
Instructions

The state-of-the-art methods for distributed Kalman filtering mostly assume spatial homogeneity of 

the state-space models. However, in practice, the distributed network nodes may employ more or less 

different models. The thesis focuses on this case. In particular, the nodes observe a noisy realization of 

a 2D trajectory of a moving target and model it using either (i) the random-walk model, (ii) the 

constant velocity model, or (iii) the constant acceleration model. Naturally, the more complex models 

may work significantly better. The goal of the thesis is to propose a method improving the estimation 

performance and stability under the less complex (underspecified) models by collaboration among 

the nodes.
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Abstrakt

Tato práce se zabývá problémem distribuovaného Kalmanovského filtrování
při částečně heterogenních modelech. Je navrhnuta modifikace existujícího
difuzního Kalmanova filtru, umožňující v difuzních sítích použití částečně he-
terogenních modelů. Výkon méně komplexních modelů je také zvýšen imple-
mentací heuristiky umožńující detekci selhávajících uzlů sítě, selhávající uzly
jsou restartovány a je jim dána šance se zotavit.

Klíčová slova difuzní síť, difuzní odhadování, distribuované odhadování,
odhadování stavu, Kalmanův filtr

Abstract

This thesis explores the problem of distributed Kalman filtering under par-
tially heterogeneous models. A modification to the existing diffusion Kalman
filter is proposed, enabling the employment of partially heterogeneous mod-
els in the diffusion networks. The performance of the less complex models is
futher improved by the implementation of a node failure detection heuristic,
resetting the failling nodes, and giving them a chance at a recovery.
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Introduction

Recently, advances in networked communication and the increasing availabil-
ity of low-cost sensors have drawn an enormous amount of research attention
to the field of distributed estimation. Its wide range of applications include
tracking, navigation, medicine, telecommunications, monitoring, and so on.
There are three main distributed strategies: incremental, consensus, and dif-
fusion. In this thesis, the diffusion strategy will be of particular interest. In a
diffusion network, the nodes only communicate with their adjacent neighbors,
i. e., neighbors within a one-hop distance. The domain of distributed esti-
mation of state-space models has mostly been dominated by the distributed
versions of the Kalman filter [1, 2, 3, 4]. However, they mostly assume spatial
homogeneity of the state-space models. This thesis focuses on the case of par-
tial heterogeneity, where the network may employ models of various levels of
complexity, and the less complex models are submodels of the more complex
models. The goal of the thesis is to propose a collaboration method among
the nodes, which would improve the estimation performance and stability of
the less complex models in the network.

The thesis is organized as follows: Chapter 1 covers the preliminary theory
of sequential estimation of state-space models. Chapter 2 follows by exploring
the available distributed schemes, but then focusing exclusive on the adapt-
then-combine diffusion strategy. Chapter 3 is concerned with the estimation
of linear Gaussian state-space models — leading to the introduction of the
Kalman filter and its distributed diffusion counterpart. Chapter 4 proposes
a modification to the diffusion Kalman filter, enabling collaboration between
nodes employing models of different levels of complexity. In addition, a simple
node failure detection heuristic is proposed to further improve the estimation
performance of the less complex models. Finally, Chapter 5 tests the perfor-
mance of the proposed methods on a couple of simulated examples.
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Chapter 1
Preliminaries

This chapter introduces the reader to the topic of discrete-time state-space
models and the Bayesian approach to their sequential estimation. The linear
model integral to this thesis is shown, and a few basic example models from
the domain of target tracking are given. Finally, the Bayesian approach to
estimation of models belonging to the exponential family is presented.

1.1 State-space model
Consider a discrete-time dynamical system with the latent state xt and an
observable output yt, one way to describe such a system is state-space repre-
sentation:

xt = f(xt−1, ut, wt),
yt = g(xt, vt),

(1.1)

where f and g are known functions, ut — if it exists — is a known input
(control) variable, wt and vt are zero-centered mutually independent noise
variables [3].

Remark. (1.1) is a hidden Markov model (HMM). The hidden state xt is not
directly observable and can only be observed through the noisy output yt.

1.2 Linear state-space model
A linear state-space model is a model in the following form:

xt = Atxt−1 + Btut + wt,

yt = Htxt + vt,
(1.2)

where At, Bt, and Ht are known matrices of compatible dimensions. Noises
wt and vt are zero-mean, mutually independent and identically distributed.
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1. Preliminaries

The linear system is time-invariant if it is described by the above equation
and At = A, Bt = B, and Ht = H, i. e., the matrices At, Bt and Ht do not
vary in time.

1.3 Kinematic models
In this section, the random-walk model (RWM), constant velocity model
(CVM) and constant acceleration model (CAM) are introduced. CVM and
CAM are widely used models derived from the physical equations of motion.
A typical area of application is target tracking, e. g., tracking a moving object
using a noisy remote sensor or tracking a moving object in a video.

The models are introduced using the time-invariant linear state-space
model form (see (1.2)) with observable position and unknown or no input
But, i.e.,

xt = Axt−1 + wt, (1.3)
yt = Hxt + vt. (1.4)

Since this thesis focuses on 2D tracking, the models are presented for two
Cartesian coordinates and independency across coordinates is assumed. In
addition, let us denote WN (0, M) a zero-mean white noise process with co-
variance matrix M .

The derivation of the below models can be found in [5, Sec. 6.1 – 6.3].
More complex mathematical models used for target tracking are described in
[6].

1.3.1 Random-walk model
In the RWM the changes in position

[
x1,t x2,t

]⊺
at each time t are modeled

as a zero-mean white noise. The equations for target dynamics of the RWM
are

x1,t = x1,t−1 + wx1,t,

x2,t = x2,t−1 + wx2,t.
(1.5)

In matrix form (1.3), we have the state vector

xt =
[
x1,t

x2,t

]
,

with the state transition matrix

A =
[
1 0
0 1

]
.

wt is an independent process noise

wt =
[
wx1,t

wx2,t

]
, wt ∼ WN (0, Q),

4



1.3. Kinematic models

with covariance matrix
Q =

[
∆t 0
0 ∆t

]
q̃,

where ∆t is sampling period and q̃ is process noise intensity. The observation
equation is given by (1.4) with the observation matrix

H =
[
1 0
0 1

]
.

The observation noise vt is an independent, zero-mean variable

vt ∼ WN (0, Rt), Rt ∈ R2×2.

An example of a RWM simulated trajectory can be seen in Figure 1.1.

1.3.2 Constant velocity model
This model assumes constant velocity in successive measurements. Changes
in velocity (acceleration) are modeled as a zero-mean white noise. The state
vector has four elements: x1,t and x2,t for target location and vx1,t, vx2,t for
target velocity. The corresponding difference equations are

x1,t = x1,t−1 + vx1,t∆t + wx1,t,

x2,t = x2,t−1 + vx2,t∆t + wx2,t,

vx1,t = vx1,t−1 + wvx1 ,t,

vx2,t = vx2,t−1 + wvx2 ,t.

(1.6)

The equations written in matrix form (1.3), the state vector xt is given by

xt =


x1,t

x2,t

vx1,t

vx2,t

 ,

with the state transition matrix

A =


1 0 ∆t 0
0 1 0 ∆t

0 0 1 0
0 0 0 1

 .

wt is an independent process noise

wt =


wx1,t

wx2,t

wvx1 ,t

wvx2 ,t

 , wt ∼ WN (0, Q),

5



1. Preliminaries
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Figure 1.1: An example of a RWM simulated trajectory
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1.3. Kinematic models

with covariance matrix

Q =


∆3

t
3 0 ∆2

t
2 0

0 ∆3
t

3 0 ∆2
t

2
∆2

t
2 0 ∆t 0
0 ∆2

t
2 0 ∆t

 q̃,

where ∆t is sampling period and q̃ is process noise intensity. The observation
matrix in the observation equation (1.4) is

H =
[
1 0 0 0
0 1 0 0

]
.

The observation noise vt is an independent, zero-mean variable

vt ∼ WN (0, Rt), Rt ∈ R2×2.

1.3.3 Constant acceleration model

Similarly to the previous model, this model assumes constant acceleration
between successive measurements, and changes in acceleration (also known as
”jerk”) are modeled as a zero-mean white noise. In addition to the target
location and velocity, the acceleration components ax1,t and ax2,t are included
in the state vector. The equations for target dynamics are as follows

x1,t = x1,t−1 + vx1,t∆t + 1
2

ax1,t∆2
t + wx1,t,

x2,t = x2,t−1 + vx2,t∆t + 1
2

ax2,t∆2
t + wx2,t,

vx1,t = vx1,t−1 + ax1,t∆t + wvx1 ,t,

vx2,t = vx2,t−1 + ax2,t∆t + wvx2 ,t,

ax1,t = ax1,t−1 + wax1 ,t,

ax2,t = ax2,t−1 + wax2 ,t.

(1.7)

By rewriting these equations into matrix form (1.3), we get the following state
vector

xt =



x1,t

x2,t

vx1,t

vx2,t

ax1,t

ax2,t
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1. Preliminaries

and state transition matrix

A =



1 0 ∆t 0 1
2∆2

t 0
0 1 0 ∆t 0 1

2∆2
t

0 0 1 0 ∆t 0
0 0 0 1 0 ∆t

0 0 0 0 1 0
0 0 0 0 0 1


.

The independent process noise wt is given by

wt =



wx1,t

wx2,t

wvx1 ,t

wvx2 ,t

wax1 ,t

wax2 ,t


, wt ∼ WN (0, Q),

with covariance matrix

Q =



∆5
t

20 0 ∆4
t

8 0 ∆3
t

6 0
0 ∆5

t
20 0 ∆4

t
8 0 ∆3

t
6

∆4
t

8 0 ∆3
t

3 0 ∆2
t

2 0
0 ∆4

t
8 0 ∆3

t
3 0 ∆2

t
2

∆3
t

6 0 ∆2
t

2 0 ∆t 0
0 ∆3

t
6 0 ∆2

t
2 0 ∆t


q̃,

where ∆t is sampling period and q̃ is process noise intensity. The observation
equation is of the usual form (1.4) and

H =
[
1 0 0 0 0 0
0 1 0 0 0 0

]
.

The observation noise vt is an independent, zero-mean variable

vt ∼ WN (0, Rt), Rt ∈ R2×2.

1.4 Bayesian sequential estimation of discrete-time
state-space models

In Bayesian estimation of state-space models, the model (1.1) is reformulated
into conditional probability distribution form [3] with probability density func-
tions (pdfs)

xt|xt−1, ut ∼ π(xt|xt−1, ut), (1.8)
yt|xt ∼ p(yt|xt). (1.9)
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1.4. Bayesian sequential estimation of discrete-time state-space models

The former (1.8) is usually called the state evolution or the state transition
model, the latter (1.9) is the measurement model or the observation model.

The problem of state estimation is to evaluate π(xt|Yt, Ut), the distribu-
tion of xt given observations Yt = {y1, ..., yt} and inputs Ut = {u1, ..., ut}
[7, Chap. 6]. Let the prior pdf of xt−1 be π(xt−1|Yt−1, Ut−1), the Bayesian
sequential (online) estimation runs in two steps:

1. Prediction [8] - the predicted state xt from xt−1 is obtained using the
prior pdf π(xt−1|Yt−1, Ut−1), the state evolution model (1.8) and the
Chapman-Kolmogorov equation as

π(xt|Ut, Yt−1) =
∫

π(xt|xt−1, ut)π(xt−1|Yt−1, Ut−1)dxt−1. (1.10)

2. Update - the distribution π(xt|Ut, Yt−1), now the prior, is updated with
the information about xt from the collected observation yt via the Bayes’
theorem:

π(xt|Yt, Ut) = π(xt|Ut, Yt−1)p(yt|xt)∫
π(xt|Ut, Yt−1)p(yt|xt)dxt

. (1.11)

The problem of the update step is that the posterior pdf is usually not
analytically tractable and has to be approximated, e. g., using Markov chain
Monte Carlo (MCMC) methods, which is not suitable for online sequential
estimation. However, if the observation model p(yt|xt) belongs to the expo-
nential family of distributions and the prior π(xt|Ut, Yt−1) is conjugate to it,
a closed form posterior distribution exists [8, 9, 10].

Definition 1 (Exponential family of distributions). Let yt be a random vari-
able parametrized by vector θt. The distribution of yt belongs to the expo-
nential family if its pdf can be written in the form

f(yt|θt) = h(yt) exp
(
η⊺T −A(η)

)
, (1.12)

where η ≡ η(θt) is the natural parameter, T ≡ T (yt) is a sufficient statistic
which contains all the information yt provides about the parameter θt. h(yt)
is a known function independent of θt, and A(η) is a known log-normalizing
function.

Definition 2 (Conjugate prior). Consider a random variable yt obeying an
exponential family distribution parametrized by θt. The prior distribution of
θt characterized by the hyper-parameters ξt−1 of the same dimension as the
sufficient statistic T and νt−1 ∈ R+ is said to be conjugate to it, if its pdf can
be written in the form

π(θt|ξt−1, νt−1) = q(ξt−1, νt−1) exp
(
η⊺ξt−1 − νt−1A(η)

)
, (1.13)

where q(ξt−1, νt−1) is the normalizing function. The terms A(η) and η are the
same as in the exponential family.

9



1. Preliminaries

Many well-known distributions, such as Bernoulli, multinomial, Poisson,
and gamma, are of the exponential family. For this thesis, the normal distribu-
tion will be of particular interest. The topic of conjugate priors is thoroughly
discussed in [9].

Under conjugacy, the Bayesian update (1.11), which involves multiplying
the model p(yt|xt) with the prior π(xt|Ut, Yt−1), yields the posterior π(xt|Yt, Ut)
of the same type as the prior, its pdf has the hyper-parameters

ξt = ξt−1 + T (yt),
νt = νt−1 + 1,

(1.14)

where T (yt) is the sufficient statistic of the model p(yt|xt), and ξt−1 and νt−1
are the hyper-parameters of the conjugate prior π(xt|Ut, Yt−1). Thus, the
Bayesian update is reduced to a simple update of the conjugate prior’s hyper-
parameters.

10



Chapter 2
Distributed estimation

In recent decades, estimation in decentralized distributed networks has gained
significant research interest due to the increasing availability of low-cost sen-
sors, their versatility, and a diverse range of applications including environ-
mental monitoring, spacecraft navigation, airborne target tracking, applica-
tions in medicine, etc. [11, 12, 13]. Each node in the distributed architecture
communicates only with its directly connected neighbors. Compared to cen-
tralized architectures with one or more information processing nodes (fusion
centers), this approach could decrease the communication burden and provide
improved robustness against node failure. Depending on how nodes commu-
nicate with their neighbors, the distributed information processing schemes
can be classified into three types of strategies: incremental, consensus-based,
and diffusion.

The incremental strategy requires agents1 to be connected in a Hamilto-
nian cycle. This strategy, however, provides limited robustness to node and
link failures as each node and link represent a single point of failure. Ad-
ditionally, recovery from a failure requires finding a new Hamiltonian cyclic
path which is generally an NP-hard problem. Furthermore, the cooperation
between nodes is limited, each node is only allowed to receive information
from one predecessor and share information with one successor [14, 8].

The objective of the consensus-based methods is two-fold: (i) constructing
a local estimate based on its own observations and estimates from its neighbors
and (ii) reach a consensus with neighboring estimators on the state estimate,
e.g., an average value [15, 16]. Communication burden in consensus-based
strategies can be lowered by implementing a gossip protocol, i.e., at a random
time instant, an agent selects a random neighbor and averages or swaps their
local states [17, 18].

In the diffusion strategies, networks are represented by directed or undi-
rected connected graphs with node degrees usually higher than one. Commu-

1in this text, the terms node and agent are used interchangeably
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2. Distributed estimation

nication occurs only locally between adjacent nodes, and no consensus on the
estimate is expected. Conventionally, the diffusion strategy at each time step
runs in two phases - (i) an adaptation phase, the agent obtains its neighbors’
measurements and incorporates them into its local estimate and (ii) a com-
bination phase that merges the neighbors’ estimates [8]. The belief is that
over time the knowledge of each agent is gradually diffused through the whole
network. This thesis adopts Bayesian formulation of the adapt-then-combine
(ATC) diffusion strategy presented in [8].

2.1 Estimation by diffusion
Let us consider a network characterized by a connected undirected graph
with a set of nodes I = {1, 2, ..., I}. Each node i ∈ I is only allowed to
communicate with its adjacent neighbors forming its neighborhood I(i) with
cardinality |I(i)|, also assume that i ∈ I(i). In diffusion networks, there are
two types of information exchange: the exchange of observations is called
the adaptation phase and the exchange of estimates takes place during the
combination phase. Following up on Section 1.4, these phases will be described
below in terms of Bayesian probability theory. Since it is possible to utilize
either one or both phases, we discriminate between four different schemes:
adaptation only (A), combination only (C), adapt-then-combine (ATC), and
combine-then-adapt (CTA). In the sequel, we will mostly focus on the ATC
strategy because it has been shown experimentally in [14] and theoretically in
[8] that it outperforms the CTA scheme.

Remark. The combination-only scheme can be useful, e.g., when the commu-
nication cost of the measurement exchange significantly outweighs the com-
munication cost of the estimate exchange.

2.1.1 Adaptation phase

The goal of this phase is to enrich the statistical knowledge of every node
by incorporating its neighbors’ observations. Fixing a node i ∈ I, node i

acquires observations y
(j)
t from its neighbors j ∈ I(i). Each observation is

independently assigned an adaptation weight cij,t ∈ [0, 1], this expresses the
degree of node i’s belief in jth node’s information. Alternatively, this can be
interpreted as the subjective probability that jth node’s information is true
(from node i’s perspective) [3]. In the context of Bayesian theory, this means
to perform a weighted Bayesian batch update (or |I(i)| weighted Bayesian
sequential updates)

π(i)(xt|Ỹ (i)
t , Ũ

(i)
t ) ∝ π(i)(xt|Ũ (i)

t , Ỹ
(i)

t−1)
∏

j∈I(i)

p(y(j)
t |xt)cij,t . (2.1)

12



2.1. Estimation by diffusion

The ∝ is the proportionality operator, it means equality up to the normaliza-
tion factor. The tilde notation indicates the variables affected by the shared
information. Similarly to (1.14), assuming ξ

(i)
t−1 and ν

(i)
t−1 to be the hyper-

parameters of the prior π(i)(xt|Ũ (i)
t , Ỹ

(i)
t−1), then under conjugacy, the hyper-

parameters of the posterior π(i)(xt|Ỹ (i)
t , Ũ

(i)
t ) are

ξ
(i)
t = ξ

(i)
t−1 +

∑
j∈I(i)

cij,tT (y(j)
t ),

ν
(i)
t = ν

(i)
t−1 +

∑
j∈I(i)

cij,t.
(2.2)

2.1.2 Combination phase

In the ATC scheme, the combination phase now proceeds with the posterior
pdfs produced in the adaptation phase. The objective of the combination
phase is to share and collaboratively improve the estimates of the agents by
merging of the posterior pdfs from the adaptation step [8]. In Bayesian the-
ory, an established measure of discrepancy (divergence) between pdfs is the
Kullback-Leibler divergence (KLD) [19]

DKL(p||q) = Ep(θ)

[
log p(θ)

q(θ)

]
=
∫

θ
p(θ) log p(θ)

q(θ)
dθ, (2.3)

p(θ) and q(θ) are probability density functions.
The goal is to find a final density π̃(i)(·) ≡ π̃(i)(xt|Ỹ (i)

t , Ũ
(i)
t ), such that the

divergence from the densities π(j)(·) ≡ π(j)(xt|Ỹ (j)
t , Ũ

(j)
t ) of all its neighbors

j ∈ I(i) is minimal. In other words, we wish to minimize the loss

∑
j∈I(i)

aij,tDKL

(
π̃(i)(·)

∣∣∣∣∣∣∣∣π(j)(·)
)

, (2.4)

where aij,t ∈ [0, 1] summing to unity are combination weights, expressing node
i’s degree of belief in node j’s information.

The solution and proof of optimality in the KLD sense is given in [8,
Prop. 1] and [10, Prop. 1]; its form is the following:

π̃(i)(xt|Ỹ (i)
t , Ũ

(i)
t ) ∝

∏
j∈I(i)

π(j)(xt|Ỹ (j)
t , Ũ

(j)
t )aij,t . (2.5)

The combination of exponential family densities again leads to an analyt-
ically tractable solution. Assuming conjugate posterior pdfs from the adapta-
tion phase π(j)(·) with hyper-parameters ξ

(j)
t and ν

(j)
t . The combination step

13



2. Distributed estimation

yields a posterior pdf π̃(i)(·) with the hyper-parameters

ξ̃
(i)
t =

∑
j∈I(i)

aij,tξ
(j)
t ,

ν̃
(i)
t =

∑
j∈I(i)

aij,tν
(j)
t .

(2.6)

In the event the ATC strategy is employed, the result of the combination
phase is the final estimation product of the diffusion step at time instant t.
Moreover, it can serve as the prior for the next adaptation phase at t + 1 [8].
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Chapter 3
Diffusion Kalman filter

3.1 Kalman filter
Consider a linear state-space model (1.2) from Section 1.2 driven by mutually
independent normal zero-mean noise variables

wt ∼ N (0, Qt),
vt ∼ N (0, Rt).

Using the Bayesian approach from Section 1.4, we formulate the model in
terms of conditional probability distributions

xt|xt−1, ut ∼ N (Atxt−1 + Btut, Qt), (3.1)
yt|xt ∼ N (Htxt, Rt), (3.2)

where xt ∈ Rn are state vectors, ut ∈ Rn are known inputs, yt ∈ Rk are
observations. At, Bt, and Ht are known matrices of compatible dimensions
and Qt ∈ Rn×n, Rt ∈ Rk×k are covariance matrices. The pdfs of (3.1), (3.2)
are π(xt|xt−1, ut) and p(yt|xt), respectively.

As demonstrated in Section 1.4, the filtration runs in two steps: prediction
and update.

3.1.1 Prediction
The prediction step applies the state evolution model (3.1) to the estimate of
xt−1 according to the Equation (1.10), that is

π(xt|Ut, Yt−1) =
∫

π(xt|xt−1, ut)π(xt−1|Yt−1, Ut−1)dxt−1.

The estimate of xt−1 is represented by a normal prior pdf π(xt−1|Yt−1, Ut−1)
with mean x̂+

t−1 and covariance matrix P +
t−1 (at t = 1 we assume initial state

15



3. Diffusion Kalman filter

x0 ∼ N (x̂+
0 , P +

0 )). Note that the state evolution model (3.1) is also a normal
pdf. As a consequence, the integrand is a product of two normal pdfs, this
results in joint multivariate normal pdf of both xt and xt−1. We can then
use Lemma 2 to get the solution of the integral. As a result of Lemma 2, the
nuisance parameters not relevant to xt are marginalized out. Furthermore,
the result is again a normal pdf π(xt|Ut, Yt−1) with mean x̂−

t and covariance
matrix P −

t given by

x̂−
t = Atx̂

+
t−1 + Btut,

P −
t = AtP

+
t−1A⊺

t + Qt.

3.1.2 Update

The update step incorporates a new measurement yt by means of the Bayes’
theorem as described in (1.11).

We notice that the observation model yt|xt ∼ N (Htxt, Rt). The normal
distribution belongs to the exponential family (see Definition 1) and its pdf
p(yt|xt) can be written in the form

p(yt|xt) = (2π)− k
2 (detRt)− 1

2 exp
{
− 1

2
(yt −Htxt)⊺R−1

t (yt −Htxt)
}

(3.3)

∝ exp
{
− 1

2
Tr
([
−1
xt

] [
−1
xt

]⊺
︸ ︷︷ ︸

η

[
y⊺t
H⊺

t

]
R−1

t

[
y⊺t
H⊺

t

]⊺
︸ ︷︷ ︸

T (yt)

)}
, (3.4)

where (3.4) corresponds to the exponential family form seen in Definition 1.
A simplified notation with the trace operator is used to avoid vectorization of
the involved matrices. The estimate from the prediction step — now the prior
— also happens to be a normal distribution with mean x̂−

t and covariance
matrix P −

t . Its pdf written in the compatible conjugate form (1.13) reads as
follows

π(xt|Ut, Yt−1) ∝ exp
{
− 1

2
Tr
([
−1
xt

] [
−1
xt

]⊺
︸ ︷︷ ︸

η

[
(x̂−

t )⊺
I

]
(P −

t )−1
[
(x̂−

t )⊺
I

]⊺
︸ ︷︷ ︸

ξt−1

)}
.

(3.5)

To get a better understanding of the whole process, let us take a closer
look at the matrices ξt−1 and T (yt).
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3.1. Kalman filter

ξt−1 =
[
(x̂−

t )⊺
I

]
(P −

t )−1
[
(x̂−

t )⊺
I

]⊺
(3.6)

=
[
(x̂−

t )⊺(P −
t )−1x̂−

t (x̂−
t )⊺(P −

t )−1

(P −
t )−1x̂−

t (P −
t )−1

]
, (3.7)

T (yt) =
[

y⊺t
H⊺

t

]
R−1

t

[
y⊺t
H⊺

t

]⊺
(3.8)

=
[

y⊺t R−1
t yt y⊺t R−1

t Ht

H⊺
t R−1

t yt H⊺
t R−1

t Ht

]
(3.9)

We can now perform the hyper-parameter update according to the Formula
(1.14)2 as

ξt = ξt−1 + T (yt) (3.10)

=


(x̂−

t )⊺(P −
t )−1x̂−

t + y⊺t R−1
t yt (x̂−

t )⊺(P −
t )−1 + y⊺t R−1

t Ht

(P −
t )−1x̂−

t + H⊺
t R−1

t yt︸ ︷︷ ︸
(P +

t )−1x̂+
t

(P −
t )−1 + H⊺

t R−1
t Ht︸ ︷︷ ︸

(P +
t )−1

 (3.11)

Recall that under conjugacy, the posterior distribution is of the same type
as the prior distribution. As a result, the posterior is also a normal distribution
with mean x̂+

t and covariance matrix P +
t , we denote its pdf π(xt|Yt, Ut). We

can exploit the blocks of the matrix ξt (3.11) to retrieve the original parameters
of its pdf in this way

P +
t = (ξt;[2,2])−1

=
[
(P −

t )−1 + H⊺
t R−1

t Ht
]−1

= P −
t − P −

t H⊺
t (Rt + HtP

−
t H⊺

t )−1︸ ︷︷ ︸
Kt

HtP
−
t

= (I −KtHt)P −
t

(3.12)

and

x̂+
t =

P +
t︷ ︸︸ ︷

(ξt;[2,2])−1

(P +
t )−1x̂+

t︷ ︸︸ ︷
(ξt;[2,1])

= P +
t

[
(P −

t )−1x̂−
t + H⊺

t R−1
t yt

]
...
= x̂−

t + P +
t H⊺

t R−1
t (yt −Htx̂

−
t ).

(3.13)

2for Kalman filtering, the hyper-parameter ν is of no interest
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3. Diffusion Kalman filter

To obtain (3.12) we used the the matrix inversion lemma3 and Kt is called
the Kalman gain, it is

Kt = P −
t H⊺

t (Rt + HtP
−
t H⊺

t )−1.

In the literature, the update of the mean x̂+
t is usually expressed in terms of

the Kalman gain Kt. The formulation in (3.13) is mathematically equivalent
[20]and will be beneficial later in the derivation of the diffusion Kalman filter.

The above derivation of the update step follows the the approach of K. Dede-
cius in [3, 8]. Reformulating the problem as an update of the conjugate
prior’s hyper-parameters yields arguably an algebraically easier approach to
its derivation than traditional Bayesian approaches (see [7, 21, 22]). There
are a number of mathematically equivalent forms of the Kalman filter, some
of them are given in [20]. Besides that, there are, of course, extensions to the
traditional Kalman filter, where the state evolution and observation models
do not need to be linear functions, e.g., the extended Kalman filter (EKF)
and the unscented Kalman filter (UKF), but they are beyond the scope of
this thesis.

3.2 Diffusion Kalman filter
With the ”traditional” Kalman filter now in place, we can apply the theory
from Section 2.1 to derive the diffusion version of the filter. Suppose a diffusion
network with the node set I, focusing on a fixed node i ∈ I with neighborhood
I(i) (i belongs in I(i) too), the estimation proceeds in three stages: local
prediction, adaptation, and combination. In the local prediction stage, node i
performs a local next state prediction as described in Section 3.1.1:

π(i)(xt|Ũ (i)
t , Ỹ

(i)
t−1) =

∫
π(xt|xt−1, ut) π(i)(xt−1|Ỹ (i)

t−1, Ũ
(i)
t−1)︸ ︷︷ ︸

prior

dxt−1,

where the variables Ỹ
(i)

t−1 and Ũ
(i)
t−1 of the prior represent all the information

available to node i at the time instant t− 1. The result of the local prediction
step is a normal distribution with the transformed mean and covariance matrix

x̂
(i),−
t = Atx̃

(i),+
t−1 + Btut,

P
(i),−
t = AtP̃

(i),+
t−1 A⊺

t + Qt.
(3.14)

3.2.1 Adaptation phase
During the adaptation step, nodes update their estimates by their local and
neighbors’ measurements by virtue of the Bayes’ theorem from (2.1). The

3(A + UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1
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3.2. Diffusion Kalman filter

adaptation step is derived by utilizing the theory developed in Sections 2.1.1
and 3.1.2, it is the distributed counterpart to the local Kalman filter update.

Node i receives observations y
(j)
t from its neighbors j ∈ I(i) (recall that

i ∈ I(i) too). Noting that both the prior and the observation model are again
normally distributed and are thus conjugate, the Formulae (2.1) and (2.2)
can be directly implemented to get the posterior distribution. Similarly to
(3.4) and (3.5), the observation model and the prior can be written in the
exponential family (1.12) and the conjugate prior (1.13) forms, respectively.

p(y(j)
t |xt) ∝ exp

{
− 1

2
Tr
([
−1
xt

] [
−1
xt

]⊺
︸ ︷︷ ︸

η

 (y(j)
t

)⊺(
H

(j)
t

)⊺
(R

(j)
t

)−1
 (y(j)

t

)⊺(
H

(j)
t

)⊺
⊺

︸ ︷︷ ︸
T
(

y
(j)
t

)
)}

(3.15)

π(i)(xt|Ũ (i)
t , Ỹ

(i)
t−1)

∝ exp
{
− 1

2
Tr
([
−1
xt

] [
−1
xt

]⊺
︸ ︷︷ ︸

η

[(
x̂

(i),−
t

)⊺
I

] (
P

(i),−
t

)−1
[(

x̂
(i),−
t

)⊺
I

]⊺
︸ ︷︷ ︸

ξ
(i)
t−1

)}

(3.16)
The problem is again reduced to a simple update of the conjugate prior’s

hyper-parameter ξ
(i)
t−1 by the sufficient statistics T

(
y

(j)
t

)
. Updating the prior’s

hyper-parameters according to (2.2), we get the matrix

ξ
(i)
t = ξ

(i)
t−1 +

∑
j∈I(i)

cij,tT
(
y

(j)
t

)

=
[(

x̂
(i),−
t

)⊺
I

] (
P

(i),−
t

)−1
[(

x̂
(i),−
t

)⊺
I

]⊺

+
∑

j∈I(i)

cij,t

 (y(j)
t

)⊺(
H

(j)
t

)⊺
(R

(j)
t

)−1
 (y(j)

t

)⊺(
H

(j)
t

)⊺
⊺ .

(3.17)

In case the original normal distribution parameters are wanted, they can be
obtained from the blocks of the matrix ξ

(i)
t (similar to Equations (3.12) and

(3.13)), the covariance matrix takes the form

P
(i),+
t =

(
ξ

(i)
t;[2,2]

)−1
=
[
P

(i),−
t +

∑
j∈I(i)

cij,t

(
H

(j)
t

)⊺(
R

(j)
t

)−1
H

(j)
t

]−1

(3.18)
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and the mean

x̂
(i),+
t = P

(i),+
t

(
ξ

(i)
t;[1,2]

)−1
= P

(i),+
t

(
P

(i),+
t

)(−1)
x̂

(i),−
t

...

= x̂
(i),−
t + P

(i),+
t

[ ∑
j∈I(i)

cij,t

(
H

(j)
t

)⊺(
R

(j)
t

)−1(
y

(j)
t −H

(j)
t x̂

(i),−
t

)]
.

(3.19)

3.2.2 Combination phase

The aim of the combination stage is to improve the estimation performance
by the exchange and combination of estimates within local neighborhoods. In
the case of the diffusion Kalman filter, the estimates are represented by the
normal posterior distributions obtained in the adaptation stage (Section 2.1.1)
with pdfs π(j)(xt|Ỹ (j)

t , Ũ
(j)
t ) with means x̂

(j),+
t and covariance matrices P

(j),+
t ,

see Equations (3.19) and (3.18), respectively.
According to (2.5), the optimal way (in the KLD sense) to get the combi-

nation posterior π̃(i)(xt|Ỹ (i)
t , Ũ

(i)
t ) of these densities is the weighted geometric

product

π̃(i)(xt|Ỹ (i)
t , Ũ

(i)
t ) ∝

∏
j∈I(i)

π(j)(xt|Ỹ (j)
t , Ũ

(j)
t )aij,t

=
∏

j∈I(i)

[
N (x̂(j),+

t , P
(j),+
t )

]aij,t ,
(3.20)

which minimizes the cumulative KLD loss (2.4).
Since the normal distribution belongs to the exponential family (Defini-

tion 1), then by applying (2.6), the product of normal densities is reduced to
a weighted sum of the matrices ξ

(j)
t from the adaptation stage (3.17). As a

result, the matrix ξ̃
(i)
t of the combination posterior takes the form

ξ̃
(i)
t =

∑
j∈I(i)

aij,tξ
(j)
t

=
∑

j∈I(i)

aij,t


(
x̂

(j),+
t

)⊺(
P

(j),+
t

)−1
x̂

(j),+
t

(
x̂

(j),+
t

)⊺(
P

(j),+
t

)−1

(
P

(j),+
t

)−1
x̂

(j),+
t

(
P

(j),+
t

)−1



=


(
x̃

(i),+
t

)⊺(
P̃

(i),+
t

)−1
x̃

(i),+
t

(
x̃

(i),+
t

)⊺(
P̃

(i),+
t

)−1

(
P̃

(i),+
t

)−1
x̃

(i),+
t

(
P̃

(i),+
t

)−1

 .

(3.21)
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Similarly to Equations (3.18) and (3.19), the matrix ξ̃
(i)
t contains the original

normal distribution parameters, a little algebra reveals

P̃
(i),+
t =

[ ∑
j∈I(i)

aij,t

(
P

(j),+
t

)−1]−1
,

x̃
(i),+
t = P̃

(i),+
t

( ∑
j∈I(i)

aij,t

(
P

(j),+
t

)−1
x̂

(j),+
t

)
.

(3.22)

This result is also known as the covariance intersection [23].

Remark. The original diffusion Kalman filter (diffKF), first suggested by the
authors Cattivelli and Sayed in [1], has the same adaptation phase as the
algorithm described above, but chooses to only combine the point estimates
in the combination phase, leaving the associated covariance matrices intact.
This filter was later extended by Hu et al. in [2] by incorporating a procedure
involving covariance intersection, yielding an algorithm equivalent to the one
described above (and in [8]).
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Chapter 4
Distributed Kalman filtering

under partially heterogeneous
models

Assume a diffusion network with nodes i ∈ I. At each discrete time instant
t = 1, 2, ..., network nodes acquire uni- or multivariate noisy observations
y

(i)
t ∈ Rk of a hidden Markov process, nodes may employ different models of

various complexity in their estimation

x
(i)
t = A

(i)
t x

(i)
t−1 + B

(i)
t u

(i)
t + w

(i)
t ,

y
(i)
t = H

(i)
t x

(i)
t + v

(i)
t ,

(4.1)

where x
(i)
t ∈ Rn(i) are state variables and u

(i)
t (if they exists) are known input

variables. While observations y
(i)
t are different for each node, the state-space of

the observations is assumed to be homogeneous. Matrices A
(i)
t , B

(i)
t and H

(i)
t

are known and of compatible dimensions. w
(i)
t are the independent process

noise variables

w
(i)
t ∼ N (0, Q

(i)
t ), Q

(i)
t ∈ Rn(i)×n(i)

.

The observation noise variables v
(i)
t are also zero-mean, independent and iden-

tically distributed with known covariance matrices R
(i)
t

v
(i)
t ∼ N (0, R

(i)
t ), R

(i)
t ∈ Rk×k.

The state-space model from 4.1 can take the form of probability density func-
tions

πi(x(i)
t |x

(i)
t−1, u

(i)
t ) ≡ N (A(i)

t x
(i)
t−1 + B

(i)
t u

(i)
t , Q

(i)
t ), (4.2)

pi(y(i)
t |x

(i)
t ) ≡ N (H(i)

t x
(i)
t , R

(i)
t ). (4.3)
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4. Distributed Kalman filtering under partially heterogeneous
models

Although, in general, the nodes may utilize completely heterogeneous
state-space models, in our example, we will limit ourselves to only partially
heterogeneous state-space models. The nodes of the network employ state-
space models M1, ..., MK , let S1, ..., SK be their respective state-spaces, where
1 ≤ K ≤ |I|. The models are ordered by their increasing level of complexity,
dim(Sk) ≤ dim(Sl), furthermore, Sk ≼ Sl for all k ≤ l, where k, l ∈ K. The ≼
symbol indicates that Sk is a subspace of Sl. In other words, the state-space
of the less complex (or underspecified) models is a subspace of more complex
model state-space. For example, it is easy to see that for the kinematic models
mentioned in Section 1.3

SRWM ≼ SCVM ≼ SCAM

applies. Naturally, in an isolated environment with no collaboration among
the nodes, the estimation performance and stability of the more complex mod-
els is significantly better than that of the underspecified models.

Figures 4.1, 4.3 and 4.5 show the performance of the isolated linear esti-
mators (Kalman filters) in terms of average root mean square error (RMSE)
over 100 independent runs of increasingly complex simulated 2D trajectories.
Figures 4.2, 4.4 and 4.6 show the state and state estimate evolution for the
simulated trajectories. It can be seen, that the RWM estimator’s performance
drastically degrades with the addition of velocity to the simulated trajecto-
ries, the degradation is further amplified with the addition of acceleration.
The CVM estimator handles the simulated CAM trajectories much better,
still, its performance seems to be decreasing over time, albeit at a much lower
rate than that of the RWM estimator. Finally, while the CAM estimator
shows lower performance than the true simulation models in the absence of
acceleration, its performance quickly stabilizes at an acceptable level and does
not drastically degrade over time. This is an expected result, the goal of the
sequel is to propose a method, which improves the estimation performance of
the underspecified models.

The reason why RWM cannot keep up with a trajectory simulated by
CAM lies in its the process noise matrix QRW M . The changes in position x1,t

and x2,t between successive measurements of a CAM trajectory are caused
by three things: (i) process noise, (ii) velocity, and (iii) acceleration. The
RWM completely misses the information about (ii) and (iii), it instead tries
to unsuccessfully attribute all the variations in position to noise. Thus, causing
an early filter failure. On the other hand, the CAM estimator, whose process
noise QCAM takes into account both the velocity and acceleration, has little
to no problems with keeping up. The problem can be somewhat alleviated
for the RWM, provided that the variances of both velocity and acceleration
in the data generating model are low, by using a larger QRW M , i. e., scaling
it by a ”reasonable” constant. In the opposite case, the scaling would have to
be done periodically, e. g., at every time instant t. The effect can be seen in
Figure 4.7.
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Figure 4.1: Decimal logarithm of the average RMSE over 100 independent runs
of state estimates of a RWM trajectory with process noise intensity q̃ = 10
and observation noise standard deviation r = 1.3.
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Figure 4.2: State and state estimate evolution of a randomly selected run for
a RWM trajectory with process noise intensity q̃ = 10 and observation noise
standard deviation r = 1.3.
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Figure 4.3: Decimal logarithm of the average RMSE over 100 independent
runs of state estimates of a CVM trajectory with process noise intensity q̃ =
9.5× 10−5 and observation noise standard deviation r = 1.3.
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Figure 4.4: State and state estimate evolution of a randomly selected run for
a CVM trajectory with process noise intensity q̃ = 9.5×10−5 and observation
noise standard deviation r = 1.3.
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Figure 4.5: Decimal logarithm of the average RMSE over 100 independent
runs of state estimates of a CAM trajectory with process noise intensity q̃ =
9.5× 10−5 and observation noise standard deviation r = 1.3.
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Figure 4.6: State and state estimate evolution of a randomly selected run for
a CAM trajectory with process noise intensity q̃ = 9.5×10−5 and observation
noise standard deviation r = 1.3.
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Figure 4.7: The effect of a larger covariance matrix QRW M on a CAM trajec-
tory with process noise intensity q̂ = 5 · 10−4 and observation std r = 5. The
dotted lines indicates the state estimate, the full file indicates the true value.

4.1 Exponential forgetting

Forgetting methods are often used in Bayesian estimation of time-varying pa-
rameters to stabilize the estimation process and avoid the growing discrepancy
between the model and the true data generating process. The simplest, yet
quite an effective technique is exponential forgetting [21, 24]. In the case of
Kalman filtering, this means flattening of the prior distribution by its expo-
nentiation before performing the prediction step (see Section 3.1.1)

π(xt−1|Yt−1, Ut−1) =
[
π(xt−1|Yt−1, Ut−1)

]λ (4.4)

=
[
N (x+

t−1, P +
t−1)

]λ
, λ ∈ [0, 1]. (4.5)
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Casting the prior in terms of the conjugate hyper-parameters ξt−1 and νt−1
(see Definition 2), this results in

ξt−1 = λξt−1,

νt−1 = λνt−1,
(4.6)

and

ξt−1 = λ

[
(x+

t−1)⊺(P +
t−1)−1x+

t−1 (x+
t−1)⊺(P +

t−1)−1

(P +
t−1)−1x+

t−1 (P +
t−1)−1

]
. (4.7)

From which the conventional parameters of the normal distribution can be
acquired as shown in (3.12) and (3.13). Consequently, the uncertainty associ-
ated with the state estimate is slightly increased in order to suppress possibly
outdated or incompatible incorporated information. Typically, the forgetting
factor λ ∈ [0.95, 1] but because of the possible model misspecification, a lower
value of λ might not be unreasonable.
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Figure 4.8: Evolution of the average RMSE for the RWM estimator with
different values of λ estimating a CAM 2D trajectory.

Figures 4.8, 4.9 and 4.10, 4.11 show the effect of the forgetting factor λ
on the misspecified models. The former show the evolution of average RMSE
and the evolution of state estimates for the isolated RWM, the latter show
the same for the isolated CVM. The average RMSE is calculated over 100 dif-
ferent independently simulated CAM trajectories, whereas the state estimate
evolution is shown for one randomly selected run. The beneficial effect of
the forgetting factor on the underspecified models can be clearly seen. Even
though it cannot compensate for the model misspecification, exponential for-
getting leads to a not insignificant improvement in estimation performance.
On the contrary, in the case of the CAM estimator, the forgetting factor actu-
ally causes slight performance degradation, this is shown in Figure 4.12 (the
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Figure 4.9: State and state estimate evolution of a randomly selected run of
a RWM estimator for various values of λ estimating a 2D CAM trajectory.
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Figure 4.10: Evolution of the average RMSE for the CVM estimator with
different values of λ estimating a CAM 2D trajectory.
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Figure 4.11: State and state estimate evolution of a randomly selected run of
a CVM estimator for various values of λ estimating a 2D CAM trajectory.
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Figure 4.12: Evolution of the average RMSE for the CAM estimator with
different values of λ estimating a CAM 2D trajectory.
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state estimate evolution is omitted). Though this scenario might be rare in
practice, as the estimation and simulation models are identical.

4.2 Estimation by diffusion
The diffusion Kalman filter in Section 3.2 assumes spatial homogeneity of the
state-space models. However, with a few modifications, it can be adapted
to the problem described at the beginning of this chapter. The main steps
remain the same: local prediction, adaptation, and combination.

4.2.1 Local predication
The local prediction step remains mostly unchanged. The nodes i ∈ I locally
perform the next state prediction according to their employed state evolution
model (4.2)

π(i)(x(i)
t |Ũ

(i)
t , Ỹ

(i)
t−1) =

∫
πi(x(i)

t |x
(i)
t−1, u

(i)
t )π(i)(x(i)

t−1|Ỹ
(i)

t−1, Ũ
(i)
t−1)dx

(i)
t−1,

where the variables Ỹ
(i)

t−1, Ũ
(i)
t−1 represent all the available information to the

node i up to the time instant t− 1 about the observation and input variables,
respectively. This yields a normal distribution with the transformed mean and
covariance matrix

x̂
(i),−
t = A

(i)
t x̃

(i),+
t−1 + B

(i)
t u

(i)
t ,

P
(i),−
t = A

(i)
t P̃

(i),+
t−1

(
A

(i)
t

)⊺
+ Q

(i)
t .

(4.8)

4.2.2 Adaptation phase
Since we assume state-space homogeneity of the observation models (4.3),
the adaptation stage from Section 2.1.1, during which nodes update their
estimates by their local and neighbors’ observations, can be straightforwardly
applied to this diffusion estimator. The observations are incorporated by
virtue of the Bayes’ theorem

π(i)(x(i)
t |Ỹ

(i)
t , Ũ

(i)
t ) ∝ π(i)(x(i)

t |Ũ
(i)
t , Ỹ

(i)
t−1)

∏
j∈I(i)

pi(y(j)
t |x

(i)
t )cij,t . (4.9)

The resulting normal distribution has the following covariance matrix P
(i),+
t

and mean x̂
(i),+
t

P
(i),+
t =

[
P

(i),−
t +

∑
j∈I(i)

cij,t

(
H

(i)
t

)⊺(
R

(j)
t

)−1
H

(i)
t

]−1

(4.10)
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x̂
(i),+
t = x̂

(i),−
t + P

(i),+
t

[ ∑
j∈I(i)

cij,t

(
H

(i)
t

)⊺(
R

(j)
t

)−1(
y

(j)
t −H

(i)
t x̂

(i),−
t

)]
.

(4.11)

4.2.3 Combination phase
In the combination phase from Section 3.2.2, the node i acquires the state
estimates π(j)(·) from its adjacent neighbors j ∈ I(i) and combines them using
the covariance intersection, creating a new state estimate π̃(i)(·). The same
philosophy will apply here, however, it would make sense to only incorporate
estimates from models of the same or better complexity, as incorporating
estimates of the underspecified models would most likely lead to degradation of
estimation performance. Let us define the neighborhood I(i)

S ⊆ I(i) containing
only neighbors employing models of the same or better complexity than node
i, i. e., I(i)

S = {k ∈ I(i) : S(i) ≼ S(k)} (and i also belongs in I(i)
S ).

The densities π(j)(·) represent the neighbors’ j ∈ I(i)
S best estimate about

the unknown hidden state x
(j)
t , but node i’s interests lie in estimating the

hidden state x
(i)
t , whose elements are a subset of x

(j)
t , possibly only a proper

subset. The goal of node i is to obtain from π(j)(·) only the probability
distribution of variables contained within x

(i)
t , let us denote this distribution

π
(j)
[i] (·). This is done by means of marginalization.

Lemma 1 (Marginal distribution of a continuous random vector [25]). Con-
sider a random vector X =

[
X1, . . . , Xn

]⊺
with joint probability density func-

tion fX(x1, . . . , xn). Then the marginal distribution of the random vector
X

′ =
[
Xi1 , . . . , Xik

]⊺
, where k ≤ n and 1 ≤ i1 < . . . < ik ≤ n, has the

probability density function

fX′ (xi1 , . . . , xik
) =

∫ +∞

−∞
· · ·
∫ +∞

−∞
fX(x1, . . . , xn)dxj1 . . . dxjn−k

,

where 1 ≤ j1 < . . . < jn−k ≤ n and are different from i1, . . . , ik.

Lemma 1 says that we can get the distribution π
(j)
[i] (·) by integrating π(j)(·)

with respect to all variables except those in x
(i)
t ,

π
(j)
[i] (x(j)

t |Ỹ
(j)

t , Ũ
(j)
t ) =

∫
π(j)(x(j)

t |Ỹ
(j)

t , Ũ
(j)
t )dx

(j)
t,[j−i], (4.12)

where x
(j)
t,[j−i] denotes the state variables of node j of no interest to node

i’s model, i. e., the variables of node j’s state estimate to be marginalized
out. Thanks to the properties of the normal distribution, the integrand at

36



4.2. Estimation by diffusion

(4.12) can be straightforwardly evaluated via Lemma 2. It says that the
undesirable elements of the mean vector x̂

(j),+
t and covariance matrix P

(j),+
t

can be simply discarded, this yields the parameters x̂
(j),+
t,[i] and P

(j),+
t,[i] of the

marginal normal distribution. The [i] subscript notation indicates terms with
variables irrelevant to node i marginalized out. An example follows.

Example. Consider a RWM estimate π(i)(x(i)
t |Ỹ

(i)
t , Ũ

(i)
t ) = N (x̂(i),+

t , P
(i),+
t )

and a CVM estimate π(j)(x(j)
t |Ỹ

(j)
t , Ũ

(j)
t ) = N (x̂(j),+

t , P
(j),+
t ) with

x̂
(i),+
t =

[
x̂

(i)
1,t

x̂
(i)
2,t

]
, P

(i),+
t =

σ
(i)
x̂1,t

0
0 σ

(i)
x̂2,t

 ,

and

x̂
(j),+
t =


x̂

(j)
1,t

x̂
(j)
2,t

v̂
(j)
x1,t

v̂
(j)
x2,t

 , P
(j),+
t =


σ

(j)
x̂1,t

0 σ
(j)
x̂1,t;v̂x1,t

0
0 σ

(j)
x̂2,t

0 σ
(j)
x̂2,t;v̂x2,t

σ
(j)
v̂x1,t;x̂1,t

0 σ
(j)
v̂x1,t

0
0 σ

(j)
v̂x2,t;x̂2,t

0 σ
(j)
v̂x2,t

 .

Then by applying Lemma 2, the marginal distribution

π
(j)
[i] (x(j)

t |Ỹ
(j)

t , Ũ
(j)
t ) =

∫ ∫
π(j)(x(j)

t |Ỹ
(j)

t , Ũ
(j)
t )dv̂

(j)
x1,tdv̂

(j)
x2,t

is also normal, with mean

x̂
(j),+
t,[i] =

[
x̂

(j)
1,t

x̂
(j)
2,t

]
and covariance matrix

P
(j),+
t,[i] =

σ
(j)
x̂1,t

0
0 σ

(j)
x̂2,t

 .

Lemma 2 (Marginal distributions of a multivariate normal distribution [3,
25, 26]). Suppose the following mutlivariate normal random variable X

X =

X1
...

Xn

 ∼ N(
µ1

...
µn

 ,

σ11 . . . σ1n
... . . . ...

σn1 . . . σnn

)

with joint pdf pX(x1, . . . , xn). The marginal distribution of X
′ =

[
Xi1 , . . . , Xik

]⊺
,

where k ≤ n and 1 ≤ i1 < . . . < ik ≤ n,

pX′ (xi1 , . . . , xik
) =

∫ +∞

−∞
· · ·
∫ +∞

−∞
pX(x1, . . . , xn)dxj1 . . . dxjn−k

,
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where 1 ≤ j1 < . . . < jn−k ≤ n and are different from i1, . . . , ik, is a multi-
variate normal distribution

X
′ =

Xi1
...

Xik

 ∼ N(
µi1

...
µik

 ,

σi1i1 . . . σi1ik

... . . . ...
σiki1 . . . σikik

).

Putting it all together, the combination phase then proceeds as follows

π̃(i)(x(i)
t |Ỹ

(i)
t , Ũ

(i)
t ) ∝

∏
j∈I(i)

S

∫
π(j)(x(j)

t |Ỹ
(j)

t , Ũ
(j)
t )︸ ︷︷ ︸

N (x̂(j),+
t ,P

(j),+
t )

aij,t
dx

(j)
t,[j−i] (4.13)

=
∏

j∈I(i)
S

π
(j)
[i] (x(j)

t |Ỹ
(j)

t , Ũ
(j)
t )︸ ︷︷ ︸

N (x̂(j),+
t,[i] ,P

(j),+
t,[i] )

aij,t
, (4.14)

giving us a normal distribution pdf with the following covariance matrix and
mean

P̃
(i),+
t =

[ ∑
j∈I(i)

S

aij,t

(
P

(j),+
t,[i]

)−1]−1
,

x̃
(i),+
t = P̃

(i),+
t

( ∑
j∈I(i)

S

aij,t

(
P

(j),+
t,[i]

)−1
x̂

(j),+
t,[i]

)
.

(4.15)

4.2.4 Filter reset

Another way nodes can exploit the information contained within their neigh-
borhood to further improve their estimation performance is the detection of
possible node failures. Node i could detect its failure by finding inconsistencies
between its own estimate and the estimates of its neighbors, and whenever a
failure is detected, the filter resets itself (and possibly reinitializes itself with
a new initial prior estimate).

In this thesis, the following node failure detection and reset method is
suggested. The node i acquires the estimates π

(j)
[i] (·) ≡ N (x̂(j)

t,[i], P
(j)
t,[i]) from its

neighbors j ∈ I(i)
S \ {i}. It then calculates the centroid x̄

(i)
t either by:

1. the arithmetic mean of π
(j)
[i] (·)’s point estimates x̂

(j)
t,[i]

x̄
(i)
t = 1

|I(i)
S | − 1

∑
j∈I(i)

S \{i}

x̂
(j)
t,[i], (4.16)
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2. the covariance intersection of π
(j)
[i] (·)

P̄
(i)
t =

[ ∑
j∈I(i)

S \{i}

aij,t

(
P

(j)
t,[i]

)−1]−1
,

x̄
(i)
t = P̄

(i)
t

( ∑
j∈I(i)

S \{i}

aij,t

(
P

(j)
t,[i]

)−1
x̂

(j)
t,[i]

)
.

(4.17)

Node failure is then determined by the satisfaction of the condition

∥x̂(i)
t − x̄

(i)
t ∥2 ≥ τr, (4.18)

where τr is an arbitrary user-chosen threshold and ∥·∥2 is the Euclidean norm.
Provided that the above condition is satisfied, the filter is reset and reinitial-
ized as follows:

x̂
(i)
t ← x̄

(i)
t ,

P
(i)
t ← 1

λnr
r

P
(i)
0 ,

(4.19)

where λr ∈ [0, 1] is similar to the forgetting factor λ in Section 4.1, nr is the
number of prior resets and P

(i)
0 is the initial state estimate covariance matrix

set at t = 0. In addition, an optional step can be used if the observation matrix
H

(i)
t is invertible and the condition (4.18) was met. The point estimate x̂

(i)
t is

checked against the latest observation y
(i)
t

∥H(i)
t x̂

(i)
t − y

(i)
t ∥2 ≥ τr. (4.20)

If the condition is satisfied, the filter reinitialization changes to

x̂
(i)
t ←

(
H

(i)
t

)−1
y

(i)
t ,

P
(i)
t ← 1

λnr
r

P̂
(i)
0 .

(4.21)

The whole procedure is summarized in Algorithm 1.
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Algorithm 1: Diffusion node failure detection under partially het-
erogeneous models

Set the reset threshold τr and flattening factor λr. For a fixed node
i ∈ I and time instant t = 1, 2, ..., the node i performs the following:

1. Gather estimates π
(j)
[i] (·) from the neighbors j ∈ I(i)

S \ {i}.

2. Compute the centroid x̄
(i)
t using either Eq. (4.16) or Eq. (4.17).

3. Evaluate the condition (4.18).

4. If satisfied, reinitialize the filter according to Eq. (4.19).

5. (Optional) If condition (4.18) was satisfied and the matrix H
(i)
t

is invertible, evaluate the condition (4.20).

6. (Optional) If satisfied, reinitialize the filter according to Eq.
(4.21).
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4.2. Estimation by diffusion

Algorithm 2: ATC diffusion Kalman filtering under partially het-
erogeneous models

Initialize the agents i = 1, 2, ..., I. Set their prior pdfs N (x̂(i)
0 , P

(i)
0 )

and their λ forgetting factor. Set the adaptation weights cij and com-
bination weights aij . For t = 1, 2, ... and each agent i ∈ I do:
Local prediction:

1. Flatten the prior distributions, Eq. (4.6).

2. Perform prediction of x̂
(i),−
t and P

(i),−
t , Eq. (4.8).

Failure detection:

• Reset the filter in case of node failure, Alg. 1.

Adaptation:

1. Get observations y
(j)
t from neighbors j ∈ I(i).

2. Update the conjugate prior’s hyper-parameter ξ
(i)
t−1 by the suf-

ficient statistics T (y(j)
t ), Eq. (3.17), or in terms of x̂

(i),+
t and

P
(i),+
t , Eqs. (4.11) and (4.10).

Combination:

1. Acquire posterior pdfs from neighbors j ∈ I(i)
S .

2. Combine the acquired posterior pdfs according to (3.21), or in
terms of x̃

(i),+
t and P̃

(i),+
t , Eq. (4.15).
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Chapter 5
Simulation experiments

The performance of the proposed diffusion filter is evaluated on the following
simulation examples. The nodes of the diffusion network observe a noisy
realization of a 2D trajectory. The data is simulated from the initial state
x0 =

[
0 0 0 0 0 0

]⊺
using the CAM, as described in Section 1.3.3, with

q̂CAM = 5 ·10−4, ∆t = 1, and the time-invariant observation noise matrix R =
252 · I2×2, while R is the same for all nodes, each node receives a different set
of measurements. The nodes employ one of the following state-space models
in their estimation:

1. constant acceleration model, Sec. 1.3.3, with the parameters:

x̂0 =
[
0 0 0 0 0 0

]⊺
,

P0 = 1000 · I6×6,

q̂CAM = 5 · 10−4,

λCAM = 1.00,

2. constant velocity model, Sec. 1.3.2, with the parameters:

x̂0 =
[
0 0 0 0

]⊺
,

P0 = 1000 · I4×4,

q̂CV M = 10 · q̂CAM ,

λCV M = 0.95,

3. random-walk model, Sec. 1.3.1, with the parameters:

x̂0 =
[
0 0

]⊺
,

P0 = 1000 · I2×2,

q̂RW M = 20 · q̂CAM ,

λRW M = 0.90,
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5. Simulation experiments

where Id×d is a d × d identity matrix. The threshold for reset was set at
τr = 10.0. For the node i ∈ I, the adaptation weights are

cij =
{

1 j ∈ I(i),

0 j /∈ I(i),

and the combination weights are

aij =


1

|I(i)
S |

j ∈ I(i)
S ,

0 j /∈ I(i)
S .

The results are averaged over 100 independently simulated trajectories for
t = 1, 2, ..., 1000. Figure 5.1 shows one such simulated trajectory.

−2500 −2000 −1500 −1000 −500 0

−12 000

−10 000

−8 000

−6 000

−4 000

−2 000

0

x1,t;y1,t

x
2,

t;y
2,

t

True trajectory
Observations

Figure 5.1: An example of one simulated trajectory, only the first 500 steps
are depicted.

5.1 Example 1: Fixed initialization of nodes
The estimation is run on a network with |I| = 15 nodes, with node degrees
ranging from 4–8 (the average is 6.14). The network consists of 2 RWM nodes,
4 CVM nodes, and 9 CAM nodes. In this example, the network structure
stays fixed between consecutive simulation runs. The network is pictured in
Figure 5.2. The following four strategies were tested: (i) no cooperation,
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5.2. Example 2: Random initialization of nodes

(ii) adapt-then-combine (ATC) without reset, (iii) ATC with reset, centroid
x̄ calculated as the arithmetic mean, Eq. (4.16), and (iv) ATC with reset,
centroid x̄ calculated using covariance intersection, Eq. (4.17), the scenarios
implementing the reset strategy are summarized in Algorithm 2.

Figures 5.3, 5.4, 5.5 and 5.6 show the evolution of RMSE of nodes uti-
lizing the same type of model for the four tested strategies. In the no coop-
eration and, to a lesser extent, ATC-only scenario, the RWM nodes cannot
keep up with the changes in position, caused by the growing velocity and
acceleration, between successive time instants, hence, causing an early filter
divergence. The resetting strategies help the RWM nodes achieve an estima-
tion performance similar to that of the better models, though, at the cost
of a higher communication burden. The performance difference of the two
resetting strategies seems insignificant, at least with the current simulation
configuration. Figures 5.7, 5.8 and 5.9 show that the resetting strategies seem
to only significantly help the RWM nodes, the performance of CVM and CAM
nodes seems largely unaffected. State and state estimate evolution of a few
selected cases are shown in Figures 5.10, 5.11, 5.12 and 5.13. Figure 5.12 is
of particular interest, as it reveals that after a certain point, even the RWM
filter with reset just cannot keep up with the growing changes in position be-
tween successive measurements caused by velocity and acceleration, and keeps
resetting every iteration.

Figure 5.2: The network topology used in the simulation - 2 RWM nodes
(red), 4 CVM nodes (blue) and 9 CAM nodes.

5.2 Example 2: Random initialization of nodes
The second example utilizes the same network topology seen in Figure 5.2.
The number of RWM, CVM and CAM agents stays the same. However,
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5. Simulation experiments
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Figure 5.3: NOCOOP: Fixed initialization. Average RMSE of nodes employ-
ing the same model, averaged over 100 simulations.
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Figure 5.4: ATC(Noreset): Fixed initialization. Average RMSE of nodes em-
ploying the same model, averaged over 100 simulations.
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5.2. Example 2: Random initialization of nodes
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Figure 5.5: ATC+Reset(Amean): Fixed initialization. Average RMSE of
nodes employing the same model, averaged over 100 simulations.
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Figure 5.6: ATC+Reset(CI): Fixed initialization. Average RMSE of nodes
employing the same model, averaged over 100 simulations.
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5. Simulation experiments
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Figure 5.7: Fixed initialization. Average RMSE of RWM nodes, comparison
of strategies.
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Figure 5.8: Fixed initialization. Average RMSE of CVM nodes, comparison
of strategies.
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5.2. Example 2: Random initialization of nodes
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Figure 5.9: Fixed initialization. Average RMSE of CAM nodes, comparison
of strategies.

unlike the first example, where the employed state-space models stay fixed
across simulation runs, here the models are randomly assigned to the nodes
in each simulation run.

We can directly compare Figures 5.4 vs. 5.15, Figures 5.5 vs. 5.16, and
5.6 vs. 5.17 to see the performance difference between fixed versus random
initialization of nodes. In the first case, comparison of ATC-only scenarios, it
seems like the structure of the network in the first example causes divergence
of the RWM filters at a faster rate (note the values on the y-axis). Inter-
estingly, in the reset strategies averaged over 100 random initializations, the
RWM nodes seem to sometimes slightly outperform the more complex mod-
els. What might be happening is that in some network configurations, the
underspecified models actually lower the efficiency of diffusion of information
over the network. This happens in the combination phase due to the one-way
communication between nodes of different levels of complexity. The lower
complexity nodes do not share this information further to their other neigh-
bors if they are of higher complexity, creating a sort of communication ”black
hole”, an extreme example can be seen in Fig. 5.14. Figure 5.18 shows the
state and state estimate evolution for a selected RWM node, unlike Fig. 5.12,
the ”constant resetting at every time step” seems to be delayed, but it still
happens at around t = 200.
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5. Simulation experiments
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Figure 5.10: Evolution of states and state estimates of an isolated RWM node.
Only the first 200 steps are shown to emphasize the differences. (Example 1)
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5.2. Example 2: Random initialization of nodes
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Figure 5.11: Evolution of states and state estimates of a selected RWM node
using the ATC strategy without reset. Only the first 200 steps are shown to
emphasize the differences. (Example 1)
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5. Simulation experiments
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Figure 5.12: Evolution of states and state estimates of a selected RWM node
using the ATC strategy with reset based on distance from the arithmetic
mean centroid, Eq. (4.16). Only the first 200 steps are shown to emphasize
the differences. (Example 1)
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5.2. Example 2: Random initialization of nodes
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Figure 5.13: Evolution of states and state estimates of a selected CVM node
using the ATC strategy with reset based on distance from the arithmetic
mean centroid, Eq. (4.16). Only the first 200 steps are shown to emphasize
the differences. (Example 1)
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5. Simulation experiments
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Figure 5.14: RWM node causing a communication bottleneck for combina-
tion/reset
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Figure 5.15: ATC(Noreset): Random initialization. Average RMSE of nodes
employing the same model, averaged over 100 simulations.
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5.2. Example 2: Random initialization of nodes
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Figure 5.16: ATC+Reset(Amean): Random initialization. Average RMSE of
nodes employing the same model, averaged over 100 simulations.
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Figure 5.17: ATC+Reset(CI): Random initialization. Average RMSE of nodes
employing the same model, averaged over 100 simulations.
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Figure 5.18: Evolution of states and state estimates of a selected RWM node
using the ATC strategy with reset based on distance from the arithmetic
mean centroid, Eq. (4.16). Only the first 200 steps are shown to emphasize
the differences. (Example 2)
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Conclusion

The objective of this thesis was to examine the problem of distributed Kalman
filtering under partially heterogeneous models and propose a collaboration
method, which would improve the estimation performance and stability of
the underspecified models. Another goal was to test the performance of the
suggested method on a concrete example: tracking a moving target in a 2D
space using a network of random-walk model, constant velocity model, and
constant acceleration model nodes.

Chapter 1 introduces the linear state-space model and the Bayesian ap-
proach to its estimation. In Chapter 2 a brief overview of the available dis-
tributed estimation strategies is given, but later focuses mostly on the adapt-
then-combine (ATC) diffusion strategy. Chapter 3 then explores the renowned
Kalman filter and its distributed diffusion counterpart, deriving both of them
using theory from the previous chapters. In Chapter 4 the problem of fil-
tration under partially heterogeneous models is examined, and the issues of
the underspecified models are discussed. A modification to the combination
phase of the diffusion Kalman filter is proposed, providing the underspeci-
fied models a way to extract and incorporate compatible information from
the more complex models. Lastly, a simple node failure detection method is
proposed to further improve the performance of the underspecified models.
Finally, Chapter 5 assesses the performance of the proposed methods on a
couple of simulation examples. Overall, the results suggest an improved per-
formance of the underspecified nodes compared to the no cooperation scenario.
The failure detection and reset mechanism further improves performance of
the underspecified models, although it does add an additional communication
overhead. A possible downside of the proposed methods is also mentioned
— the inclusion of underspecified models in the network may act as a com-
munication bottleneck, slowing down the diffusion of information through the
network.
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Conclusion

Improvements and future work
In Chapter 5, the effects of, e. g., network size, node degree, and number of
RWM/CVM/CAM nodes could have been explored. Besides that, instead of
only uniform combination weights aij , a more elaborate strategy, such as the
one described in [8, Chap. V.] could have been implemented.

Future work could involve filtering under unknown heterogeneous noise
covariance matrices [4], implementation of an adaptive filter to deal with in-
accurate or unknown covariance matrices [27], or utilization of more sophisti-
cated combination strategies [28, 29]. Another interesting question to explore
— is there a way for the agents to improve their performance by incorporat-
ing information from their neighbors employing less complex models? Which
information to incorporate and how?
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Appendix A
Acronyms

ATC adapt-then-combine.

CAM constant acceleration model.

CTA combine-then-adapt.

CVM constant velocity model.

HMM hidden Markov model.

KLD Kullback-Leibler divergence.

MCMC Markov chain Monte Carlo.

pdf probability density function.

RMSE root mean square error.

RWM random-walk model.
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Appendix B
Contents of enclosed CD

readme.txt.........................the file with CD contents description
src.........................................the directory of source codes

thesis...............the directory of LATEX source codes of the thesis
simulations....the directory of simulation source codes of the thesis

text............................................ the thesis text directory
thesis.pdf............................the thesis text in PDF format
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