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ABSTRACT 

This diploma thesis seeks to create an environment for benchmarking of path planning 

algorithms for autonomous driving in ROS. The aim is to give researchers the means 

to validate the performance of their algorithms. We analyze different sources of data 

to determine, whether they are suitable for the benchmarking. Using this knowledge, 

we create a set of benchmarks containing vehicle trajectories, road descriptions, and 

goals for the planning algorithm, all extracted from real traffic. We also provide a 

simulator able to run multiple planning algorithms, evaluate them and visualize their 

performance. Furthermore, we provide a planning algorithm to demonstrate the 

benchmarking process and its outputs, and to provide insight on how to work with the 

benchmark data set. 

Key Words: Planning algorithms, Autonomous driving, Benchmark, Simulation, ROS 

 

ABSTRAKT 

Tato diplomová práce si klade za cíl vytvořit simulační prostředí pro testování 

plánovacích algoritmů v systému ROS, které umožňuje výzkumníkům ověřit své 

plánovací algoritmy pro autonomní vozidla. Práce se věnuje rozboru různých zdrojů 

dat a hodnotí, zda jsou data vhodná pro testování algoritmů. Součástí práce je sada 

scénářů obsahujících anotace silnic, trajektorie vozidel, a cílů pro autonomní vozidlo. 

Tyto scénáře jsou vytvořeny na základě záznamů skutečné dopravy. Součástí práce je 

rovněž simulátor, který je schopen spouštět, hodnotit a vykreslit chování plánovacích 

algoritmů v různých dopravních situacích. K jeho ověření byl implementován vlastní 

plánovací algoritmus, s jehož pomocí lze doložit nejen funkčnost simulačního programu, 

ale i přiblížit čtenáři práci s testovací sadou dat a příslušnými knihovnami. 

Klíčová Slova: Plánovací algoritmy, Autonomní řízení, Testování, Simulace, ROS 

Název práce: Simulační prostředí pro testování plánovacích algoritmů 
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1 Introduction 

Many companies, research centers, and universities acknowledge that automation 

technology is an important driver for Industry 4.0. Modern autonomous production 

takes advantage of devices that can complete tasks efficiently, with a focus on safety 

and collaboration [1]. This automation also includes the possibility of self-driving 

personal vehicles. 

 We understand the term ‘Highly autonomous vehicle‘ (HAV) as a vehicle 

equipped with several sensors, commonly including devices like GPS, cameras, and 

lidars. This vehicle also needs to be equipped with an embedded computational unit, 

which is able to respond to the several stimuli produced by the sensors in real-time, 

reacting by steering the vehicle or adjusting the velocity. 

 However, for this vehicle to be usable in the real world, it needs to be able to 

navigate efficiently and, which is the most important, safely in as many scenarios as 

possible (or at least comparably to human drivers). 

 This thesis aims to design a set of benchmarks and an environment for the 

testing of different planning algorithms for autonomous vehicles. 

 At first, it is necessary to gather data from different traffic scenarios, which the 

planning algorithm needs to be able to navigate. We mainly focus on roundabouts and 

intersections, but we also include more straightforward scenes. Moreover, the system is 

designed to work with data from real traffic (mainly but not limited to trajectories 

extracted from video footage) rather than fabricated data.  

 We use AI to extract trajectories from video footage and provide a toolkit to 

transform the data from a format commonly used by MOT (Multiple object tracking) 

datasets and detection frameworks to a format suitable for autonomous driving.  

 Then, we replace one of the vehicles in the original data with a so-called ‘ego-

vehicle’ controlled by an external planning algorithm. The format of the data and 

different ways of pre-processing it is described in Chapter 3. 
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 However, being able to describe the trajectories of the vehicles is not enough for 

autonomous driving, as we also need information about the scene itself. This includes 

the location of traffic lanes, surface markings, and obstacles together with their 

orientation and borders. The aim of Chapter 4 is to explore different formats of scene 

description and to analyze their benefits and pitfalls. 

 As we aim to test planning algorithms using the dataset, we need a simulator. 

This program is able to benchmark algorithms by serving as a substitute for the sensors 

of the vehicle. The simulator monitors the ego-vehicle’s position to check for any errors. 

The simulator is designed to allow for automated testing of multiple algorithms in 

multiple situations. In Chapter 5, we describe the overall design, the used technologies, 

and the implementation of the simulator. 

 In order to verify the simulator, we have implemented an algorithm, which can 

communicate with the simulator and plan a trajectory for the autonomous vehicle using 

the provided data. This algorithm serves as a proof of concept for the parts mentioned 

above, as well as a practical example of how to communicate with the simulator and 

how to use the chosen libraries. The design and the implementation of the algorithm 

are discussed in Chapter 6. 

 Together, all of the separate parts serve as a toolkit for the verification of 

autonomous driving algorithms. This includes creating datasets, describing different 

scenarios, and implementing the algorithms. The performance of the algorithms can 

then be evaluated and visualized in batch using the simulator. 
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2 Related work 

In this chapter, we explore some of the existing solutions and describe how they are 

related to this thesis. Mentioned solutions can be related either to the dataset or to the 

simulation platform itself. 

2.1 Robot Operating System 

The Robot Operating System (ROS) is a flexible framework consisting of tools, libraries, 

and conventions. The framework aims to simplify the task of creating complex and 

robust programs for a wide variety of robotic platforms [2]. 

 Given that using ROS was a part of the thesis assignment, all of the implemented 

software was written in the form of ROS packages. The thesis includes three packages 

devoted to working with data, development of autonomous driving algorithms, and 

benchmarking. 

 ROS promotes such a modular approach, as it expects a system to consist of 

several decoupled nodes. To enable communication between the nodes, ROS provides 

a communication protocol using the publish/subscribe pattern [3]. We took advantage 

of this when designing the interface between the simulator and the autonomous driving 

algorithm. 

2.2 CommonRoad 

CommonRoad is a benchmark collection for motion planning of road vehicles [4]. This 

collection contains a substantial amount of scenarios, consisting of a map in lanelet 

format and positions of vehicles.  

 The user can then benchmark their algorithms by downloading the scenario as 

an XML file. After processing the scenario, the trajectory of the ego-vehicle controlled 

by the algorithm has to be serialized to another XML. The evaluation is then performed 

by creating a new submission on the benchmark website [5]. 
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 However, this concept of benchmarking expects us to use existing scenarios. We 

are not allowed to alter the data, create a new scenario, or introduce a custom physical 

vehicle model.  

2.3 NVIDIA DeepStream 

Even though we were allowed by GoodVision to use their AI [6] to extract trajectories 

from the selected scenes, our system was designed to be able to work with data gathered 

from various sources. This could include existing datasets, hand-crafted annotation, or 

other systems capable of multiple object tracking (MOT). 

 One such system is NVIDIA DeepStream. DeepStream is a streaming analytic 

toolkit for building AI-powered applications. It takes video frames as input and uses 

computer vision to gather information from the footage [7]. This system provides an 

end-to-end solution for extracting trajectories from a video stream. Using one of the 

pre-trained models for detection, classification, and tracking, the user can easily extract 

trajectories from any video footage. 

2.4 Autoware 

Autoware.AI is the world's first "All-in-One" open-source software for autonomous 

driving technology [8]. It is built on ROS and contains several modules for localization, 

object detection, position prediction, and trajectory planning. 

 This solution comprises tools for processing the data gathered from sensors such 

as cameras and LIDARs and uses AI to determine the position of the ego-vehicle and 

the surrounding objects. Coupled with the modules for trajectory planning and position 

prediction, Autoware controls the vehicle by changes in velocity and steering angle. 

2.5 Mapping formats 

We explored several formats used for mapping. One of such formats is the one used by 

OpenStreetMap (OSM) – a free map of the whole world build by volunteers [9] and 

commonly used for GPS devices [10]. This format describes roads using an imaginary 
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center line, while other attributes, such as the number of lanes or lane size, are added 

via a key-value system. 

 The second format we analyzed is OpenDRIVE [11], a format developed as a 

standardized way of describing traffic scenes for driving simulators. OpenDRIVE 

describes the road geometry along with the surface markings and logical properties such 

as lane types and directions [12]. 

 The last format, lanelet2, was introduced in 2018 by Poggenhans et al. [13]. This 

format was created specifically for autonomous driving. Lanelet2 describes the road 

using a network of lanelets – small segments of traffic lanes described by their left and 

right borders. The format’s authors also provide a library, which can be used to work 

with the mapping data. 

2.6 Datasets 

To create traffic scenarios, we can take advantage of existing datasets containing fully 

annotated images of road users. VisDrone is a dataset consisting of 400 aerial video 

clips taken in 14 different cities in China [14]. Another example is AU-AIR dataset, 

which focuses on images from low altitude traffic [15]. InD dataset consists of footage 

from four different intersections. The authors use drone cameras to overcome the 

limitations of established traffic collection methods such as occlusions [16]. With a 

positional error typically less than 10 cm, the dataset is usable for the development of 

autonomous driving systems. The useability of the datasets is discussed more in 

Section 3.1.  
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3 Benchmark dataset 

Within the context of this thesis, we define benchmark as a complete description of a 

specific traffic scenario, together with a task for the ego-vehicle. In order for the 

description to be considered complete, we require knowledge about the trajectories of 

every vehicle and the description of the environment itself. The task of the ego-vehicle 

is then denoted by the starting position and the destination it has to reach. 

 We generate the tasks by artificially removing one of the vehicles from the 

scenario and substituting it with a vehicle controlled by an algorithm. This agent has 

to reach the same destination as the original vehicle. 

3.1 Analysis 

To create a complete benchmark, two types of data are required. At first, we require 

information about the trajectories of all vehicles on the scene. Each road user is 

described by a unique name, a position in time and space, size, and direction. Using 

this, we can describe the trajectory of any vehicle that was present on the scene. 

 The second type of data is about the scene itself. We are looking for a way to 

describe the location of the surface markings and road edges, which are together 

creating different traffic lanes. Moreover, we want to annotate the intersections, so the 

algorithm can deduce which lanes can be reached in order to plan the path correctly. 

 Using this data, we can select vehicles that can be substituted with the 

ego-vehicle. Such a benchmark can be used to test the performance of different 

algorithms for autonomous driving. 

3.1.1 Data source 

At first, when creating the benchmarks, we had to determine the source for extracting 

the data. We chose to gather the information from traffic videos that are publicly 

available on the internet. We were looking for footage that minimizes occlusions and 

where the objects do not change in size while traveling across the scene. This set of 
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criteria matches drone footage the most, as the camera is located directly above the 

road.  

 We also explored the possibility of using existing datasets, as mentioned in 

Section 2.6. However, most of the data is not suitable for our use case since the view is 

not top-down, or the camera is moving, which is the case of both VisDrone [14] and 

AU-Air [15] datasets. In the case of inD [16], the data are not available to the public. 

 Because of this, we decided to extract the data directly from drone footage, 

which is publicly available and which fulfills our criteria. The source of the video is 

always mentioned inside the benchmark configuration file. One such source of free video 

materials is the website Pexels [17], which provides free photographs and videos. Then, 

we used GoodVision AI to extract the trajectories from said footage. 

 Apart from this, it is also possible to extract the trajectories via human 

annotators using a specialized toolkit such as Vatic [18]. 

3.2 Trajectories format 

Further work with the extracted data requires a standardized and more manageable 

format. For this reason, we chose MOTChallenge [19] format as the baseline for our 

annotations. The format specifies that every object is on an individual line using 

comma-separated values. The object’s location is described by a bounding rectangle 

(also called a bounding box), a minimal unoriented rectangle containing the whole 

object. The names of the fields used in this format are shown below. 

<frame>, <id>, <bb_left>, <bb_top>, <bb_width>, <bb_height>, <conf>, <x>, <y>, 

<z> 

A brief description of relevant column names is listed below.  

▪ frame – number of the frame on which is the object present 

▪ id – identifier of the trajectory that the object belongs to 

▪ bb_left – x-coordinate of the top-left corner of the object bounding rectangle 

▪ bb_top – y-coordinate of the top-left corner of the object bounding rectangle 

▪ bb_width – the width of the bounding rectangle in pixels 

▪ bb_height – the height of the bounding rectangle in pixels 



   

 

8 

▪ conf – confidence of the detection given by the prediction model 

▪ x – x location in world coordinates 

▪ y – y location in world coordinates 

▪ z – z location in world coordinates 

An example of such data for 2D tracking, which is our use case, can be: 

1, 3, 794.27, 247.59, 71.245, 174.88, -1, -1, -1, -1 

1, 6, 1648.1, 119.61, 66.504, 163.24, -1, -1, -1, -1 

1, 8, 875.49, 399.98, 95.303, 233.93, -1, -1, -1, -1 

As we can see in the example, the last four columns are not holding any value and can 

be neglected. We consider the origin of the coordinate system used by the bounding 

rectangles to be placed in the top-left corner of the image. The x-axis is along the width 

of the image from left to right, and the y-axis describes the height from top to bottom. 

This is illustrated in Figure 1. 

 

Figure 1 - An image with axes directions   

Additionally, we introduce other values, that are necessary for our use case: 

<class>, <dx>, <dy>, <cx>, <cy>, <w>, <h> 

The data have the following meaning: 

▪ class – type of the object (e.g., ‘car’, ‘van’, …) 

▪ dx – x part of the normalized direction vector 

▪ dy – y part of the normalized direction vector 

▪ cx – x part of the object center point  

▪ cy – y part of the object center point 
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▪ w – object width in pixels 

▪ h – object height in pixels 

In this setting, we consider width and height in the context of the image coordinate 

system. This means that width represents the distance from the center of the vehicle 

to the right edge and height represents the distance to the bottom edge when the 

direction vector is aligned with the x-axis. This is illustrated in Figure 2. 

 

Figure 2 - Describing a rotated rectangle 

We use a semicolon instead of a comma as the separator for language localization 

compatibility reasons. Lastly, we expect the entries to be sorted by their frame numbers 

in ascending order. 

3.3 Data pre-processing package 

In contrast to the MOTChallenge format and its adaptations, the additional 

information we require (oriented bounding rectangles) is not common, and none of the 

aforementioned datasets provided us with this information. Therefore, it was necessary 

to create a package to process the data as a part of this thesis. 

 The created package, named ‘hav_sim_utitls’, is a standard ROS package 

containing several utility python scripts. Its purpose is to filter trajectories, calculate 

the orientation of different vehicles, calibrate the map scale, and visualize the data on 

a video. Using those scripts, we can calculate the missing values, which are needed by 

the simulator. A summary of script names and their purposes is as follows. 
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▪ insert.py –adds a custom trajectory to an existing set 

▪ measure.py – estimates the calibration when drawing maps (more in Section 4.2) 

▪ orientate.py – converts unoriented bounding rectangles to oriented 

▪ reduce.py – removes trajectories from an existing set 

▪ test.py – contains unit tests for the package 

▪ utils.py – contains functions mostly related to I/O and conversions between data 

structures 

We use Python 3 as the interpreter for this project because, since 2020, Python 2 is 

considered deprecated [20]. 

3.4 Parsing the format 

The system needs to be robust, even when working with incomplete data. Therefore all 

the created tools are designed to work in two different scenarios. The input CSV can 

either contain (i) all the data or (ii) only the trajectory id, frame, and the bounding 

box. An example of such a situation is processing the raw data for the first time. 

 A set of functions that handle parsing and writing the data can be found in the 

Python script utils.py. This file is not runnable but contains functions used by other 

scripts. 

3.5 Filtering trajectories 

When preparing the dataset, it is necessary to be able to filter out unwanted 

trajectories, such as trajectories created by false positives or trajectories that are 

fragmented. Both of these trajectories could cause our system to return erroneous 

results. An example of a false positive collision is shown in Figure 3. It is possible to 

perform this filtering by passing a list of trajectory ids and a file containing trajectories 

to the script reduce.py, which produces a new CSV without any of the specified 

trajectories. 
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Figure 3 - False positive intersecting with a real object 

3.6 Calculating rotated rectangles 

Estimation of the other values such as the orientation of the vehicle, its size, and its 

center is done by the script orientate.py.  

 It is necessary to account for a noise in the position of the bounding rectangle 

center point. The noise can either be caused by the prediction model or by human error 

in the case of hand-crafted data. Therefore, we decided to filter out buses and trucks, 

as it was difficult to calculate their orientation reliably. It was also necessary to filter 

out any pedestrians, as they were detected only scarcely due to the high altitude of the 

recording drone. 

 Afterward, the program proceeds with estimating the orientation of the bounding 

rectangles. First of all, the program calculates the center point of the object. When 

there is enough distance between two center points, the orientation is obtained as the 

difference between these two points. This is repeated for each point of the whole 

trajectory, while this distance in pixels is set as a hyperparameter, and the optimal 

value may differ for different scenes. If there is not enough movement (e.g., the object 

is stationary), the trajectory is removed altogether, as the orientation cannot be 

calculated. 

 Estimating the vehicle orientation splits the trajectories into several segments 

with the same orientation. The values are then interpolated to make the change in the 

direction more smooth and natural. 

 As the next step, the script estimates the width and height of the object using 

the ratio of typical dimensions of road vehicles. The length of 4-5 m and width of 
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1.5-2 m [21] gives an estimated ratio of 0.3-0.5. We use the middle value of 0.4. Also, 

the size can be multiplied by an arbitrary constant to compensate for artificially inflated 

or deflated bounding boxes. 

 When the orientation and size of all the objects are calculated, the script saves 

the resulting values in a new CSV file. While Figure 4 shows the data before this 

transformation, Figure 5 contains orientated rectangle with adjusted sizes. 

 

Figure 4 - Non orientated bounding box 

 

Figure 5 - Bounding boxes with orientation 

3.7 Visualization 

The script plotter.py provides a convenient way of visualizing the processed data. By 

specifying a path to a CSV with trajectories and a path to the corresponding source 

video, the script plots the bounding rectangles into this video. By default, the system 

plots orientated rectangles. In case that the required data are missing, it falls back to 

default bounding boxes. 

 Using this script, we have a simple way of performing a sanity check of our data. 

The script can also be used to manually verify the results of operations like reduce 

(Section 3.5) or orientate (Section 3.6). 

3.8 Adding custom trajectory 

As a part of the assignment, we need to be able to insert an artificial trajectory into 

the existing dataset. Later on, it was specified that the artificial trajectory should be 

formatted as a CSV file containing a serialized ROS message of the type Path [22]. This 

operation is handled by the script insert.py. 



   

 

13 

 This script parses the serialized message and then transforms the poses to fit the 

target scene. This means that both the center point of the vehicle and its size are 

adjusted, and the direction vector is calculated from the provided quaternion. Also, the 

timestamps are converted from real-time (seconds) to logical time (frames). For any 

frame that is not associated with any pose, the values are estimated using linear 

interpolation. 

 When the calculations are finished, the artificial trajectory is added to the 

existing data and saved to the disk. The positions of this trajectory have the fields 

<bb_left>, <bb_top>, <bb_width>, <bb_height> set to −1. This way, other components, 

such as orientate (Section 3.6), can identify them as artificial and not modify their 

data. On the other hand, the simulator or the plotter treats them as legitimate 

trajectories and works with them as if they were in the original set. An example is 

shown in Figure 6. 

 

Figure 6 - An object artificially inserted into the scene 

3.9 Testing 

The scripts used to pre-process data are covered by unit tests from the Python unittest 

[23] framework. The script test.py contains several classes used to test the different 

operations with the data. Also, the resources directory contains input files for the tests 

to work with. Therefore, the tests must be run with the folder scripts as the working 

directory or have access to resources via a link. 

 The tests, when ran, perform operations on sample data. These tests consist of 

reading and writing the trajectories, trajectory filtering, and inserting artificial 

trajectories into a dataset. The output is then compared to the expected result. 
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 For orientate.py, we only test the functionality but not the quality of the results, 

as we do not know the ground truth for the results, which vary depending on the 

hyperparameters (such as the pixel limit or the width and height ratio). Because of this, 

the main aim of the test is to verify that the script does not modify any artificial 

trajectory. To test the quality of the results, we plot the objects onto a video. By 

watching the video, we can manually inspect the boxes and their rotation, and 

determine, how close the estimated bounding rectangle fits the object in the video. 
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4 Scene annotations 

Apart from having the serialized trajectories, it is also necessary to describe the scene 

itself. An autonomous vehicle needs to be aware of its surroundings to navigate. 

Therefore, we need to devise a way of annotating road borders, lane borders, and 

intersections to be used with the trajectories as an input for the algorithm. 

 It is required to find a standardized way of describing the scene with all the 

necessary information for the planning algorithm. Moreover, as the scenes are annotated 

manually, the availability of a comprehensible and user-friendly editor is paramount. 

4.1 Analysis 

We described three different mapping formats in Section 2.5. The main reasons behind 

not using OSM are (i) its counter-intuitive way of describing the scene and (ii) it hinders 

our ability to create precise scene annotations. Moreover, creating a comprehensible 

description of an intersection using this format has proven to be very hard since there 

is no single center line. 

 The major shortcoming of OpenDRIVE was that even after a thorough search, 

we did not manage to find any free editing software that was also functional.  

 Issues similar to that we encountered are also described by Poggenhans et 

al. [13]. 

4.1.1 Lanelet2 format 

The framework Lanelet2 [24] provides a solution for the stated problems. It is built 

with autonomous driving in mind and therefore provides enough primitives for the 

developers to create custom maps. Furthermore, the format is essentially an extension 

of the OSM format, and as such, there is an open-source editor called JOSM [25]. 

Lanelet2 provides a set of extensions for this editor to enable highlighting and labeling 

of the lanelet primitives. A tutorial on how to enable the extension can be found on the 
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framework’s GitHub [26]. Apart from that, we are also provided with a C++ library in 

the form of a ROS package to work with lanelet2 maps.  

 The mentioned format introduces a type of object called lanelet. A lanelet 

consists of exactly two linestrings – ordered sequences of points and the line segments 

connecting them. One of the linestrings denotes the left edge of the lanelet; the other 

denotes the right. Together they form a driveable area called lanelet. The orientation 

of the linestrings does not matter since the framework uses the left and right annotations 

to determine the direction of the traffic lane. 

 Apart from entities that are physically present on the scene (e.g., curbstones, 

road surface markings), the linestring may be purely virtual. A virtual lanelet border 

does not physically exist but serves to connect lanelets on different sides of an 

intersection.  

 More on the different types of primitives specified by lanelet2 can be found in 

the documentation [24]. 

4.2 Calibrations with OSM 

When creating a map for the dataset, we use the JOSM editor with lanelet2 extensions. 

To create a map, we need a canvas that we can draw onto. The addon PicLayer [27] 

lets us import a screenshot into the editor and use it as a reference for the map. 

 Unfortunately, the screenshot has most likely a wrong scale, and depending on 

the resolution, the objects can be severely larger or smaller than in reality. Therefore, 

we have to create a calibration file for the image to make the scale more accurate. This 

file contains the following field:  

INITIAL_SCALE=<...> 

The value on the right-hand side represents the equivalence of 100 pixels in meters 

(e.g., a value of 2.5 would mean that every 100 pixels in the image are equal to 2.5 

meters in reality). 

 We can either guess this value ourselves, but since this process can be tedious, 

we use the script measure.py (mentioned in Section 3.3). Passing a path to the 



   

 

17 

screenshot and the estimated size of one of the vehicles on the scene opens a window 

displaying the screenshot. The user should then click on the front and rear sides of the 

vehicle. Afterward, the program computes the value of calibration for the picture. After 

loading this new calibration value, we may validate the sizes of objects in the scene 

(e.g., using the ruler tool) to ensure that the distances are credible. 

4.3 Annotations using Lanelet2 

When the image is loaded and its size is calibrated, we can start drawing the maps. 

This process consists of drawing lines to match the shapes of curbstones, road surface 

markings, or other objects present on the scene. Each of the lines should be marked 

with its corresponding type. To create a lanelet, we create a relation between exactly 

two lines – one assigned as left, the other as right.  

4.3.1 Using virtual lines 

When creating the map, we should keep in mind that for a connected path between 

two points to exist, there must be an uninterrupted sequence of lanelets in between. 

For this reason, we should create virtual lines. This is especially useful when describing 

an intersection, as shown in Figure 7. This way, we can describe different paths that 

the vehicle can take depending on its destination. 

 

Figure 7 - Intersection described using lanelets 
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4.3.2 Connecting lanelets 

One inconvenience can arise from the ‘atomicity‘ of the lanelets. If we want to connect 

two lanelets (or split one in two), we should do that only at the end of the lanelet. If 

we do not connect the lanelets in this way, the library does not treat such lanelets as 

connected and cannot find any path between them. An example of the wrong way of 

drawing lanelets is illustrated in Figure 8. On the left, we see a lanelet connected to the 

middle of another lanelet (highlighted in red). On the right side, we should notice that 

the resulting routing graph is disconnected. 

  

Figure 8 - Incorrectly connected lanelet and the resulting routing graph with the circled node disconnected 

A correct approach is illustrated in Figure 9, where the lanelet is connected to the end 

of the highlighted one. As we can see on the right, the routing graph is connected, and 

a Successor relation is formed. 

  

Figure 9 - Correct way of connecting lanelets and the resulting routing graph 
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4.4 Custom tags 

When we are finished with the mapping, we need to add two more artificial nodes to 

our map. These nodes are required since our trajectories are using pixels as their 

coordinates, ranging from (0,0) to (width, height), while lanelet2 uses metric 

coordinates. Placing one node to the top-left corner and the second one to the bottom-

right enables us to project the trajectories on the created map. 

 To distinguish the two artificial nodes, we introduce a new keyword 

custom_coords. The top-left node has the value set to tl, while the other is defined by 

the value of br. 

4.5 Validation 

The lanelet2 ROS library contains a tool to validate the created map. This tool can be 

run in the following way: 

$ rosrun lanelet2_validation lanelet2_validate <path_to_map> 

By running this program, we can make sure that we did not violate the format. If the 

program prints an error message or does not finish successfully (e.g., due to a 

segmentation fault), there are most likely some issues with our map. The different 

errors we encountered and their solutions are described in greater detail in Section 4.6. 

 The validator can also output some warnings. Those are not necessarily harmful, 

but resolving them can improve the accuracy of programs working with the map. In 

contrast, some warnings are safe to ignore (e.g., our artificial top-left and bottom-right 

nodes also produce a warning, as the library does not recognize them as a part of the 

lanelet2 format). 

4.6 Fixing the errors 

In this section, we describe all of the errors that were encountered during the 

development and explain a way of solving them. When using JOSM in the default 

configuration, we were not able to search for an object with a negative ID. JOSM 

assigns a negative ID to any object, which was not uploaded to OSM servers. Given 
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that we are drawing custom maps, all the annotations we create have a negative id. 

This has proven to be problematic since we need to be able to locate the erroneous 

objects on the map to fix them. A solution for this is to switch JOSM to ‘Expert Mode‘ 

and then use the MapCSS search syntax. For example, to look for an object with 

id -11668 we could use the following MapCSS selector: 

*[osm_id()=-111668] 

 Let us note that the described issues were encountered using version 1.0.1-

1bionic.20201017. Other versions may behave differently. 

4.6.1 Segmentation fault 

Segmentation of the validator occurs when the process is stopped due to attempted 

access to unallocated memory. This behavior can be caused by a lanelet relation with 

less than two members. Such relation may be caused by a user deleting a linestring 

that is a part of a lanelet. Even though both linestrings of a lanelet are deleted, a 

leftover relation is still present and must be manually cleaned, as illustrated in Figure 

10. 

 

Figure 10 – Lanelets with 0 members has to be deleted manually 

4.6.2 Not the closest lanelet 

Some of the lanelets might be reported as erroneous in the following way:  

Error: There is a 'left' relation from -100318 to -100319, but -100318 isn't 

the closest lanelet the other way round [routing.graph_is_valid] 

This error is introduced whenever one linestring is a left (or right) border for two 

different lanelets. This is shown in Figure 11, where the upper linestring is in relation 
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to the bottom two as their left border. The solution to this is to introduce the fourth 

lanelet and use it as a left border for one of the bottom linestrings. 

 

Figure 11 - A ‘left’ lanelet in relation to two ‘right’ lanelets is considered an error. 
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5 The simulator 

Apart from assembling a dataset of traffic scenarios, we were required to design and 

implement a simulator to work with the contained data to evaluate an external 

autonomous driving algorithm. 

 This chapter is dedicated to the requirements of the simulator package, its 

architectural design, and the implementation of its components.  

5.1 Requirements 

According to the assignment, a simulator has to be a program that can load benchmark 

data and run an externally provided autonomous driving algorithm. The simulator 

passes the data describing the scene and the trajectories to the algorithm while 

gathering its responses.  

 The simulator should be able to detect any errors made by the algorithm, such 

as collisions with other objects or steering away from the road. Furthermore, the 

simulator should support a means of visualizing the scene and the performance of an 

autonomous vehicle. 

 As the simulator serves to test different planning algorithms, there should be a 

possibility for batch evaluation of various algorithms on multiple scenes. Besides, the 

simulator and the algorithm should be coupled as loose as possible, as we do not want 

to constrain the developers of the algorithm to a single toolkit or programming 

language. 

5.2 Architectural design 

One of the first designs was based on implementing the algorithms as shared libraries 

to be imported by the simulator. Although this would provide an efficient way with a 

low amount of overhead, it would also mean the simulator and the algorithm would be 

parts of the same process. Such an approach would introduce many constraints on the 

algorithm, e.g., limiting developers to use only the C/C++ programming language. 
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 The chosen approach is to keep both the simulator and the algorithm as separate 

executables while using the ROS messaging interface for communication [28]. Using this 

interface, both of these nodes serve as a publisher and a subscriber. This way, both 

components do not need any knowledge about the other, as the only connection between 

them is the communication bus. This is illustrated by Figure 12, where the simulator 

and the autonomous driving algorithm are depicted as two separate nodes. Both 

advertise and subscribe to different topics using the ROS master, a process used for 

communicating between them. 

 

Figure 12 - Communication between ROS nodes 

Thus, the only constraint that we impose on the algorithm other than using specific 

messages to communicate is to be able to understand the lanelet2 format. Apart from 

this, there is complete freedom in the selection of programming language or used 

libraries. 

5.3 The communication protocol 

Inter-node communication uses six different types of messages: Init, Frame, Fin, and a 

response for each of the three types. The simulator always initiates the communication 

while the algorithm responds to the messages. Communication consists of three phases, 

each using different types of messages. The messages are described in greater detail in 

Section 5.4. 

 In the beginning, the simulator sends an Init message to the algorithm to initiate 

the communication. After receiving this message, the algorithm sends a response to 

signal that the algorithm is ready. 
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 After the initialization phase, the simulator starts to send Frame messages, 

describing the position of all the objects on the scene in the given frame. This means 

that the position of the vehicle substituted by the ego-vehicle (as discussed in 

Chapter 3) is also being sent. We do not want to force the algorithm to respond right 

from the start, as we realize that some algorithms need several frames to calibrate. 

Thus, the algorithm can reply with the position of the original vehicle. This also reflects 

the reality better, as the algorithm should have some knowledge about the vehicle’s 

surroundings prior to entering the intersection. 

 After there are no more frames to send, the simulator waits for all the pending 

Frame responses and then sends a Fin message. After receiving a response, the 

communication stops. The algorithm may also request the simulation to end in the 

Frame response messages if, for example, the ego-vehicle has reached its destination. 

 The communication between the simulator and an algorithm is illustrated in 

Figure 13. 

 

Figure 13 - Communication between the simulator and the algorithm 

5.4 Messages 

In this section, we will go over the different messages that are being used for the 

communication of the simulator and the autonomous driving algorithms. All the 

definitions can be found on the attached DVD as described in Appendix. 
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 As stated in Section 5.3, the simulator and the algorithm communicate using six 

different message types. 

5.4.1 Point2 

Point2 represents a point or a vector in 2-D space. 

▪ float x – x-part of the point or vector 

▪ float y – y-part of the point or vector 

5.4.2 Position 

The Position is used to describe the shape of one object in the scene. The message uses 

Point2 as the type for some of its fields. 

▪ Point2 center – location of the center of the object 

▪ Point2 size – x (width) and y (height) size (described in Section 3.2) of the object 

▪ Point2 orientation – the direction vector of the object 

▪ int32 id – identifier of the trajectory that the position is part of 

5.4.3 Init 

The simulator sends the Init message to initiate the communication with the algorithm. 

It provides data, which might be useful to the algorithm before the simulation starts. 

The map is passed as a path to the file because the lanelet2 ROS package does not, to 

this date, provide a way of serializing its map as a message. 

▪ string osm_path – path to the map in lanelet2 format 

▪ string name – the name of the benchmark 

▪ int32 id – identifier of the vehicle that is replaced by the algorithm 

▪ float fps – fps of the source video, used to convert from frames to seconds 

▪ float maxSpeed – the maximum traveled distance between frames 

▪ float initialSpeed – speed of the vehicle when entering the scene 

▪ Point2 size – x (width) and y (height) size (described in Section 3.2) of the object 

▪ Point2 start – location of the vehicle when entering the scene 

▪ Point2 end – a destination that needs to be reached by the algorithm 
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 Multiplying the values of fields maxSpeed or initialSpeed by the fps yields the 

speed in meters per second. 

 The algorithm responds with the InitResponse message, which currently has no 

fields and is used only to notify the simulator that the algorithm is ready. 

5.4.4 Frame 

The simulator sends a Frame message for each frame in the dataset in a sequence with 

ascending frame id. This message describes the position of every object in the scene in 

a given time, using the Position message. 

▪ int32 frameId – identifier of the frame 

▪ Position[ ] positions – an array of position messages for each object in the scene 

The algorithm responds with FrameResponse message: 

▪ int32 frameId – identifier of the frame, matches the one in Frame message 

▪ Position position – position of the simulated vehicle on the frame 

▪ string status – the status of the algorithm 

Currently, the status can have three different values. WAITING means that the 

algorithm is still waiting for the simulated vehicle to appear in the scene. RUNNING 

means that the algorithm is running, and FIN means that the algorithm has completed 

its objective (the vehicle has reached its destination). For any other status than 

RUNNING, the position may have an arbitrary value, as it is not taken into account. 

5.4.5 Fin 

Both Fin and FinResponse messages are empty and are only used for synchronization 

between the simulator and the algorithm. 

5.5 Error types 

During the simulation, the simulator detects several errors. Their names and 

descriptions are listed below: 

▪ Object collision - arises when the ego-vehicle collides with another vehicle 
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▪ Line collision - introduced when the ego-vehicle collides with a linestring object 

in the map 

▪ Timeout - used when simulating a real-time situation (described in 

Subsection 5.7.1) and is detected whenever the time before a message is 

processed exceeds the specified limit 

▪ Not in destination - signals that the ego-vehicle did not arrive at the target 

destination 

▪ No error – used as a placeholder when there is no error detected 

5.6 High-level design 

In this section, we describe the flow of the simulator process from reading the input to 

serializing the results. We also discuss the libraries we use in Subsection 5.6.1. 

 The simulator takes a path to a JSON file as an input argument. This file 

describes the whole test scenario and specifies the data on which the algorithms will be 

benchmarked. Afterward, the program loads the trajectories and map specified in the 

JSON file and validates that they are in the correct format (explained in Section 5.7). 

 When the data are loaded and validated, the program starts an algorithm on a 

new thread and communicates with it (as described in Section 5.3) while checking for 

any errors produced by the algorithm. The simulator also provides the frames for any 

type of visualization method specified in the input configuration. This is repeated for 

every algorithm, scene, and ego-vehicle id.  

 When the simulation completes, the results are written to a CSV file and the 

program exits successfully. However, in case that an exception is encountered, the 

program writes the exception message into the log and then exits with a non-zero code.  

 The diagram in Figure 14 illustrates the flow of the simulator process from its 

start to the end. 
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Figure 14 - The simulator process from start to end 

5.6.1 Used libraries 

We use the Eigen 3 library to represent different algebraic structures. This library 

provides an elegant and templated implementation of different algebraic objects and 

operations involving them [29]. For image processing, we use OpenCV [30]. 

 To work with map data in lanelet2 format, we use the library provided as a ROS 

package by the format’s authors [24]. This library comes together with Boost [31], which 

we use for threading, and structures not supported in C++11. 

 The message passing framework is provided directly by ROS, namely the library 

roscpp [32]. Using this library, we create publishers, subscribers, and messages used for 

communication with the algorithm or for a visualization environment (e.g., rViz [33]). 

 We use the open-source, header-only library JSON for Modern C++ by N. 

Lohmann to handle [34] JSON format. 
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5.7 Input Configuration 

To parse the input arguments, we use a parser from the OpenCV library so that we do 

not introduce new dependencies. The path to the configuration JSON file is the only 

argument, which needs to be provided to the program. This way is more practical, as 

the JSON contains several nested objects, and passing all the information as input 

parameters might not be as comprehensible. 

 The simulator loads this file and parses it. If the loading fails for any reason 

(e.g., syntax error, an erroneous path to the file), an appropriate exception is thrown, 

and the application terminates. After loading the JSON object to memory, the program 

validates this object by checking for all the required input fields. If any field is missing 

or has a wrong type, an exception is thrown. 

 An example JSON is shown in Figure 15. More examples are provided on the 

enclosed DVD as described in Appendix. 

{ 

  "opencv": "OFF", 

  "rviz": "ON", 

  "timeLimit": -1, 

  "out": "results", 

  "algorithms": [{ 

      "name": "SimpleAlgorithm", 

      "cmd": "rosrun sim_alg sim_alg FOLLOW" 

    }], 

  "benchmarks": [{ 

      "data": { 

        "name": "ThreeWay", 

        "source": "https://www.pexels.com/some_video", 

        "osm": "/simulator_data/lanelets/threeWay.osm", 

        "csv": "/simulator_data/csvs/threeWay.csv", 

        "width": 4096, 

        "height": 2160, 

        "fps": 40 

      }, 

      "simulationIds": [1,6,23] 

    }] 

} 

Figure 15 - An example of an input JSON 

5.7.1 Top-level data format 

The fields of the top-level JSON object are described below. 

▪ opencv – If set to “ON”, the program plots the scene into a video file. 
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▪ rviz – Setting to “ON” enables sending the objects on the scene as markers to 

rViz. 

▪ timeLimit – Setting timeLimit to a positive value causes the program to run in 

a ‘real-time mode’. This means that the rate of sending frames to the algorithm 

is limited by the fps of the data source. If the algorithm does not send a response 

in the required time, it is treated as an error. It is advised to use this mode 

without any visualization as it may hinder the speed of the simulator. If 

timeLimit is negative, the simulator sends the frames as fast as possible and does 

not check the response time. 

▪ results – The results of the benchmarks are written to files named according to 

this field. For example, setting the value “results” creates two files named 

results.csv and results.json. 

▪ benchmarks – An array of objects holding the information about the benchmarks 

on which to test the algorithms. This array is described in greater detail in 

Subsection 5.7.2. 

▪ algorithms – An array of objects describing which algorithms to benchmark. 

More information is provided in Subsection 5.7.3. 

5.7.2 Benchmark object 

The field benchmarks is, as stated above, an array of objects. A brief description of the 

contained fields follows. 

▪ name – Name of the scene is used by the program to name the videos and images 

produced during the benchmarking. 

▪ source – This field contains a path to the source video from which the trajectories 

were extracted. 

▪ osm – The field osm describes the path to a map in lanelet2 format. 

▪ csv – A string containing the path to trajectories file. 

▪ width – The width of the source video in pixels. 

▪ height – The height of the source video in pixels. 

▪ fps – frame rate of the source video 

▪ simulationIds – A list of trajectory identifiers describing which vehicles to 

substitute with the ego-vehicle. 
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5.7.3 Algorithm object 

The field algorithms in the configuration JSON specifies which algorithms will the 

simulator benchmark. This field has the following properties: 

▪ name – Describes the name of the algorithm. This field is used by the simulator 

to name produced videos and images. 

▪ cmd – Specifies a command to run the algorithm. 

5.8 Data loading 

When the configuration is parsed, the program loads the trajectories and the map from 

the disk. Afterward, the program projects the positions of the objects onto the map. 

Using the coordinates of the top-left and bottom-right corner of the map (as mentioned 

in Section 4.4), we compute the size ratio as shown in (1), 

 
𝑚 = [𝑤, ℎ] , 

𝑟 = 𝑚 ⊘ (𝑡 − 𝑏) , 
(1) 

where 𝑤 and ℎ denote the width and height of the source, 𝑡 the coordinates of the top-

left corner and 𝑏 of the bottom-right, and 𝑟 is called the calibration ratio. This ratio 

describes the value by which the object sizes are multiplied to fit the map scale. 

 Using the values from (1), we transform the position 𝑑 of each object into 𝑑′, a 

position projected onto the map. A position has three properties, which need to be 

transformed – the center point 𝑑𝑐, the size 𝑑𝑠, and the direction 𝑑𝑑. This is shown in 

(2). 

 

𝑑𝑐
′ = (𝑑𝑐  ⊘  𝑟) + 𝑡  

𝑑𝑑
′ = 𝑑𝑑  ⊙  𝑟 

𝑑𝑠
′ = 𝑎𝑏𝑠(𝑑𝑠

′ ⊘  𝑟) 

(2) 

 As the values of 𝑟 might not always be positive, the direction has to be multiplied 

by the calibration as well. We use absolute value for the size for a similar reason, as 

size must always be positive. 

 When the trajectories and the map are correctly loaded, and the object positions 

are transformed, the program then performs a check, whether the map is suitable for 
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routing. The program determines the starting and destination lanelet for each 

ego-vehicle and attempts to find a (shortest) path between them. If a path is not found, 

an exception is thrown. In such a case, we should check our map for errors as described 

in Subsection 4.3.2. 

 In any case, a routing graph is plotted to a file called ‘<name>_routing.osm‘, 

containing the name of the scenario, as described in Subsection 5.7.2. We can inspect 

the file using an editor such as JOSM to check whether the graph is connected correctly. 

5.9 Simulation 

After the data are loaded and validated, a simulation routine is executed for every 

combination of algorithm, scene, and ego-vehicle. A simulation consists of four phases: 

initialization, main loop, finalization, and serialization of results. 

 The first three phases are the implementation of the more abstract 

communication model discussed in Section 5.3. The flow of the simulation procedure is 

described in Figure 16 from beginning to end, where every action is assigned to an 

appropriate phase. 
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Figure 16 - Simulation procedure 

5.9.1 Initialization 

In the initialization phase, the simulator instantiates three publishers and subscribers 

for all the types of messages (Section 5.4) sent during the communication. The topic 

names of these channels are specified in the class Constants, a class holding several 

constants to be used by the simulator components. 

 The simulator runs the algorithm on a new thread and prepares an Init 

(Subsection 5.4.3) message. This includes filling the fields, which are already set in the 

configuration (osm_path, name, id, fps), while others are extracted from the data 

(start, end, size, maxSpeed, initialSpeed). The size is calculated as the median of all 

the observed sizes of the object, while the maxSpeed and initialSpeed are consequently 

set as the maximum and initial velocity of the original vehicle. The values start and 

end are set as the first and the last observed location of the vehicle. 



   

 

34 

 This Init message is sent via the simulator’s publisher, and then the simulator 

waits for a response from the algorithm. The main simulation loop starts after receiving 

the response. 

5.9.2 The main loop 

During the main loop, the simulator reads the trajectories frame by frame and creates 

a Frame message (Subsection 5.4.4), containing the positions of every object that is 

present on said frame, repeating for each one of the frames. If possible, it starts 

publishing frames four seconds before the vehicle enters the scene. This way, the 

algorithm is provided data about the scene without the need to make decisions for the 

ego-vehicle. However, this is not always possible, as the object may be present in the 

scene from the beginning. The message is then sent via the simulator’s publisher. 

 If the simulation is running with a time limit set (as described in 

Subsection 5.7.1), the simulator limits the rate of sending the messages according to 

the fps parameter. Otherwise, the simulation is executed as fast as possible. 

 When receiving a FrameResponse (Subsection 5.4.4), the simulator performs 

several actions depending on the status contained in the response: 

▪ RUNNING - The simulator checks for any errors, as described in Section 5.5and 

stores them in memory. 

▪ FIN - The simulator stops publishing new frames and ends the main loop. 

In any case, the simulator increments the counter and publishes the frame for 

visualization. The simulation also ends if there are no more frames available to publish. 

5.9.3 Pipelining 

When sending the Frame messages, the first approach was to simply wait to receive a 

response (as described in Subsection 5.9.1). An illustration is shown in Figure 17.  

 

Figure 17 - Non-pipelined communication 
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The fields in blue color (Create frame and Read response) denote operations made by 

the program, while orange (Frame processed) denote that the message is either in a 

queue or is being processed by an external algorithm. This idling of the simulator 

created a significant overhead. 

 By introducing a pipelining scheme, the simulator is able to create or respond to 

messages while other messages are being processed (Figure 18). Therefore the simulator 

does not need to wait for every response actively. We keep track of two values, the id 

of the last published frame and the id of the last received frame. If the difference 

between the two values exceeds the preset queue size, the simulator stops sending the 

messages and wait for the queue to clear. 

 

Figure 18 - Pipelined communication 

To get more insight on how much the pipelining affected the speed of the simulator, 

we conducted an experiment by running implementations on four forks, each consisting 

of 10 iterations. We made use of equations proposed by Kalibera and Jones [35]. We 

measured the time taken by one simulation and calculated the average running time 

for each fork �̅�𝑗𝑛
, as well as the total average �̅�. Using (3, we can calculate the half-

width ℎ of the confidence interval for 95% confidence:  

 𝐼𝑐 = 𝑡
1−

𝛼
2

,𝜈
√

𝑆𝑛
2

𝑟𝑛
 , (3) 

where 𝑡1−
𝛼

2
,𝜈 is the (1 −

𝛼

2
) – quantile of t-distribution with 𝛼 = 0.05 (given by 95% 

confidence) and 𝜈 = 𝑟𝑛 − 1 degrees of freedom, 𝑛 represents the number of levels (in 

this case 𝑛 = 2), and 𝑟𝑛 stands for the number of repetitions at the highest level (𝑟𝑛 =

4).  

 𝑆𝑛
2 denotes the sample variance of execution means and can be calculated using 

the following equation (4):  
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 𝑆𝑛
2 =

1

𝑟𝑛 − 1
∑ (�̅�𝑗𝑛

− �̅�)2

𝑟𝑛

𝑗𝑛=1

 . (4) 

We show the results in Table 1. 

 Time [seconds] 

Algorithm �̅�𝟏 �̅�𝟐 �̅�𝟑 �̅�𝟒 �̅� 𝒉 

Pipelined 3.68 3.68 3.65 3.67 3.669 ± 0.020 

Non-pipelined      45.41 45.51 45.58 45.53 45.509 ± 0.112 

Table 1 - Execution times for different implementations of the main loop 

 We can then estimate the speedup 𝑅 between the implementation with pipelining 

and without. Using (5), we calculate the speedup as 

 𝑅 =  
�̅�  ∙ �̅�′ ±  √(�̅� ∙  �̅�′)2 − (�̅�2 − ℎ2)(�̅�′2 − ℎ′2)

�̅�2 − ℎ2
 . 

=  12.403 ± 0.076 . 

(5) 

 The experiment was conducted on a machine equipped with Intel(R) Core(TM) 

i5-8400 CPU @ 2.80GHz and 16 GB of RAM with installed ROS Melodic 1.4.1. 

 

5.9.4 The finalization 

When the main loop finishes, the simulation enters a finalization phase. During this 

phase, the simulator waits for all the pending messages to be processed. When all the 

remaining responses have arrived, the simulator sends a Fin message (Subsection 5.4.5) 

and waits for the response to arrive. 

 After reading the response, the simulator evaluates whether the vehicle has 

arrived at its destination and adds an error if not. Finally, it shuts down all publishers 

and subscribers and waits for the algorithm subprocess to terminate. 
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5.9.5 Writing the results 

After the simulation has finished, all encountered errors are extracted and serialized to 

a CSV file specified in the configuration (Subsection 5.7.1). To decrease the size of the 

resulting table, the errors are written in the form of intervals. An example is shown in 

Table 2. 

LARGEJUNCTION_SIMPLEALGORITHM_59 
 

SEVERITY Status Type Frame Start Frame End Obj Id 

OK NO ERROR 0 376 - 

HARD_ERROR OBJ_COLLISION 377 432 10 

OK NO ERROR 433 446 - 

Table 2 - Example of the results in CSV format 

For automated benchmarking, the results are also serialized to a JSON file, which 

should be easier to parse than the CSV. 

5.9.6 No messages lost 

As stated in Subsection 5.9.2, we use a queue to send the Frame messages (Subsection 

5.4.4). However, the queue has a limited size and works in a FIFO manner. If we push 

a new message while the queue is full, the oldest message gets deleted. An algorithm 

we use to ensure that no messages get lost is described in the following pseudocode 

(Figure 19). 

S := "the size of the queue" 

o := "id of the last sent frame" 

i := "id of the last received frame" 

 

ros::spinOnce() 

 

if o - i == S then 

    while o - i > S / 2 do 

        ros::spinOnce() 

        sleep() 

    end 

end 

 

publishFrame() 

 

Figure 19 - Pseudocode of waiting for the message queue to empty 

The spinOnce is a function provided by roscpp which executes all of the callbacks 

waiting to be processed (this includes waiting on any FrameResponse (Subsection 5.4.4) 

messages). 
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 The condition causes the program to wait until the queue is at least half empty 

when the amount of pending messages is equal exactly to the size of the queue. However, 

the pending messages can be in three different states: 

1. In the queue waiting to be picked up by the algorithm. 

2. Being processed by the algorithm. 

3. In the response queue waiting to be read by the simulator. 

In the worst case, all of the messages are stored in one of the queues. But since the 

number of messages cannot be larger than the queue size, they all fit. Therefore, no 

unprocessed messages are lost. 

5.9.7 Deadlock prevention 

As we are dealing with multi-process communication with synchronization, we are at 

risk of encountering a loop of infinite waiting.  

 One of the potential threats arises from the different interleaving of publishers 

and subscribers being created. If a publisher sends a message while no subscriber is 

listening, the message gets lost, and the process, waiting for the message, gets stuck 

forever.  

 This issue is solved by using ‘latched’ queues. These queues cause the last 

message to be saved for any subscriber in the future. Hence, if any subscriber connects 

after the message has been sent, they are still able to receive the message. 

 However, even with using latched queues, we still can encounter a deadlock 

(e.g., algorithm crashing, networking error). To avoid deadlocks, we can use a 

configurable timeout in the Simulation class. If any waiting exceeds this limit, an 

exception is thrown, and the simulation is terminated. 

5.10  Visualization 

As shown in the configuration (Subsection 5.7.1), the simulator supports two different 

ways of visualizing the scene. This includes either a real-time method using rViz or 

plotting into a video file using OpenCV. 
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 To export data in an arbitrary format, we introduce the AbstractPublisher class. 

An implementation of this class can be registered to the Simulation class, which in turn 

handles calling the virtual methods. Both OpenCVPublisher and RVizPublisher are 

such implementations and are illustrated by the diagram in Figure 20. Both of the 

classes implement the virtual methods while also introducing their own fields and 

methods. Some private members are not included in the diagram to improve readability. 

A description of the virtual methods follows. 

▪ initPublisher – Called once before the simulation starts and initializes the object. 

▪ publishFrameMsg – Called for every FrameResponse received by the simulator. 

▪ tearDown – Called once after the simulation ends. 

 

Figure 20 - Deriving from AbstractPublisher 

5.10.1  Publishing to rViz 

When initialized, the class instance creates a publisher, which sends Marker messages 

over a designated topic. The topic name, marker namespace, and frame id are all 

defined by constants. In this phase, the map is also converted into a set of markers and 

sent to rViz. 

 When publishing frames, all objects are converted to Marker messages [36] and 

assigned an appropriate color using the Palette class. Objects associated with an error 

are displayed with red color. All the messages are published via the rViz publisher 
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created during the initialization. The rate of sending the messages is also limited to the 

source video fps. 

 During the tear-down phase, one more message with the action DELETEALL is 

sent, which ensures the removal of any leftover markers in the scene. 

 An example of a scene visualized via rViz is shown in Figure 21, where the ego-

vehicle is denoted by a blue cuboid marker, while other vehicles by a green one. 

 

Figure 21 - Using rViz to visualize a scene 

5.10.2  Plotting via OpenCV 

Using OpenCV, the simulator is able to plot the scene into a video file with the same 

parameters (width, height, and fps) as the source video. The program instantiates a 

VideoWriter object during the initialization. This object is able to serialize frames into 

a video file. The frames are represented as matrices of BGR values, where each element 

corresponds to one pixel (essentially a bitmap). We are using matrices with the map 

drawn as a canvas. 

 For each frame, the publisher creates a copy of the canvas and draws all the 

objects onto it. Any object with an error associated with it is drawn using red color. 

After that, the matrix is appended to the video via the VideoWriter. 
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 During the tear-down phase, the resources are released, and the video becomes 

a playable mp4 file. An example is shown in Figure 22, displaying a single frame from 

such video. The ego-vehicle is displayed as a blue rectangle, while the other objects are 

green, with yellow identifiers. The target destination of the agent is denoted by the 

blue circle. The road borders, road surface markings, and virtual lines are also displayed 

in the video. 

 

Figure 22 - Roundabout scenario visualized with OpenCV 

5.11  Shared library 

Apart from the executable binary, we also create a shared library from the source code, 

allowing other projects to use the features of the hav_simulator package. The library 

includes functions for geometry or visualization and also different constants which need 

to be set correctly for communication. 

 To avoid any future naming conflicts, we are using the namespace hav_simulator 

for all symbols in the package. 

5.11.1  SFINAE pattern 

One of the challenges when writing different geometry functions is that there are several 

different implementations for data types, such as Vector2f (an 𝑥, 𝑦 vector of the type 

float). The implementations often come from different libraries (e.g., Eigen, lanelet2, 

OpenCV, ROS, …), and functions from each library expect their own implementation. 
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Moreover, almost in every case, there are no implicit conversions available between the 

types. 

 One approach is to use overloading to specify the implementation for every type. 

However, this is very time-consuming, as there are multiple implementations for several 

structures, and we ought to manually write an overload for each one of them. Besides 

this, any implementation introduced in the future would be lacking its overload. 

 Since we use only the properties 𝑥, 𝑦 of a Point (or Vector) in most of the 

functions, we can use templates to achieve the result. This means that we need to 

provide only one implementation, and the compiler generates all the required overloads. 

However, a significant shortcoming is that this requires all of the properties 𝑥, 𝑦 to be 

accessible in the same manner. An example of a template can be seen in Figure 23. 

This way, an overload is created if the fields are accessible as a property. In contrast, 

if the fields are accessible via a method, this results in a compilation error. 

template<class T> 

float maximum(T a, T b){ 

    return max(a.x, b.x, a.y, b.y); 

} 

Figure 23 - A template example 

As stated earlier, it is not desirable to use standard overloading or templating, as we 

want to maximize compatibility. We cannot use polymorphism, as the classes from 

different libraries rarely extend the same base. Instead, we need to provide different 

overloads based on the properties (traits) of the different classes. 

 A solution to this is to use the SFINAE (substitution failure is not an error) 

technique. This allows ignoring certain templates during the compile-time under specific 

conditions [37]. An example is shown in Figure 24, where the function is enabled or 

ignored, depending on the characteristics of the type T. 

template<typename V, typename T> 

typename std::enable_if<!hasXY<T>::value, V>::type 

extractVec(T t) {...} 

Figure 24 - Using enable_if SFINAE 

 Using this technique, we have to provide only two overloads for certain functions 

- one for the implementation of Point with 𝑥, 𝑦 as fields, and a second one which uses 
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functions. It is not necessary to know anything about the implementation, only how to 

access the required properties. 

 Thus, we can use the same implementation for multiple types sharing certain 

traits. This approach makes it possible to use the functions without casting to a specific 

type and does not restrict the users of the library from using types of their own. 

5.12  Exceptions 

When dealing with exceptions, we want them to be easily identifiable. If an exception 

is thrown by a library method, it is often descriptive enough, as the libraries implement 

their exception structures. 

 We use a similar approach and implement different exception types depending 

on the reason they were raised. This way, we can use a specific exception type in the 

catch clause (or a unit test) rather than raising a pre-defined exception (such as 

runtime_error) and deducing the type from the error message. 

5.13  Testing 

For unit testing, we provide a separate CMake target using the gtest framework [38]. 

The tests are spread across multiple headers according to the tested functionality and 

can be run together or separately. The tests are using files stored in the folder data as 

resources. This folder needs to be set as the working directory when the tests are run, 

so the program can find the required files. This is handled automatically using catkin 

in the project CMakeLists file [39]. However, when using another tool (such as CLion), 

the path may need to be set manually. 

5.13.1  Unit testing 

Apart from testing our own code for bugs and unintended behavior, we also want to 

ensure that library functions behave as we expect them to. For example, we may expect 

a method to return an object by value, so it is safe to modify it. If in another version 

of the library the object is returned by reference (e.g., to lessen the memory impact), 

mutating this object can lead to modifications of unwanted data. This way, we diminish 
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the chance of any future update introducing unwanted behavior. For all of this, we are 

using parameter files saved in the data folder. 

 In the unit tests, we focus on testing whether the program detects wrong inputs 

and throws an appropriate exception. We also test our geometry functions, the 

correctness of the projections, and the loading of the map data. One header is focused 

on the work with the map, e.g., correct detection in which lanelet is the object located 

and that it can detect the existence of a path (or lack thereof) between two lanelets.  

 A special class of tests is dedicated to the correctness of the SFINAE overloads. 

These tests are done by using a large variety of types when calling our generic functions. 

The existence of a valid overload is checked during the compile-time and its correctness 

by running the tests.  

 Moreover, we are also testing the full simulation routine. For this, a reduced 

dataset is used on a simplified map. After that, we create an algorithm stub on a 

separate thread and run the simulation. Afterward, the results are checked, whether a 

correct number of errors was detected in the correct order. We are also simulating a 

deadlock and checking whether the deadlock is detected, and the simulation is 

terminated in time. 

5.13.2  Checking for memory errors 

We tested the code for erroneous memory accesses to ensure that the program does not 

end with a segmentation fault or act with undefined behavior. 

 To test for memory errors, we used Memcheck; a tool implemented using the 

Valgrind instrumentation framework [40]. This tool checks the addressability of every 

byte, the definedness of every bit, and tracks all allocated heap blocks during the 

runtime of the program. 

 We ran the whole simulation using the Memcheck tool with different 

configurations several times to check for memory errors. It was necessary to modify 

some parameters like the Frame response timeout duration, as this tool hinders the 

performance of the profiled application (in our case, the program was more than 100 

times slower). The tool did not find any memory errors but reported a potential leak, 

as 1352 bytes were ‘possibly lost’. 
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 After closer inspection, as hinted by the trace containing the symbols ld-

2.27.so and libglib-2.0.so, we deduced that the leak is introduced by the external 

library glib [41]. Given that the size of the leak did not increase across multiple 

executions and that the library developers confirmed that the ‘possible’ leaks are not 

suppressed [42], it is safe to assume that the potential leak does not pose a threat. 

 Other than Memcheck, we also used Address Sanitizer to check for memory 

errors. Address Sanitizer checks for out-of-bounds memory accesses at the cost of a 73% 

slowdown [43] in contrast to a 10000% slowdown of Memcheck. This lesser slowdown 

allows us to use the tool even when running a program with such a configuration that 

would take Memcheck several hours to analyze. Using Address Sanitizer, we did not 

find any error in our application. 

5.14  Docker 

The environment for the package to compile and run is fairly complex and contains a 

lot of different libraries, modules, and other dependencies. To ensure the runnability of 

our system and the reproducibility of the results, we have to describe in detail the 

parameters of the used environment. 

 We could potentially provide an installation script, which would set up the 

environment on a given machine. However, we realize that some users may not want 

to install all the necessary dependencies to their machine just to be able to use this 

package. Moreover, some of the dependencies might be in direct conflict with the 

packages already installed on the system and could potentially break existing programs. 

 Boettiger [44] described issues with reproducibility concerning scientific research. 

In this article, the author mentions Docker, a containerization technology [45], as one 

of the solutions. Following this example, we provide a Dockerfile with the instructions 

to assemble an image with all the dependencies pre-configured. This image can then be 

used to develop, compile, and execute the simulator or its utility modules. 

 Another benefit of the Dockerfile is that it can also serve as a recipe for setting 

up the environment locally. If someone wants to run the project directly on their 

machine, they can follow the instructions specified in the Dockerfile to set up their 

machine accordingly. 
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6 Self-driving algorithm 

The last objective is to design and implement a path planning algorithm with the ability 

to communicate with the simulator. There are several reasons why this is necessary. 

First of all, an algorithm is required to test the simulator end to end. Secondly, the 

algorithm serves as a practical example of how communication works and how to use 

the chosen libraries. Lastly, we want to provide a foundation on which more complex 

algorithms can be built. 

We are using several symbols defined in the simulator package, which we include 

as a dynamic library. This way, we can benefit from the already implemented utilities 

for geometry and plotting. 

Thus, we implemented three algorithms derived from a base class which is 

described in Section 6.2. Two of these algorithms should be considered stubs, as they 

do not perform any computations and are trivial. Although simple, the third one can 

predict the movement of other vehicles and navigate the ego-vehicle to reach its 

destination. 

It should be noted that the algorithm, in the context of this work, should serve 

as a way to validate the simulator. Thus, it is not considered wrong if the algorithm 

causes the vehicle to collide with other objects or does not reach its destination. Such 

events should be present, as we want to ensure that they are picked up by the simulator. 

6.1 Analysis 

A main requirement for the algorithm is to solve the planning problem by proposing a 

viable path, or eventually a trajectory (a path with a schedule) between two points. 

There are several algorithms and libraries dealing with this task, as reviewed by 

Tsardoulias et al. [46].  

Based on the research conducted by Tong et al. [47] we discovered, that the necessary 

basic path planning functionality is already included in the lanelet2 library. Thus we 

decided to build our solution on top of this module to demonstrate the end-to-end 
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usability of our system. The routing module converts the map in lanelet2 format to a 

‘routing graph’, where every lanelet is assigned to a node and constructs the edges 

based on the reachability between adjacent lanelets. 

Using this routing graph, we can perform several operations, such as determining 

the optimal path from the start to the destination, including possible lane changes. It 

is also possible to predict routes and points of conflict for other vehicles [13]. An 

example of a routing graph on a roundabout is shown in Figure 25. 

 

Figure 25 - A routing graph calculated for a roundabout 

Moreover, we also need a physical model for our vehicle. For our algorithm, we use a 

Point-Mass Model, one of the models proposed by Althoff et al. [4]. This model sets a 

limit on the maximum absolute acceleration. However, as this model does not 

differentiate between acceleration and deceleration (braking), we limit the value by the 

maximum braking speed. As written in [48], most of the modern vehicles are equipped 

with an anti-lock braking system, putting their maximum deceleration close to the 

value of 𝑔 = 9.8
𝑚

𝑠2 [48]. We use this value for our theoretical model. 

6.2 Algorithm interface 

As a base class for the algorithms to inherit, we provide class AbstractAlgorithm. We 

use the Template Method pattern to deal with the communication with the simulator. 
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Inside this template method, the algorithm handles the creation of the necessary 

publishers and subscribers and calls the hooks, defined as virtual methods. 

We require the algorithm to implement three different hooks, specifically the 

callbacks for the Init, Frame, and Fin messages (Section 5.4). The algorithm should 

process the contained information and assemble responses for the Frame messages. 

These responses have to contain the position of the ego-vehicle for the frame, which the 

algorithm had calculated using the gathered information. 

It is not required to call the hooks or create any publishers or subscribers for the 

messages, as this is already handled by the template method. 

The template method, together with the virtual hooks, is illustrated by a 

diagram shown in Figure 26. This diagram provides an example of two different 

algorithms extending the base class. The callbacks are all virtual functions that the 

algorithm has to implement, while run() is the public template method invoking the 

callbacks.  

 

Figure 26 - Using the template method pattern with two different implementations 
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6.2.1 The template method 

 

Figure 27 - Flow of the template method 

The purpose of the template method (Figure 27) is to perform the communication of 

messages with the simulator. Firstly, the algorithm creates three publishers and 

subscribers for all the message types. The parameters for the publishers and subscribers 

are extracted from the simulator shared library. As explained in Subsection 5.9.7, we 

are using latched publishers to ensure that no messages are lost. 

After creating the publishers and subscribers, the algorithm waits for an Init 

message (Section 5.4). After receiving this message, the algorithm publishes an 

InitResponse and starts the main loop.  

In the main loop, the algorithm keeps reading the incoming Frame messages and 

generates responses for every single one of them. The main loop ends when the 

algorithm receives a Fin message, which signals that the algorithm should finish. 

After exiting the main loop, the algorithm sends a response to the Fin message 

and shuts down all the publishers and subscribers. When this is done, the algorithm 

ends.  
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6.3 The algorithm stubs 

During the early development of the simulator, two different algorithms were created. 

The algorithms themselves are considered to be stubs and should be used only for the 

purposes of demonstrating the simulator. Using these algorithms, we were able to verify 

the process of initialization, simulation, visualization, and the detection of different 

errors during the early development of the simulator. 

6.3.1 Straight algorithm 

The first implementation, StraightAlgorithm, starts by ignoring any information 

provided in the Init message (Section 5.4) except for the id of the ego-vehicle. 

Afterward, the algorithm responds to any Frame message with the status WAITING. 

After receiving a first message containing a vehicle with the specified id, the algorithm 

saves the orientation of this vehicle. 

Afterward, the algorithm keeps moving the vehicle forward at a constant speed 

while colliding with any obstacle in its path. This algorithm can be useful if we want 

to test whether the simulator is detecting collisions correctly since this algorithm will 

probably produce a substantial amount of them. 

6.3.2 Echo algorithm 

The second algorithm, called EchoAlgorithm, saves only the id of the ego-vehicle in the 

Init message (Section 5.4). Until a first Frame message containing a vehicle with this 

id is received, the algorithm responds with the status WAITING. Subsequently, the 

algorithm sends back the ground-truth position with the status of RUNNING. This is 

repeated until a Frame is received in which the vehicle is missing. This causes the 

algorithm to switch to the status FIN, in which it stays until the end. 

This algorithm was very useful during the development of the simulator, notably 

the communication between the simulator and the algorithm. Similarly, this algorithm 

was used to test the different methods of visualization.  
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6.4 The autonomous driving algorithm 

The last task was to implement a functional self-driving algorithm. This algorithm 

should be able to find a path to the destination and adjust the vehicle's velocity and 

direction to reach the destination while avoiding collisions.  

6.4.1 Initialization 

After an Init message is received, the algorithm loads the map and uses the lanelet2 

framework to build a routing graph from the scene. The graph is then used to acquire 

a path in the form of a sequence lanelets, which can be traversed to reach the 

destination. 

Using this sequence, the algorithm calculates the path from start to destination 

by computing the center lines for the selected lanelets. The path is then smoothed by 

limiting the maximum angle (set as a constant) between two consecutive points. 

The algorithm stores the information contained in the message in memory. This 

includes data such as the initial and maximum velocity, and the size of the vehicle. 

These parameters are later used when calculating responses to the Frame messages. 

The algorithm also plots the calculated trajectory into an image for debugging 

purposes. An example is shown in Figure 28, where the vehicle has to drive through a 

roundabout. The path is displayed as a red curve. 

 

Figure 28 - Path of the vehicle when driving through a roundabout 



   

 

52 

6.4.2 Frame response step 

When responding to the Frame message, if the object replaced by the ego-vehicle is not 

yet present in the scene, the algorithm responds with the status WAITING. After 

receiving the first message, the algorithm switches to the status RUNNING and responds 

with the position of the vehicle. 

When receiving a Frame while the status is RUNNING, the algorithm first updates 

the positions of other vehicles in the scene. Then, it calculates their predicted positions 

according to their orientations and their instantaneous velocities. The velocity of every 

vehicle is estimated using the distance between the current position and the position 

from half a second ago. We chose half of a second to compensate for the noise in the 

positions of objects between consecutive frames but to still be able to react fast enough. 

The speed of the vehicle also determines the predicted future positions, so in case that 

the current state is expected to lead to a collision, there is still enough time to brake. 

The predicted vehicle positions are inflated by a percentual amount to account for the 

uncertainty and also to avoid near-misses if possible. 

The algorithm attempts to estimate whether it is necessary to change the 

velocity. The algorithm tends to keep the vehicle at the maximum allowed speed. 

However, when this leads to a collision with another vehicle, the algorithm causes the 

vehicle to brake and decrease the velocity or even bring the vehicle to a full stop. 

Moreover, the algorithm attempts to keep a safe distance between itself and any 

other vehicle in front of it. For this, we use the routing graph to search for any vehicle 

in front of the car, which is in the same or the following lanelet. Under §19 of the Traffic 

regulation act (‘Zákon o silničním provozu’ in Czech), drivers should keep enough 

distance between the vehicles [49]. The law does not specify this distance, but the usual 

value is the distance covered by the vehicle at the current speed in two seconds [50]. 

However, this value takes into account the time necessary for a human driver to react, 

which can be as long a 1.5 seconds. As the algorithm runs with the frequency of fps we 

can set the reaction time to the value of fps-1. 

After adjusting the velocity according to the behavior of other vehicles, the 

algorithm steers the vehicle to follow the pre-computed trajectory. After this, the 
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algorithm calculates the new position of the ego-vehicle and sends it to the simulator 

in the form of a FrameReponse message. 

For debugging purposes, if the symbol DRAW_DEBUG_IMAGES is defined, the 

algorithm also saves an image with objects and their predicted locations drawn for 

every frame. An example image is shown in Figure 29, where the ego-vehicle is denoted 

by the blue rectangle and other vehicles by green or magenta. The yellow rectangles 

are the predicted positions of other vehicles. The blue number describes the 

instantaneous velocity of the vehicle in meters per second. In the image, the ego-vehicle 

is braking, as it is too close to the vehicle in front. This is symbolized by coloring the 

vehicle with magenta rather than green. 

 

Figure 29 - The visualized model of the algorithm 

6.4.3 Finalization 

After reaching the destination with the ego-vehicle, the algorithm sends a 

FrameResponse with the status FIN to signal the simulator that the simulation can be 

terminated. Since the sending of the messages is pipelined, there still might be 

unprocessed Frame messages enqueued. Each of the messages should be replied to with 

the status FIN until a Fin message is received. The switching between states is 

illustrated by the state diagram in Figure 30. 
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Figure 30 - The algorithm switching between states 

6.5 Testing 

For the purposes of testing the whole system, we assembled a dataset consisting of 

trajectories and lanelets from six different scenes. These scenes include a simple 

highway, roundabout, and two junctions. The last two scenes are from a junction and 

a roundabout and both are fairly complex. 

We have the following requirements for the system. 

▪ The system is able to benchmark one or multiple algorithms on one or multiple 

scenes. 

▪ The system is able to work with different configurations. This includes the time 

limit or types of visualization.  

▪ The system must not encounter any exception, deadlock, or erroneous memory 

access.  

▪ The system must correctly detect collisions or other errors made by the ego-

vehicle. 

▪ The routing graph must be connected, and a path exists from start to 

destination. 

For each one of the scenes, we provide configuration files with cars that should be 

replaced with the ego-vehicle for the purpose of benchmarking the algorithm. Almost 
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any vehicle can be substituted, except those either leaving the scene a few seconds after 

the start of the footage or entering shortly before the end. Even though the system is 

able to work with a benchmark created by substituting such a vehicle, the results of 

this benchmark would not hold much of an informational value. To demonstrate the 

functionality of the system, we chose a sample of vehicles with multiple combinations 

of starting and ending lanelets.  

We tested the system on the following configurations. 

▪ All of the scenes with one algorithm and OpenCV. 

▪ A scene with one algorithm and rViz. 

▪ A scene with multiple algorithms. 

▪ A scene with a time limit. 

Both the simulator and the algorithm were linked with Address Sanitizer, as mentioned 

in Subsection 5.13.2, to check for erroneous memory accesses during runtime. The tool 

did not detect any error while running the benchmarks.  

The resulting videos and evaluations were then manually inspected to ensure that 

the encountered errors are reported correctly. The outputs of the system can be found 

on the enclosed DVD in the folder results as described in Appendix. 

6.6 Results 

In this section, we discuss the behavior of the implemented algorithms during different 

traffic situations. The following examples are taken from the benchmark results of the 

algorithm described in Section 6.4. 

In Figures 31 and 32, we see the blue ego-vehicle attempting to join a lane, but 

other vehicles are standing in its way. The algorithm correctly waits for a gap in the 

traffic to appear and joins the lane shortly after. 



   

 

56 

 

Figure 31 - The ego-vehicle waiting to join a lane 

 

Figure 32 - The ego-vehicle has joined the lane 

Figures 33 - 35 describe a scenario at a different intersection. In the beginning, the ego-

vehicle enters the scene but is blocked by another car with an identifier of 27. The ego-

vehicle correctly waits for the path to get clear and then continues to the destination 

marked by the circle. 

 

Figure 33 - The ego-vehicle has 

entered the scene 

 

Figure 34 - The ego-vehicle waits at 

the intersection 

 

Figure 35 - The ego-vehicle 

reaches the destination 

Figures 36 - 38 illustrate a situation from another intersection. The ego-vehicle takes a 

left turn and meets another car traveling in the opposite direction. After the other car 

passes, the ego-vehicle continues along its planned trajectory. 

 

Figure 36 – The ego-vehicle 

takes a left-turn and meets 

another vehicle in the middle 

 

Figure 37 - The ego-vehicle waits for 

 the other vehicle to pass 

 

Figure 38 - The ego-vehicle 

continues when the path becomes 

clear 

An example where the algorithm does not solve the traffic situation correctly is shown 

in Figures 39 and 40. As a consequence of joining a traffic lane too soon, the ego-vehicle 
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collides with another vehicle. The simulator detects this and colors the vehicle with 

red. 

 

Figure 39 - The ego-vehicle joining a traffic lane 

 

Figure 40 - The ego-vehicle collides with another 

vehicle as a result of joining too soon 

We also provide examples for the algorithm stubs (described in Section 6.3). The 

StraightAlgorithm is predictable as it drives in a straight line and thus generates several 

collisions. This behavior is shown in Figures 37 and 38, where the ego-vehicle collides 

with multiple vehicles and a curbstone. The EchoAlgorithm does not substitute the 

original vehicle but only repeats the ground truth. It can be used to demonstrate that 

not every road user follows the traffic rules, as shown in Figure 43, where the ego-

vehicle crosses a full line. 

Straight Algorithm Straight Algorithm Echo Algorithm 

 

Figure 41 – The 

StraightAlgorithm drives in a 

straight line 

 

Figure 42 – StraightAlgorithm causes 

the ego-vehicle to collide with two other 

vehicles and a curbstone 

 

Figure 43 - The EchoAlgorithm 

causes the ego-vehicle to cross a 

full line 

As stated earlier in Section 6.5, the complete outputs of the benchmarking are provided 

on the enclosed DVD in the folder results. 
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7 Future works 

In the context of this thesis, we assembled a dataset containing vehicle trajectories 

extracted from six different videos. In the future, it might be necessary to extend this 

data set with data from other scenes. This could mean exploring the available pre-

annotated datasets or searching the internet for more video footage, from which the 

data could be gathered. Alternatively, if a specific traffic situation is required, record 

the videos ourselves. 

The simulation environment could also be extended with some functionalities. 

Currently, the system supports only one vehicle controlled by the algorithm at a time. 

Given that the system uses messages to communicate, it can be modified to be able to 

communicate with multiple algorithms at once. This would mean that we could 

evaluate a scenario with multiple agents, which are controlled by external algorithms. 

Such an approach would render the pipelining of the messages unusable, as the 

responses from one algorithm contain the information required by the rest of the 

algorithms. This would hinder the performance, but the system would work correctly 

nonetheless. 

The simulator can also be extended with the detection of other kinds of errors. 

For example, we classify collisions as an error, but we could also declare that a near-

miss is also an error. Similarly, we use a temporal constraint in the form of a time limit. 

The error is then detected if the algorithm does not respond to a message in the specified 

time. Similarly, we could specify the time in which the vehicle has to reach the 

destination. Failing to do so at the specified time would be classified as an error. 
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8 Conclusion 

The main aim of this thesis was to design and implement an environment for 

benchmarking planning algorithms in ROS. To provide a complete solution, we split 

the project into four major parts. 

In the first part, we focused on gathering the dataset for the benchmarks. Given 

that we wanted to provide information from real traffic, rather than one that is 

artificially generated, we searched for video footage, from which we could extract the 

trajectories of the vehicles. 

To this point, we assembled a data set consisting of over six hundred unique 

vehicle trajectories from six different scenes. The data set is focused on roundabouts 

and junctions, as they are generally more complex than a simple highway, where all 

the vehicles move in the same direction and usually at a constant speed. 

We also provide a ROS package devoted to manipulating the data. Using this 

package, one can remove trajectories or add artificial ones. One of the tools can also be 

used to convert data from the format used by detection frameworks and datasets to a 

format usable for benchmarking. 

Furthermore, we discussed several methods of describing the scene itself. From 

the available formats, we chose lanelet2, due to the benefit of having an open-source 

editor and providing a library to handle the mapping data as a ROS package. The 

lanelet2 framework was designed for the purpose of automated driving and gave us 

enough tools to describe even complex traffic scenarios. We also extended this format 

with one custom tag, which is used to project the trajectories from the data set onto 

the map. 

The third part is dedicated to the design and implementation of the simulation 

environment. This package was also created to work as a ROS node. The simulator is 

able to run and benchmark planning algorithms in different scenarios. The scenarios 

are described using a configuration file, which serves as input for the system. Multiple 

benchmarks and algorithms can be listed in the configuration file to automate the 

process. The system then sequentially runs all of the algorithms on the specified data. 
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We use message passing to communicate with the algorithm. Therefore, the 

implementation of the algorithm is independent of the simulator. The simulator is 

responsible for running the algorithm and exposing the information about the scene 

using ROS messages. The simulator then collects the responses from the algorithms 

and writes any detected collisions or other errors into files in JSON or CSV format. It 

is also possible to visualize the whole scene using OpenCV or rViz. 

Lastly, to verify the design of the whole environment consisting of the 

benchmarks and the simulator, we required an algorithm that can communicate with 

the simulator. However, later on, this was changed, so that we should provide our own 

example on how to use the routing library to plan the trajectory and how to 

communicate with the simulator. We benchmarked this algorithm using the whole 

dataset to demonstrate the simulator’s behavior. 

The gathered set of benchmarks, coupled with an environment to work with the 

data, creates a framework suitable for building new benchmarks for planning 

algorithms. The simulator is able to evaluate different algorithms using the designed 

benchmarks. All of the implemented software is compatible with ROS with an emphasis 

on using only libraries and tools, which are open-source or at least free to use. 

The system is designed to be used by developers of planning algorithms for 

personal vehicles. It enables the developers to test the performance of their algorithms 

in a safe and simulated environment on several traffic scenarios from the real world. 

The output of the system is in a programmatically parsable format, allowing for 

automated running of simulations, and using the simulation results to adjust the 

parameters of the algorithm. 
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10 Appendix 

The contents of the enclosed DVD are described below. 

▪ /results – The outputs of the simulator for different configurations 

▪ /memcheck – The outputs of Memcheck with a brief description of each program 

execution 

▪ /simulator_data – Folder containing scene descriptions in lanelet2 format and 

trajectories 

▪ /src – This folder contains the source codes for every implemented ROS package 

▪ /src/hav_sim_utils – ROS package dedicated to pre-processing the input data 

▪ /src/sim_alg – ROS package containing the planning algorithm example 

▪ /src/hav_simulator – ROS package containing the simulator 

▪ /src/hav_simulator/cfg – This folder contains several JSON configurations for 

benchmarking 

▪ /src/hav_simulator/docker – This folder contains a Dockerfile to build an image 

with a pre-installed environment 

▪ /README.md – Instructions on how to compile and run the system 

▪ /plot.rviz – A configuration for the scene in rViz 

▪ /deepstream.md – Instructions on how to use DeepStream to extract trajectories 

from a video 
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