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Abstrakt

Tato práce staví na publikaci Kędzierského and Radoszewského, kteří po-
psali vylepšené polynomiální algoritmy řešící problém k-přibližných pokrytí
řetězců nad Hammingovou, Levenshteinovou a váženou editační vzdáleností.
Práce tyto algoritmy důkladně popisuje, vysvětluje a poskytuje jiný úhel po-
hledu. Algoritmy jsou implementovány a problémy, které řesí jsou zasazeny
do kontextu dalších pravidelností v řetězcích. Implementce je experimentálně
otestována a jsou popsány hlavní implementační kroky.

Klíčová slova přibližné pravidelnosti, pravidelnost v řetězci, přibližné po-
krytí, rozšířené pokrytí, Levenshteinova vzdálenost, Hammingova vzdálenost,
vážená editační vzdálenost, kvaziperiodicita

Abstract

This thesis builds upon recent findings of Kędzierski and Radoszewski who
presented improved polynomial time algorithms for computing k-approximate
covers of strings under Hamming, Levenshtein and weighted edit distance.
These algorithms are thoroughly described providing explanations from dif-
ferent point of view. The algorithms are implemented and the problems they
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solve are inset into the context of other string regularities. The implemen-
tation is experimentally evaluated alongside with the description of the main
implementation decisions.

Keywords approximate regularities, string regularity, approximate cover,
enhanced cover, Levenshtein distance, Hamming distance, weighted edit dis-
tance, quasiperiodicity
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Introduction

Motivation

The study of regularities in strings is nowadays relevant to various fields of
study including data compression, computer-assisted music analysis or bioin-
formatics.

During biological research large amounts of data is acquired. This data
is further heavily studied therefore it is crucial to come up with faster and more
efficient solutions for understanding and processing its volume. One of the
ways to further analyse the data is to investigate its regularities. The findings
might uncover important underlying relationships of the biologic structures,
that produced the studied data, and can, for example, lead to new medical
discoveries.

Aims and Objectives

The aim of this thesis is to describe, analyse and implement polynomial–time
algorithms for computing regularities in a string. Particularly k–coverage un-
der Hamming and edit distance as well as restricted approximate covers under
edit distance. These algorithms are presented in a 2020 study [1] by Kędzierski
and Radoszewski and improve upon complexities of former solutions.

Implementations are then experimentally evaluated using randomly gen-
erated strings with various parameters.

Lastly, the aim of this thesis is also to thoroughly explain all the terms
and notions of regularities and various distance metrics — Hamming distance,
Levenshtein distance, weighted edit distance — that this thesis builds upon.
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Introduction

Structure
The introduction states the main goals of the thesis and explains why it is cru-
cial to be concerned about string regularities.

First chapter lists all the definitions of terms and notions that are used
throughout the work. Namely various string regularities and metrics.

Second chapter presents different data structures that are the building
blocks for understanding the implementation of the algorithms discussed in
the thesis.

Third chapter describes the algorithms introduced by Kędzierski and Ra-
doszewski [1].

Fourth chapter shows pseudocodes and discusses the implementation of
the algorithms.

Fifth chapter deals with the experimental evaluation of the implemented
algorithms.

The thesis concludes with propositions on future improvements.
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Chapter 1
Definitions and Notions

This chapter lists definitions and notions that are essential to fully understand
the concepts described in this work.

1.1 Strings
Definition 1.1.1 (Alphabet). An alphabet is a non-empty finite set of symbols
denoted by Σ.

Example. Alphabet consisting of three symbols Σ = {a, b, c}

Definition 1.1.2 (String). A string S is an ordered sequence composed of
symbols defined in an alphabet Σ. Length of string S is denoted by |S| and
determines the number of symbols that S is composed of. S is called an empty
string when |S| = 0 and is denoted by ε. The consecutive symbols of S are
denoted by S[0], . . . , S[n− 1] where n = |S|.

Example. S = aaabcabaabbaaab, |S| = 15, S[0] is the first symbol of S equal
to a and S[4] is the fifth symbol of S equal to c.

Definition 1.1.3 (Substring). A string describing the subsequent symbols
in S bounded by and including symbols S[i] and S[j] is called a factor or
substring and is labeled as S[i, j]. For i and j it applies that j ≥ i and
i, j ∈ [0, n− 1]. Length of such substring is |S[i, j]| = j − i + 1.

Example. S = aaabcabaabbaaab where S[4, 8] = cabaa is substring of S.

Definition 1.1.4 (Prefix, suffix). A factor of S is a prefix when i = 0 and
a suffix when j = n− 1.

Example. S = aaabcabaabbaaab with prefix S[0, 4] = aaabc and suffix
S[10, 14] = baaab.
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1. Definitions and Notions

Definition 1.1.5 (Border). Border of S is a string that is both its prefix and
suffix.

Example. S = aaabcabaabbaaab. Border aaab of length 4.

1.2 Metrics
Definition 1.2.1 (Metric). Distance or metric defined on set X is a function

d : X ×X → [0, +∞)

such that for each element x, y, z ∈ X holds:

• Positive definiteness: d(x, y) ≥ 0, d(x, y) = 0 ⇐⇒ x = y,

• Symmetry: d(x, y) = d(y, x),

• Triangular inequality: d(x, y) + d(y, z) ≥ d(x, z). [2]

Algorithms discussed and implemented in this thesis operate with several
metrics that are stated by the following definitions.

Definition 1.2.2 (Hamming distance). Given two strings S, T of equal lengths
(|S| = |T |), Hamming distance d(S, T ) is defined as the number of positions
x such that S[x] ̸= T [x]. [2]

Example. For strings S and T the Hamming distance d(S, T ) = 3.

S = a a a b c a b a a b b a a a b

T = a a a b b b b a a b b a c a b

Definition 1.2.3 (Weighted edit distance). Given two strings S, T minimum
cost of edit operations required to transform S into T is a metric called the
edit distance. Given an alphabet Σ and an empty symbol ε let cost of an
operation be a function c such that for each symbol x, y ∈ Σ

c : x, y → R+
0

Edit operations that are most commonly used

• inserting symbol x — c(ε, x),

• deleting symbol x — c(x, ε),

• substituting symbol x by y — c(x, y), for x = y =⇒ c(x, y) = 0. [3]
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1.2. Metrics

Costs of the operations for all symbols are given by a penalty matrix.
Assigning different weights to different types of operations depending on

their likelihood can be convenient in practice — for example when substituting
symbol a by symbol s. In this case the weight can be set higher than for
substituting symbol a by symbol p as a and s are closer on the keyboard than
a and p so it is more likely that s was mistaken for a.

A well–known dynamic programming algorithm, when given two strings S
and T , can compute the weighted edit distance in O(|S|×|T |). This algorithm
is further described in 2.1.1 and its implementation is presented in 4.2.2

Example. Given an alphabet Σ = {a, b, c}. The cost for substituting the
symbol a with the symbol b is set to c(a, b) = 3, for inserting the symbol b
is set to c(ϵ, b) = 5 and for deleting the symbol b is set to c(b, ϵ) = 1. For
strings S = abcca and T = accbb the weighted edit distance is d(S, T ) = 9.

S =abcc a

T =a ccbb

Definition 1.2.4 (Levenshtein distance). Given two strings S, T , the Leven-
shtein distance is equivalent to the edit distance defined in 1.2.3, such that
when given symbols x, y ∈ Σ where x ≠ y the cost of all operations — insert-
ing, deleting, substituting — is equal to 1. [3]

Example. For strings S = abcca and T = accbb the Levenshtein distance
is d(S, T ) = 3. One of the possible alignments is shown in this example.

S =abcc a

T =a ccbb
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1. Definitions and Notions

1.3 Regularities
Stringology concerns finding patterns and characterizing regularities in strings.
String periodicity is a repeating instance of certain string inside another.
Quasiperiodicity was introduced as an extension to string periodicity. It de-
scribes an irregular periodicity of a string. Basic notions of quasiperiodicity
are cover and seed. This work is primarily focused on and works with covers,
specifically approximate covers. Given a metric d, approximate quasiperiod-
icities are such regularities that allow approximate occurrences in strings with
distances measured by d.

A string S is periodic when it has a period. Period is an initial string P
usually consisting of less characters than S such that it can generate string S
by repeating itself. String that has no period — can not be generated by any
other string consisting of less symbols — is called primitive.

Definition 1.3.1 (Cover). String C is a cover of string S if every position
of S is covered by an occurrence of C in S. Therefore every string S is also
its own cover and every cover of S is also its border that is defined in 1.1.5.
Considering C ̸= S then S is quasiperiodic if C is its cover [4].

Example. All positions of string S = cabcabccabc are covered by C = cabc
and therefore C is a cover of S.

A string is quasiperiodic when it has a cover. Cover is a generalization
of period in such sense that unlike cover, period in a string cannot overlap.
When there exists neither period nor quasiperiod in a string (the string is not
coverable) such string is called superprimitive.

Definition 1.3.2 (Partial cover). String C that is required to cover specified
number l of positions of string S.

Example. For l = 6, ab is a partial cover of string abcabbabb.

Definition 1.3.3 (Enhanced cover). Enhanced cover is a partial cover 1.3.2
which is required to also be a border of string S.

Example. For l = 6, ab is an enhanced cover of string abcabbab.

Definition 1.3.4 (Seed). String C is a seed of string S if and only if C
is a cover of a superstring of S — that is, a cover of string S with allowing
left or right overhangs of C. A suffix of C can therefore be a prefix of S and
prefix of C can be a suffix of S. [5]

Example. Seed of string S = baababaa is string C = aba with left overhang
of a and right overhang of ba.
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1.3. Regularities

The notion of seed is more complicated as far as finding this quasiperi-
odicity in a string is concerned. Unlike for finding covers there is no known
linear time algorithm for finding seeds of a string. Therefore variations of this
problem can be considered for which there have been presented linear time
algorithms [6] — such as left or right seed. These quasiperiodicities describe
such covers for which only left or right overhangs are allowed.

Definition 1.3.5 (k-coverage). A metric d, string S and number k are given.
k-coverage of string S is the number of positions that are covered by k-
approximate occurrences of C with distance under d of at most k. When
k-coverage of C is equal to |S| then C is a k-approximate cover of S (see
1.3.6).

All k-approximate occurrences under metric d of string S in string T are
described by a set of all intervals of where the occurrence of S starts and ends
in T . This is formally denoted by

Occd
k(S, T ) = {[i, j] : d(S, T [i, j]) ≤ k} (1.1)

k-coverage of S in T is then computed as the size of the union of all
occurrences of S in T . Formally

Coveraged
k(S, T ) = |

∪
Occd

k(S, T )| (1.2)

Example. 1-coverage of ba in S = abacabb is 6. 2-coverage of acc in T =
abacabb is 7 and therefore acc is a 2-approximate cover of T because |T | = 7.

Definition 1.3.6 (k-approximate cover). A metric d, string S and number
k are given. String C is a k-approximate cover of S if all positions of S are
covered by k-approximate occurrences of C with distance under d of at most
k. Introduced by Sim et al. in [7]. Formally

Coveraged
k(C, S) = |S|

Example. 1-approximate cover aba of abacabb. 2-approximate cover baa of
baabccaa.

Definition 1.3.7 (Restricted approximate cover). In the context of this thesis
restricted approximate cover of string S is such approximate cover that is also
a substring of S.

Restricted approximate covers are considered because it has been shown
that computing non-restricted approximate covers under weighted edit dis-
tance is an NP-hard problem [7]. In [1] it is shown that also for Hamming
distance it is an NP-hard problem to compute non-restricted approximate
covers.
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1. Definitions and Notions

Definition 1.3.8 (Relaxed approximate cover). String C that does not need
to approximately cover the whole string S and therefore its k-approximate
coverage does not have to be equal to |S|.

Example. aba is a relaxed 1-approximate cover of string acabcbbba.
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Chapter 2
Data structures

This chapter lists and describes all data structures that are needed for im-
plementation of the algorithms presented by Kędzierski and Radoszewski in
[1].

2.1 Edit distance table

Definition 2.1.1 (D-table). [8] D-table is a data structure needed for the
dynamic programming solution of edit distance of two strings S1 of lenght m
and S2 of length n. A cell of the table D[i, j] determines the edit distance
between prefixes S1[0, i], S2[0, j] of the two given strings.

Cost function c as explained in 1.2.3 and strings S1, S2 are given. The
D-table is filled as follows: D[−1,−1] = 0, D[i,−1] = D[i−1,−1] + c(S1[i], ε)
for i ≥ 0, D[−1, j] = D[−1, j − 1] + c(ε, S2[j]) for j ≥ 0 and for i, j ≥ 0

D[i, j] = min(D[i− 1, j − 1] + c(S1[i], S2[j]),
D[i, j1] + c(ε, S2[j]),
D[i1, j] + c(S1[i], ε))

Example. S1 = abacabb, S2 = ababa and the cost of all operations is 1. The
edit distance of S1 and S2 can be found in cell D[6, 4] = 3 in table 2.1.

2.1.1 Complexity

Using this dynamic programming approach, all the cells are computed from
cells that have been computed in the previous iteration. Therefore the results
can be obtained in O(mn) time.

9



2. Data structures

-1 0 1 2 3 4
ε a b a b a

-1 ε 0 1 2 3 4 5
0 a 1 0 1 2 3 4
1 b 2 1 0 1 2 3
2 a 3 2 1 0 1 2
3 c 4 3 2 1 1 2
4 a 5 4 3 2 2 1
5 b 6 5 4 3 2 2
6 b 7 6 5 4 3 3

Table 2.1: D-table for S1 = abacabb and S2 = ababa

2.2 h-wave
In this section we consider D-tables that are computed under Levenshtein
distance (1.2.4).

Definition 2.2.1 (diagonal). A diagonal d is a list of all points (i, j) in the
D-table for which j = d + i applies. Bottom left diagonal is therefore labeled
d = −m and the top right diagonal d = n.

Lemma 2.2.1. [9, p. 4] All values on each diagonal of D are non-decreasing
and always increase by at most one.

∀(i, j) : D[i, j]−D[i− 1, j − 1] ∈ {0, 1}

Lemma 2.2.2. [9, p. 4] Difference between a value on diagonal d and an
adjacent value on diagonal d + 1 (resp. d− 1) is at most one.

∀(i, j) : D[i, j]−D[i− 1, j], D[i, j]−D[i, j − 1] ∈ {−1, 0, 1}

It was stated by Ukkonen [9] that the D-table is directly determined by
the last values h on each diagonal d as 2.2.1 applies for all values in D.

Lemma 2.2.3. There are no h values outside of diagonals [−h...h]. [9]

Definition 2.2.2 (h-wave). [10] Let Lh(d) be the highest row index i of
a point from D on a diagonal d with value h. This point is directly identified
by i as (i, i + d). Formally

Lh(d) = max{i : D[i, i + d] = h}

Knowing 2.2.3 an h-wave Lh is defined as an ordered list of the 2h + 1
furthest h-points on diagonals −h to h.

Lh = [Lh(−h), Lh(−h + 1), ..., Lh(0), ..., Lh(h− 1), Lh(h)]
Lh(d) is set to ∞ in several cases:

10



2.2. h-wave

1. all values on the diagonal d are less than h or

2. Lh(d) = m− 1, D[m− 1, m− 1 + d] = h and D[m− 1, m + d] = h− 1 or

3. Lh(d) = n− 1, D[n− 1− d, n− 1] = h and D[n− d, n− 1] = h− 1

Example. In the example D-table 2.2 the h-values of the following h-waves
for strings S1 = acbbcaca (m = 8) , S2 = abbacacca (n = 9) are highlighted.

• h-points of L1 = [3, 2, 0] are highlighted in green .

• h-points of L2 = [7, 4, 6, 2, 0] are highligted in blue .

• h-points of L3 = [∞,∞, 7, 7, 7, 2, 1] are highlighted in red .

– L3(−3) =∞ because condition 2 applies here:

L3(−3) = 7 = m− 1, D[7, 4] = 3 and D[7, 5] = 2

– L3(−2) =∞ because condition 1 applies here

j -1 0 1 2 3 4 5 6 7 8 ∞
i ε a b b a c a c c a

-1 ε 0 1 2 3 4 5 6 7 8 9
0 a 1 0 1 2 3 4 5 6 7 8
1 c 2 1 1 2 3 3 4 5 6 7
2 b 3 2 1 1 2 3 4 5 6 7
3 b 4 3 2 1 2 3 4 5 6 7
4 c 5 4 3 2 2 2 3 4 5 6
5 a 6 5 4 3 2 3 2 3 4 5
6 c 7 6 5 4 3 2 3 2 3 4
7 a 8 7 6 5 4 3 2 3 3 3
∞ 3 3

Table 2.2: D-table with highlighted h-points

Note. An h-wave for strings S[i, n− 1] and S[j, n− 1] is denoted by Hi,j .

Definition 2.2.3 (Slide function). Given diagonal d and starting row index i
the slide function returns for two substrings of S1 and S2 the maximum index
q for which all symbols of the substrings S1[i, q] and S2[i + d, q + d] are equal.
Formally:

Slided(i) = max{q : S1[i, q] = S2[i + d, q + d]}

Slide function essentially finds the index of the next h-point on diagonal d.
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2. Data structures

2.2.1 Computing h-wave
An h-wave is computed by induction from (h− 1)-wave using the formula:

∀h > 0 : Lh(d) = Slided

(
max


Lh−1(d + 1) + 1, ifd < h

Lh−1(d) + 1, always

Lh−1(d− 1), ifd > −h

)

The initial step of the induction is simply computing the 0-wave consisting
of a single point L0 = [Slide0(0)].

2.2.2 Complexity
Complexity of the algorithm to compute wave Lk for a given k depends on
the efficiency with which Slided(i) = q is computed.

Comparing characters in each iteration results in complexity of the slide
function being O(q − i) and therefore the resulting complexity being O(km).

However, there exists an improved approach resulting in faster algorithm.
In this approach the Slided(i) query is answered in O(1). It needs O(n)
preprocessing in the form of a generalized suffix tree constructed for string
S1xS2y where x, y /∈ Σ, x ̸= y with LCA (lowest common ancestor) access.
Then the complexity to construct an Lk wave from L0 is O((k + 1)2) = O(k2)
so the overall worst-case time complexity including preprocessing is O(k2 +n)
[10].

2.3 Suffix trie, suffix tree and LCA
Suffix trie is a data structure represented by a rooted tree. It represents
a string S with symbols from alphabet Σ. Each edge of the suffix trie is labeled
with a single symbol from Σ. Each path from root to any node represents
a suffix from S.

Suffix tree is a compressed suffix trie. It can be constructed in O(n) time
[11]. An example of a suffix tree is shown in figure 2.1.

Lowest common ancestor queries can be made in O(1) time after O(n)
time preprocessing of a given suffix tree [12]. In the example suffix tree 2.1
the lowest common ancestor of the two leaves 0 and 2 is the first vertex from
the root by going along the edge b. Lowest common ancestor of 6 and 3 is the
root itself.

2.4 RMQ (Range minimum query)
Definition 2.4.1 (Sparse table [13]). Sparse table is a data structure used
for answering range queries, most of which can be answered in O(log n) time.
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2.4. RMQ (Range minimum query)
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xaabccy

c

8

3

9
y

xaabccy

cy

Figure 2.1: Suffix tree for string S1xS2y where S1 = babc and S2 = aabcc

This data structure can only be used on immutable data, meaning that if the
source data changes at any time, the sparse table has to be recomputed.

However, for answering range minimum queries, sparse table can be even
more efficient as it can answer these in O(1) time.

Given an array of n values and a range [L, R], range minimum query
is answered as the minimum value in the range [L, R].

The sparse table is represented by a 2D array of size N ∗ (K + 1) where
K = ⌊log2 N⌋

Definition 2.4.2 (Range minimum query [13]). Any interval can be repre-
sented by a union of smaller intervals such that each of them has a length of
a power of two. When working with RMQ on sparse table ST all the answers
for queries with lengths of power of two are precomputed and then can be
queried and combined to receive the final result.

Each cell ST [i, j] represents a minimum for a range of length 2j starting
at i: ARR[i, i + 2j − 1].

Because all the minimums for every power of two long ranges are pre-
computed, it is possible to split the query range [L, R] into two overlapping
ranges of power of two lenghts and then query for each range and compute
the minimum value out of the two ranges. This results in:

min(ST [L, j], ST [R− 2j + 1][j]) where j = ⌊log2(R− L + 1)⌋

Example. Sparse table for RMQ of ARR = [16, 15, 19, 3, 20, 0, 7, 7, 13, 7, 16]
is shown in table 2.3. Row indices are values of j and column indices are
values of i The table is of size 11 * 4.

For query on interval [5, 9] the closest lower power j is computed for
the length of the interval j = ⌊log2 5⌋ = 2 and then the result is found
as the minimum of two intervals of length 2j = 4: ARR[5, 8] and ARR[6, 9]
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2. Data structures

which can be found in ST [5, 2] = 0 and ST [6, 2] = 7 resulting in minimum
min(ARR[5, 9]) = 0.

0 1 2 3 4 5 6 7 8 9 10
0 16 15 19 3 20 0 7 7 13 7 16

1 15 15 3 3 0 0 7 7 7 7

2 3 3 0 0 0 0 7 7

3 0 0 0 0

Table 2.3: Sparse table for RMQ

2.4.1 Complexity
Sparse table is precomputed in O(N log N) and range minimum queries take
O(1) time.
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Chapter 3
Approximate covers problems

This chapter lists all the problems and their solutions presented by Kędzierski
and Radoszewski in [1]. Their algorithms improve upon previous solutions on
restricted quasiperiodicity. The implementation of the problems 3.1.1, 3.1.2,
3.3.1, 3.3.2 is then presented in chapter 4.

3.1 Approximate covers under weighted edit
distance

For computing weighted edit distance we consider such D-table that is defined
on a single string S of length n labeled as Da,a′ . This table characterizes a D-
table computed for strings S[a, n−1] and S[a′, n−1]. For values b ∈ [a, n−1]
and b′ ∈ [a′, n − 1] the weighted edit distance between S[a, b] and S[a′, b′]
is determined by Da,a′ [b, b′].

3.1.1 k-coverage of every factor
The algorithm described in this section computes the k-coverage of every factor
of string S.

Definition 3.1.1 (Longest approximate prefix problem). Element P ed
k [a, b, a′]

is defined as the furthest point b′ ≥ a′− 1 such that ed(S[a, b], S[a′, b′]) ≤ k or
−1 if no such point exists.

In other words it is the largest index b′ in the table Da,a′ for which
Da,a′ [b, b′] ≤ k.

Example. Given string S = abaca, a = 0, a′ = 2 and weighted edit distance
is defined with unit costs. Examples are shown in table 3.1

• k = 2, b = 2: P k
ed[a, b, a′] = 4. The point D0,2[2, 4] is shown in

green box .
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3. Approximate covers problems

• k = 1, b = 3: P k
ed[a, b, a′] = −1. There is no index b′ that meets the

condition ed(S[a, b], S[a′, b′] ≤ k and therefore the P value is set to −1.

• k = 1, b = 1: P k
ed[a, b, a′] = 3. The point D0,2[1, 3] is shown in blue box .

a
-1 0 1 2 3 4
ε a b a c a

1 ε 0 1 2 3 4 5
a′ 2 a 1 0 1 2 3 4

3 c 2 1 1 2 2 3
4 a 3 2 2 1 2 2

Table 3.1: D0,2 for string S = abaca

An interval [a′, P ed
k [a, b, a′]] then defines the occurrence of S[a, b] in S as de-

scribed by equation 1.1. It is possible that P ed
k [a, b, a′] = −1 in such case when

P ed
k [a, b, a′] < a′ the interval is considered to be empty.
To calculate the k-coverage of S[a, b] in S all occurrences of S[a, b] must be

found. Applying equation 1.2 results in the formula for calculating k-coverage
of a factor S[a, b] in S under weighted edit distance.

Coverageed
k (S[a, b], S) = |

n−1∪
a′=0

[a′, P ed
k [a, b, a′]]|

Definition 3.1.2 (Patero-dominance of pairs). In [1] Patero-dominance of
two pair is defined as

∀x, y, x′, y′ : (x, y) ̸= (x′, y′), x ≤ x′, y ≥ y′ ⇔ (x, y) patero-dominates (x′, y′)

Patero-dominance is used in the construction of La,a′ [b] table which repre-
sents all pairs (Da,a′ [b, b′], b′) of values from column b and their b′ indices that
are not dominated by others. Pairs are stored in an increasing order sorted
by the first element of the pair. La,a′ [b] is constructed from Da,a′ [b, ·].

Example. Given string S = abaca, a = 0, a′ = 2 and weighted edit distance
is defined with unit costs. In table 3.2 examples of patero-dominated pairs
are shown.

• for b = 2 there is only one pair (1, 4) that is not dominated by others.
Value from the pair is highlighted in green box . L0,2[2] = [(1, 4)]

• for b = 1 there are 2 pairs that are not dominated by others. Values
from the pairs are highlighted in blue box . L0,2[1] = [(1, 3), (2, 4)]

16



3.1. Approximate covers under weighted edit distance

• for all other columns b ∈ {−1, 0, 3, 4} values from the not dominated
pairs are highlighted in pink box

– L0,2[−1] = [(0, 1), (1, 2), (2, 3), (3, 4)]

– L0,2[0] = [(0, 2), (1, 3), (2, 4)]

– L0,2[3] = [(2, 4)]

– L0,2[4] = [(2, 4)]

a
-1 0 1 2 3 4
ε a b a c a

1 ε 0 1 2 3 4 5
a′ 2 a 1 0 1 2 3 4

3 c 2 1 1 2 2 3
4 a 3 2 2 1 2 2

Table 3.2: L0,2[b] examples for string S = abaca

The final algorithm uses multiples of a value M = ⌊
√

n/ log n⌋ called
special points.

These data structures must first be precomputed:

1. first min(M, n− a′ + 1) rows of all Da,a′ for a, a′ ∈ [0, n],

2. all La,a′ lists for a = kM ∨ a′ = kM ∀k ∈ N0 (a, a′ is a special point),
a, a′ ∈ [0, n − 1], b ∈ [a − 1, n − 1]. For a ≥ n ∨ a′ ≥ n the list La,a′ [b]
is empty.

Definition 3.1.3 (Predecessor). Predecessor operation is defined on La,a′ [b]
of pairs ordered by their first component. It finds the element whose first
component is less than or equal to the searched number x. If there is no such
value, the operation returns pair (∞,∞). Because the list is sorted by the
first components the element can be found in O(log n).

Example. Given string S = abaca from example table 3.2

• For list L0,2[0] the predecessor of x = 2 is (2, 3),

• For list L0,2[3] the predeccessor of x = 1 is (∞,∞)
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3. Approximate covers problems

3.1.1.1 Complexity

Data structures for the first point are computed in O(n4/M) = O(n3 log n)
time.

La,a′ [b] can be computed from Da,a′ [b, ·] in O(n) time. So for all O(n2)
combinations of a, a′ ∈ [0, n − 1] O(n/M) lists are computed in O(n) time.
The resulting complexity for point 2 is

n2

M
· n · n = n4

M
= n4

n
√

1
n log n

= n3

(n log n)− 1
2

= n3√
n log n ≈ O(n3√

n log n)

Computation of element P ed
k [a, b, a′] takes at most M times search for

predecessor in the list of pairs and therefore the complexity to compute it
is O(M log n) = O(

√
n log n). Precomputations take O(n3√n log n). There-

fore the precomputations and computation of P ed
k [a, b, a′] for all a′ ∈ [0, n− 1]

and for all factors (there are n2+n
2 ≈ O(n2) factors) gives the overall complex-

ity for computing all k-approximate covers of string S is

O(n3√
n log n +

√
n log n · n · n2 + n

2
) ≈ O(n3√

n log n)

.
The implementation of this algorithm including pseudocode is discussed

in Chapter 4.

3.1.2 Restricted approximate covers
The algorithm for computing restricted approximate covers finds for all factors
of string S the k for which they are k-approximate covers of S. This algorithm
builds upon the ideas described in section 3.1.1.

It computes a Qa,b array for each factor S[a, b] such that at its ith position
it has the minimum weighted edit distance k for which the factor S[a, b] is a k-
approximate cover of T [i, n−1]. The k for the specified factor S[a, b] are then
located in Qa,b[0].

For fast retrieval of minimum on an interval, this algorithm uses sparse
table representation of the Qa,b array for range minimum queries 2.3.

Pseudocode for computing the Qa,b array using precomputed data struc-
tures 3.1.1 is presented in 4.3.1.5.

3.1.2.1 Complexity

This algorithm again needs precomputed D-tables and L lists as described
in 3.1.1. Constructing the sparse table from Qa,b elements takes O(n log n)
time. And the Qa,b[i] element can be computed in O(M log n) when using
dynamic programming with the use of M . The overall complexity including
precomputations is then O(n3√n log n).

The pseudocode of this algorithm is discussed in chapter 4.
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3.2. Approximate covers under Levenshtein distance

3.2 Approximate covers under Levenshtein
distance

3.2.1 k-coverage of every factor
Given string S and number k, compute the k-coverage of every factor S[i, j]
in S under Levenshtein distance.

As a preliminary to solve this problem it is needed to be able to compute
an h-wave (see 2.2) Hi,j for h = k.

To implement the h-wave efficiently the string S and its factor F are
stored in a generalized suffix tree in the form SxFy. This suffix tree can be
constructed in O(n) time. Then the suffix tree is preprocessed in O(n) time
so that it can answer lowest common ancestor queries in O(1).

Definition 3.2.1 (Longest approximate prefix problem). Element P ld
k [a, b, a′]

is defined as the furthest point b′ ≥ a′− 1 such that ld(S[a, b], S[a′, b′]) ≤ k or
−1 if no such point exists.

The k-coverage of a factor S[a, b] is then computed from all P ld table
consisting of all element P ld

k [a, b, a′], a ∈ [0, n− 1] using the equation 1.2.

3.2.1.1 Complexity

The algorithm for computation of k-coverage under Levenshtein distance pro-
posed in [1] computes this problem in O(n3) time.

3.3 Approximate covers under Hamming distance
3.3.1 k-coverage of every prefix
Given string S of length n and number k, compute the k-coverage of every
prefix under Hamming distance.

For the computation of the k coverage of every prefix under Hamming
distance we must first compute a table of the longest common prefix with k
mismatches for every suffix of string S where S is of length n.

Definition 3.3.1 (Longest common prefix algorithm). The length of the
longest common k-approximate prefix of two suffixes S[i, n − 1], S[j, n − 1]
is denoted by lcpk(i, j). In [1] it is suggested to use an algorithm described
in [14] which computes the longest common factor with k mismatches of two
strings. Internally this algorithm computes longest common suffix with at
most k mismatches of every two prefixes and returns the length of the longest
one. Although the algorithm presented in [14] computes the longest common
suffix, it can be easily transformed to compute the longest common prefix by
reversing the input string.
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3. Approximate covers problems

PREFk table is defined as the list of values [lcpk(0, 0), . . . , lcpk(0, n− 1)].
The algorithm starts with a list L = [0, . . . , n] of all indices including n

as a bounding value and at each step computes the k-coverage of a prefix of
length l = 1, . . . , n.

The L linked list is kept updated with each change of l so that it always
contains such indices i for which PREFk[i] ≥ l. This means that for each
l the algorithm only accounts for such suffixes that have at least l positions
covered by T [0, l − 1].

There is always a set of neighbouring indices in L that are stored as pairs
and manipulated with respect to the current l. Initially [(0, 1), (1, 2), . . . , (n−
1, n)].

A pair (i, j) can be classified into one of two categories

• overlapping when j − i < l

• non-overlapping when j − i ≥ l

In other words two factors of length l starting at positions i and j are non-
overlapping when they are at least l positions apart and overlapping when
there is less than l positions between them.

If a pair (i, j) is non-overlapping, then there is an occurrence starting on
i of length l and the whole length l can be added to the coverage as the next
occurrence starting on index j does not overlap it. If a pair is overlapping
then only j − i positions can be added to the coverage as the index j is also
a start of a new occurrence and all positions must be accounted for only once.

The goal is to classify all pairs of neighboring indices (i, j) in L as either
overlapping or non-overlapping and then for each pair (i, j) that is overlapping
add j − i to the sum sumo and count the total number of non-overlapping
pairs as numno.

The final k-coverage of S[0, l − 1] in S is then

CoveredHam
k (S[0, l − 1], S) = sumo + numno · l (3.1)

Example. Let S = ababbbbbab, k = 1 and let l = 3. The PREF1 table for S
is [10, 1, 6, 2, 2, 2, 3, 1, 2, 1].

At the step when l = 3 the L list only contains such indices i for which
PREF1[i] ≥ 3. So L = [0, 2, 6, 10] meaning that there are occurrences of
S[0, 2] starting on indices i ∈ {0, 2, 6}. The list of all neighboring positions
is [(0, 2), (2, 6), (6, 10)] where [(0, 2)] is overlapping and [(2, 6), (6, 10)] are non-
overlapping. The overall coverage is then according to the equation

CoveredHam
1 (S[0, 2], S) = (2− 0) + 2 · 3 = 8

The algorithm uses two data structures for storing overlapping (3.3.2) and
non-overlapping (3.3.3) pairs. Both of these data structures are equipped with
operations for insertion and removal of an element (i, j).
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3.3. Approximate covers under Hamming distance

0 1 2 3 4 5 6 7 8 9
S a b a b b b b b a b

S[0, 2] a b a a b a
a b a

Definition 3.3.2 (data structure Do). Do is used for storing pairs that are
overlapping. It stores a variable sumo.

Inserting pair (i, j) to Do means adding j−i to sumo. Removing pair (i, j)
from Do subtracting j − i from sumo.

Definition 3.3.3 (data structure Dno). Dno is used for storing pairs that are
overlapping. It stores an array of linked lists B indexed from 1 to n where list
B[j − i] stores a pair (i, j). Dno also keeps a variable numno that holds the
current number of stored pairs in B.

Inserting pair (i, j) to Dno means inserting it to B[j− i] and incrementing
numno. Removing pair (i, j) from Dno means removing it from B[j − i] and
decrementing numno.

Definition 3.3.4 (Q table). Table Q indexed from 0 to n is initialized at the
beginning of the algorithm. For each i ∈ [0, . . . , n] it adds the index i to the
list Q[PREFk[i]]. In other words table Q at index x stores all indices i from
PREFk table for which PREFk[i] = x.

Q is used for batch removal of indices from L that are no longer relevant
for the current prefix length l.

For O(1) removal of indices from linked list L, pointer to each index i in
L is stored in an array P[0, . . . , n − 1] under P[i]. For O(1) removal of pairs
from linked lists in B, pointer to each pair (i, j) in B[j− i] is stored in an array
A under A[i] as it is not possible to store more than one pair with i as the
first component.

Values q1 and q2 are predecessor and successor of value q in L. To remove
q from L pairs (q1, q) and (q, q2) must be removed from and (q1, q2) must be
added to the respective data structures for the current l.

The predecessor and successor of i in L always exist as n is never removed
and 0 is also never removed because PREFk[0] = n which is the highest value
of l.

Given all the data structures, operations and number l, the algorithm
proceeds as follows for all l from 1 to n:

1. Remove all values stored in Q[l − 1] from L,

2. Move all pairs from list B[l] in Dno to Do

3. calculate k-coverage (equation 3.1)
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3. Approximate covers problems

3.3.1.1 Complexity

Given the PREFk table the time complexity to compute k-coverage of every
prefix of string S under Hamming distance is O(n).

3.3.2 k-coverage of every factor
Given string S of length n and number k, compute the k-coverage of every
factor under Hamming distance.

The approach for computing k-coverage of a string starting at index i is the
same as in 3.3.1 with a few additional rules.

• An array [lcpk(i, 0), . . . , lcpk(i, n− 1)] is used instead of PREFk table.

• It is now possible that value q = 0 will be removed from L for given l.
q = 0 always has a successor q2 in L (as n is never removed) but has
no predecessor q1. Therefore in case of removing q = 0 from L only the
pair (q, q2) is removed from the respective data structure.

• For starting index i the algorithm computes k-coverage for l from 1 to
n− i.

To compute k-coverage of every factor of S, values for all lcpk(i, j) where
i, j ∈ [0, n− 1], must be precomputed. Then the algorithm proceeds to com-
pute k-coverage for each i ∈ [0, n].

3.3.2.1 Complexity

The time complexity to compute k-coverage of every factor of string S under
Hamming distance is O(n2).
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Chapter 4
Implementation

This chapter presents the implementation of problems stated in Chapter 3
along with the implementation of the supporting data structures presented
in Chapter 2. Firstly, used technologies with which algorithms were imple-
mented are stated. Secondly, this chapter presents pseudocodes of the algo-
ithms implemented and it develops on the structural choices made during the
implementation.

4.1 Used technologies

All algorithms are implemented using C++17 language. As the nature of
implemented algorithms benefits greatly from the characteristics of compiled
languages.

4.2 Supporting data structures

4.2.1 Penalty matrix

Costs for the operation of substitution used for computing edit distance are
stored in std::unordered_map for O(1) access. The group of containers that
store costs for deletion, insertion and substitution is represented by class
PenaltyMatrix.

Costs that are different for different combination of symbols and operations
are specified with an input file that is provided at launch of the program.
Costs that are unique for each operation but the same for a combination of
symbols can also be provided as an argument to the program. If no input file
or costs per operation are specified unit costs are used for all combinations
of operations and symbols. The different argument options and format of the
input file are described in the documentation of the program.
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4. Implementation

4.2.2 D-table
Given string S, left and right bounding indices a, a′, number of rows r, and
penalty matrix PM , (4.2.1) the class DTable computes the Da,a′ table for
edit distance values of S[a′, a′ + r − 1] and S[a, |S| − 1].

If r is not specified it is set to |S| − a′ + 1 for which the Da,a′ table for
S[a′, |S| − 1] and S[a, |S| − 1] is computed.

Algorithm 1: compute Da,a′

Input: S, a, a′, r, PM
1 for i← 0 to r do
2 for j ← 0 to |S| − a + 1 do
3 if i is 0 and j is 0 then
4 Da,a′ [i, j] = 0
5 else if i is 0 then
6 Da,a′ [i, j] = Da,a′ [i, j − 1] + PM(ε, S[j + a− 1])
7 else if j is 0 then
8 Da,a′ [i, j] = Da,a′ [i− 1, j] + PM(ε, S[i + a′ − 1])
9 else

10 Da,a′ [i, j] = min(
11 Da,a′ [i− 1][j − 1] + PM(S[i + a′ − 1], S[j + a− 1]),
12 Da,a′ [i, j − 1] + PM(ε, S[j + a− 1]),
13 Da,a′ [i− 1, j] + PM(ε, S[i + a′ − 1])
14 )
15 end
16 end

4.2.3 RMQ
Range minimum queries are implemented in class RMTable. For fast query-
ing the ⌊log2 x⌋ operation must also be fast. Therefore custom log2 table
is computed on demand, meaning that when log2 values are missing, more
are computed up to the currently accessed value and stored in static std::
vector<int> logCache. [13].

In the definition of sparse table in 2.4.1 it was stated that sparse table
must only be built from an immutable array of values. However, for the case
in algorithm 7 new values are consecutively added to the RMTable from right
to left and are computed from values already known, none of which is changed
at any time. So there is no need to recompute the whole structure.

To picture the situation on the example table 2.3, values would be com-
puted colum by colum from right to left.
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4.3. Approximate covers algorithms

The pseudocodes for computing the log2 table and updating sparse table
are shown in algorithms 2 and 3.

Algorithm 2: compute ⌊log2 x⌋
Input : value x, logCache
Output: ⌊log2 x⌋

1 if x ≥ |logCache| then
2 i := |logCache|
3 while i ≤ x do
4 logCache[i] = logCache[i/2] + 1
5 i := i + 1
6 end
7 end
8 return logCache[x]

Algorithm 3: update ST at ith index from the end n with
initialV alue

Input: index i from end n, initialV alue
1 ST [i][0] = initialV alue
2 for p := 1 to ⌊log2(n− i)⌋ do
3 ST [i][p] = min(ST [i][p− 1], ST [i + 2p−1][p− 1])
4 end

4.3 Approximate covers algorithms
4.3.1 Approximate covers under weighted edit distance
In the implementation algorithms and supporting data structures that are
used for computing covers under weighted edit distance are defined under
namespace WeightedEditDistance.

The algorithms for computing covers for weighted edit distance use data
that are first precomputed from the initial string S as stated in 3.1.1. The
precomputed data is represented by class PrecomputedData.

4.3.1.1 Table of patero-dominating pairs

The algorithm for computing patero dominating pairs described in 3.1.2 is pre-
sented in [1]. This algorithm is implemented in class LTable and uses std::
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4. Implementation

dequeue data structure to filter out all pairs that are dominated by (see 3.1.2)
other pairs from the column of a D-table. Using this algorithm, the pairs are
sorted by the first component in decreasing order, which was needed to into
account in further implementation.

Algorithm 4: From a table Da,a′ for each column b compute the list
of pairs (Da,a′ [b, b′], b′) that are not dominated by others. [1]

1 for b := a− 1 to n− 1 do
2 column := b− a + 1
3 for b′ := a′ − 1 to n− 1 do
4 d := Da,a′ [b, b′]
5 while La,a′ [b] is not empty do
6 (d′, x)FRONT (La,a′ [b])
7 if d′ ≥ d then POP_FRONT (La,a′ [b])
8 else break
9 end

10 PUSH_FRONT ((d, b′), La,a′ [b])
11 end
12 end

4.3.1.2 Predecessor

The predecessor operation is stated in 3.1.3. In an ordered list of pairs it finds
such pair whose first component is less than or equal to x.

This operation is implemented in class LTable using binary search.

4.3.1.3 Longest common prefix

Algorithm 5 shows the pseudocode for computing P ed
k [a, b, a′]. The problem

is described in 3.1.1 and the computation of P ed
k [a, b, a′] is implemented in

class PElement.
In algorithm 5 (line 8), the closest higher special point is obtained using

the the ceil operation.

4.3.1.4 k-coverage for every factor

To get the k-coverage of every factor, the elements P ed
k [a, b, a′] are used to-

gether with the equation 1.2. First, all the elements P ed
k [a, b, a′] for a′ ∈

[0, n− 1] must be computed with algorithm 5. The pseudocode shown in the
algorithm 6 illustrates the computation of the resulting union of intervals and
retrieving the final k-coverage.
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4.3. Approximate covers algorithms

Algorithm 5: Compute P ed
k [a, b, a′] [1]

1 if b− a < M − 1 then
2 for b′ := a′ − 1 to a′ + M − 2 do
3 if Da,a′ [b, b′] ≤ k then
4 P ed

k [a, b, a′] = b′

5 end
6 end
7 end
8 c = ⌈a/M⌉ ∗M
9 for c′ := a′ to a′ + M − 1 do

10 (b′, d′) := Lc,c′ [b].pred(k −Da,a′ [c− 1, c′ − 1])
11 if d′ ̸=∞ then P ed

k [a, b, a′] = max(P ed
k [a, b, a′], b′)

12 end
13 c′ = ⌈a/M⌉ ∗M
14 for c := a to a + M − 1 do
15 (b′, d′) := Lc,c′ [b].pred(k −Da,a′ [c− 1, c′ − 1])
16 if d′ ̸=∞ then P ed

k [a, b, a′] = max(P ed
k [a, b, a′], b′)

17 end

Algorithm 6: Given table P ed
k for string S of lenght n compute

Coverageed
k (S[a, b], S)

1 (l, r) := (−1,−1)
2 coverage := 0
3 for a′ := 0 to n− 1 do
4 b′ := P ed

k [a, b, a′]
5 if b′ < a′ then continue
6 if a′ > r then coverage := coverage + (b′ − a′ + 1)
7 else coverage := coverage + (b′ − r)
8 (l, r) := (a′, b′)
9 end

10 Coverageed
k (S[a, b], S) := coverage

4.3.1.5 Restricted approximate covers

Algorithm 7 shows the pseudocode for computing Qa,b table presented in 3.1.2.
It uses range minimum queries supporting sparse table RMQ which for an
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4. Implementation

interval [x, y] returns the minimum of Qa,b[x, y]. This data structure is defined
in 2.4 and its implementation is presented in 4.2.3. Qa,b table is represented
by class QTable in the implementation.

4.3.2 Approximate covers under Hamming distance
In the implementation, algorithms and supporting data structures used for
computing covers under Hamming distance, are defined under namespace
Hamming.

4.3.2.1 Longest common prefix

Algorithm 8 shows the pseudocode for computing the table of k-approximate
longest common prefixes of string S. The problem is defined in 3.3.1.

This algorithm was stated in [14]. Originally it computes longest common
suffixes of all prefixes with at most k mismatches, thus it had to be adapted
for the purpose of computing longest common prefixes of all suffixes with at
most k mismatches. This change is made on line 7 where characters of the
string are compared in reverse order.

class LongestCommonPrefixes contains the implementation of this algo-
rithm.

4.3.2.2 k-coverage for every prefix

Algorithm 9 shows the pseudocode for computing k-coverage of every prefix
of string S. Insertion and removal of a pair to and from data structures Do

and Dno are described in 3.3.2 and 3.3.3 respectively.
Elements from B (resp. L) are removed in O(1) time using pointers stored

in A (resp. P).
In the implementation, Do is represented by class Overlapping and Dno

is represented by class NonOverlapping. The Q table is represented by
class QTable.
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4.3. Approximate covers algorithms

4.3.2.3 k-coverage for every factor

In algorithm 10 there are only a few differences from algorithm 9. It should be
noted that the algorithm 10 solves the problem of finding k-coverage of every
prefix (4.3.2.2) during the first iteration.

For each new i the data structures L, Do, Dno need to be set to their
initial state. Meaning that L must be filled with [0, . . . , n], Dno is filled with
all adjacent pairs from L and Do is emptied (sumo = 0).

On line 12 a condition is added that solves the problem of removal of 0
from L because 0 has no predecessor in L and therefore only the pair (0, q2)
is removed and then the algorithm continues in removing the remaining values
from L.
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4. Implementation

Algorithm 7: For given string S of length S, factor S[a, b], M =
⌊
√

n/ log n⌋ and precomputed D-tables and L lists compute the
smallest k for which S[a, b] is a k-approximate cover of S [1]

1 for i := n− 1 downto 0 do
2 Qa,b[i] :=∞
3 minQ :=∞
4 if b < a− 1 + M then
5 for j := i to i− 2 + M do
6 minQ := minimum of minQ and Qa,b[j + 1]
7 Qa,b[i] := minimum(Qa,b[i], maximum(Da,i[b, j], minQ)
8 update RMQ at index i with Qa,b[i]
9 end

10 end
11 s = ⌈a/M⌉ ∗M
12 for s′ := i to i− 1 + M do
13 if Ls,s′ [b] is empty then continue
14 (p1, p2) := binary search for the first pair in Ls,s′ [b] such that

p1 ≥ RMQ[i + 1 . . . p2 + 1]−Da,i[s− 1, s′ − 1] or last pair in
Ls,s′ [b])

15 (q1, q2) := Predecessor 4.3.1.2 of p1 in Ls,s′ [b] or (p1, p2) if no
predecessor exists

16 Qa,b[i] := minimum(Qa,b[i], maximum(Da,i[s− 1, s′ − 1] + p1,
RMQ[i + 1 . . . j + 1]))

17 Qa,b[i] := minimum(Qa,b[i], maximum(Da,i[s− 1, s′ − 1] + q1,
RMQ[i + 1 . . . j + 1]))

18 update RMQ at index i with Qa,b[i]
19 end
20 c′ = ⌈i/M⌉ ∗M
21 for c := a to a− 1 + M do
22 if Lc,c′ [b] is empty then continue
23 (p1, p2) := binary search for the first pair in Lc,c′ [b] such that

p1 ≥ RMQ[i + 1 . . . p2 + 1]−Da,i[c− 1, c′ − 1] or last pair in
Lc,c′ [b])

24 (q1, q2) := Predecessor 4.3.1.2 of p1 in Lc,c′ [b] or (p1, p2) if no
predecessor exists

25 Qa,b[i] := minimum(Qa,b[i], maximum(Da,i[c− 1, c′ − 1] + p1,
RMQ[i + 1 . . . j + 1]))

26 Qa,b[i] := minimum(Qa,b[i], maximum(Da,i[c− 1, c′ − 1] + q1,
RMQ[i + 1 . . . j + 1]))

27 update RMQ at index i with Qa,b[i]
28 end
29 end
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4.3. Approximate covers algorithms

Algorithm 8: For string S of lenght n and number k compute
the lcp table where lcp[i][j] is the length of the longest common k-
approximate prefix of S[i, n− 1] and S[j, n− 1].

1 for d := −n + 1 to n− 1 do
2 i := max(−d, 0) + d
3 j := max(−d, 0)
4 s := 0
5 q := ∅ // empty queue
6 for p := 0 to min(n− i, n− j) do
7 if S[n− i− p− 1] ̸= S[n− j − p− 1] then
8 if k is 0 then
9 s := p + 1

10 else if |q| is k then
11 s := q.front() + 1
12 q.pop()
13 end
14 q.push(p)
15 end
16 lcp[n− i− p− 1].push(p− s + 1)
17 end
18 end

31



4. Implementation

Algorithm 9: Given Q table (see 3.3.4) constructed from PREFk

table, compute the k-coverage of S[0, l − 1] in S

1 for l := 1 to n do
2 foreach q ∈ Q[l − 1] do
3 q1 := predecessor of q in L
4 q2 := successor of q in L
5 remove q from L using P[q]
6 if q − q1 < l then remove (q1, q) from Do

7 else remove (q1, q) from Dno

8 if q2 − q < l then remove (q, q2) from Do

9 else remove (q, q2) from Dno

10 if q2 − q1 < l then insert (q1, q2) into Do

11 else insert (q1, q2) into Dno

12 end
13 foreach (i, j) ∈ B[l] do
14 remove (i, j) from Dno

15 add (i, j) to Do

16 end
17 coverage of S[0, l − 1] := sumo + numno · l
18 end
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4.3. Approximate covers algorithms

Algorithm 10: Compute k-coverage of every factor of string S under
Hamming distance

1 for i := 0 to n− 1 do
2 compute Q from [lcpk(i, 0), . . . , lcpk(i, n− 1)]
3 reset L, Do, Dno

4 for l := 1 to n− i do
5 foreach q ∈ Q[l − 1] do
6 q1 := predecessor of q in L
7 q2 := successor of q in L
8 remove q from L using P[q]
9

10 if q2 − q < l then remove (q, q2) from Do

11 else remove (q, q2) from Dno

12 if q = 0 then continue
13 if q − q1 < l then remove (q1, q) from Do

14 else remove (q1, q) from Dno

15 if q2 − q1 < l then insert (q1, q2) into Do

16 else insert (q1, q2) into Dno

17 end
18 foreach (i, j) ∈ B[l] do
19 remove (i, j) from Dno

20 add (i, j) to Do

21 end
22 coverage of S[i, l − 1] := sumo + numno · l
23 end
24 end
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Chapter 5
Experimental evaluation

In this chapter, algorithms presented in chapter 3 whose implementation is de-
scribed in chapter 4 are evaluated.

A simple algorithm for generating random strings from a specified alphabet
and length was used to generate random strings. The time complexity of the
algorithms was tested and the results are visualized in graphs.

5.1 Testing environment
The implementation is tested on an operating system macOS Big Sur version
11.2.1 using:

• CPU: 2,3 GHz Intel Core i5

• Memory: 8GB 2133MHz

The implementation was compiled with Apple clang version 12.0.5 using
-O3 -DNDEBUG options.

5.2 k-approximate covers under Hamming distance
In this section, the algorithm for computing all k-approximate covers under
Hamming distance is experimentally evaluated with different parameters. In
figure 5.1 the algorithm is tested on strings generated using two alphabets of
different sizes (2 and 5). From the data acquired, it can be concluded, that
the algorithm does not depend on the size of the alphabet Σ as the visualized
dependency curves scale similarly. This behaviour was expected.

Results for strings generated using alphabet Σ = {a, b} are shown in figure
5.2. From the data acquired, it can be concluded that k also plays no role in
the algorithm performance.
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5. Experimental evaluation
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Figure 5.1: 1-approximate covers under Hamming distance
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Figure 5.2: k-approximate covers under Hamming distance

36



5.3. k-approximate covers under weighted edit distance

5.3 k-approximate covers under weighted edit
distance

In figure 5.3, the duration of execution of the algorithm for computing k-
approximate covers under weighted edit distance was tested on randomly gen-
erated strings with the alphabet Σ = {a, b} and k = 5. The acquired data
confirm the stated complexity of the algorithm and that it only depends on
the size of the input and not on the weights chosen.
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Figure 5.3: k-approximate covers under weighted edit distance with different
k and unit costs

In figure 5.4 the same alphabet Σ = {a, b} is used for generating each
string but the weights — costs of operations delete, insert and substitute —
are different in each test case. In one test car the weights are all of value 1
and in the other the weights are 3, 2, 1 respectively. These result confirm that
the execution time does not depend on the weights provided.
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5. Experimental evaluation
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Figure 5.4: 5-approximate covers under weighted edit distance with unit costs
and custom costs for different operations

5.4 Restricted approximate covers under weighted
edit distance

Figure 5.5 shows the comparison of an algorithm computing k for each factor
of S such that the factor is k-approximate cover of S. For each case, different
alphabet was used. Again, it can be seen that there is no dependency on the
alphabet and the results comply with the stated complexity.
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5.4. Restricted approximate covers under weighted edit distance
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Figure 5.5: restricted approximate covers under weighted edit distance
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Conclusion

The notion of covers was presented in the beginning of the work and was set in
the context of other periodicities along with the description of different metrics
under which approximate periodicities can be measured. The goal of this work
was to also describe algorithms presented in [1] while adding examples and
different views of perceiving the problems. Some of the described algorithms
were also implemented in this work. The algorithms that were implemented
are for computing k-approximate covers under Hamming and weighted edit
distance along with an algorithm for computing the values k for all factors of
a string S such that the factor is a k-approximate cover of S.

In the end, the implementations of these algorithms were tested with dif-
ferent parameters such as k, size of the alphabet and length of the input. The
evaluation confirmed the complexities of these algorithms and that they only
depend on the length of the input.

Possible future extensions
This work does not implement the algorithm for computing k-approximate
covers under Levenshtein distance. For implementing this algorithm an effec-
tive implementation of h-waves construction is expected. This can be achieved
using a suffix tree with linear construction and constant retrieval of lowest
common ancestor after linear preprocessing of the suffix tree.

Apart from covers, the algorithms can also be extended to compute k-
approximate seeds. [1].
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Appendix A
Contents of enclosed media

README.md ...........................file with description of the contents
implementation..............................directory with source code

README.md ............file with the compilation and usage description
other source files and folders

text .......................................... folder with the thesis text
thesis.pdf.....................................thesis in PDF format
source.......................folder with the source code of the thesis
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