(...) and which

33

controls interaction of the transport and reaction part with time and the time steps.
In the original version of the software, the time step was set by the user as constant
using the specific XML file and class methods worked with an array of predefined
time steps. Suggesting a method for automatic control of the time step, we added
the ability to work with the variable double curr_time_step in the method void
calculate(...) of the class class transport_module. Using this variable we will be
able to implement the automatic time step change.
The main idea of the chosen automatic time step selection method may be repre-
sented using the following algorithm.

concsold = concs
transport calculation ()
reaction calculation ()
if ‖(concs− concsold)/((concs+ concsold)/2))‖ < 0.5 · eps then

timestep = 1.1 · timestep
else if ‖(concs− concsold)/((concs+ concsold)/2))‖ < eps then

timestep = 0.5 · timestep
restart calculation

else
Proceed with the same time step

end if

In the algorithm which is described above, the variable concs contains all concentra-
tions in all elements during the current calculation unit run, the variable concs_old
contains all concentrations in all elements at the beginning of the current calculation
unit run and the variable time step contains the length of the actual time step. The
condition checked in the "if" loop may be described as follows. In the first phase we
verify if the geometrical distance between the results of two consecutive calculations
in space, measured using the Euclidean norm, is significantly less than eps. Using
the second "if" loop we check if the distance is bigger than eps. So it is obvious that
the eps variable represents optimal value to compare results with. The value of eps
is preset.

3.2.2 Implementation of time step control method in TRM
2D

To implement the algorithm from the previous section, we needed to construct the
loops inside the cycle described in Listing 3.1.
First of all, the condition inside the "if" phase must be set. By use of the already
connected Armadillo library, there is no need to access individual components of
concs and concs_old using "for" cycle. Math operations such as subtraction and di-
vision are automatically preset to work with the individual components of the vector
in the Armadillo library. The only problem was that the original datatype (vector<
double>) of the concs and concs_old variables was not convenient with Armadillo, so
we declared new variables arma::rowvec tc and arma::rowvec tc_old.

34

1 tc_old = arma::conv_to <arma::rowvec >:: from(transport_concs);
2 tc = arma::conv_to <arma::rowvec >:: from(transport_concs);

Listing 3.2: The declaration of new variables

These variables are intended to keep data, stored in vector<double> concs and vector
<double> concs_old using Armadillo datatype <arma::rowvec>. Transformation from
one type to another was committed using the method arma::conv_to<arma::rowvec>::
from(...).
After all needed transformations, we insert the calculation result into the new vari-
able arma::rowvec concentrace. Then using the preset function (arma::norm(concentrace
, 2) we calculate the Euclidean norm and compare it with the optimal value eps to
set the condition to the loops.

1 arma:: rowvec concentrace = ((tc - tc_old) / (tc + tc_old)) * 2;
2 if (arma::norm(concentrace , 2) < eps * 0.5)
3 {
4 ...
5 }
6 else if (arma::norm(concentrace , 2) > eps)
7 {
8 ...
9 }

Listing 3.3: The Euclidean norm

The final version of the general algorithm is implemented as follows:
1 transport_concs_old = transport_concs;
2 tc_old = arma::conv_to <arma::rowvec >:: from(transport_concs)

;
3 t_index ++;
4 label:
5 if (t > trans.time_end)
6 {
7 curr_time_step = trans.time_end - t + curr_time_step;
8 t = trans.time_end;
9 }

10 trans.calculate(t_index , t, transport_concs ,
transport_names , current_bc_time , mapping , curr_time_step);

11 if (react.is_calculated_step(step_index)) {
12 react.calculate(t_index , t, curr_time_step ,

transport_concs , transport_names , mapping);
13 }
14 tc = arma::conv_to <arma::rowvec >:: from(transport_concs);
15 arma:: rowvec concentrace = ((tc - tc_old) / (tc + tc_old))

* 2;
16

17 if (arma::norm(concentrace , 2) < eps * 0.5)
18 {
19 curr_time_step = curr_time_step * 1.1;
20 }
21 else if (arma::norm(concentrace , 2) > eps)
22 {
23 curr_time_step = curr_time_step * 0.5;

35

24 transport_concs = transport_concs_old;
25 t = t - curr_time_step;
26 goto label;
27 }
28 step_index ++;

Listing 3.4: The implementation of the general algorithm

All the other useful and valuable changes and additions to the source code from
Listing 3.1 are described in the appendix B with extensive comments.

3.3 Tests

The task of complex and gradual testing of the changes made to the source code is
of the same priority task as the task of implementation.
To test the suggested method we use the calcite dissolution problem, prescribed in
the XML file. As compared outputs, CSV files with calcium concentration values
were used. Using specific <fstream> library, we also constructed the possibility of
listing the results of the software run to a text file.

1 fstream out;
2 out.open("c:\\Trm\\norm.txt", fstream ::out);
3 .
4 .
5 .
6 if (out.is_open ())
7 {
8 out << arma::norm(concentrace , 2) << "/___/" <<

curr_time_step << "/___/" << t_index << "/___/" << t << endl;
9 }

10 out.close ();

Listing 3.5: Text file outputting

3.3.1 Basic tests

First of all, we need to test the impact of the intervention to the program code on
the results.

It means that firstly, it is necessary to test the deviation between the original pro-
gram run results (with the constant time step and constant presets) and the modified
software (with the constant time step and constant presets).

Working with the calculation results it is necessary to examine the value κ, which
may be called as a maximum deviation and can be represented as the maximum
norm of the difference of the relative error. Using the maximum deviation from
the calculations, it is possible to determine the average maximum deviation, which
shows the actual deviation between the results.
Comparing the original software with the modified software, we took into account
the results of five calculations. So we receive the following result: κ ≈ 1, 95 · 10−15.

36

Such a deviation may be caused by rounding error, which can be understood as a
computing error. It is necessary to say that this deviation is absolutely acceptable.

3.3.2 Implemented method tests

Testing the implemented time step control method, we work with the <eps> vari-
able, which controls loop conditions and manages the time step change. Installing
different initial time steps and different values of <eps> we prove that the proposed
method is functional and the error of the results is acceptable.
First of all we need to propose the values of the initial time steps, which are reason-
able to use during tests. We choose to use constant time steps equal to 1, 0.1, 0.01
and the last value is 0.001 as follows.

Modified software with different time step results
κ

R0001/R1 2.401 ·10−4

R0001/R01 1.817 ·10−5

R0001/R001 1.623 ·10−6

It the table above, R0001, R001, R01, R1 denote the results of the modified software
run with the constant time steps equal to 0.001, 0.01, 0.1, 1, respectively. Since we
do not have the possibility to have the analytical solution of the studied problem,
we choose the solution R0001 as the reference solution for measurement of errors of
the other numerical solutions. These results in the table above express dependency
between the accuracy of the results and the length of the time step. The value of
κ = 2.401 · 10−4 corresponds to the value ∆t = 1, κ = 1.817 · 10−5 corresponds
to ∆t = 0.1 and the value κ = 1.623 · 10−6 corresponds to the value ∆t = 0.01.
It means that by use of ten times bigger time step, we get roughly ten times less
precise results.
It is important to mention that working with the software, we study the calculations
which end up at time equal to 20 seconds. It means that to complete the calculations,
the software with the constant time step needs to run through 20000, 2000, 200, 20
time steps for the time steps equal to 0.001, 0.01, 0.1, 1, respectively.
As it was mentioned above, we decided to use ∆t = 0.001 as the reference solution. So
to test the implemented method, we decide to compare the outputs of the modified
software with constant time step equal to 0.001 and the outputs of the modified
software with the initial time step equal to 1 and different values of <eps>. These
results are represented in the following table.

37

Modified software with different <eps> results
κ

R0001/R1(eps = 0.010293) 1.429 · 10−6

R0001/R1(eps = 0.012) 1.630 · 10−6

R0001/R1(eps = 0.021) 3.087 · 10−6

R0001/R1(eps = 0.05) 7.298 · 10−6

R0001/R1(eps = 0.089) 1.347 · 10−5

R0001/R1(eps = 0.11) 1.617 · 10−5

R0001/R1(eps = 0.21) 3.127 · 10−5

R0001/R1(eps = 0.5) 7.445 · 10−5

R0001/R1(eps = 0.79) 1.232 · 10−4

R0001/R1(eps = 0.91) 1.424 · 10−4

Now it is possible to collect the results from the previous tests, to assemble them
and to analyze them entirely. Summary of results of the main tests are presented in
the following table, which shows the dependency between the preinstalled value of
the <eps>, number of time steps and computational time.

Modified software with different <eps> results
<eps> κ N K T
0.010293 1.429 · 10−6 2290 2297 173.749
0.012 1.630 · 10−6 2069 2076 155.117
0.021 3.087 · 10−6 1133 1139 137.930
0.05 7.298 · 10−6 505 510 63.748
0.089 1.347 · 10−5 276 280 66.573
0.11 1.617 · 10−5 235 239 54.615
0.21 3.127 · 10−5 124 127 14.052
0.5 7.445 · 10−5 55 58 6.551
0.79 1.232· 10−4 35 36 5.295
0.91 1.424· 10−4 31 32 4.472

In the table above, N is a number of time steps, K is a number which represents how
many times the program run through the implemented cycle (the number of time
steps including the ones that had to be restarted) and T is time, measured in seconds
needed to make all the necessary calculations. It is obvious from the results that the
adaptive time step control method changes the length of time steps as expected
and the accuracy of the results that made 200 and 2000 steps is comparable to the
accuracy of the results with preset constant time steps 0.1 and 0.01.

38

Conclusion

In this project, we became acquainted with the operator splitting method, which
is exceedingly useful for the reactive transport problem and other problems de-
scribed by a system of partial differential equations. We also became familiar with
the TRM 2D, which was created by the DHI company as a reactive transport prob-
lem solver. Working with the software we proposed a method to control operator
splitting method discretization process in accordance with the time step. The sug-
gested algorithm of the time step control method was implemented in TRM 2D
software source code and was tested. The algorithm and the results of tests are rep-
resented in this work. According to the results, we can say, that the algorithm works
correctly. In addition to that, it allows us to expand the possibilities of the TRM
2D software, modifying proposed algorithm and solving some of the open problems.
One of the open problems is to find a relation between the <eps> parameter and
accuracy of the solution for a general problem definition. Another task for the future
is the task of the suggestion of an alternative adaptive algorithm. Such an algorithm
could be based on different parameters other than concentration difference between
the start and the end of the time step.

39

40

Bibliography

[1] Diab. Operator Splitting Methods. Web page at STIMULATE European Joint
Doctorates. http://www.stimulateejd.eu/content/operator-splitting-methods
(2019).

[2] M. Hokr. Transportní procesy [in Czech]. Lecture notes. Faculty of Mechatron-
ics, Technical University of Liberec. (2005).

[3] A. Polyanin, V. Zaitsev. Handbook of Ordinary Differential Equations: Ex-
act Solutions, Methods, and Problems. Chapman and Hall/CRC. Boca Raton.
(2017).

[4] J. Šembera, D. Frydrych. Poznámky k předmětu stavba a řešení počítačových
modelů [pdf in Czech]. Faculty of Mechatronics, Technical University of Liberec.
(2002).

[5] P. Štrof et al. Final Report of the TACR project Nr. TH02030840 [in Czech].
DHI. Praha. (2019).

[6] USGS team. PHREEQC Version 3. Web page at USGS.
https://www.usgs.gov/software/phreeqc-version-3 (2021).

[7] L. Zedek. Modelování transportně - chemických procesů [in Czech]. Doctoral
Thesis. Faculty of Mechatronics, Technical university of Liberec. (2014).

[8] O. Zienkiewicz et al. The Finite Element Method: Its Basis and Fundamentals.
Elsevier Butterworth - Heinemann. Oxford. (2005).

41

42

Appendix A

TRM 2D installation process
decription

Algorithm is intended for Visual Studio 2019
Unzip the .zip files to the c:/Trm directory so that it contains the directories:
- armadillo-10.2.1
- phreeqcrm-3.6.2-15100
- TRMinstall

PhreeqcRM
———
In Visual Studio
Open Menu -> File -> Open -> CMake
c:/Trm/phreeqcrm-3.6.2-15100/CMakeLists.txt
Open Solution Explorer
Then file phreeqcrm-3.6.2-15100/CMakeLists.txt
Press the right mouse button
Then press Generate Cache for...
After that choose Build
And finally push Install
The results files may be found in following the directory
c:/Trm/phreeqcrm-3.6.2-15100/out/install/x64-Debug
Prepare a subdirectory "include" and a "lib" subdirectory with the PhreeqcRMd.lib
library inside

Lapack
——
Put the following files to the
c:/Trm/lapack directory
- cbia.lib.blas.dyn.rel.x64.12.dll
- cbia.lib.blas.dyn.rel.x64.12.lib
- cbia.lib.lapack.dyn.rel.x64.12.dll
- cbia.lib.lapack.dyn.rel.x64.12.lib

These files may be found at cbia.lib.lapack.dyn.dbg.x64.12.zip or at

43

https:// www.fi.muni.cz/ xsvobod2/misc/lapack/

It is also needed to download following files.

- cbia.lib.blas.dyn.rel.x64.12.dll
- cbia.lib.lapack.dyn.rel.x64.12.dll
- libifcoremd.dll
- libmmd.dll
- svml_dispmd.dll

These files may be found at www.dll-files.com

Armadillo
———
Edit the file c:/Trm/armadillo-10.2.1/cmake_aux/ Modules/ARMA_FindLAPACK.cmake

original part

FIND_LIBRARY(LAPACK_LIBRARY
NAMES $LAPACK_NAMES
PATHS /usr/lib64/atlas /usr/lib/atlas /usr/lib64 /usr/lib /usr/local/lib64 /usr/lo-
cal/lib
)

must be replaced with

FIND_LIBRARY (LAPACK_LIBRARY
NAMES cbia.lib.lapack.dyn.rel.x64.12
PATHS c:/trm/lapack
)

And similarly in c:/Trm/armadillo-10.2.1/cmake_aux/Modules/ARMA_FindOpenBLAS.cmake

original part

find_library ($ OpenBLAS_NAME_LIBRARY
NAMES openblas libopenblas libopenblas.dll libopenblas.lib $ OpenBLAS_NAME
PATHS c:/trm/armadillo-10.2.1/examples/lib_win64 $ CMAKE_SYSTEM_LIBRARY_PATH
/ lib64 / lib / usr / lib64 / usr / lib / usr / local / lib64 / usr / local / lib / opt /
local / lib64 / opt / local / lib / usr / lib / openblas / / usr / lib / openblas / lib
/ usr / local / opt / openblas / lib / opt / local / lib / openblas / opt / local / lib
/ openblas / lib
)

must be replaced with

find_library ($ OpenBLAS_NAME _LIBRARY
NAMES $ OpenBLAS_NAME
PATHS $ CMAKE_SYSTEM_LIBRARY_PATH / lib64 / lib / usr / lib64 / usr
/ lib / usr / local / lib64 / usr / local / lib / opt / local / lib64 / opt / local / lib
/ usr / lib / openblas / / usr / lib / openblas / lib / usr / local / opt / openblas /
lib / opt / local / lib / openblas / opt / local / lib / openblas / lib

44

)

Then in the Visual Studio
Open Menu->File->Open->CMake
c:/Trm/armadillo-10.2.1/CMakeLists.txt
Then using Solution Explorer find armadillo-10.2.1/CMakeLists.txt file
Press the right mouse button
Then Generate Cache for ...
After that Build
And press Install
The results files can be found in the directory c:/Trm/armadillo-10.2.1/out/install/x64-
Debug

To proceed with the installation process there was a need to edit some original source
files. Following text shows what changes are needed to make the installation process
real.
—————————————-
TRMInstall - Edit CMakeLists.txt
—————————————

add following lines to c:/Trm/TRMInstall/CMakeLists.txt

set (PHREEQCRM_PATH "c:\\Trm\\phreeqcrm-3.6.2-15100\\out\\install\\x64-
Debug")
set (ARMADILLO_INCLUDE_DIRS "c: /Trm/armadillo-10.2.1/out/install/x64-
Debug/include")
set (BLAS_LIBRARIES "c: /Trm/armadillo-10.2.1/examples/lib_win64/libopenblas.lib")
set (LAPACK_LIBRARIES "c: /Trm/armadillo-10.2.1/examples/lib_win64/libopenblas.lib")

instead of a backslash we use two backslash \\ or one ordinary slash /

Change the original line
target_link_libraries ($ PROJECT_NAME "$ PHREEQCRM_PATH / lib / libPhree-
qcRM. $ LIBRARY_EXTENSION")

to
target_link_libraries ($ PROJECT_NAME "$ PHREEQCRM_PATH /lib/Phree-
qcRMd.lib")
the letter d at the end of the library name (before .lib) is related to the x64-Debug
configuration

Now change the original line
set (CMAKE_CXX_FLAGS "$ CMAKE_CXX_FLAGS -std = c ++ 14 -W -Wall
-Wextra")

to
set (CMAKE_CXX_FLAGS "$ CMAKE_CXX_FLAGS")
These actions help us to remove configurations, "understandable" for gcc, but not
for VS.

45

TRMInstall - Edit source texts
———————————–

trm_module.h
——————–
Add following lines
ifdef _MSC_VER
include <numeric>
undef min
undef max
endif

numeric ... iota function
ancellation of min, max macros, which conflict with min and max functions

trm_module.cpp, trm_react.cpp, trm_trans.cpp
——————————————–
Replace
XMLDocument
with longer
tinyxml2 :: XMLDocument

TRM 2D installation - building process
——————–
In the Visual Studio
Open->Menu->File->Open->CMake
c:/Trm/TRMInstall/CMakeLists.txt
Then open Solution Explorer
TRMInstall/CMakeLists.txt file
Press the right mouse button
Then choose Generate Cache for ...
After that Build
And push Install

TRM 2D starting process
—————–
In C:/Trm/TRMinstall/out/build/x64-Debug directory must appear a trm.exe file.

Add following files from Lapack to the current directory
- cbia.lib.blas.dyn.rel.x64.12.dll
- cbia.lib.lapack.dyn.rel.x64.12.dll
- libifcoremd.dll
- libmmd.dll
- svml_dispmd.dll

and copy the c:/Trm/TRMInstall/inputs directory to the current directory
Then
- Create a log directory

46

- Create a results directory
- Create the results / reaction directory
- Create the results / transport directory
After that using command below and name of the chosen task, start the TRM 2D
trm kalcit_1d.xml

47

48

Appendix B

The time step control method
implementation

1 unsigned step_index = 0;
2

3 fstream out;
4 out.open("c:\\Trm\\norm.txt", fstream ::out);
5

6 for (t = trans.time_init + curr_time_step; t - curr_time_step <
trans.time_end - trans.time_end * NUMERIC_EPS; t = t +

curr_time_step) {
7

8 progress_value = static_cast <unsigned >(100 * (static_cast <
double >(t_index) - static_cast <double >(trans.get_time_init_id ())
) / static_cast <double >(time_steps_count));

9 if (trans.is_bc_change_time(t_index)) {
10 current_bc_time = t_index;
11 curr_time_step = trans.get_time_step(current_bc_time);
12 // Initial conditions used only at zero time
13 if (t_index == initial_time_index) {
14 vector <double > tmp_values = arma::conv_to <vector <

double >>::from(trans.get_component_data("TransportComponents",
t_index , map_component_id));

15 vector_values init_cond(tmp_values);
16 react.activate(
17 transport_concs , transport_names , init_cond ,

trans.get_component_data("InComponents", t_index ,
map_component_id),

18 t_index , t - curr_time_step , trans.
get_first_component_of_id("0"));

19 trans.init(transport_concs , transport_names ,
initial_time_index);

20 }
21 // Transport activation follow -up , maybe make modified

grid flow BC time dependant and move it to transport activation
22 trans.modify_grid_flow(t_index);
23 }
24 transport_concs_old = transport_concs; //

Transport_concs_old contains data from the previous run
25 tc_old = arma::conv_to <arma::rowvec >:: from(transport_concs)

49

;
26 t_index ++;
27 label: // Restart

with shorter "curr_time_step"
28 if (t > trans.time_end)
29 {
30 curr_time_step = trans.time_end - t + curr_time_step;
31 t = trans.time_end;
32 }
33 trans.calculate(t_index , t, transport_concs ,

transport_names , current_bc_time , mapping , curr_time_step);
34 if (react.is_calculated_step(step_index)) {
35 react.calculate(t_index , t, curr_time_step ,

transport_concs , transport_names , mapping);
36 }
37 tc = arma::conv_to <arma::rowvec >:: from(transport_concs);

// Variable tc contains concentractions vector ,
transformated from transport_concs

38 arma:: rowvec concentrace = ((tc - tc_old) / (tc + tc_old))
* 2; // Concentrace contains the difference between new and
old concentrations elements divided by their average

39 for (int i = 0; i < concentrace.n_cols; i++)
// Cycle changes every "nan", apperared in vector because

of division by "0", to "0"
40 {
41 if (isnan(concentrace(i)))

// Checking if vector element is equal to "nan"
42 {
43 concentrace (i) = 0;

// If so, change it to "0"
44 }
45 }
46 if (out.is_open ()) // If is used to writing out to

text file
47 {
48 out << arma::norm(concentrace , 2) << "/___/" <<

curr_time_step << "/___/" << t_index << "/___/" << t << endl;
// Writing out "norm <<curr_time_step <<t_index <<t" to text file

49 }
50 if (eps > 0)
51 {
52 if (arma::norm(concentrace , 2) < eps * 0.5) // If norm of

"arma:: rowvec concentrace = ((tc - tc_old) / (tc + tc_old)) *
2" is smaller than half of the "eps"

53 { // So if norm
of "concentrace" is really far from eps //This helps to
avoid the problem with repeating same step

54 curr_time_step = curr_time_step * 1.1; // Encrease "
curr_time_step"

55 }
56 else if (arma::norm(concentrace , 2) > eps) // Else if

norm of "arma:: rowvec concentrace = ((tc - tc_old) / (tc +
tc_old)) * 2" is bigger than "eps"

57 {
58 curr_time_step = curr_time_step * 0.5; // Decrease

curr_time_step and restart calculation

50

59 transport_concs = transport_concs_old; // Return to
variable "transport_concs" concentrations from the start of this
run

60 t = t - curr_time_step; // Return to
time from the start of this run

61 goto label; // Restart
with shorter "curr_time_step"

62 }
63 }
64 step_index ++;
65 }
66 out.close ();

Listing B.1: The time step control method implementation

51

52

Appendix C

TRM 2D structure description

Figure C.1: Configuration file structure. (Adopted from [5])

53

Figure C.2: Transport Module definition. (Adopted from [5])

54

Figure C.3: ReactionModule definition (part A). (Adopted from [5])

55

Figure C.4: ReactionModule definition (part B). (Adopted from [5])

56

Figure C.5: Description of TRM 2D software simulation run. (Adopted from [5])

57

	Introduction
	Physico - mathematical model of transport - reaction problem
	Basic concepts
	Darcy's law
	Balance of quantity equation. Advection. Molecular diffusion. Mechanical dispersion.
	Calcite dissolution model in transport reaction equation

	Operator splitting method. Finite difference method. General methods to solve the reaction part
	Operator splitting method (OSM)
	Different types of OSM
	Application of OSM in transport-reaction problem

	Finite difference method
	General methods to solve the reaction part
	The Euler Method
	Discretization error

	Time step control method for OSM in transport reaction problem implemented by TRM 2D
	TRM 2D
	Basic description
	Installation

	The time step control method
	Basic algorithm
	Implementation of time step control method in TRM 2D

	Tests
	Basic tests
	Implemented method tests

	Conclusion
	Bibliography
	Appendices
	TRM 2D installation process decription
	The time step control method implementation
	TRM 2D structure description

