
Instructions

Estimation of the most probable hostname from web traffic is a standard task in network traffic

analysis. A standard approach for such tasks is based on prior probabilities from the frequencies in

DNS or proxy logs. However, these data offer broader set of time or volumetric features and can be

used for better predictions. The thesis will propose, implement and evaluate predictive models for

such context-aware passive DNS resolution.

In particular, the student will

1) study the literature, 2) get familiar with the data (private, non-shareable data), 3) obtain public, or

generate a simplified synthetic, DNS dataset, 4) implement and evaluate a context-aware passive DNS

classifier of second-level domains, 5) suggest and implement additional feature extraction, 6)

implement and evaluate a classifier working also on the new features, 7) implement and evaluate

classifiers to the fully qualified domain names, 8) implement and evaluate classifiers for malware

hostnames identification.

 

[1] Trevor Hastie, Robert Tibshirani, Jerome Friedman. ‘The Elements of Statistical Learning’. Springer,

2009

[2] Torabi, Sadegh, Amine Boukhtouta, Chadi Assi, and Mourad Debbabi. ‘Detecting Internet Abuse by

Analyzing Passive DNS Traffic: A Survey of Implemented Systems’. IEEE Communications Surveys

Tutorials 20, no. 4 (Fourthquarter 2018): 3389–3415.

[3] Bushart, Jonas, and Christian Rossow. ‘Padding Ain’t Enough: Assessing the Privacy Guarantees of

Encrypted DNS’. In 10th USENIX Workshop on Free and Open Communications on the Internet (FOCI

20). USENIX Association, 2020.

Electronically approved by Ing. Karel Klouda, Ph.D. on 2 February 2021 in Prague.

Assignment of master’s thesis

Title: Contextual Passive DNS Resolution

Student: Bc. Olena Marchenko

Supervisor: Mgr. Lukáš Bajer

Study program: Informatics

Branch / specialization: Knowledge Engineering

Department: Department of Applied Mathematics

Validity: until the end of summer semester 2021/2022

Master’s thesis

Contextual Passive DNS

Bc. Olena Marchenko

Department of applied mathematics
Supervisor: Mgr. Lukáš Bajer, Ph.D

June 27, 2021

Acknowledgements

I would like to thank my family and friends for love and support during writing
this thesis. I thank my supervisor Mgr. Lukáš Bajer, Ph.D for the time,
advice and auspicious atmosphere of cooperation given to me while writing
this work. I also thank the Cisco company for the opportunity to learn from
the professionals.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. I further
declare that I have concluded an agreement with the Czech Technical Univer-
sity in Prague, on the basis of which the Czech Technical University in Prague
has waived its right to conclude a license agreement on the utilization of this
thesis as a school work under the provisions of Article 60 (1) of the Act. This
fact shall not affect the provisions of Article 47b of the Act No. 111/1998 Coll.,
the Higher Education Act, as amended.

In Prague on June 27, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Olena Marchenko. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Marchenko, Olena. Contextual Passive DNS. Master’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2021.

Abstrakt

Pasivńı DNS je jeden z nejběžneǰśıch nastroj̊u pro analyzu bezpečnostńıch
incident̊u z telemetrii, kde se vyskytuj́ı IP adresy. Bez aktivńıho dotazováńı
DNS resolveru dává informaci o nejpravděpodobněǰśım doménovém jménu,
které mohlo byt při př́ıstupu na IP adresu použito. Tato práce navrhuje
použit́ı dodatečných informaćı obsažených v NetFlow telemetrii k extrakćı
dodatečných přiznak̊u a použit́ı metod strojového učeńı pro zlepšeńı přesnosti
predikce nejpravděpodobněǰśıho doménového jména. Navržené řešeńı je po-
rovnáno s řešeńım nejběžneǰśıho pDNS systému využ́ıvaj́ıćıho pouze statisticky
nejpravděpodobneǰśı hodnoty.

Kĺıčová slova Pasivńı DNS, kybernetická bezpečnost, klasifikace, predikce
hostu

Abstract

Passive DNS is one of the most common tools for analyzing security incidents
from telemetry where IP addresses occur. Without active querying of the
DNS resolver it gives information about the most likely domain name that
could be used during accessing the IP address. This work proposes the use of
additional information contained in NetFlow telemetry to extract additional

vii

features and the use of machine learning methods to improve the accuracy
of prediction of the most probable domain name. The proposed solution is
compared with the solution of the most common pDNS system which uses
only the statistically most probable values.

Keywords Passive DNS, cybersecurity, classification algorothms, hostame
prediction.

viii

Contents

1 Introduction 1
1.1 Motivation and objectives . 1
1.2 Intrusion Detection Systems . 1
1.3 DNS . 2

1.3.1 Definition and usage . 2
1.3.1.1 Basic concepts 3

1.3.2 DNS from the security point of view 4
1.3.3 Passive DNS in a broader sense 9

1.4 NetFlow analysis . 10

2 Methods and theoretical background 13
2.1 Supervised and unsupervised learning 13
2.2 Input data . 14
2.3 Classification and regression . 15

2.3.1 Classification . 15
2.3.2 Regression . 15

2.4 Model performance measurement 16
2.4.1 Binary classification . 16
2.4.2 Multi-class classification 19

2.5 Classifiers used in this work . 19
2.5.1 Logistic Regression . 19
2.5.2 K-Nearest Neighbors Classifier 20
2.5.3 Multilayer Perceptron Classifier 22

2.5.3.1 Definition . 22
2.5.3.2 Activation function 23
2.5.3.3 Learning . 25

2.5.4 Decision Tree Classifier 25
2.5.5 Ensemble methods . 28

2.5.5.1 Bagging Classifier 28

ix

2.5.5.2 Gradient Boosting Classifier 29
2.5.6 Complexity estimations 29

3 Implementation and evaluation 31
3.1 Data . 31
3.2 Feature extraction and preprocessing 32
3.3 Experiment methodology . 34

3.3.1 Hostname prediction . 34
3.3.2 SLD prediction . 37
3.3.3 Experiment summary 39

3.4 Implementation details . 40
3.5 Experimental part . 41

3.5.1 SLD and hostnames prediction 41
3.5.1.1 Subsampling 41
3.5.1.2 Grid search . 44
3.5.1.3 Experiments with different number of classes . 50
3.5.1.4 Results . 50

3.5.2 Risk prediction . 51

4 Conclusion 59

A Grid search results 61

B Files structure 73

Bibliography 75

x

List of Figures

1.1 Resolution process . 4
1.2 Spoofing . 5
1.3 Man in the middle . 6
1.4 Amplification attack . 7
1.5 Botnet . 8

2.1 ROC curve example . 18
2.2 Backpropagation. Forward pass and backward pass. 26

3.1 Baseline model workflow (hostnames) 35
3.2 Baseline model workflow (SLD) . 38
3.3 Workflow diagram for extended model. 40
3.4 Code structure . 41
3.5 Distribution comparison. Original train set vs. subsampled train set 42
3.5 Distribution comparison. Original train set vs. subsampled train set 43
3.6 Overall time spent by each classifier depending on number of rows

in train set . 45
3.7 Hyperparameters influencing computational time 46
3.8 SLD cross-validation AUC . 47
3.9 Hostnames cross-validation AUC 48
3.10 Most successful SLD classifiers by metric 48
3.11 Most successful hostname classifiers by metric 49
3.12 Experiments with different number of classes 50
3.13 SLD. Visualizations of the final metrics 51
3.14 Hostnames. Visualizations of the final metrics 52
3.15 Metrics comparison . 54
3.16 Binary task. ROC and PR curves for High risk class. Best model

results . 56
3.17 Ternary task. ROC and PR curves for all classes. The best selected

model . 57

xi

3.18 Multiclass task. ROC and PR curves. The best selected model . . 58

A.1 SLD cross-validation accuracy . 62
A.2 Hostnames cross-validation accuracy 63
A.3 SLD cross-validation F1-score . 64
A.4 Hostnames cross-validation F1-score 65
A.5 SLD cross-validation binary accuracy 66
A.6 Hostnames cross-validation binary accuracy 67
A.7 SLD cross-validation precision . 68
A.8 Hostnames cross-validation precision 69
A.9 SLD cross-validation recall . 70
A.10 Hostnames cross-validation recall 71

xii

List of Tables

3.1 Feature description . 32
3.2 Extracted features for n = 3. US – user-specific features, CS –

company-specific features . 33
3.3 Example of hostname lookup tables 34
3.4 Example of hostname predictions in baseline model. 35
3.5 Example of hostname evaluations. 36
3.6 Example of SLD lookup tables . 37
3.7 Example of SLD predictions. There are two sources for SLD pre-

diction: pure SLD and SLD from predicted host. 37
3.8 Example of SLD evaluations. 39
3.9 Basic statistics of original dataset and subsampled dataset 41
3.10 Parameter lists for grid search . 44
3.11 Most successful SLD instances . 49
3.12 Most successful instances (host) . 49
3.13 Comparison of mean SLD metrics for 3 classes and 10 classes . . . 52
3.14 Number of representatives of each class in the train set 53
3.15 Binary task. Precision and recall. Best model results 56
3.16 Ternary task. Precision and recall per labels. Best model results. . 56
3.17 Ternary task. Weighted precision and recall. Best model results. . 56
3.18 Multiclass task. Precision and recall per labels. Best model results. 57
3.19 Multiclass task. Weighted precision and recall. Best model results. 57

xiii

Chapter 1
Introduction

1.1 Motivation and objectives

Determining the the most probable hostname that was requested on a partic-
ular IP address is a classic task in the field of network traffic analysis. The
standard approach in this area is analysis of Passive DNS data. This approach
is based on the calculation of prior probabilities based on the frequency of one
or another hostname in the DNS logs. However, this data contains a much
larger amount of information, rather than just the frequency tables. Conse-
quently, this data may be invaluably useful in the context of traffic investiga-
tion and specifically in this work, in the problem of hostname prediction and
second-level domain prediction.

1.2 Intrusion Detection Systems

Intrusion detection systems (IDS) are systems that collect information from
various points of a protected computer system (computer network) and ana-
lyze this information to identify both attempted violations and real security
violations (intrusions) [5]. Until recently, the the most common IDS structure
was the model proposed by D. Denning [16].

In modern detection systems, the following basic elements are logically
distinguished: an information collection subsystem, an analysis subsystem
and a data presentation module [5].

• The information collection subsystem is used to collect primary infor-
mation about the operation of the protected system.

• The analysis (detection) subsystem searches for attacks and intrusions
into the protected system.

• The data presentation subsystem (user interface) allows the IDS user to
monitor the state of the protected system.

1

1. Introduction

Among the methods used in the analysis subsystem of modern IDS, two di-
rections can be distinguished: one is aimed at detecting anomalies in the
protected system and the other is aimed at finding abuses [5]. Each of these
areas has its own advantages and disadvantages, therefore, in the most of the
existing IDS, combined solutions based on the synthesis of the corresponding
methods are used. The idea behind these methods is to recognize if the pro-
cess that caused the changes in the system is an attacker’s operation. Let’s
take a look at the the most common anomaly detection methods:

• Rules generation: During the learning process, the detection system
generates a set of rules describing the normal behavior of the system.
At the stage of searching for unauthorized actions, the system applies the
received rules and, in case of insufficient compliance, signals an anomaly
detection.

• Descriptive statistics: The training consists of collecting simple descrip-
tive statistics of a set of indicators of the protected system into a special
structure. To detect anomalies, the "distance" is calculated between two
vectors of indicators - current and stored values. The state in the system
is considered abnormal if the obtained distance is large enough.

• Neural networks: Training is performed with data representing the nor-
mal behavior of the system. The resulting trained neural network is
then used to assess the anomalousness of the system. The output of the
neural network indicates the presence of an anomaly.

The methods currently implemented in IDS are based on the general concepts
of pattern recognition theory. In accordance with them, an image of the nor-
mal functioning of the information system is based on an expert assessment
to detect an anomaly. This image acts as a set of values of the assessment
parameters. Its change is considered a manifestation of the abnormal func-
tioning of the system. After detecting the anomaly and assessing its degree,
a conclusion is formed about the nature of the changes: whether they are a
consequence of an intrusion or an acceptable deviation. An image (signature)
is also used to detect abuse, but here it reflects the previously known actions
of the attacker [4].

1.3 DNS

1.3.1 Definition and usage

The Domain Name System (DNS) is an Internet service that plays role of
“phone book” of the Internet. It is used to translate IP addresses to human-
readable representations, domain names.

2

1.3. DNS

In the seventies, the ARPAnet, predecessor of Internet, was a tight com-
munity of several hundred nodes. All information on nodes, in particular,
necessary for mutual translation of names and addresses of ARPAnet nodes,
was contained in a single HOSTS.TXT file. The HOSTS.TXT file was man-
aged by the Stanford Research Institute (SRI) Network Information Center
(NIC). ARPAnet administrators typically simply e-mailed the changes to the
NIC and periodically synchronized their HOSTS.TXT files with the copy on
the SRI-NIC node using FTP (file transfer protocol). The changes they sub-
mitted were added to the HOSTS.TXT file once or twice a week. However,
as the ARPAnet grew, this scheme became inoperable. The file size grew in
proportion to the number of ARPAnet nodes. The information flow associated
with the need to update the file on the nodes grew even faster: the appearance
of one new node led not only to the addition of a line to HOSTS.TXT, but
also to the potential need to synchronize the data of each node with the SRI-
NIC data. To cope with this problem, there was a need to create a scalable
system that can be maintained in distributed manner. In 1983 the Domain
Name System (DNS) was introduced and replaced HOSTS.TXT [42].

1.3.1.1 Basic concepts

Let us briefly introduce key terms and concepts within the DNS.

• Domain names - textual representation of an IP address, consists of
several parts separated by dots. The structure of a domain name rep-
resents the hierarchical structure of DNS as follows: the right-the most
suffix is called top-level domain, and usually formed after last dot (e.g.,
.com). The string preceding the top-level domain up to the second dot
from right is called second-level domain (SLD). For simplicity and to
follow standard terminology in the cybersecurity field, we will use the
term SLD for the string of second-level domain and top-level domain
together (e.g., in calendar.google.com google.com is a second-level do-
main). In case of multiple subdomains, they are named according to
the order (n-th level domains) and separated with dots. In the following
text we will use term “hostname” referring to a fully-qualified domain
name.

• Name server is a server part in DNS client-server based systems. Each
name server corresponds to some DNS namespace called zone and main-
tain the information about authoritative name servers that contain ac-
tual mapping records for a specified domain name.

• DNS Lookup - a process of finding out the IP address of a domain.

• DNS Zone files and records - a zone file is a text file that contains
mapping information between domain names and IP addresses together

3

1. Introduction

Figure 1.1: Resolution process

with additional information such as mail servers or status information
about the zone file.

DNS resolution process often starts with user enters desired domain name in
browser search panel, so that browser will send request to the recursive name
server (resolver) [2]. If mapping record is in the resolver’s cache, resolver will
send it back to browser, which will use it to establish connection to website.
Otherwise, the resolver will recursively send the request to authoritative name
servers unless one of them provides it with required information. This process
is visualized in Figure 1.1.

1.3.2 DNS from the security point of view

Despite all the benefits and improvements associated with the implementation
of DNS, this system is a well-known attack vector for cybercriminals. DNS
services have been abused in different ways to perform various attacks [8],
[19]. An attacker can utilize a set of domains and IP addresses to perform
sophisticated attacks, like spamming campaigns, phishing, and Distributed
Denial of Service (DDoS) attacks. These attacks can result in a wide range of
outcomes: receiving spam, stealing card credentials, service shut-downs, and
privacy issues, etc.

for the purpose of attacks prevention, or minimizing their negative con-
sequences, it is necessary to isolate malicious or compromised domains and
hosts from the rest of the Internet (deny lists serve for this purpose). The

4

1.3. DNS

Figure 1.2: Spoofing

frequent question of modern studies in the field of cybersecurity is trying to
give a response: how to determine malicious hosts and IP addresses in a huge
traffic stream.

DNS activity is present in almost all communication sessions, regardless of
the protocol. Thus, DNS logging data is a valuable source of information for
security professionals, allowing them to detect anomalies or obtain additional
data about the system under investigation [51].

These attacks are categorized into protocol attacks and server attacks.
Protocol attacks are characterized by the usage of vulnerabilities in the im-
plementation of DNS, while the server attack is associated with disabling a
device that provides certain services, obtaining confidential information or an
attempt to take control of the operating system of the device.

In the next paragraphs, the the most known attacks with utilizing of DNS
will be described.

DNS spoofing or cache poisoning. DNS spoofing is a type of attack in
which an attacker intercepts DNS request and returns the address that leads
to its own server instead of the real address. Malicious actors can use DNS
spoofing to launch a man-in-the-middle attack and direct the victim to a fake
website that looks like the real one, or they can simply relay the traffic to the
real website and stealthily steal the data. DNS cache poisoning is a method of
DNS spoofing when the user’s system logs the malicious IP addresses in local
memory cache [48]. As a consequence, DNS remembers fraudulent website

5

1. Introduction

Figure 1.3: Man in the middle

specifically for a given user 1.2.
There are known methods for spoofing and cache poisoning.

• Man in the middle DNS duping: This form of cyberattack uses tech-
niques to intercept data to infiltrate an existing connection or communi-
cation process [22]. An attacker can be a passive listener in conversation,
stealthily stealing information, or an active participant, altering the con-
tent of messages or impersonating the person or system user thinks he
is talking to. An attacker goes between the user’s web browser and the
DNS server to infect both of them. The tool is used to infect the cache
on the user’s local device and infect the server on the DNS server at the
same time. As a result, a redirection occurs to a malicious site hosted
on the attacker’s own local server 1.3.

• DNS server hijack: The attacker directly reconfigures the server to direct
all requesting users to the malicious website. Once a fraudulent DNS
record is entered into a DNS server, any IP request for a fake domain
will result in a fake site [6].

• DNS cache poisoning via spam: The DNS cache poisoning code is often
found in URLs sent via spam messages. These emails try to intimidate
users into clicking the specified URL, which infects their computer. Ban-
ners and images, both in emails and on untrustworthy websites, can also
direct users to this code. Once poisoned, a computer will redirect the

6

1.3. DNS

Figure 1.4: Amplification attack

user to fake websites that will be spoofed to make them look real. This
is where the real threats emerge for user devices.

Denial of service (DoS) attack or distributed denial of service (DDoS)
DoS (Denial of Service) attack is the bombardment of the victim’s servers with
separate packets with a forged return address. Failure, in this case, is the result
of overflow of the band leased by the client or increased resource consumption
on the attacked system. Attackers mask the return address to exclude the
possibility of blocking by IP. If the attack is distributed and is carried out
simultaneously from a large number of computers, we speak of a DDoS attack
[21]. One of the the most popular types of DDoS attacks utilizing DNS is
DNS amplification attack.

Amplification attack The essence of the amplification is that the attacker
sends a (usually short) request to a vulnerable DNS server, which responds to
the request with a much larger packet 1.4. In case of usage of the address of
the victim’s computer (IP spoofing) as the initial IP address when sending a
request, the vulnerable DNS server will send a large number of unnecessary
packets to the victim’s computer until it completely paralyzes its work [27].

Other types of DNS abuse

7

1. Introduction

Figure 1.5: Botnet

• Cybersquatting. The essence of cybersquatting is that people involved in
it register domain names containing the names of well-known companies,
geographical names, organizations, goods and other recognizable things,
and then resell them to companies interested in this domain name.

• Typosquatting. In fact, this method is a registration of the domain
names that are similar in spelling to the addresses of popular sites. This
is done with the expectation that the victim will incorrectly type the
desired address and follow phishing and fraudulent links [36].

• Botnets

A botnet is a network of computers infected with malware [17]. Here, a
cybercriminal acting as a botmaster uses viruses to compromise the security of
multiple computers and connect them to the network for malicious purposes
(Figure 1.5). Every computer on the network acts as a “bot” and is controlled
by a fraudster to transmit malware, spam, or malicious content to launch an
attack. In the structure of the “client-server” bot-system, a basic network
is created in which one server acts as a botmaster. Botmaster controls the
transfer of information from each client to set commands and control over
client devices. Botnets are the mostly used for DDoS attacks, spam and
traffic monitoring, stealing credentials

• Fast-flux domains

8

1.3. DNS

Fast-Flux networks are networks of compromised computer systems with pub-
lic DNS records that are constantly changing, in some cases every 3 minutes.
The ever-changing architecture makes it much more difficult to track and shut
down criminal activity. Fast flux DNS is a technique that an attacker can use
to prevent the IP address of their computer from being identified. By abusing
DNS technology, a criminal can create a botnet with nodes, connect through
them, and change them faster than law enforcement officials can trace [38].

Fast flux DNS uses a load balancing method built into the domain name
system. DNS allows an administrator to register an arbitrary number of IP
addresses with a single hostname. Alternative addresses are legitimately used
to distribute internet traffic across multiple servers. Typically, the IP ad-
dresses associated with a host do not change very often, or even may never
change.

However, criminals have found that they can hide key servers using the
time to live (TTL) of the DNS resource record associated with the IP address
and change them extremely quickly. Because system abuse requires the co-
operation of a domain name registrar, the most Fast flux DNS botnets are
believed to originate in developing countries or other countries without cyber-
crime laws.

From all of the above, we can conclude that DNS is a wide field of activity
for different kinds of attackers, and therefore the development of methods for
tracking their activities is a high priority task for ensuring security on the
Internet.

1.3.3 Passive DNS in a broader sense

It is known that DNS zone records are not stale and change frequently.
Furthermore, before the introduction of Passive DNS technology by Florian
Weimer in 2004 [55], there was no possibility to track these changes. Users
were unable to check DNS lookup history. This fact prevented researchers
from investigating and analyzing compromised domains according to resolu-
tion data from the past.

In 2004, Florian Weimer proposed a logging method called Passive DNS.
This concept allows restoring the history of changes in DNS data with the
ability to index and search. It provides a wide range of opportunities for cy-
bersecurity research and makes it easier to identify traffic anomalies, malicious
domains and infected machines. It can provide access to the following data:

• Domain name

• IP address of the requested domain name

• Date and time of response

• Response type

9

1. Introduction

• etc.

Data for Passive DNS is collected from recursive DNS servers by built-in mod-
ules (sensors). Despite the fact that this data may not represent exact DNS
structure, using Passive DNS allows building relationships between domain
names and IP addresses, consequently building maps of studied systems and
track changes in such a map from the first detection to the current moment
[25].

Scientific works with Passive DNS applications often use machine learning
approach. For example, such an approach was used in papers of Bilge et
al.[8] where the Exposure system was developed. A lot of attention was paid
to the feature engineering part. The system attempts to identify malicious
domains using data from Passive DNS dataset and thus classify domains using
machine learning algorithms. Khalil et al. [28] suggested building host-domain
graphs (also called user query behavior) to investigate more global patterns
in comparison to local features in Exposure and to utilize graph algorithms to
compute the malicious scores of domains.

1.4 NetFlow analysis

The essence of this thesis lays in the analysis of network traffic. By network
traffic we understand data obtained with NetFlow, a proprietary session sam-
pling protocol designed by Cisco Systems that allows extracting information
about packet flows (a bunch of related packets, which have a common source
and destination IP, IP protocols, etc) [30]. NetFlow extract critical informa-
tion from packet flows such as source, destination, byte counts, and other
metadata. Analysis of NetFlow is a powerful tool in the traffic investigation,
network monitoring, troubleshooting, and anomaly detection [50].

NetFlow tools are divided into two parts, similar to the standard IDS
(Intrusion Detection Systems) deployment architecture:

1. One or more flow generation devices (sensors) that monitor network
traffic and make corresponding NetFlow records in real time;

2. Central component (collector and analyzer) collects stream records, stores
them, and provides analysts with a set of tools for interaction; analy-
sis tools usually work either through the command line, through a web
interface, or both [30].

When network security analysts examine the IDS warning, they see some-
thing potentially negative about just one packet in one network session. Flow
records for the source and destination hosts mentioned in this IDS alert give
analysts the context they need. What other hosts did the attacker interact
with? Did the victim have similar connections with other hosts after the IDS

10

1.4. NetFlow analysis

was triggered (this would indicate the spread of the attack)? These questions
can be answered using flow records and query tools.

So the task of this thesis can be formulated as follows:

Problem: How can we determine the destination of the user request (in terms
of DNS) without exact knowledge of the fully qualified domain name
(hostname)?

Goal: We want to predict which hostname did user look for and possibly to
mark this communication as dangerous.

Solution: Apply machine learning technics to Passive DNS context data to
predict the most probable hostnames for each user.

Also: second-level domains are also the area of interest since they may in-
dicate an organization or geographical affiliation, which is useful in the
context of security goals. As an illustration, if the URL is proven to
be malicious there is a non-zero probability that all the hostnames with
given SLD may be also malicious. Therefore, in this work we will con-
centrate on the SLD prediction as well as on the hostnames prediction.

11

Chapter 2
Methods and theoretical

background

This section focuses on the theory behind the approaches used in this work.
We define a typical task in the field of machine learning, consider the basic
classification of these tasks. Also, we will highlight the main strategies for
training models. We will describe the main types of data that analysts often
have to work with. An important aspect is that when implementing a par-
ticular model, the expert needs to assess how well the model copes with the
given task. Different metrics can be used to quantitatively evaluate the model
performance. The metrics used in the analysis of the implemented models will
be defined and briefly described. Finally, all the models used in the prediction
will be described.

2.1 Supervised and unsupervised learning

Classically, machine learning problems can be classified into two classes: su-
pervised learning and unsupervised learning [44].

Supervised learning This type of learning is used for determining the
object belonging to some class or correspondence to some value from the
training data. Training data consists of pairs of input objects (typically feature
vectors) and the desired output (labels). There may be some relationship
between inputs and target outputs, but its nature is unknown. Only a finite
set of precedents is known, the input-output pairs called training set. Based
on these data, it is required to restore the dependence (to build a model of the
relationship suitable for forecasting), that is, to build an algorithm capable of
giving a sufficiently accurate answer for any newly introduced object from the
test set.

13

2. Methods and theoretical background

Unsupervised learning The main difference between supervised and un-
supervised learning is that, in the case of unsupervised learning, we do not
have target values for each feature vector. We have a dataset of vectors (sam-
ples) from which we want to extract some knowledge. A typical approach is
called clustering, the process during which according to similarities (which is
often represented as distance between data points in feature space), we assign
input vector to some class.

Semi-supervised learning Semi-supervised learning can be understood as
a “mixture” of supervised and unsupervised approaches, when we have some
small amount of labeled data and a large amount of unlabeled data.

2.2 Input data

Feature space A feature is a mapping f : X → Df , where Df is the
domain of the attribute. If attributes f1, . . . , fn are given, then the vector
fx = (f1(x), . . . , fn(x)) is called a feature description of an object x ∈ X.
Feature descriptions can be identified with the objects themselves fx ≡ x. In
this case, the set X = Df1 × . . .×Dfn is called a feature space [52].

Depending on the set Df , features are divided into the following types:

1. binary feature: Df = {0, 1}

2. nominal or categorical feature: Df is a finite set without any particular
ordering of its members

3. ordinal attribute: Df is a finite ordered set;

4. quantitative feature:Df is a subset of real numbers Rn[52].

The input data can have various structure and, depending on the represen-
tation, the data is processed using different feature engineering or feature
extraction technics. After extraction, a numerical vector can be submitted to
the input of the model, and only then we will be able to work with feature
vector. the most common features representations are:

• Attribute description is the the most common case. Each object is de-
scribed by a vector corresponding to its characteristics, or features.

• Distance matrix between objects. Each object is described by the dis-
tance to all other objects of the training set. Few methods work with
this type of input, in particular, the nearest neighbors method.

• A time series or signal is a sequence of measurements over time. Each
dimension can be represented by a number, a vector, and, in the general
case, by an indicative description of the object under study at a given
moment in time.

14

2.3. Classification and regression

2.3 Classification and regression

Classification and regression are representatives of supervised learning ap-
proach. A typical problem in machine learning looks as follows: having a
vector of features, we want to predict, depending on the type of problem, ei-
ther the class (e.g., which is in the image, an apple or a pear), to which the
object described by this vector belongs, or to predict a value from a set of real
numbers corresponding to a given input (e.g., stock price tomorrow).

2.3.1 Classification

Classification is the section of machine learning devoted to solving the follow-
ing problem: a finite set of objects is given, for which it is known to which
classes they belong. The class of the remaining objects is unknown. It is
required to construct an algorithm capable of classifying an arbitrary object
from the original set. To classify an object means to indicate the value (or
name of the class) to which this object belongs [52].

Let X be the set of descriptions of objects, Y be a finite set of numbers
(names, labels) of classes. There is an unknown target dependence or the
mapping f : X 7→ Y, the values of which are known only on the objects of
the final training set X = {(x1, y1), . . . , (xm, ym)}. It is required to build a
mapping a : X 7→ Y, capable of classifying an arbitrary object x ∈ X.

Class types:

1. Two-class (binary) classification. The the most technically simple case,
which serves as the basis for solving more complex problems.

2. Multi-class classification. We talk about multi-class classification when
we have three or more classes. When the number of classes reaches many
thousands, the task of classification becomes much more difficult.

3. Non-overlapping classes.

4. Overlapping classes. An object can belong to several classes at the same
time.

5. Fuzzy classes. It is required to determine the degree of belonging of an
object to each of the classes, usually, it is a real number from 0 to 1 [52].

2.3.2 Regression

The regression task is a forecast based on a sample of objects with different
characteristics. The output should be a real number, for example, the price
of an apartment, the cost of a security after six months, the expected income
of the store for the next month.

15

2. Methods and theoretical background

We can define regression problem as having a set of objects descriptions
X , but now for regression task Y is not a finite set of nominal variables but a
numeric value from Rn. There is still unknown dependence f : X 7→ Y, but
now it is required to build a mapping b : X 7→ Y, capable of predicting the
value (real number) for an arbitrary input sample.

2.4 Model performance measurement

Each machine learning problem poses the question of evaluating the results of
models.

Without criteria, it is impossible either to assess the “success” of the model,
nor to compare two different algorithms with each other. That is why it is
important to take into account the correct choice of metrics for the task at
hand, although the many existing metrics can be confusing and, ultimately,
lead to a sub-optimal solution.

2.4.1 Binary classification

In case of binary classification, the data is divided into two classes. Their
labels are usually designated as 1 and 0. The metrics we are considering are
based on the use of the following outcomes: True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN). False positive and false
negative outcomes are also called errors of Type I and Type II, respectively.
Let us explain the nature of these errors in the example.

Let’s take a look at the task of detecting malicious Internet traffic. Tradi-
tionally, if the packet is indeed malicious, then that would be a positive class.
If it is safe, the class is negative. The result of the model’s work can be a
determination: whether the package should be “suspected” (then the result
is true) or not (then the result is false). Let some set of markers of a certain
behavior be characteristic of an attack. If our model correctly identified and
assigned a positive class, then this is a True Positive outcome, but if the model
puts a negative class label, then this is a False Negative outcome. If the traffic
turns out to be safe, and if the model classifies the feature vector as a positive
class, then we are talking about a False Positive outcome (the model “said”
that there is an attack, but in fact the traffic is safe), and vice versa, if the
model recognizes the record as a negative class, then this is a True Negative
outcome.

Accuracy One of the simplest and therefore common metric is accuracy.
It shows the number of correctly assigned class labels (true positive and true
negative) over the total amount of data and is calculated as follows [41]:

Accuracy = TP + TN

TP + TN + FP + FN
(2.1)

16

2.4. Model performance measurement

Nevertheless, accuracy is criticized due to the fact that it can be misleading
in case of imbalanced classes [3].

Let’s go back to the internet traffic example. If a model’s accuracy is
80%, we can say that, on average, out of 100 packets the model will correctly
identify a malicious packet only in 80 cases, while another 20 will be either
false negative or false positive.

It is worth paying attention to the fact that, in some tasks, it is necessary
to identify all infected objects and researcher can even neglect false positive
outcomes, since they can be eliminated at the next stages of the study, con-
sequently, it is necessary to add one more metric, which could estimate the
required priority.

Precision This metric shows the number of truly positive outcomes
from the entire set of positive labels and is calculated using the following
formula [41]:

Precision = TP

TP + FP
(2.2)

The importance of this metric is determined by how high the “cost” of a
false positive result is for the problem under consideration. If, for example, the
cost of further checking for an attack is high and we simply cannot check all
false positives, then it is worth maximizing this metric, because, if Precision
= 50% out of 100 positively determined infected packets, only 50 of them will
be really malicious.

Recall (true positive rate) This metric measures the number of true
positives among all class labels that were determined to be “positive” and is
calculated using the following formula [15]:

Recall = TP

TP + FN
(2.3)

It is necessary to pay special attention to this metric when the error of
non-recognition of the positive class is high.

F1-Score If Precision and Recall are equally significant, we can use their
harmonic mean to obtain an estimate of the results [18]:

F1 = 2× precision× recall
precision+ recall

(2.4)

False Positive Rate

FPR = FP

FP + TN
(2.5)

17

2. Methods and theoretical background

Figure 2.1: ROC curve example

It’s the probability that a false alarm will be raised, the case when a positive
result will be returned when the actual value is negative.

ROC In addition to listed metrics, there are also graphical methods that
can assess the quality of a classification.

ROC (receiver operating characteristic) is a graph showing the dependence
of correctly classified objects of a positive class on incorrectly classified objects
of a negative class for different discrimination thresholds of a classification. In
other words, it is a plot of True Positive Rate (TPR, Recall) versus False
Positive Rate (Figure 2.1).

The ideal classifier curve would pass through the top left point (TPR =
1, a FPR = 0). Curves that lie below TPR=FPR line indicate that classifier
predictions are worse than flipping a coin, or that it is necessary to reverse
class labels.

Using the ROC curve helps to compare the models, as well as their param-
eters to find the the most optimal (in terms of TPR and FPR) combination.
ROC curve, on the other hand, has a big disadvantage: it is sensitive to imbal-
anced data. Methods aimed to choose optimal operating point is an attempt
to cope with this disadvantage [20].

AUC (Area Under Curve) As a numerical estimate of the ROC curve,
it is a common practice to take the area under this curve (AUC value in
Fig. 2.1). AUC also has a statistical interpretation: it shows the probability
that a randomly selected instance of a negative class will be less likely to be
recognized as a positive class than a randomly selected positive class.

18

2.5. Classifiers used in this work

2.4.2 Multi-class classification

All the metrics discussed above relate only to a binary problem, but, often,
there are more than two classes. This makes it necessary to generalize the
considered metrics. One possible way is to calculate the average metric for all
classes [18]. In this approach, each class i is iteratively taken as the positive
class, and all the others are taken as the negative (one versus all approach).

In this case, the formulas for the metrics will look like this:

Accuracyavg =
k∑

i=1
Accuracyi (2.6)

Precisionavg =
k∑

i=1
Precisioni (2.7)

Recallavg =
k∑

i=1
Recalli (2.8)

F11avg =
k∑

i=1
F1i (2.9)

where k is number of classes. This approach is called macro-averaging,
it will compute the metric independently for each class and then take the
average (treating all classes equally), whereas a micro-average will aggregate
the contributions of all classes to compute the average metric.

2.5 Classifiers used in this work

2.5.1 Logistic Regression

Logistic regression is a method for constructing a linear classifier that allows
estimating the posterior probabilities of objects belonging to classes [29]. Lo-
gistic regression is used to predict the likelihood of a certain class based on the
feature set. For this, a dependent variable y is introduced, y ∈ {0, 1} and a
set of independent variables X = {x1, ...xn}, based on the values of which we
are going to calculate the probability of accepting one or another value of the
dependent variable y. Having training set X = {(x1, y1), (x2, y2), ..., (xn, yn)}
for the two-class classification we have Y = {−1, 1}. In the logistic regression
the classification algorithm calculates its prediction as:

a(x) = sign

 n∑
j=1

wjfj(x)− w0

 (2.10)

where wj is a j-th feature weight, w0 is a decision threshold. The task of
training a linear classifier is to adjust the weight vector w from the samples

19

2. Methods and theoretical background

{x1, . . . , xm} ∈ Xn. To do so in logistic regression the problem of empirical
risk minimization is solved with a special type of loss function:

Q(w) =
n∑

i=1
ln(1 + exp(−yi (xi · w)))→ min

w
(2.11)

After appropriate w is found, it is possible not only to compute classifi-
cation sign(x · w − θ) for any object x, where θ is a threshold that we can
use to adjust the tpr/fpr according to the requirements, but also to estimate
posterior probabilities its belonging to classes:

P (y|xi) = σ(y(xi · w)) (2.12)

where y ∈ Y and σ(z) = 1
1+exp(−z) is sigmoid function [53].

Multinomial logistic regression This method generalizes binary logistic
regression to the multiclass problem, i.e. with more than two target outcomes.
To extend binary model to multinomial model, one can imagine, for K possible
classes, we run K-1 independent binary logistic regression models, in which
one class K is fixed as pivot and then the other K-1 classes are separately
regressed against chosen pivot outcome [?]. For instance, if outcome Kp s
chosen as the pivot, we will calculate for each other class K∈ {0, . . . ,K − 1}:

ln
(

P (Yi=K)
P (Yi=Kp)

)
= βi ·Xi,where Xi,βi are set of regression coefficients (each

set βi corresponds to each possible outcome) and feature vector, respectively.After
exponentiating both sides and from the assumption that probabilities sum up
to one [1], we get:

P (Yi = Kp) = exp(βK ·Xi)
1 +

∑
k=1 exp(βK ·Xi)

(2.13)

.

2.5.2 K-Nearest Neighbors Classifier

The k-nearest neighbors method is an algorithm for feature classification or
regression. In the case of using the method for classification, the object is
assigned to the class that is the most common among the k neighbors of the
given element, the classes of which are already known, so we assume that
close objects in feature space are similar [13]. The algorithm can be applied
to samples with a large number of attributes (multidimensional). Before the
application, the distance function need to be chosen: Euclidean metric is a
classical choice.

KNN is a distance-based classifier, meaning that we assume that the
smaller the distance between two points, the more similar they are. This
is a supervised learning algorithm, i.e. it each data point must have a corre-
sponding label

20

2.5. Classifiers used in this work

Fit step: KNN stores all the training data points and their labels. No
distances are calculated at this stage.

Predict step: KNN takes a point for which we want to predict its class,
and computes the distances between that point and every other one in the
training set. It then finds the k closest points or neighbors (according to
selected metrics), and examines each neighbor’s label. Then prevalent class
across the neighbors is assigned to the data point.

Changing the value for k and distance function can affect the performance
of the model, so the question is what is the the best value to use for k.

Choice of the number of neighbors k For k = 1, the nearest neighbor
algorithm is unstable to outliers: it incorrectly classifies not only on the outlier
objects themselves, but also on objects of other classes nearest to them. For
k = m, where m is a number of points in the dataset, on the contrary, the
algorithm is overly stable and degenerates into a constant. Thus, extreme
values of k are undesirable. In practice, the optimal value of the parameter k
is determined by the cross-validation criterion, the most often by the means
of decreasing number of neighbors one by one (leave-one-out cross-validation)
[54].

Choice of the metric The choice of the the best metric is depending on
the essence of data and typically is chosen experimentally [12]. In this work
following metrics were used:

• Manhattan distance [9] d(x, y) =
∑

i |xi − yi|

• Euclidean distance [34] d(x, y) =
√∑

i(xi − yi)2

• Chebyshev distance also known as chessboard distance d(x, y) = maxi=1,...,n |xi−
yi|

All of these metrics are special cases of Minkowski distance [47] with varying
exponent c.

d(x, y) = (
n∑

i=1
|xi − yi|c)

1
c (2.14)

if c = 1, we obtain Manhattan metric
if c = 2, we obtain Euclidean metric
if c =∞, we obtain Chebyshev metric.

• Canberra distance [26], a weighted version of Manhattan distance d(x, y) =∑n
i=1

|xi−yi|
|xi|+|yi|

21

2. Methods and theoretical background

Very large datasets The method of the nearest neighbors is based on
the explicit storage of all training objects. Large datasets create technical
problems: it is necessary not only to store a large amount of data, but also
to be able to quickly find among them the nearest neighbors of an arbitrary
data point [54].

The problem is solved in two ways:

• Dataset reduction by removing non-informative objects;

• Efficient data structures are used to quickly find the nearest neighbors
(inter alia, KD trees) [56].

2.5.3 Multilayer Perceptron Classifier

2.5.3.1 Definition

Perceptron is an attempt to simulate the biological neuron behavior suggested
by Frank Rosenblatt in 1958 [43].

A multilayer perceptron (MLP) is a class of feedforward artificial neural
networks consisting of at least three layers: input, hidden, and output. Except
for the input neurons, all neurons use a non-linear activation function. MLP
training uses supervised learning and backpropagation algorithm based on the
chain rule. There are various options to choose activation functions. Histori-
cally, sigmoidal ones were used: logistic or hyperbolic tangent [24]. Nowadays,
ReLu and its derivatives are the common choice.

MLP has shown the ability to find approximate solutions to extremely
complex problems. Since classification can be considered as a special case
of regression, when the output variable is categorical, classifiers can be built
based on MLP.

Multilayer perceptron classifier learns the approximation function f : Rn →
Rm, where m,n are input and output vectors dimensions. Given input fea-
ture vector x = x1, ..., xn and output labels y = y1, ..., ym, by optimizing its
weights, classifier learns approximation of the function that minimizes prese-
lected loss L.

Each connection has its own weights w = {w1, ..., wp} and each neuron in
hidden layer takes as input outputs from the previous layer and transforms
their weighted sum with activation function. So output of i-th neuron will be:

xi = σ ·
(
W ixi−1 + bi

)
(2.15)

where σ is devoted to activation function and b is a bias of i-th layer.
According to the Universal Approximation Theorem, proved by George

Cybenko in 1989 [14], claims that an artificial neural network of feedforward
(in which connections do not form cycles) with one hidden layer can approxi-
mate any continuous function of many variables with any accuracy.

The conditions are:

22

2.5. Classifiers used in this work

1. a sufficient number of neurons in the hidden layer,

2. continuous bounded activation function (which was later generalized to
a larger class of functions [49])

2.5.3.2 Activation function

The activation function determines the output value of the neuron depending
on the result of the weighted sum of the inputs and the threshold value. Let’s
take neuron xi from equation 2.15. Expression in parentheses ω can be in range
ω ∈ {−∞,+∞}. How do we decide whether a neuron should be activated?
We are considering an activation pattern since we can draw an analogy with
biology.

Step function The simplest approach is to use a threshold to decide whether
to activate the neuron. If the ω value is greater than a certain threshold value
t, the neuron is considered activated [46]. Otherwise, we say that the neuron
is inactive.

s(ω) =
{

1, if ω > t

0, if ω ≤ t
(2.16)

Despite the simplicity, this function is not applicable in most of the cases
since it can not be used with optimization methods demanding calculation of
the gradient (and they are majority), thus this means that we can not learn
such network effectively.

Linear function A linear function l(ω) = Aω is proportional to the input
ω [46].

This choice of the activation function allows one to obtain a range of values,
and not just a binary response.

Sigmoid
σ(ω) = 1

1 + exp(−ω) (2.17)

is called sigmoid function [46]. It is a popular choice of the activation because
of the following advantages.

First, the sigmoid is nonlinear in nature, and the combination of such
functions also produces a nonlinear function (possibly more complex), so,
we can build more complex functions by stacking layers. This can’t be said
concerning linear activation since combination of linear functions is still linear
function, consequently, no matter how many layers we have, the output is
linearly dependent on input.

The sigmoid is a smooth function, thus it has a well-defined gradient.

23

2. Methods and theoretical background

Sigmoid compresses the (−∞,∞) range to the (0, 1) range, i.e. forces data
to have a "reasonable scale", in contrast to the linear function.

Mentioned earlier universal approximation theorem was proven for sigmoid
function.

The sigmoid is still one of the the most frequent activation functions in
neural networks, however, it has drawbacks that are worth paying attention
to.

The sigmoid is bounded function, thus its derivative is close to zero since:

lim
x→∞

σ(x) = 1

lim
x→−∞

σ(x) = 0

This, in turn, leads to vanishing gradient problem. Since the gradients
are multiplied by the sigmoid derivative at each layer, the gradients for layers
farther from the input layer become very close to zero. In other words, only
a few last layers of the neural network are actually learn.

Hyperbolic tangent Another commonly used activation function is the
hyperbolic tangent.

The hyperbolic tangent is very similar to the sigmoid. Indeed, it is an
adjusted sigmoid function [46].

tanh(x) = 2σ(2x)− 1 (2.18)

Therefore, this function has the same characteristics as the sigmoid dis-
cussed earlier. Its nature is non-linear, it works well for a combination of
layers, and the range of values of the function is (−1, 1). However, it is worth
noting that the gradient of the tangential function is greater than that of the
sigmoid (the derivative is steeper). Like the sigmoid, the hyperbolic tangent
still prone to vanishing gradient problem.

ReLu
relu(x) = max(0, x) (2.19)

ReLu returns x if x is positive, and 0 otherwise [46]. The ReLu range is
[0,∞), that is, activation can “explode”. Due to the fact that ReLu output is
constant for negative values of x, the gradient on this part is 0. Because the
gradient is zero, the weights will not be adjusted during gradient descent. This
means that neurons in this state will not react to changes in the error/input
and will always output 0. This problem is known as Dying ReLu problem.
However, modifications of ReLu that can help overcome this problem exist.
For example, it makes sense to replace the function for x < 0 with a small
slope (Leaky ReLu [46]). For instance, the expression for a linear function is
given by y = 0.01x for x < 0, the line deviates slightly from 0, thus, we get

24

2.5. Classifiers used in this work

a non-zero gradient and the neurons will preserve the ability to update their
weights.

2.5.3.3 Learning

By the learning process we understand adjusting weights of neurons connec-
tions in order to minimize loss function. The the most popular approach is
called gradient descent. It is based on the idea that the sign of the derivative
shows whether the original function increases (the derivative is positive) or
decreases (negative). If the derivative exists and is equal to zero, then we are
at the extremum (saddle point, minimum or maximum). Gradient descent is
based on this property of the derivative. The gradient of a function of several
variables is the vector of its partial derivatives with respect to each of these
variables:

∇L(w1, w2, . . . , wn) =
[
∂L

∂w1
,
∂L

∂w2
, . . . ,

∂L

∂wn

]
(2.20)

In this case, L is the loss function of our machine learning model, and
{w1, ...wn} are the internal parameters (weights) of the model that should
change during its training. The loss function measures the “quality” of the
model; it can be very different depending on the task. For example, for a
model predicting the value of one variable, this might be the square of the
difference between the true value of that variable and the predicted value.

We need to find the global minimum of the loss function in the space
of weights - that is, such values of the weights for which the model will be
optimal. The gradient descent method at each step calculates the gradient at
a given point in the n-dimensional space of the weights and moves to the next
point in the opposite direction of the gradient vector.

Since the majority of the modern neural networks consist of several layers,
and the input of each layer of the network, except for the first one, is the
output of the previous layer, feedforward network is a complex function in
which activation function of neurons of each layer is applied to the output of
the activation function of the previous layer.

To train a neural network, we need to calculate the gradient of its loss
function, that is, a set of derivatives of this function over all the weights of
the network. As it is shown in Figure 2.2, the chain rule allows to represent
the derivative with respect to each weight in the form of a product of simpler
elements (derivatives of the loss function and neuron activation functions by
their parameters), which we can already calculate. This method of calculating
the gradient is called backpropagation.

2.5.4 Decision Tree Classifier

Decision trees are one of the the most powerful predictive analytics tools for
solving classification and regression problems.

25

2. Methods and theoretical background

σ
(∑

i xiwi + b
)

Forward pass
x1

x2

z σ
(∑

i xiwi + b
)

Backward pass
∂L
∂x1

= ∂L
∂z

∂z
∂x1

∂L
∂x2

= ∂L
∂z

∂z
∂x2

∂L
∂z

Figure 2.2: Backpropagation. Forward pass and backward pass.

They are hierarchical tree structures consisting of decision rules like “If ...
then”. The rules are automatically generated during the learning process on
the training set and, since they are formulated almost in natural language, de-
cision trees are more verbalized and interpretable than, i.e., neural networks
[45]. Each feature vector must correspond to a target value since decision
trees are supervised learning models. Moreover, if the target variable is dis-
crete (class label), then the model is called a classification tree, and if it is
continuous, then a regression tree. Actually, the decision tree itself is a method
of representing decision rules in a hierarchical structure consisting of two types
of elements - nodes and leaves. Decision rules are found in the nodes and the
examples are checked for compliance with this rule by any attribute of the
training set.

In the simplest case, as a result of the check, the set of examples found
in the node is divided into two subsets, one of which contains examples that
satisfy the rule, and the other does not.

Then the rule is applied to each subset again and the procedure is recur-
sively repeated until some condition for stopping the algorithm is reached. As
a result, in the last node there is no check and splits, and it is declared a
leaf. The leaf determines the solution for each example that falls into it. For
the classification tree, this is the class associated with the node, and for the
regression tree, the interval of the target variable corresponding to the leaf.
Thus, unlike a node, a leaf does not contain a rule, but a subset of objects
that satisfy all the rules of a branch that ends with a given leaf.

Obviously, to get into a leaf, an example must satisfy all the rules that lie
on the way to that leaf. Since the path in the tree to each leaf is unique, then
each example can fall into only one leaf, which ensures the uniqueness of the
solution.

Algorithms for constructing decision trees are classified as so-called greedy
algorithms. Greedy algorithms are those that assume that locally optimal
solutions at each step (partitions at nodes) lead to an optimal final solution.
In the case of decision trees, this means that if an attribute has been selected
once and partitioned into subsets, then the algorithm cannot go back and
select another attribute that would give a better final partition. Therefore, at
the stage of construction, it cannot be said whether the selected attribute will

26

2.5. Classifiers used in this work

ultimately provide the optimal partitioning.
the most popular algorithms for learning decision trees are based on the

divide and conquer principle. Algorithmically, this principle is implemented as
follows. Let a training set X be given, containing n examples, for each of which
a class label Ci, i ∈ {1, . . . , k} is given, and m attributes Aj , j ∈ {1, . . . ,m}
which are supposed to determine the belonging of an object to a particular
class. Then three cases are possible:

1. All examples of the X set have the same class label Ci (i.e. all training
examples refer to only one class). Obviously, learning in this case does
not make sense.

2. Set Xcontain no examples at all, i.e. is an empty set. In this case, a leaf
will also be created for it (it is pointless to apply the rule to create a
node to an empty set), the class of which will be selected from another
set (for example, the class that is the most often found in the parent
set).

3. Set X contains training examples for more Ci classes. In this case, it
is required to split the X set into subsets associated with the classes.
For this, one of the attributes Aj of the X set is selected, which con-
tains two or more unique values (a1, a2, ..., ap), where p is the number
of unique values for the feature. Then the X set is split into p subsets
(X1, X2, ..., Xp), each of which includes examples, containing the corre-
sponding attribute value. Then the next attribute is selected and the
partitioning is repeated. This procedure will recursively repeat until all
the examples in the resulting subsets are of the same class.

It is worth noting that this is not the only way to divide the training dataset,
random division is often used in which subsets of the train set can intersect,
in particular, this approach is implemented in the sklearn library [40], the
decision tree from which was used in this work.

The procedure described above is the basis of many modern algorithms for
constructing decision trees.

• ID3 (Iterative Dichotomizer 3) is the algorithm that allows working only
with a discrete target variable, therefore, decision trees built using this
algorithm are classifying. The number of descendants in a tree node is
not limited. Can’t work with missing data [7].

• C4.5 is an improved version of the ID3 algorithm, which adds the ability
to work with missing attribute values [31].

• CART (Classification and Regression Tree) is a decision tree learning
algorithm that allows using both discrete and continuous target vari-
ables, that is, to solve both classification problems and regression. The
algorithm builds trees that have only two children at each node [11].

27

2. Methods and theoretical background

2.5.5 Ensemble methods

The next two classifiers are representatives of ensemble methods, a class of
algorithms that are built according to the idea that multiple weak classifiers
can give a good prediction. In this work, we used these methods with decision
trees as weak learners.

2.5.5.1 Bagging Classifier

Bagging (bootstrap aggregating) is a classification technology that uses an en-
semble of algorithms, each of which learns independently [10]. The classifica-
tion result is determined by voting. Bagging allows reducing the classification
error in the case when the variance of the error of the base method is high.

Subspace Bagging Classification Algorithm:

1. It is necessary to divide the feature space into subsets, that is, each
object will be characterized not by one m-dimensional vector of param-
eters, but by several vectors xi,1...xi,l, and the sum of the dimensions
of these vectors cannot exceed m , that is, subspaces cannot intersect.
For this, they resort to expert opinion, the expert identifies semantic
subspaces based on his experience.

2. Each elementary classifier (each algorithm defined on its subspace) is
independently trained. The main sample is classified on each of the
subspaces (also independently).

3. The final decision is made about the belonging of the object to one of
the classes.

Described approach is only one of the possibilities of generating feature sub-
spaces. Others may include random selection of the features so subsets may
intersect.

If all elementary classifiers assigned the same label to an object, then we
assign the object to the selected class. The final decision on whether an object
belongs to a class can be made, for example, by one of the following methods:

1. Plurality: consensus is very rare, therefore the simple majority method is
the most often used. Here, the object is assigned a label of the class that
the most elementary classifiers have defined for it. Should be mentioned
that according to Leung et. al. plurality voting is not always the the
best option [33].

2. Weighing of classifiers: if there is an even number of classifiers, then the
votes can be equally divided, it is still possible that for experts one of the
groups of parameters is more important, then they resort to weighing the
classifiers. That is, when voting, the vote of the classifier is multiplied
by its weight [39].

28

2.5. Classifiers used in this work

2.5.5.2 Gradient Boosting Classifier

Boosting is a procedure for sequentially building a composition of machine
learning algorithms. In this composition each subsequent algorithm seeks to
compensate the error of the composition of all previous algorithms. Boosting
is a greedy algorithm and similarly to bagging uses multiple weak estimators
to find a good solution [37]. These algorithms can be chosen from a wide
variety of models, such as decision trees, regression, classifiers, etc.

One of the disadvantages of boosting is that it can lead to cumbersome
compositions consisting of hundreds of algorithms. Such compositions exclude
the possibility of meaningful interpretation, require large amounts of memory
for storing basic algorithms and a significant amount of time to compute
classifications.

2.5.6 Complexity estimations

Logistic regression classifier Training complexity for logistic regression
with gradient-based optimization: O[(D + 1)cNE], where D is number of
features, c number of classes, N size of a dataset, E number of epochs in
gradient descent [35].

KNN According to [40], there are three variants of the algorithm that use
different data structures. The first one uses brute force and has O[DN] time
complexity, where D is dimension and N number of samples. For the sake
of performance enhancement, there are variants of KNN using different data
structures. With the help of trees, the feature space is divided so there is
no need to calculate all the distances for each point. Since tree construction
takes much less time, it significantly improves performance. For our task, the
"auto" parameter was chosen, for which the the best variant of the algorithm is
automatically selected based on the characteristics of the dataset. According
to the documentation, if the dimension D is greater than 15, then it is too high
for the tree-based algorithms and the classifier chooses the Brute force option,
the execution time of which is not significantly affected by the number of
samples or the number of lines. Based on all of the above, the time complexity
of the KNN is O[DN].

Decision Tree Classifier Scikit-learn uses an optimized version of the
CART algorithm. This algorithm complexity is defined by sorting algorithm
complexity according to [23]. So in case of using Quick Sort, CART complexity
would be on average O[DlogD], where D is dimension.

Bagging and boosting These algorithms are representatives of meta-
learning and their complexity is defined by the complexity of weak learners,
in our case, decision trees.

29

2. Methods and theoretical background

Multilayer perceptron classifier Time complexity of MLP [40] classifier
depends on number of training samples N , number of features D, number
of hidden layers k, each containing h neurons (for simplicity), and output o
neurons. The time complexity of the backpropagation algorithm employed in
neural network training is O[nmhkoi], where i is the number of iterations.
Thus, for given neural network architecture time complexity depends linearly
on input dataset size.

30

Chapter 3
Implementation and evaluation

3.1 Data

NetFlow is a technology introduced by Cisco that allows to monitor the IP
network traffic [30]. A dataset contains data from NetFlow sensors obtained
from Cisco. Each record of the dataset corresponds to a flow at a given
timestamp.

By flows we understand semantically grouped bunch of packets, charac-
teristics of the user session.

By train set we understand data from six-hour observation period.
By test set we understand the data obtained by three hours of observation

during the following day.
Initial dataset contains features described in Table 3.1 and explained in

detail further.
Let’s explain some features more precisely.

cidh feature indicates customer ID. Customer in context of a given system
is a particular company, a client of Cisco Systems. Since it is sensitive
data, the value is hashed.

cuih is a user ID. User is an employee or a device in customer’s network and
is based on the IP address or username used on a device.

sip server IP and our baseline model input. It is mapped to an artificial IP
to protect privacy.

AS autonomous system number (ASN), an administrative entity providing
routing policy to the Internet, mapped to artificial ASN to protect pri-
vacy.

sp server port, a TCP/UDP port on the server to which the request was sent.

country abbreviation of country name of the server IP.

31

3. Implementation and evaluation

Feature name Example Description

cidh ab9098f98e0 ID of network customer

cuih 09832cd098e09a8 user ID

ts 173984023 UNIX time stamp

sip 192.168.1.1 server IP

as 2093 autonomous system number

country GB country code

sp 443 server port

cb 20397 client bytes (sent)

sb 2097 server bytes (received)

ctaflowid 923706382 flow id

host www.2039bc098ef09 hostname

Table 3.1: Feature description

hostname target variable, fully qualified domain name corresponding to given
server IP. Top-level and second-level domains are hashed to preserve
anonymity of customer data.

3.2 Feature extraction and preprocessing

Extraction and correct representation of features is an important and some-
times a vital part of any machine learning task. However, it is also one of the
the most time-consuming parts in learning process because it is difficult and
sometimes impossible to automate this process (e.g., in comparison to hyper-
parameters tuning). Feature extraction allows obtaining additional, implicit
knowledge from the dataset, which can subsequently significantly boost the
model performance. In the case when most of the features are categorical (and
this is just our case), it is also necessary to think about how this data should
be represented to be the model input.

Since the dataset is quite large, feature extraction part was implemented
in PySpark and executed in parallel on Amazon EMR cluster. Extraction
was done for train and test set independently. The extracted features can
be contingently divided into user-specific and company-specific ones. New
features are in particular simple statistics and more detailed explanation can
be seen in Table 3.2.

Next preprocessing technics were applied to the newly obtained set which
included steps:

32

3.2. Feature extraction and preprocessing

Feature Type Description

most freq sip cuih US n most frequent SIP per user

most freq country cuih US n most frequent country per user

most freq as cuih US n most frequent as per user

most freq sp ciuh US n most frequent port per user

nunique sip cuih US # unique SIP per user

num sip cuih h US # unique SIP/hour per user

avg sb cuih US average server bytes per user

avg cb cuih US average client bytes per user

most freq sip cidh CS n most frequent SIP per company

most freq country cidh CS n most frequent country per company

most freq as cidh CS n most frequent as per company

nunique sip cidh CS # unique SIP per company

num cuih cidh h CS # unique users/hour per company

num sip cidh h CS # unique SIP/hour per company

avg sb cidh CS average server bytes per company

avg cb cidh CS average client bytes per company

Table 3.2: Extracted features for n = 3. US – user-specific features, CS –
company-specific features

Scaling: scaling is a useful step when we need to eliminate the influence
of large values. The reason why to do so is that many statistical models
assume that data is normally distributed, therefore if a feature has a variance
that is orders of magnitude larger than others, it might influence the objective
function more and make the estimator work badly and unable to learn from
other features properly. Thus, all numeric features were normalized to zero
mean and unit variance with sklearn Standard Scaler [40], i.e., each feature is
rescaled by subtracting mean and dividing by standard deviation.

Adding new feature is in top: since the dataset is very large and has
millions of records, it is no point in applying one-hot encoding on every cate-
gorical column since it will explode dimensionality. Nevertheless, information
on users and server IP is still useful, and to add it to estimator input, we
suggest introducing a new binary feature called is in top that indicates that
a given entity (country, server IP, etc.) is in top n = 3 respective entities

33

3. Implementation and evaluation

SIP host probability

94.181.12.99 amazon.co.uk 0.33

fit.cvut.cz 0.66

97.237.10.23 mail.google.com 0.5

calendar.google.com 0.5

97.82.109.224 seznam.cz 1

Table 3.3: Example of hostname lookup tables

for given user or company. We performed this step for every the most freq ...
feature and obtained seven more binary columns.

One-hot encoding was made on features for which the number of their
unique values is adequate. One-hot encoding was applied to ports, countries,
and companies resulting in 160 new columns.

After some tests, it was obvious that after introduction is in top feature
and one-hot encoding, the resulting metrics have improved without a notice-
able increase in time and memory consumption. Such improvements can be
explained by introduction of new information and data normalization, which
is useful operation since, in general, most of the modern machine learning
methods require normalized data for correct predictions.

3.3 Experiment methodology

The idea is to understand if there is a point to use contextual features in the
prediction of the most probable SLD or hostname. To estimate the advantages
of contextual data, two models were implemented. For convenience, these
models will be described separately for hostname case and SLD case.

3.3.1 Hostname prediction

Baseline hostname model This model takes as input only server IP (sip)
and returns the most probable hostname for a given server IP. To do so, it
performs calculation of probabilities on the whole training set: P (host|sip).
The examples of such probability tables are shown in Table 3.3.

For the test set, the model f takes as input server IP (sip) and returns the
most probable hostname from the train set host = argmaxhostP (host|sip). If
there is no record with given server IP in train set, the model returns “NA”
prediction as it is shown in Table 3.4. Note that the always returns only the
most probable hostname.

Workflow of the baseline model is schematically shown on Figure 3.1.‘

34

3.3. Experiment methodology

SIP host 1

94.181.12.99 fit.cvut.cz

97.237.10.23 mail.google.com

97.82.109.224 seznam.cz

Table 3.4: Example of hostname predictions in baseline model.

D

0.5

0.5

1

1

4

9

7

Figure 3.1: Baseline model workflow (hostnames)

Extended hostname model Our proposed extended model fe, besides
server IP, takes as input contextual data containing extracted user-specific and
company-specific features, as well as the other standard features listed in Table
3.1. Instead of returning only one the most probable hostname, the extended
model uses lookup table T which again contains calculated probabilities same
as in the baseline model 3.3, but now we return k most probable hostnames.

When talking about prediction of the the most probable hostname in ex-
tended model, for arbitrary number of columns k, we use classifier C to de-
termine in which column of the probability lookup table should we
look for a correct hostname.

By target variable we understand a class h ∈ {h1, . . . , hk+1} which indicate:

1. hk or k-th hostname corresponds to taking hostname from the k-th col-
umn in the lookup table. The first column contains the most probable
hostname, thus, the k-th column contains k-th the most probable host-
name.

2. hk+1 or N-class indicates that there is different traffic type and there
is no correct hostname in probability table and we should not look
for it in this table.

For parameter tuning we were using k = 3 most probable hostnames.
So first of all, it is necessary to modify the train dataset for this task in

order to obtain target variables. This is done by performing the next steps:

1. We derive two tables of approximately same size from initial dataset. For
the first look-up table A, we calculate hostnames and their respective

35

3. Implementation and evaluation

SIP host 1 host 2 host 3 N class

94.181.12.99 True False False False

97.237.10.23 False False True False

97.82.109.224 False False False True

Table 3.5: Example of hostname evaluations.

probabilities for each server IP similar to the baseline model. E.g.:

A = {(sip ((host1, p1), (host2, p2), . . . (hostk, pk)))}

p1 ≥ p2 ≥ . . . ≥ pk∑
pi ≤ 1

.

2. Table B is constructed in such way that we predict k most probable host-
names (host1, host2, . . . , hostk) according to probabilities values from
the table A.

3. Now we can evaluate predictions for each flow by comparing the pre-
dicted i-th i ∈ (1, . . . , k) hostname in the flow with true hostname val-
ues. As a result we get a table with binary values where True means that
prediction was correct and correct value can be found in corresponding
column as it is shown in Table 3.5.

4. Last column N-class represents the situation when there is a different
type of traffic and there is no record for it in the train set and, con-
sequently, no prediction for it. N-class value is True only if all other
classes are False.

5. Our target variable for classifier C is an index of column with the first
correctly predicted hostname (in case when there are more than one
correct columns). More precisely, having a set of possible IP addresses
S, we perform classification g : (S, features) 7→

{
h1

1, . . . , hk, N
}
, where

1, . . . , k represents index of column, while N marks absence of IP address
in the train set, or the situation where classifier g refuses to make the
prediction out of the k available hostnames. In other words, classifier C
takes IP address with user and company features as input and returns
a column index.

36

3.3. Experiment methodology

SIP SLD probability

94.181.12.99 cuni.cz 0.33

cvut.cz 0.66

97.237.10.23 google.com 1

97.82.109.224 seznam.cz 1

Table 3.6: Example of SLD lookup tables

SIP sld 1 sld host1 ... sld 3 sld host3

94.181.12.99 cvut.cz cuni.cz ... NA NA

97.237.10.23 amazon.com google.com ... weather.com office365.com

97.82.109.224 seznam.cz NA ... NA NA

Table 3.7: Example of SLD predictions. There are two sources for SLD pre-
diction: pure SLD and SLD from predicted host.

3.3.2 SLD prediction

Second-level domain is also interesting. The reason is that SLD’s are registered
at domain registrars and paid, any higher-order domain names are the up-to-
the decision of SLD’s owner and free. Additionally, SLD’s can be predicted
more successfully since, for example, multiple hostnames can have the same
second-level domain. A potential extension of this work can be a system that
decides whether it is a point in predicting SLD instead of host.

Baseline SLD model Baseline model for SLD prediction takes as input
server IP (sip) and returns the most probable SLD for given server IP SLD =
argmaxSLDP (SLD|sip). It computes probabilities P (SLD|sip) in the same
manner as for hostnames prediction as it is shown in Table 3.6.

For test set model f takes as input server IP (sip) and returns the most
probable SLD from the train set. If there is no record with a given server IP
in train set, model returns “NA” as it is shown in Table 3.7.

Workflow of SLD baseline model is schematically shown in Figure 3.2.

Extended SLD model Extended model fe for SLD, as well as in case of
hostname prediction uses contextual data as well as extracted user-specific
and company-specific features. Instead of the most probable SLD, it now has
multiple most probable values from two sources: SLD calculated from train
set and SLD obtained from hostnames predictions. In the next paragraph
approach for SLD extended model will be described.

37

3. Implementation and evaluation

D

0.5

0.5

1

1

4

9

7
SLD

SLD
SLD

Figure 3.2: Baseline model workflow (SLD)

As it was mentioned, there are two possibilities to obtain SLD: to pre-
dict it from SLD probability table, or to extract SLD from predicted host-
names. Thus, for the SLD prediction we now define 2k + 1 classes d ∈{
d1, d

h
1 , d2, d

h
2 . . . , dk, d

h
k , N

}
and the model again will answer the question in

which column we should look for the correct SLD. Following columns
contain the next information:

1. dk or sld k corresponds to taking SLD from the k-th column in the SLD
probability table. The first column contains the most probable SLD,
thus, the k-th column contains k-th most probable SLD.

2. dh
k or sld from host k corresponds to taking SLD extracted from the k-th

column in hostname probability table.

3. dk+1 or N class indicates that there is no correct SLD neither in
SLD lookup probability table, nor in hostnames lookup table
(from which we derived SLD) and we should not look for it in these
tables.

For parameter tuning we were using k = 3 most probable SLD and k = 3
SLD’s from hostnames, respectively.

We use the same approach for dataset modification to obtain target vari-
ables as it has been done for hostname prediction. The approach includes the
next steps:

1. We again derive two tables of approximately same size from initial
dataset. For the first table A we calculate each hostname probabili-
ties for each server IP same as it has been done in the baseline model.
E.g.:

A =
{(
sip

(
(sld1, p1), (sldh

1 , p1), . . . , (sld2, pk), (sldh
2 , pk)

))}
,

p1 ≥ p2 ≥ . . . ≥ pk,∑
pi ≤ 1

.

38

3.3. Experiment methodology

SIP sld 1 sld host1 ... sld 3 sld host3 N class

94.181.12.99 True False ... False False False

97.237.10.23 False False ... True False False

97.82.109.224 False False ... False False True

Table 3.8: Example of SLD evaluations.

2. Table B is constructed in such way that we predict k most probable
SLD’s and SLD’s derived from hostnames

(
sld1, sld

h
1 , . . . , sldk, sld

h
k

)
ac-

cording to probabilities values from the table A.

3. Now we can evaluate predictions by comparing them with true SLD
values from table B. As a result we get a table with binary values where
True means that prediction was correct and correct value can be found
in corresponding column as it is shown in Table 3.8.

4. Last column N-class represents the situation when there is a different
type of traffic and there is unknown server IP and there is no record for
it in the train set and, consequently, no prediction for it. N-class value
is True only if all other classes are False.

5. Our target variable for classifier C is an index of column with first
correctly predicted SLD (in case when there are more than one cor-
rect columns). More precisely, having a set of possible IP addresses S,
we perform classification g : (S, features) 7→ {0, 1, . . . , 2k,N}, where
1, . . . , k represents index of column, while N marks absence of IP ad-
dress in the train set or refuse for classification. In other words, classifier
C takes IP address with user and company features as input and returns
a column index.

3.3.3 Experiment summary

1. Experiment goal is to increase accuracy of prediction of baseline model.

2. The key idea is to find the best classifier that will predict column in
which we should look for correct SLD/hostname.

3. Since dataset is large, multiple classifier candidates are compared on
small fraction of data (0.1%).

4. Final evaluation is performed with a classifier C trained on 6 hours of
NetFlow records dataset and tested on 3 hours from the following day.

39

3. Implementation and evaluation

Figure 3.3: Workflow diagram for extended model.

In Figure 3.3 a hostname prediction process is shown schematically for the
better understanding of the workflow. Baseline model accuracy is considered
as a reference result and the purpose of the extended model is to improve
accuracy value 0.81 for SLD prediction and 0.65 accuracy for the hostname
prediction.

3.4 Implementation details

The code is structured as follows:

• feature extraction module (pdnsfeatex package) implemented in PyS-
park. Module contains functions that calculate statistical features

• hostname/SLD prediction module (pdnspred package), containing PDNS
Base predictor class defining common functions for both SLD and host-
name prediction and inherited classes SLDPredictor and HostPredictor
defining task-specific functions. Code style follows the sklearn package
style and its structure can be seen at Figure 3.4.

40

3.5. Experimental part

PDNSBasePredictor

HostPredictor
HostNameResolver

SLDPredictor
SLDNameResolver

BaseEstimator

Figure 3.4: Code structure

Original dataset Subsampled dataset Fraction

Number of cuih(s) 696186 674 0.00097

Number of host(s) 377233 2921 0.00774

Number of cidh(s) 47 46 0.97872

Number of sip(s) 199256 5296 0.02658

Table 3.9: Basic statistics of original dataset and subsampled dataset

3.5 Experimental part

3.5.1 SLD and hostnames prediction

The main task of experimental part is to select the best classifier, which pre-
dicts the output class, corresponding to the column number with the correct
value of the hostname or SLD. For this purpose, the grid search on different
classifiers and hyperparameters was performed. Further, to get statistically
meaningful results, a 5-fold cross-validation was used.

3.5.1.1 Subsampling

Due to the large amount of data, cross-validation was conducted on 0.1% of the
train data, which was obtained by random subsampling of cuih feature (which
corresponds to a user ID). Number of rows in original dataset: 43581438, in
subsampled dataset: 40303.

Before proceeding to the process of cross-validation itself, it was shown that
the distributions of key features of the train dataset and the subsampled one
approximately correspond. Visualizations of initial and subsampled feature
distributions are provided in the Figure 3.5.

41

3. Implementation and evaluation

(a) Number of unique server ports per user ID
(original dataset)

(b) Number of unique server ports per user ID
(subsampled dataset)

(c) Number of unique server IPs per customer
(original dataset)

(d) Number of unique server IPs per customer
(subsampled dataset)

(e) Number of unique hostnames per user ID
(original dataset)

(f) Number of unique hostnames per user ID
(subsampled dataset)

(g) Number of unique countries per user ID
(original dataset)

(h) Number of unique countries per user ID
(subsampled dataset)

Figure 3.5: Distribution comparison. Original train set vs. subsampled train
set
42

3.5. Experimental part

(i) Number of unique countries per customer
(original dataset)

(j) Number of unique countries per customer
(subsampled dataset)

(k) Number of unique AS numbers per user ID
(original dataset)

(l) Number of unique AS numbers per user ID
(subsampled dataset)

(m) Number of unique AS numbers per cus-
tomer (original dataset)

(n) Number of unique AS numbers per cus-
tomer (subsampled dataset)

Figure 3.5: Distribution comparison. Original train set vs. subsampled train
set

43

3. Implementation and evaluation

Classifier Parameters list

Logistic regression C=[0.5, 1, 2]
penalty=[’l1’, ’l2’, ’elasticnet’]
solver=[’lbfgs’, ’sag’, ’newton-cg’]

K-Nearest Neighbors n neighbors=[1,5,10]
algorithm=[’ball tree’, ’kd tree’, ’brute’]
metric=[’manhattan’, ’chebyshev’, ’canberra’]

Multi-layer perceptron hidden layer sizes=[128, [64, 64], [32, 32, 32]]
activation=[’relu’, ’tanh’, ’logistic’]
learning rate=[’adaptive’, ’constant’, ’invscaling’]

Bagging n estimators=[50, 100, 200]
max samples=[0.1, 0.2, 0.5]
max features=[0.3, 0.5, 0.7]

Gradient Boosting n estimators=[50,100,200]
min samples split=[50, 200, 500]
max depth=[5, 8, 12]

Table 3.10: Parameter lists for grid search

3.5.1.2 Grid search

Configurations First of all, let us specify chosen classifiers and hyperpa-
rameters. We have selected 5 classifiers, which are commonly used in different
machine learning applications. This set consists of representatives of different
approaches:

1. Logistic regression classifier

2. K-Nearest Neighbors classifier – a neighbor-based approach

3. Multi-layer perceptron – a representative of classifiers looking for the
separating hyperplane

4. Random forest with bagging and Gradient boosting – representatives of
ensemble methods

For each classifier three hyperparameters and three values of each hyperpa-
rameter were analyzed on 5 folds of subsampled train data. This has been done
for both hostname and SLD prediction tasks. The detailed configurations are
provided in the Table 3.10.

Time estimation Also, with subsampled data it has become possible to
estimate overall time spent by each classifier to process train set of different
sizes (Figure 3.6).

44

3.5. Experimental part

(a) Time, [s]

(b) Time, log10[s]

Figure 3.6: Overall time spent by each classifier depending on number of rows
in train set

In addition to estimation depending on train set size, we analyzed how
each hyperparameter influence total computational time for each classifier.
The most interesting (those, which impact on total time is obvious from visual
representations) are provided in Figure 3.7.

45

3. Implementation and evaluation

(a) Bagging, number of estima-
tors

(b) Bagging, maximum sam-
ples

(c) Bagging, maximum features

(d) MLP, activation (e) Boosting, number of esti-
mators

(f) Boosting, maximal depth

(g) KNN, metric (h) KNN, algorithm (i) Logistic regression classifier,
solver

Figure 3.7: Hyperparameters influencing computational time

Metrics For this task we analyzed following metrics: accuracy, area under
the curve (AUC), and binary metrics such as precision, recall and F1-score
and so-called binary accuracy. Let us explain the nature of these binary
metrics. We reduced our multiclass task to binary problem in the following
way: instead of considering 2n+ 1 (SLD) or n+ 1 (hostnames) we now have:

• class 0 which stands for taking value from probability lookup table (
1 . . . 2n and 1 . . . n classes from multiclass problem form this class),

• class 1 which stands for N-class, which indicates that there is different
type of traffic, so we do not need to use Passive DNS probability lookup
tables.

46

3.5. Experimental part

(a) Logistic regression (b) KNN

(c) MLP (d) Bagging

(e) Gradient Boosting

Figure 3.8: SLD cross-validation AUC

Grid search results The cross-validation AUC scores of each configuration
are represented via boxplots for both SLD (Figure 3.8) and hostnames (Figure
3.9) predictions. Similar boxplots for metrics as accuracy, binary accuracy,
precision, recall and F1-score are provided in the Appendix.

Finally after gathering cross-validation statistics, we were able to deter-
mine the most successful classifiers (by mean value obtained with 5-fold cross-
validation) in terms of each metric, which is represented on Figure 3.10 (SLD)
and Figure 3.11 (hostnames). The most successful instances of these classifiers
are shown in Table 3.11 (SLD) and Table 3.12 (hostnames).

Finding one classifier for final evaluation is challenging: each classifier is
good for the one particular metric. For example, in Figure 3.11, it is obvious
that for F1-score the best option is MLP classifier, while for recall the Gradi-
ent boosting classifier mean score is the highest, however, Logistic regression
classifier gave the best accuracy. All these metrics are important for the task,

47

3. Implementation and evaluation

(a) Logistic regression (b) KNN

(c) MLP (d) Bagging

(e) Gradient Boosting

Figure 3.9: Hostnames cross-validation AUC

Figure 3.10: Most successful SLD classifiers by metric

48

3.5. Experimental part

Precision Recall Bin acc F1 Acc AUC
Classifier

Bagging 7 25 1 19 1 10
GradientBoosting 17 19 8 16 8 15
KNeighbors 0 1 0 11 12 9
LogisticRegression 1 0 5 0 2 7
MLPClassifier 3 9 3 9 3 18

Table 3.11: Most successful SLD instances

Figure 3.11: Most successful hostname classifiers by metric

Precision Recall Bin acc F1 Acc AUC
Classifier

Bagging 5 19 1 19 5 10
GradientBoosting 17 2 26 16 17 15
KNeighbors 0 1 0 9 0 0
LogisticRegression 1 7 1 7 2 4
MLPClassifier 18 3 18 0 18 3

Table 3.12: Most successful instances (host)

49

3. Implementation and evaluation

(a) Hostnames metrics (b) SLD metrics

Figure 3.12: Experiments with different number of classes

so suggested solution is as follows:

1. give each classifier a rank according to next metrics: accuracy, precision,
recall and AUC,

2. for each classifier calculate mean rank,

3. choose classifier with the highest mean rank.

The best classifier according to the mean rank was MLP classifier with hyper-
bolic tangent activation function and one layer with 128 neurons.

3.5.1.3 Experiments with different number of classes

In addition to classifier selection, we carried out the experiments with different
number of classes. Hence, the question is: how many most probable values
should we consider - 3, 5 or 10? Again, the experiments were performed on
a fraction of data (0.1%) and cross-validated metrics (from 5 folds) (Figure
3.12) were compared using the rank approach described earlier.

Results of experiments with different number of classes showed that:

• The optimal number of classes for SLD prediction is 10 classes.

• For hostname prediction all options were equivalent

3.5.1.4 Results

After classifier selection, we applied chosen one to perform calculations on the
whole train set containing around 64 million of records. Due to the large size
of the dataset, the calculation ran only once.

The extended model’s accuracy increased:

• from 65% to 77.4% (std=1.8%) for hostname prediction

50

3.5. Experimental part

(a) ROC curves for each class (b) PR curves for each class

(c) ROC curve for binary case (d) PR curve for binary case

Figure 3.13: SLD. Visualizations of the final metrics

• from 81% to 89.3% (std=2%) for SLD prediction task1.

As we can see, the extended model has demonstrated superiority over the
baseline model, which is especially noticeable for predicting hostnames. In
the case of predicting second-level domains, the difference is slightly smaller,
which can be explained by the fact that this task was initially simpler, since
it is, in a sense, a generalization of the problem of predicting hostnames.
Visualizations of the results can be seen in Figures 3.13 and 3.14.

It is clear from these results that it makes sense to take into account more
than one most probable value.

Experiments have shown that the best number of classes for SLD prediction
task is 10. Thus, we trained the model on the whole train set with specified
number of classes n = 10. The results are provided in Table 3.13 which
contains metrics obtained after averaging 5-fold cross-validation scores.

3.5.2 Risk prediction

Since we have data augmented by feature extraction, the essential decision is
to see what other knowledge about the observed system we can obtain. An

1Standard deviation for both cases is obtained during grid search phase

51

3. Implementation and evaluation

(a) ROC curves for each class (b) PR curves for each class

(c) ROC curve for binary case (d) PR curve for binary case

Figure 3.14: Hostnames. Visualizations of the final metrics

n classes type acc bin acc f1 prec rec roc auc

0 3 sld 0.8935 0.9642 0.0212 0.5270 0.0108 0.7389
0 10 sld 0.8933 0.9586 0.0544 0.6008 0.0285 0.7443

Table 3.13: Comparison of mean SLD metrics for 3 classes and 10 classes

interesting variable in this regard is the variable risk, which indicates how safe
a given IP address in the Cisco gradation is. This variable can take values
from 0 to 9, where 0 indicates the lowest risk and 9, respectively, the highest
(Figure 3.14). To determine the value of risk, we utilized data augmented by
the extracted features.

In the cybersecurity field the very common problem is highly imbalanced
datasets. Thus, a vast majority of records are marked as safe and zero-risk,
while number of cases of real interest (representatives with risk > 0) may be
fractions of a percent. Accordingly, in this case, the accuracy value, say 0.99,
will rather indicate that 99% of the dataset are zero-risk representatives and
the classifier marks all input data as low-risk representatives. To overcome the
issue, a class balancing strategy, Random Under Sampling from imblern [32]
library was applied. The majority class (zero-risk) was undersampled without
replacement. After applying this strategy, a 29 GB dataset was reduced to 40

52

3.5. Experimental part

risk count risk count

0 62593266 5 12

1 0 6 2007

2 0 7 72

3 114 8 3

4 594 9 66

Table 3.14: Number of representatives of each class in the train set

KB (3125 rows). We looked at the problem from three points of view:

Binary:

• risk ∈ {0, . . . , 3} is Legit risk

• risk ∈ {4, . . . , 9} is High risk

Ternary:

• risk ∈ {0, . . . , 3} is Legit risk

• risk ∈ {4, . . . , 6} is Low risk

• risk ∈ {7, . . . , 9} is High risk

Multiclass classification, where we predict the values that are used in the
Cisco dataset:

• risk ∈ {0, . . . , 9} where each risk value is considered as a single class

The grid search was carried out by analogy with the predictions of the host-
names and SLD in the previous section with similar classifiers and their in-
stances. Again, for each number of classes we went through several sets of
hyperparameters and calculated the metrics to find the best model for each
task (Figure 3.15).

Results Results obtained with the best model for binary task, a Gradient
Boosting classifier, are provided in Table 3.15 and Figure 3.16. Hyperparam-
eters are:

• max depth: 8

• min samples split: 50

• n estimators: 200

53

3. Implementation and evaluation

(a) Binary case model selection

(b) Ternary case model selection, weighted metrics

(c) Multiclass case model selection, weighted metrics

Figure 3.15: Metrics comparison
54

3.5. Experimental part

Ternary classification Results obtained with the best model for ternary
task, a Gradient Boosting classifier, are provided in Table 3.16, 3.17 and Figure
3.17. Hyperparameters are:

• max depth: 12

• min samples split: 50

• n estimators: 200

Multiclass

Results obtained with the best model for multiclass task, a Gradient Boosting
classifier, are provided in Table 3.18, 3.19 and Figure 3.18. Hyperparameters
are:

• max depth: 12

• min samples split: 200

• n estimators: 200

55

3. Implementation and evaluation

Precision Recall

1 0.9366 0.9350

Table 3.15: Binary task. Precision and recall. Best model results

(a) ROC curve (b) PR curve

Figure 3.16: Binary task. ROC and PR curves for High risk class. Best model
results

Precision per label Recall per label

0 0.8832 0.8758
1 0.9002 0.9170
2 0.8762 0.8230

Table 3.16: Ternary task. Precision and recall per labels. Best model results.

Metric value

Weighted precision 0.8917
Weighted recall 0.8912

Table 3.17: Ternary task. Weighted precision and recall. Best model results.

56

3.5. Experimental part

(a) ROC curve (b) PR curve

Figure 3.17: Ternary task. ROC and PR curves for all classes. The best
selected model

Precision per label Recall per label

0 0.8730 0.8831
3 0.5933 0.2999
4 0.7158 0.7123
5 0.6000 0.1750
6 0.8692 0.9000
7 0.8528 0.8253
9 0.9200 0.9267

Table 3.18: Multiclass task. Precision and recall per labels. Best model
results.

Metric value

Weighted precision 0.8418
Weighted recall 0.8442

Table 3.19: Multiclass task. Weighted precision and recall. Best model results.

57

3. Implementation and evaluation

(a) ROC curve (b) PR curve

Figure 3.18: Multiclass task. ROC and PR curves. The best selected model

58

Chapter 4
Conclusion

This work was dedicated to the upgrade of the basic passive DNS approach
used in hostname/SLD prediction system in Cisco.

Following steps were taken:

1. Implementation and evaluation of purely probabilistic baseline model to
serve as a reference.

2. Extraction of advanced statistical features from NetFlow data.

3. Grid search on subsampled data over different models and hyperparam-
eters with aim to select the best one for given task.

4. Implementation and evaluation of extended model which combines prob-
abilistic approach with the advanced machine learning technics and uti-
lizes additional knowledge from extracted features.

The implementation was separated into following stages:

• Feature extraction from raw large-scale data implemented in Apache
Spark run on Amazon cluster.

• Baseline and extended model were implemented in Python in scikit-learn
style and packaged to facilitate their use.

The main results of this work are:

• increase in accuracy from 65% to 77.4% for hostname prediction

• increase in accuracy from 81% to 89.3% for SLD prediction task in
comparison to reference model.

• Experiments with different number of classes showed that the optimal
number of SLD values to keep is 10. For hostnames prediction there
were no difference in average metrics for different number of classes.

59

4. Conclusion

Risk prediction Another bunch of experiments were carried out for pre-
diction of the risk variable, which lead to the following results:

• 93.6% precision and 93.5% recall for the binary classification task

• 89.2% weighted precision and 89.1% weighted recall for the ternary
task

• 84.2% weighted precision and 84.5% weighted recall for the multiclass
task.

Possible directions of future work:

• Investigate influence of different splitting strategies of train tables, i.e.,
which part of training dataset to utilize for probability tables building
and which one for the classification.

• To extend model with additional module able to choose, whether to
predict SLD or hostname depending on the input data.

• To apply ordinal regression to predict risk value.

During working on this thesis a valuable experience was gained in sense of
working with large-scale data. The amounts of data made this task unex-
pectedly non-trivial, as it was necessary to keep in mind not only structure of
data and theoretical concepts of machine learning, but also consider the time
and memory complexity of every single operation involved in the process. In
general, work at that scale is qualitatively differs from typical educational
tasks. The outcome of the proposed approach suggests that this concept is
worth further investigation and extension, and potentially can be used in real-
life problem solving in Cisco. Overall, the completion of this thesis gave an
overview and experience with such tools as AWS S3, AWS Elastic Map Re-
duce, Apache Spark and in general with business-oriented environment of the
enterprise.

60

Appendix A
Grid search results

61

A. Grid search results

(a) Logistic regression (b) KNN

(c) MLP (d) Bagging

(e) Gradient Boosting

Figure A.1: SLD cross-validation accuracy

62

(a) Logistic regression (b) KNN

(c) MLP (d) Bagging

(e) Gradient Boosting

Figure A.2: Hostnames cross-validation accuracy

63

A. Grid search results

(a) Logistic regression (b) KNN

(c) MLP (d) Bagging

(e) Gradient Boosting

Figure A.3: SLD cross-validation F1-score

64

(a) Logistic regression (b) KNN

(c) MLP (d) Bagging

(e) Gradient Boosting

Figure A.4: Hostnames cross-validation F1-score

65

A. Grid search results

(a) Logistic regression (b) KNN

(c) MLP (d) Bagging

(e) Gradient Boosting

Figure A.5: SLD cross-validation binary accuracy

66

(a) Logistic regression (b) KNN

(c) MLP (d) Bagging

(e) Gradient Boosting

Figure A.6: Hostnames cross-validation binary accuracy

67

A. Grid search results

(a) Logistic regression (b) KNN

(c) MLP (d) Bagging

(e) Gradient Boosting

Figure A.7: SLD cross-validation precision

68

(a) Logistic regression (b) KNN

(c) MLP (d) Bagging

(e) Gradient Boosting

Figure A.8: Hostnames cross-validation precision

69

A. Grid search results

(a) Logistic regression (b) KNN

(c) MLP (d) Bagging

(e) Gradient Boosting

Figure A.9: SLD cross-validation recall

70

(a) Logistic regression (b) KNN

(c) MLP (d) Bagging

(e) Gradient Boosting

Figure A.10: Hostnames cross-validation recall

71

Appendix B
Files structure

73

B. Files structure

thesis.pdfdiploma thesis in PDF format
pdnsfeatex..................................feature extraction module

requirements.txt............................module dependencies
setup.py ..installation script
scripts folder with demo script

feature extractor.pydemo script
pdnsfeatex module source code

spark functions.pyPySpark functions
pdnspred...prediction module

requirements.txtmodule dependencies
setup.py ..installation script
Pipfileconfig file for pipenv packaging
bootstrap.shscript for environment initialization
pdnspredmodule source code

feature transformer.py........class for extracting new features
hostname resolver.py class containing methods specific for
hostname prediction
host predictor.py main class for predicting hostnames
pdns base predictor.py base class for hostname/SLD predictors
sld predictor.py main class for SLD predictions
sld resolver.pyclass containing methods specific for SLD
prediction
tests/ ...tests

74

Bibliography

[1] Multinomial logistic regression. https://en.wikipedia.org/wiki/
Multinomial_logistic_regression. Accessed: 04.05.2021.

[2] 1cloud company blog. What is DNS? https://1cloud.ru/blog/
chto-takoe-dns. Accessed: 04.05.2021.

[3] Afonja, Tejumade. Accuracy paradox. https://
towardsdatascience.com/accuracy-paradox-897a69e2dd9b. Ac-
cessed: 04.05.2021.

[4] A.Kornienko, I.Slyusarenko. Intrusion detection systems: state of
the art and directions of improvement. http://citforum.ru/security/
internet/ids_overview/. Accessed: 04.05.2021.

[5] Allen, Julia, Christie, Alan, Fithen, William, McHugh, John, and
Pickel, Jed. State of the practice of intrusion detection technologies.
Tech. rep., CARNEGIE-MELLON UNIV PITTSBURGH PA SOFT-
WARE ENGINEERING INST, 2000.

[6] Alowaisheq, Eihal, Tang, Siyuan, Wang, Zhihao, Alharbi, Fatemah,
Liao, Xiaojing, and Wang, XiaoFeng. Zombie Awakening: Stealthy Hi-
jacking of Active Domains through DNS Hosting Referral. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1307–1322. 2020.

[7] Bhardwaj, Rupali and Vatta, Sonia. Implementation of ID3 algorithm.
International Journal of Advanced Research in Computer Science and
Software Engineering, 3(6), 2013.

[8] Bilge, Leyla, Kirda, Engin, Kruegel, Christopher, and Balduzzi,
Marco. EXPOSURE: Finding Malicious Domains Using Passive DNS
Analysis. In Ndss, pp. 1–17. 2011.

75

https://en.wikipedia.org/wiki/Multinomial_logistic_regression
https://en.wikipedia.org/wiki/Multinomial_logistic_regression
https://1cloud.ru/blog/chto-takoe-dns
https://1cloud.ru/blog/chto-takoe-dns
https://towardsdatascience.com/accuracy-paradox-897a69e2dd9b
https://towardsdatascience.com/accuracy-paradox-897a69e2dd9b
http://citforum.ru/security/internet/ids_overview/
http://citforum.ru/security/internet/ids_overview/

Bibliography

[9] Black, Paul E. Manhattan distance”” Dictionary of algorithms and data
structures. http://xlinux. nist. gov/dads//, 2006.

[10] Breiman, Leo. Bagging predictors. Machine learning, 24(2):123–140,
1996.

[11] Breiman, Leo, Friedman, Jerome, Stone, Charles J, and Olshen,
Richard A. Classification and regression trees. CRC press, 1984.

[12] Chomboon, Kittipong, Chujai, Pasapitch, Teerarassamee,
Pongsakorn, Kerdprasop, Kittisak, and Kerdprasop, Nittaya.
An empirical study of distance metrics for k-nearest neighbor algo-
rithm. In Proceedings of the 3rd international conference on industrial
application engineering, pp. 280–285. 2015.

[13] Cover, Thomas and Hart, Peter. Nearest neighbor pattern classifica-
tion. IEEE transactions on information theory, 13(1):21–27, 1967.

[14] Cybenko, George. Approximation by superpositions of a sigmoidal func-
tion. Mathematics of Control, Signals and Systems, 5(4):455–455, 1992.

[15] Davis, Jesse and Goadrich, Mark. The relationship between Precision-
Recall and ROC curves. In Proceedings of the 23rd international confer-
ence on Machine learning, pp. 233–240. 2006.

[16] Denning, Dorothy E. An intrusion-detection model. IEEE Transactions
on software engineering, (2):222–232, 1987.

[17] Dietrich, Christian J, Rossow, Christian, Freiling, Felix C, Bos,
Herbert, Van Steen, Maarten, and Pohlmann, Norbert. On Botnets
that use DNS for Command and Control. In 2011 seventh european con-
ference on computer network defense, pp. 9–16. IEEE, 2011.

[18] Esṕındola, Rogério P and Ebecken, Nelson FF. On extending f-
measure and g-mean metrics to multi-class problems. WIT Transactions
on Information and Communication Technologies, 35, 2005.

[19] Fukuda, Kensuke and Heidemann, John. Detecting malicious activity
with DNS backscatter. In Proceedings of the 2015 Internet Measurement
Conference, pp. 197–210. 2015.

[20] Gallop, Robert J, Crits-Christoph, Paul, Muenz, Larry R, and Tu,
Xin M. Determination and interpretation of the optimal operating point
for ROC curves derived through generalized linear models. Understanding
statistics, 2(4):219–242, 2003.

76

Bibliography

[21] Gasti, Paolo, Tsudik, Gene, Uzun, Ersin, and Zhang, Lixia. DoS and
DDoS in named data networking. In 2013 22nd International Conference
on Computer Communication and Networks (ICCCN), pp. 1–7. IEEE,
2013.

[22] Green, Ian. DNS spoofing by the man in the middle. 2005.

[23] Hlávka, Zdeněk. CART Implementation Issues. https://
www2.karlin.mff.cuni.cz/˜hlavka/vyuka/past/CART_technical.pdf.
Accessed: 02.05.2021.

[24] Hornik, Kurt, Stinchcombe, Maxwell, and White, Halbert. Multi-
layer feedforward networks are universal approximators. Neural networks,
2(5):359–366, 1989.

[25] Impe, Koen Van. How to Use Passive DNS to Inform Your Incident Re-
sponse. https://securityintelligence.com/how-to-use-passive-
dns-to-inform-your-incident-response/. Accessed: 04.05.2021.

[26] Jurman, Giuseppe, Riccadonna, Samantha, Visintainer, Roberto,
and Furlanello, Cesare. Canberra distance on ranked lists. In Pro-
ceedings of advances in ranking NIPS 09 workshop, pp. 22–27. Citeseer,
2009.

[27] Kambourakis, Georgios, Moschos, Tassos, Geneiatakis, Dimitris,
and Gritzalis, Stefanos. Detecting DNS amplification attacks. In In-
ternational workshop on critical information infrastructures security, pp.
185–196. Springer, 2007.

[28] Khalil, Issa, Yu, Ting, and Guan, Bei. Discovering malicious domains
through passive DNS data graph analysis. In Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security,
pp. 663–674. 2016.

[29] Kleinbaum, David G, Dietz, K, Gail, M, Klein, Mitchel, and Klein,
Mitchell. Logistic regression. Springer, 2002.

[30] Konyukhov, Alexandr. NetFlow, Cisco and Traffic Monitoring . https:
//habr.com/en/post/175359/. Accessed: 04.05.2021.

[31] Korting, Thales Sehn. C4. 5 algorithm and multivariate decision trees.
Image Processing Division, National Institute for Space Research–INPE
Sao Jose dos Campos–SP, Brazil, 2006.

[32] Lemâıtre, Guillaume, Nogueira, Fernando, and Aridas, Christos K.
Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced
Datasets in Machine Learning. Journal of Machine Learning Research,

77

https://www2.karlin.mff.cuni.cz/~hlavka/vyuka/past/CART_technical.pdf
https://www2.karlin.mff.cuni.cz/~hlavka/vyuka/past/CART_technical.pdf
https://securityintelligence.com/how-to-use-passive-dns-to-inform-your-incident-response/
https://securityintelligence.com/how-to-use-passive-dns-to-inform-your-incident-response/
https://habr.com/en/post/175359/
https://habr.com/en/post/175359/

Bibliography

18(17):1–5, 2017.
URL http://jmlr.org/papers/v18/16-365.html

[33] Leung, Kelvin T and Parker, D Stott. Empirical comparisons of vari-
ous voting methods in bagging. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining, pp.
595–600. 2003.

[34] Liberti, Leo, Lavor, Carlile, Maculan, Nelson, and Mucherino,
Antonio. Euclidean distance geometry and applications. SIAM review,
56(1):3–69, 2014.

[35] Maszke, Szymon. What is the Search/Prediction Time Complexity
of Logistic Regression? https://stackoverflow.com/questions/
54238493/what-is-the-search-prediction-time-complexity-of-
logistic-regression/54239814. Accessed: 02.05.2021.

[36] Moubayed, Abdallah, Injadat, MohammadNoor, Shami, Abdallah,
and Lutfiyya, Hanan. Dns typo-squatting domain detection: A data
analytics & machine learning based approach. In 2018 IEEE Global Com-
munications Conference (GLOBECOM), pp. 1–7. IEEE, 2018.

[37] Natekin, Alexey and Knoll, Alois. Gradient boosting machines, a tu-
torial. Frontiers in neurorobotics, 7:21, 2013.

[38] Nazario, Jose and Holz, Thorsten. As the net churns: Fast-flux botnet
observations. In 2008 3rd International Conference on Malicious and
Unwanted Software (MALWARE), pp. 24–31. IEEE, 2008.

[39] Onan, Aytuğ, Korukoğlu, Serdar, and Bulut, Hasan. A multiob-
jective weighted voting ensemble classifier based on differential evolution
algorithm for text sentiment classification. Expert Systems with Appli-
cations, 62:1–16, 2016.

[40] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss,
R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., and Duchesnay, E. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[41] Powers, David MW. Evaluation: from precision, recall and F-measure
to ROC, informedness, markedness and correlation. arXiv preprint
arXiv:2010.16061, 2020.

[42] RADER, Ross. One history of DNS. Byte. org, 2006.

78

http://jmlr.org/papers/v18/16-365.html
https://stackoverflow.com/questions/54238493/what-is-the-search-prediction-time-complexity-of-logistic-regression/54239814
https://stackoverflow.com/questions/54238493/what-is-the-search-prediction-time-complexity-of-logistic-regression/54239814
https://stackoverflow.com/questions/54238493/what-is-the-search-prediction-time-complexity-of-logistic-regression/54239814

Bibliography

[43] Rosenblatt, Frank. The perceptron: a probabilistic model for infor-
mation storage and organization in the brain. Psychological review,
65(6):386, 1958.

[44] Russell, Stuart and Norvig, Peter. Artificial intelligence: a modern
approach. 2002.

[45] Safavian, S Rasoul and Landgrebe, David. A survey of decision tree
classifier methodology. IEEE transactions on systems, man, and cyber-
netics, 21(3):660–674, 1991.

[46] Sibi, P, Jones, S Allwyn, and Siddarth, P. Analysis of different ac-
tivation functions using back propagation neural networks. Journal of
theoretical and applied information technology, 47(3):1264–1268, 2013.

[47] Singh, Archana, Yadav, Avantika, and Rana, Ajay. K-means with Three
different Distance Metrics. International Journal of Computer Applica-
tions, 67(10), 2013.

[48] Son, Sooel and Shmatikov, Vitaly. The hitchhiker’s guide to DNS cache
poisoning. In International Conference on Security and Privacy in Com-
munication Systems, pp. 466–483. Springer, 2010.

[49] Sonoda, Sho and Murata, Noboru. Neural network with unbounded ac-
tivation functions is universal approximator. Applied and Computational
Harmonic Analysis, 43(2):233–268, 2017.

[50] Terzi, Duygu Sinanc, Terzi, Ramazan, and Sagiroglu, Seref. Big data
analytics for network anomaly detection from netflow data. In 2017 In-
ternational Conference on Computer Science and Engineering (UBMK),
pp. 592–597. IEEE, 2017.

[51] Torabi, Sadegh, Boukhtouta, Amine, Assi, Chadi, and Debbabi,
Mourad. Detecting Internet abuse by analyzing passive DNS traffic: A
survey of implemented systems. IEEE Communications Surveys & Tuto-
rials, 20(4):3389–3415, 2018.

[52] Vorontsov, Konstantin. Classification. https://bit.ly/2Shut1h. Ac-
cessed: 04.05.2021.

[53] Vorontsov, Konstantin. Logistic Regression. https://bit.ly/
3ulbMb3. Accessed: 04.05.2021.

[54] Vorontsov, Konstantin. Nearest neighbors method. https://bit.ly/
3ekHZKd. Accessed: 04.05.2021.

[55] Weimer, Florian. Passive DNS replication. In FIRST conference on
computer security incident, vol. 98. 2005.

79

https://bit.ly/2Shut1h
https://bit.ly/3ulbMb3
https://bit.ly/3ulbMb3
https://bit.ly/3ekHZKd
https://bit.ly/3ekHZKd

Bibliography

[56] Zhou, Kun, Hou, Qiming, Wang, Rui, and Guo, Baining. Real-time kd-
tree construction on graphics hardware. ACM Transactions on Graphics
(TOG), 27(5):1–11, 2008.

80

