

Czech Technical University in Prague

Faculty of Electrical Engineering

 Department of Computer Science

Simulation environment for testing

of planning algorithms

Diploma thesis

Author:

Bc. Šimon Maňour

Supervisor:

 Ing. Jaroslav Klapálek

Master program:

Open Informatics

Specialization:

Software Engineering

I declare that the submitted thesis was developed individually and that I listed all used

information sources under the Methodical Guideline on Ethical Principles for College

Final Work Preparation.

In Prague …………………. Bc. Šimon Maňour ………………….

ACKNOWLEDGEMENTS

I want to thank Ing. Jaroslav Klapálek for providing advice and guidance regarding the

analysis, design, and implementation of the simulation environment.

ABSTRACT

This diploma thesis seeks to create an environment for benchmarking of path planning

algorithms for autonomous driving in ROS. The aim is to give researchers the means

to validate the performance of their algorithms. We analyze different sources of data

to determine, whether they are suitable for the benchmarking. Using this knowledge,

we create a set of benchmarks containing vehicle trajectories, road descriptions, and

goals for the planning algorithm, all extracted from real traffic. We also provide a

simulator able to run multiple planning algorithms, evaluate them and visualize their

performance. Furthermore, we provide a planning algorithm to demonstrate the

benchmarking process and its outputs, and to provide insight on how to work with the

benchmark data set.

Key Words: Planning algorithms, Autonomous driving, Benchmark, Simulation, ROS

ABSTRAKT

Tato diplomová práce si klade za cíl vytvořit simulační prostředí pro testování

plánovacích algoritmů v systému ROS, které umožňuje výzkumníkům ověřit své

plánovací algoritmy pro autonomní vozidla. Práce se věnuje rozboru různých zdrojů

dat a hodnotí, zda jsou data vhodná pro testování algoritmů. Součástí práce je sada

scénářů obsahujících anotace silnic, trajektorie vozidel, a cílů pro autonomní vozidlo.

Tyto scénáře jsou vytvořeny na základě záznamů skutečné dopravy. Součástí práce je

rovněž simulátor, který je schopen spouštět, hodnotit a vykreslit chování plánovacích

algoritmů v různých dopravních situacích. K jeho ověření byl implementován vlastní

plánovací algoritmus, s jehož pomocí lze doložit nejen funkčnost simulačního programu,

ale i přiblížit čtenáři práci s testovací sadou dat a příslušnými knihovnami.

Klíčová Slova: Plánovací algoritmy, Autonomní řízení, Testování, Simulace, ROS

Název práce: Simulační prostředí pro testování plánovacích algoritmů

i

Table of Contents

1 Introduction 1

2 Related work 3

2.1 Robot Operating System ... 3

2.2 CommonRoad ... 3

2.3 NVIDIA DeepStream .. 4

2.4 Autoware .. 4

2.5 Mapping formats ... 4

2.6 Datasets .. 5

3 Benchmark dataset 6

3.1 Analysis .. 6

3.1.1 Data source ... 6

3.2 Trajectories format ... 7

3.3 Data pre-processing package ... 9

3.4 Parsing the format ... 10

3.5 Filtering trajectories... 10

3.6 Calculating rotated rectangles.. 11

3.7 Visualization .. 12

3.8 Adding custom trajectory .. 12

3.9 Testing ... 13

ii

4 Scene annotations 15

4.1 Analysis ... 15

4.1.1 Lanelet2 format ... 15

4.2 Calibrations with OSM .. 16

4.3 Annotations using Lanelet2 ... 17

4.3.1 Using virtual lines .. 17

4.3.2 Connecting lanelets .. 18

4.4 Custom tags .. 19

4.5 Validation .. 19

4.6 Fixing the errors .. 19

4.6.1 Segmentation fault ... 20

4.6.2 Not the closest lanelet .. 20

5 The simulator 22

5.1 Requirements ... 22

5.2 Architectural design .. 22

5.3 The communication protocol ... 23

5.4 Messages .. 24

5.4.1 Point2 .. 25

5.4.2 Position .. 25

5.4.3 Init ... 25

5.4.4 Frame .. 26

iii

5.4.5 Fin .. 26

5.5 Error types ... 26

5.6 High-level design .. 27

5.6.1 Used libraries .. 28

5.7 Input Configuration ... 29

5.7.1 Top-level data format ... 29

5.7.2 Benchmark object ... 30

5.7.3 Algorithm object .. 31

5.8 Data loading .. 31

5.9 Simulation .. 32

5.9.1 Initialization ... 33

5.9.2 The main loop .. 34

5.9.3 Pipelining ... 34

5.9.4 The finalization .. 36

5.9.5 Writing the results ... 37

5.9.6 No messages lost ... 37

5.9.7 Deadlock prevention ... 38

5.10 Visualization .. 38

5.10.1 Publishing to rViz ... 39

5.10.2 Plotting via OpenCV .. 40

5.11 Shared library .. 41

iv

5.11.1 SFINAE pattern ... 41

5.12 Exceptions ... 43

5.13 Testing .. 43

5.13.1 Unit testing .. 43

5.13.2 Checking for memory errors ... 44

5.14 Docker ... 45

6 Self-driving algorithm 46

6.1 Analysis ... 46

6.2 Algorithm interface ... 47

6.2.1 The template method .. 49

6.3 The algorithm stubs .. 50

6.3.1 Straight algorithm ... 50

6.3.2 Echo algorithm .. 50

6.4 The autonomous driving algorithm ... 51

6.4.1 Initialization .. 51

6.4.2 Frame response step .. 52

6.4.3 Finalization .. 53

6.5 Testing .. 54

6.6 Results ... 55

7 Future works 58

8 Conclusion 59

v

9 References 61

10 Appendix 67

1

1 Introduction

Many companies, research centers, and universities acknowledge that automation

technology is an important driver for Industry 4.0. Modern autonomous production

takes advantage of devices that can complete tasks efficiently, with a focus on safety

and collaboration [1]. This automation also includes the possibility of self-driving

personal vehicles.

 We understand the term ‘Highly autonomous vehicle‘ (HAV) as a vehicle

equipped with several sensors, commonly including devices like GPS, cameras, and

lidars. This vehicle also needs to be equipped with an embedded computational unit,

which is able to respond to the several stimuli produced by the sensors in real-time,

reacting by steering the vehicle or adjusting the velocity.

 However, for this vehicle to be usable in the real world, it needs to be able to

navigate efficiently and, which is the most important, safely in as many scenarios as

possible (or at least comparably to human drivers).

 This thesis aims to design a set of benchmarks and an environment for the

testing of different planning algorithms for autonomous vehicles.

 At first, it is necessary to gather data from different traffic scenarios, which the

planning algorithm needs to be able to navigate. We mainly focus on roundabouts and

intersections, but we also include more straightforward scenes. Moreover, the system is

designed to work with data from real traffic (mainly but not limited to trajectories

extracted from video footage) rather than fabricated data.

 We use AI to extract trajectories from video footage and provide a toolkit to

transform the data from a format commonly used by MOT (Multiple object tracking)

datasets and detection frameworks to a format suitable for autonomous driving.

 Then, we replace one of the vehicles in the original data with a so-called ‘ego-

vehicle’ controlled by an external planning algorithm. The format of the data and

different ways of pre-processing it is described in Chapter 3.

2

 However, being able to describe the trajectories of the vehicles is not enough for

autonomous driving, as we also need information about the scene itself. This includes

the location of traffic lanes, surface markings, and obstacles together with their

orientation and borders. The aim of Chapter 4 is to explore different formats of scene

description and to analyze their benefits and pitfalls.

 As we aim to test planning algorithms using the dataset, we need a simulator.

This program is able to benchmark algorithms by serving as a substitute for the sensors

of the vehicle. The simulator monitors the ego-vehicle’s position to check for any errors.

The simulator is designed to allow for automated testing of multiple algorithms in

multiple situations. In Chapter 5, we describe the overall design, the used technologies,

and the implementation of the simulator.

 In order to verify the simulator, we have implemented an algorithm, which can

communicate with the simulator and plan a trajectory for the autonomous vehicle using

the provided data. This algorithm serves as a proof of concept for the parts mentioned

above, as well as a practical example of how to communicate with the simulator and

how to use the chosen libraries. The design and the implementation of the algorithm

are discussed in Chapter 6.

 Together, all of the separate parts serve as a toolkit for the verification of

autonomous driving algorithms. This includes creating datasets, describing different

scenarios, and implementing the algorithms. The performance of the algorithms can

then be evaluated and visualized in batch using the simulator.

3

2 Related work

In this chapter, we explore some of the existing solutions and describe how they are

related to this thesis. Mentioned solutions can be related either to the dataset or to the

simulation platform itself.

2.1 Robot Operating System

The Robot Operating System (ROS) is a flexible framework consisting of tools, libraries,

and conventions. The framework aims to simplify the task of creating complex and

robust programs for a wide variety of robotic platforms [2].

 Given that using ROS was a part of the thesis assignment, all of the implemented

software was written in the form of ROS packages. The thesis includes three packages

devoted to working with data, development of autonomous driving algorithms, and

benchmarking.

 ROS promotes such a modular approach, as it expects a system to consist of

several decoupled nodes. To enable communication between the nodes, ROS provides

a communication protocol using the publish/subscribe pattern [3]. We took advantage

of this when designing the interface between the simulator and the autonomous driving

algorithm.

2.2 CommonRoad

CommonRoad is a benchmark collection for motion planning of road vehicles [4]. This

collection contains a substantial amount of scenarios, consisting of a map in lanelet

format and positions of vehicles.

 The user can then benchmark their algorithms by downloading the scenario as

an XML file. After processing the scenario, the trajectory of the ego-vehicle controlled

by the algorithm has to be serialized to another XML. The evaluation is then performed

by creating a new submission on the benchmark website [5].

4

 However, this concept of benchmarking expects us to use existing scenarios. We

are not allowed to alter the data, create a new scenario, or introduce a custom physical

vehicle model.

2.3 NVIDIA DeepStream

Even though we were allowed by GoodVision to use their AI [6] to extract trajectories

from the selected scenes, our system was designed to be able to work with data gathered

from various sources. This could include existing datasets, hand-crafted annotation, or

other systems capable of multiple object tracking (MOT).

 One such system is NVIDIA DeepStream. DeepStream is a streaming analytic

toolkit for building AI-powered applications. It takes video frames as input and uses

computer vision to gather information from the footage [7]. This system provides an

end-to-end solution for extracting trajectories from a video stream. Using one of the

pre-trained models for detection, classification, and tracking, the user can easily extract

trajectories from any video footage.

2.4 Autoware

Autoware.AI is the world's first "All-in-One" open-source software for autonomous

driving technology [8]. It is built on ROS and contains several modules for localization,

object detection, position prediction, and trajectory planning.

 This solution comprises tools for processing the data gathered from sensors such

as cameras and LIDARs and uses AI to determine the position of the ego-vehicle and

the surrounding objects. Coupled with the modules for trajectory planning and position

prediction, Autoware controls the vehicle by changes in velocity and steering angle.

2.5 Mapping formats

We explored several formats used for mapping. One of such formats is the one used by

OpenStreetMap (OSM) – a free map of the whole world build by volunteers [9] and

commonly used for GPS devices [10]. This format describes roads using an imaginary

5

center line, while other attributes, such as the number of lanes or lane size, are added

via a key-value system.

 The second format we analyzed is OpenDRIVE [11], a format developed as a

standardized way of describing traffic scenes for driving simulators. OpenDRIVE

describes the road geometry along with the surface markings and logical properties such

as lane types and directions [12].

 The last format, lanelet2, was introduced in 2018 by Poggenhans et al. [13]. This

format was created specifically for autonomous driving. Lanelet2 describes the road

using a network of lanelets – small segments of traffic lanes described by their left and

right borders. The format’s authors also provide a library, which can be used to work

with the mapping data.

2.6 Datasets

To create traffic scenarios, we can take advantage of existing datasets containing fully

annotated images of road users. VisDrone is a dataset consisting of 400 aerial video

clips taken in 14 different cities in China [14]. Another example is AU-AIR dataset,

which focuses on images from low altitude traffic [15]. InD dataset consists of footage

from four different intersections. The authors use drone cameras to overcome the

limitations of established traffic collection methods such as occlusions [16]. With a

positional error typically less than 10 cm, the dataset is usable for the development of

autonomous driving systems. The useability of the datasets is discussed more in

Section 3.1.

6

3 Benchmark dataset

Within the context of this thesis, we define benchmark as a complete description of a

specific traffic scenario, together with a task for the ego-vehicle. In order for the

description to be considered complete, we require knowledge about the trajectories of

every vehicle and the description of the environment itself. The task of the ego-vehicle

is then denoted by the starting position and the destination it has to reach.

 We generate the tasks by artificially removing one of the vehicles from the

scenario and substituting it with a vehicle controlled by an algorithm. This agent has

to reach the same destination as the original vehicle.

3.1 Analysis

To create a complete benchmark, two types of data are required. At first, we require

information about the trajectories of all vehicles on the scene. Each road user is

described by a unique name, a position in time and space, size, and direction. Using

this, we can describe the trajectory of any vehicle that was present on the scene.

 The second type of data is about the scene itself. We are looking for a way to

describe the location of the surface markings and road edges, which are together

creating different traffic lanes. Moreover, we want to annotate the intersections, so the

algorithm can deduce which lanes can be reached in order to plan the path correctly.

 Using this data, we can select vehicles that can be substituted with the

ego-vehicle. Such a benchmark can be used to test the performance of different

algorithms for autonomous driving.

3.1.1 Data source

At first, when creating the benchmarks, we had to determine the source for extracting

the data. We chose to gather the information from traffic videos that are publicly

available on the internet. We were looking for footage that minimizes occlusions and

where the objects do not change in size while traveling across the scene. This set of

7

criteria matches drone footage the most, as the camera is located directly above the

road.

 We also explored the possibility of using existing datasets, as mentioned in

Section 2.6. However, most of the data is not suitable for our use case since the view is

not top-down, or the camera is moving, which is the case of both VisDrone [14] and

AU-Air [15] datasets. In the case of inD [16], the data are not available to the public.

 Because of this, we decided to extract the data directly from drone footage,

which is publicly available and which fulfills our criteria. The source of the video is

always mentioned inside the benchmark configuration file. One such source of free video

materials is the website Pexels [17], which provides free photographs and videos. Then,

we used GoodVision AI to extract the trajectories from said footage.

 Apart from this, it is also possible to extract the trajectories via human

annotators using a specialized toolkit such as Vatic [18].

3.2 Trajectories format

Further work with the extracted data requires a standardized and more manageable

format. For this reason, we chose MOTChallenge [19] format as the baseline for our

annotations. The format specifies that every object is on an individual line using

comma-separated values. The object’s location is described by a bounding rectangle

(also called a bounding box), a minimal unoriented rectangle containing the whole

object. The names of the fields used in this format are shown below.

<frame>, <id>, <bb_left>, <bb_top>, <bb_width>, <bb_height>, <conf>, <x>, <y>,

<z>

A brief description of relevant column names is listed below.

▪ frame – number of the frame on which is the object present

▪ id – identifier of the trajectory that the object belongs to

▪ bb_left – x-coordinate of the top-left corner of the object bounding rectangle

▪ bb_top – y-coordinate of the top-left corner of the object bounding rectangle

▪ bb_width – the width of the bounding rectangle in pixels

▪ bb_height – the height of the bounding rectangle in pixels

8

▪ conf – confidence of the detection given by the prediction model

▪ x – x location in world coordinates

▪ y – y location in world coordinates

▪ z – z location in world coordinates

An example of such data for 2D tracking, which is our use case, can be:

1, 3, 794.27, 247.59, 71.245, 174.88, -1, -1, -1, -1

1, 6, 1648.1, 119.61, 66.504, 163.24, -1, -1, -1, -1

1, 8, 875.49, 399.98, 95.303, 233.93, -1, -1, -1, -1

As we can see in the example, the last four columns are not holding any value and can

be neglected. We consider the origin of the coordinate system used by the bounding

rectangles to be placed in the top-left corner of the image. The x-axis is along the width

of the image from left to right, and the y-axis describes the height from top to bottom.

This is illustrated in Figure 1.

Figure 1 - An image with axes directions

Additionally, we introduce other values, that are necessary for our use case:

<class>, <dx>, <dy>, <cx>, <cy>, <w>, <h>

The data have the following meaning:

▪ class – type of the object (e.g., ‘car’, ‘van’, …)

▪ dx – x part of the normalized direction vector

▪ dy – y part of the normalized direction vector

▪ cx – x part of the object center point

▪ cy – y part of the object center point

9

▪ w – object width in pixels

▪ h – object height in pixels

In this setting, we consider width and height in the context of the image coordinate

system. This means that width represents the distance from the center of the vehicle

to the right edge and height represents the distance to the bottom edge when the

direction vector is aligned with the x-axis. This is illustrated in Figure 2.

Figure 2 - Describing a rotated rectangle

We use a semicolon instead of a comma as the separator for language localization

compatibility reasons. Lastly, we expect the entries to be sorted by their frame numbers

in ascending order.

3.3 Data pre-processing package

In contrast to the MOTChallenge format and its adaptations, the additional

information we require (oriented bounding rectangles) is not common, and none of the

aforementioned datasets provided us with this information. Therefore, it was necessary

to create a package to process the data as a part of this thesis.

 The created package, named ‘hav_sim_utitls’, is a standard ROS package

containing several utility python scripts. Its purpose is to filter trajectories, calculate

the orientation of different vehicles, calibrate the map scale, and visualize the data on

a video. Using those scripts, we can calculate the missing values, which are needed by

the simulator. A summary of script names and their purposes is as follows.

10

▪ insert.py –adds a custom trajectory to an existing set

▪ measure.py – estimates the calibration when drawing maps (more in Section 4.2)

▪ orientate.py – converts unoriented bounding rectangles to oriented

▪ reduce.py – removes trajectories from an existing set

▪ test.py – contains unit tests for the package

▪ utils.py – contains functions mostly related to I/O and conversions between data

structures

We use Python 3 as the interpreter for this project because, since 2020, Python 2 is

considered deprecated [20].

3.4 Parsing the format

The system needs to be robust, even when working with incomplete data. Therefore all

the created tools are designed to work in two different scenarios. The input CSV can

either contain (i) all the data or (ii) only the trajectory id, frame, and the bounding

box. An example of such a situation is processing the raw data for the first time.

 A set of functions that handle parsing and writing the data can be found in the

Python script utils.py. This file is not runnable but contains functions used by other

scripts.

3.5 Filtering trajectories

When preparing the dataset, it is necessary to be able to filter out unwanted

trajectories, such as trajectories created by false positives or trajectories that are

fragmented. Both of these trajectories could cause our system to return erroneous

results. An example of a false positive collision is shown in Figure 3. It is possible to

perform this filtering by passing a list of trajectory ids and a file containing trajectories

to the script reduce.py, which produces a new CSV without any of the specified

trajectories.

11

Figure 3 - False positive intersecting with a real object

3.6 Calculating rotated rectangles

Estimation of the other values such as the orientation of the vehicle, its size, and its

center is done by the script orientate.py.

 It is necessary to account for a noise in the position of the bounding rectangle

center point. The noise can either be caused by the prediction model or by human error

in the case of hand-crafted data. Therefore, we decided to filter out buses and trucks,

as it was difficult to calculate their orientation reliably. It was also necessary to filter

out any pedestrians, as they were detected only scarcely due to the high altitude of the

recording drone.

 Afterward, the program proceeds with estimating the orientation of the bounding

rectangles. First of all, the program calculates the center point of the object. When

there is enough distance between two center points, the orientation is obtained as the

difference between these two points. This is repeated for each point of the whole

trajectory, while this distance in pixels is set as a hyperparameter, and the optimal

value may differ for different scenes. If there is not enough movement (e.g., the object

is stationary), the trajectory is removed altogether, as the orientation cannot be

calculated.

 Estimating the vehicle orientation splits the trajectories into several segments

with the same orientation. The values are then interpolated to make the change in the

direction more smooth and natural.

 As the next step, the script estimates the width and height of the object using

the ratio of typical dimensions of road vehicles. The length of 4-5 m and width of

12

1.5-2 m [21] gives an estimated ratio of 0.3-0.5. We use the middle value of 0.4. Also,

the size can be multiplied by an arbitrary constant to compensate for artificially inflated

or deflated bounding boxes.

 When the orientation and size of all the objects are calculated, the script saves

the resulting values in a new CSV file. While Figure 4 shows the data before this

transformation, Figure 5 contains orientated rectangle with adjusted sizes.

Figure 4 - Non orientated bounding box

Figure 5 - Bounding boxes with orientation

3.7 Visualization

The script plotter.py provides a convenient way of visualizing the processed data. By

specifying a path to a CSV with trajectories and a path to the corresponding source

video, the script plots the bounding rectangles into this video. By default, the system

plots orientated rectangles. In case that the required data are missing, it falls back to

default bounding boxes.

 Using this script, we have a simple way of performing a sanity check of our data.

The script can also be used to manually verify the results of operations like reduce

(Section 3.5) or orientate (Section 3.6).

3.8 Adding custom trajectory

As a part of the assignment, we need to be able to insert an artificial trajectory into

the existing dataset. Later on, it was specified that the artificial trajectory should be

formatted as a CSV file containing a serialized ROS message of the type Path [22]. This

operation is handled by the script insert.py.

13

 This script parses the serialized message and then transforms the poses to fit the

target scene. This means that both the center point of the vehicle and its size are

adjusted, and the direction vector is calculated from the provided quaternion. Also, the

timestamps are converted from real-time (seconds) to logical time (frames). For any

frame that is not associated with any pose, the values are estimated using linear

interpolation.

 When the calculations are finished, the artificial trajectory is added to the

existing data and saved to the disk. The positions of this trajectory have the fields

<bb_left>, <bb_top>, <bb_width>, <bb_height> set to −1. This way, other components,

such as orientate (Section 3.6), can identify them as artificial and not modify their

data. On the other hand, the simulator or the plotter treats them as legitimate

trajectories and works with them as if they were in the original set. An example is

shown in Figure 6.

Figure 6 - An object artificially inserted into the scene

3.9 Testing

The scripts used to pre-process data are covered by unit tests from the Python unittest

[23] framework. The script test.py contains several classes used to test the different

operations with the data. Also, the resources directory contains input files for the tests

to work with. Therefore, the tests must be run with the folder scripts as the working

directory or have access to resources via a link.

 The tests, when ran, perform operations on sample data. These tests consist of

reading and writing the trajectories, trajectory filtering, and inserting artificial

trajectories into a dataset. The output is then compared to the expected result.

14

 For orientate.py, we only test the functionality but not the quality of the results,

as we do not know the ground truth for the results, which vary depending on the

hyperparameters (such as the pixel limit or the width and height ratio). Because of this,

the main aim of the test is to verify that the script does not modify any artificial

trajectory. To test the quality of the results, we plot the objects onto a video. By

watching the video, we can manually inspect the boxes and their rotation, and

determine, how close the estimated bounding rectangle fits the object in the video.

15

4 Scene annotations

Apart from having the serialized trajectories, it is also necessary to describe the scene

itself. An autonomous vehicle needs to be aware of its surroundings to navigate.

Therefore, we need to devise a way of annotating road borders, lane borders, and

intersections to be used with the trajectories as an input for the algorithm.

 It is required to find a standardized way of describing the scene with all the

necessary information for the planning algorithm. Moreover, as the scenes are annotated

manually, the availability of a comprehensible and user-friendly editor is paramount.

4.1 Analysis

We described three different mapping formats in Section 2.5. The main reasons behind

not using OSM are (i) its counter-intuitive way of describing the scene and (ii) it hinders

our ability to create precise scene annotations. Moreover, creating a comprehensible

description of an intersection using this format has proven to be very hard since there

is no single center line.

 The major shortcoming of OpenDRIVE was that even after a thorough search,

we did not manage to find any free editing software that was also functional.

 Issues similar to that we encountered are also described by Poggenhans et

al. [13].

4.1.1 Lanelet2 format

The framework Lanelet2 [24] provides a solution for the stated problems. It is built

with autonomous driving in mind and therefore provides enough primitives for the

developers to create custom maps. Furthermore, the format is essentially an extension

of the OSM format, and as such, there is an open-source editor called JOSM [25].

Lanelet2 provides a set of extensions for this editor to enable highlighting and labeling

of the lanelet primitives. A tutorial on how to enable the extension can be found on the

16

framework’s GitHub [26]. Apart from that, we are also provided with a C++ library in

the form of a ROS package to work with lanelet2 maps.

 The mentioned format introduces a type of object called lanelet. A lanelet

consists of exactly two linestrings – ordered sequences of points and the line segments

connecting them. One of the linestrings denotes the left edge of the lanelet; the other

denotes the right. Together they form a driveable area called lanelet. The orientation

of the linestrings does not matter since the framework uses the left and right annotations

to determine the direction of the traffic lane.

 Apart from entities that are physically present on the scene (e.g., curbstones,

road surface markings), the linestring may be purely virtual. A virtual lanelet border

does not physically exist but serves to connect lanelets on different sides of an

intersection.

 More on the different types of primitives specified by lanelet2 can be found in

the documentation [24].

4.2 Calibrations with OSM

When creating a map for the dataset, we use the JOSM editor with lanelet2 extensions.

To create a map, we need a canvas that we can draw onto. The addon PicLayer [27]

lets us import a screenshot into the editor and use it as a reference for the map.

 Unfortunately, the screenshot has most likely a wrong scale, and depending on

the resolution, the objects can be severely larger or smaller than in reality. Therefore,

we have to create a calibration file for the image to make the scale more accurate. This

file contains the following field:

INITIAL_SCALE=<...>

The value on the right-hand side represents the equivalence of 100 pixels in meters

(e.g., a value of 2.5 would mean that every 100 pixels in the image are equal to 2.5

meters in reality).

 We can either guess this value ourselves, but since this process can be tedious,

we use the script measure.py (mentioned in Section 3.3). Passing a path to the

17

screenshot and the estimated size of one of the vehicles on the scene opens a window

displaying the screenshot. The user should then click on the front and rear sides of the

vehicle. Afterward, the program computes the value of calibration for the picture. After

loading this new calibration value, we may validate the sizes of objects in the scene

(e.g., using the ruler tool) to ensure that the distances are credible.

4.3 Annotations using Lanelet2

When the image is loaded and its size is calibrated, we can start drawing the maps.

This process consists of drawing lines to match the shapes of curbstones, road surface

markings, or other objects present on the scene. Each of the lines should be marked

with its corresponding type. To create a lanelet, we create a relation between exactly

two lines – one assigned as left, the other as right.

4.3.1 Using virtual lines

When creating the map, we should keep in mind that for a connected path between

two points to exist, there must be an uninterrupted sequence of lanelets in between.

For this reason, we should create virtual lines. This is especially useful when describing

an intersection, as shown in Figure 7. This way, we can describe different paths that

the vehicle can take depending on its destination.

Figure 7 - Intersection described using lanelets

18

4.3.2 Connecting lanelets

One inconvenience can arise from the ‘atomicity‘ of the lanelets. If we want to connect

two lanelets (or split one in two), we should do that only at the end of the lanelet. If

we do not connect the lanelets in this way, the library does not treat such lanelets as

connected and cannot find any path between them. An example of the wrong way of

drawing lanelets is illustrated in Figure 8. On the left, we see a lanelet connected to the

middle of another lanelet (highlighted in red). On the right side, we should notice that

the resulting routing graph is disconnected.

Figure 8 - Incorrectly connected lanelet and the resulting routing graph with the circled node disconnected

A correct approach is illustrated in Figure 9, where the lanelet is connected to the end

of the highlighted one. As we can see on the right, the routing graph is connected, and

a Successor relation is formed.

Figure 9 - Correct way of connecting lanelets and the resulting routing graph

19

4.4 Custom tags

When we are finished with the mapping, we need to add two more artificial nodes to

our map. These nodes are required since our trajectories are using pixels as their

coordinates, ranging from (0,0) to (width, height), while lanelet2 uses metric

coordinates. Placing one node to the top-left corner and the second one to the bottom-

right enables us to project the trajectories on the created map.

 To distinguish the two artificial nodes, we introduce a new keyword

custom_coords. The top-left node has the value set to tl, while the other is defined by

the value of br.

4.5 Validation

The lanelet2 ROS library contains a tool to validate the created map. This tool can be

run in the following way:

$ rosrun lanelet2_validation lanelet2_validate <path_to_map>

By running this program, we can make sure that we did not violate the format. If the

program prints an error message or does not finish successfully (e.g., due to a

segmentation fault), there are most likely some issues with our map. The different

errors we encountered and their solutions are described in greater detail in Section 4.6.

 The validator can also output some warnings. Those are not necessarily harmful,

but resolving them can improve the accuracy of programs working with the map. In

contrast, some warnings are safe to ignore (e.g., our artificial top-left and bottom-right

nodes also produce a warning, as the library does not recognize them as a part of the

lanelet2 format).

4.6 Fixing the errors

In this section, we describe all of the errors that were encountered during the

development and explain a way of solving them. When using JOSM in the default

configuration, we were not able to search for an object with a negative ID. JOSM

assigns a negative ID to any object, which was not uploaded to OSM servers. Given

20

that we are drawing custom maps, all the annotations we create have a negative id.

This has proven to be problematic since we need to be able to locate the erroneous

objects on the map to fix them. A solution for this is to switch JOSM to ‘Expert Mode‘

and then use the MapCSS search syntax. For example, to look for an object with

id -11668 we could use the following MapCSS selector:

*[osm_id()=-111668]

 Let us note that the described issues were encountered using version 1.0.1-

1bionic.20201017. Other versions may behave differently.

4.6.1 Segmentation fault

Segmentation of the validator occurs when the process is stopped due to attempted

access to unallocated memory. This behavior can be caused by a lanelet relation with

less than two members. Such relation may be caused by a user deleting a linestring

that is a part of a lanelet. Even though both linestrings of a lanelet are deleted, a

leftover relation is still present and must be manually cleaned, as illustrated in Figure

10.

Figure 10 – Lanelets with 0 members has to be deleted manually

4.6.2 Not the closest lanelet

Some of the lanelets might be reported as erroneous in the following way:

Error: There is a 'left' relation from -100318 to -100319, but -100318 isn't

the closest lanelet the other way round [routing.graph_is_valid]

This error is introduced whenever one linestring is a left (or right) border for two

different lanelets. This is shown in Figure 11, where the upper linestring is in relation

21

to the bottom two as their left border. The solution to this is to introduce the fourth

lanelet and use it as a left border for one of the bottom linestrings.

Figure 11 - A ‘left’ lanelet in relation to two ‘right’ lanelets is considered an error.

22

5 The simulator

Apart from assembling a dataset of traffic scenarios, we were required to design and

implement a simulator to work with the contained data to evaluate an external

autonomous driving algorithm.

 This chapter is dedicated to the requirements of the simulator package, its

architectural design, and the implementation of its components.

5.1 Requirements

According to the assignment, a simulator has to be a program that can load benchmark

data and run an externally provided autonomous driving algorithm. The simulator

passes the data describing the scene and the trajectories to the algorithm while

gathering its responses.

 The simulator should be able to detect any errors made by the algorithm, such

as collisions with other objects or steering away from the road. Furthermore, the

simulator should support a means of visualizing the scene and the performance of an

autonomous vehicle.

 As the simulator serves to test different planning algorithms, there should be a

possibility for batch evaluation of various algorithms on multiple scenes. Besides, the

simulator and the algorithm should be coupled as loose as possible, as we do not want

to constrain the developers of the algorithm to a single toolkit or programming

language.

5.2 Architectural design

One of the first designs was based on implementing the algorithms as shared libraries

to be imported by the simulator. Although this would provide an efficient way with a

low amount of overhead, it would also mean the simulator and the algorithm would be

parts of the same process. Such an approach would introduce many constraints on the

algorithm, e.g., limiting developers to use only the C/C++ programming language.

23

 The chosen approach is to keep both the simulator and the algorithm as separate

executables while using the ROS messaging interface for communication [28]. Using this

interface, both of these nodes serve as a publisher and a subscriber. This way, both

components do not need any knowledge about the other, as the only connection between

them is the communication bus. This is illustrated by Figure 12, where the simulator

and the autonomous driving algorithm are depicted as two separate nodes. Both

advertise and subscribe to different topics using the ROS master, a process used for

communicating between them.

Figure 12 - Communication between ROS nodes

Thus, the only constraint that we impose on the algorithm other than using specific

messages to communicate is to be able to understand the lanelet2 format. Apart from

this, there is complete freedom in the selection of programming language or used

libraries.

5.3 The communication protocol

Inter-node communication uses six different types of messages: Init, Frame, Fin, and a

response for each of the three types. The simulator always initiates the communication

while the algorithm responds to the messages. Communication consists of three phases,

each using different types of messages. The messages are described in greater detail in

Section 5.4.

 In the beginning, the simulator sends an Init message to the algorithm to initiate

the communication. After receiving this message, the algorithm sends a response to

signal that the algorithm is ready.

24

 After the initialization phase, the simulator starts to send Frame messages,

describing the position of all the objects on the scene in the given frame. This means

that the position of the vehicle substituted by the ego-vehicle (as discussed in

Chapter 3) is also being sent. We do not want to force the algorithm to respond right

from the start, as we realize that some algorithms need several frames to calibrate.

Thus, the algorithm can reply with the position of the original vehicle. This also reflects

the reality better, as the algorithm should have some knowledge about the vehicle’s

surroundings prior to entering the intersection.

 After there are no more frames to send, the simulator waits for all the pending

Frame responses and then sends a Fin message. After receiving a response, the

communication stops. The algorithm may also request the simulation to end in the

Frame response messages if, for example, the ego-vehicle has reached its destination.

 The communication between the simulator and an algorithm is illustrated in

Figure 13.

Figure 13 - Communication between the simulator and the algorithm

5.4 Messages

In this section, we will go over the different messages that are being used for the

communication of the simulator and the autonomous driving algorithms. All the

definitions can be found on the attached DVD as described in Appendix.

25

 As stated in Section 5.3, the simulator and the algorithm communicate using six

different message types.

5.4.1 Point2

Point2 represents a point or a vector in 2-D space.

▪ float x – x-part of the point or vector

▪ float y – y-part of the point or vector

5.4.2 Position

The Position is used to describe the shape of one object in the scene. The message uses

Point2 as the type for some of its fields.

▪ Point2 center – location of the center of the object

▪ Point2 size – x (width) and y (height) size (described in Section 3.2) of the object

▪ Point2 orientation – the direction vector of the object

▪ int32 id – identifier of the trajectory that the position is part of

5.4.3 Init

The simulator sends the Init message to initiate the communication with the algorithm.

It provides data, which might be useful to the algorithm before the simulation starts.

The map is passed as a path to the file because the lanelet2 ROS package does not, to

this date, provide a way of serializing its map as a message.

▪ string osm_path – path to the map in lanelet2 format

▪ string name – the name of the benchmark

▪ int32 id – identifier of the vehicle that is replaced by the algorithm

▪ float fps – fps of the source video, used to convert from frames to seconds

▪ float maxSpeed – the maximum traveled distance between frames

▪ float initialSpeed – speed of the vehicle when entering the scene

▪ Point2 size – x (width) and y (height) size (described in Section 3.2) of the object

▪ Point2 start – location of the vehicle when entering the scene

▪ Point2 end – a destination that needs to be reached by the algorithm

26

 Multiplying the values of fields maxSpeed or initialSpeed by the fps yields the

speed in meters per second.

 The algorithm responds with the InitResponse message, which currently has no

fields and is used only to notify the simulator that the algorithm is ready.

5.4.4 Frame

The simulator sends a Frame message for each frame in the dataset in a sequence with

ascending frame id. This message describes the position of every object in the scene in

a given time, using the Position message.

▪ int32 frameId – identifier of the frame

▪ Position[] positions – an array of position messages for each object in the scene

The algorithm responds with FrameResponse message:

▪ int32 frameId – identifier of the frame, matches the one in Frame message

▪ Position position – position of the simulated vehicle on the frame

▪ string status – the status of the algorithm

Currently, the status can have three different values. WAITING means that the

algorithm is still waiting for the simulated vehicle to appear in the scene. RUNNING

means that the algorithm is running, and FIN means that the algorithm has completed

its objective (the vehicle has reached its destination). For any other status than

RUNNING, the position may have an arbitrary value, as it is not taken into account.

5.4.5 Fin

Both Fin and FinResponse messages are empty and are only used for synchronization

between the simulator and the algorithm.

5.5 Error types

During the simulation, the simulator detects several errors. Their names and

descriptions are listed below:

▪ Object collision - arises when the ego-vehicle collides with another vehicle

27

▪ Line collision - introduced when the ego-vehicle collides with a linestring object

in the map

▪ Timeout - used when simulating a real-time situation (described in

Subsection 5.7.1) and is detected whenever the time before a message is

processed exceeds the specified limit

▪ Not in destination - signals that the ego-vehicle did not arrive at the target

destination

▪ No error – used as a placeholder when there is no error detected

5.6 High-level design

In this section, we describe the flow of the simulator process from reading the input to

serializing the results. We also discuss the libraries we use in Subsection 5.6.1.

 The simulator takes a path to a JSON file as an input argument. This file

describes the whole test scenario and specifies the data on which the algorithms will be

benchmarked. Afterward, the program loads the trajectories and map specified in the

JSON file and validates that they are in the correct format (explained in Section 5.7).

 When the data are loaded and validated, the program starts an algorithm on a

new thread and communicates with it (as described in Section 5.3) while checking for

any errors produced by the algorithm. The simulator also provides the frames for any

type of visualization method specified in the input configuration. This is repeated for

every algorithm, scene, and ego-vehicle id.

 When the simulation completes, the results are written to a CSV file and the

program exits successfully. However, in case that an exception is encountered, the

program writes the exception message into the log and then exits with a non-zero code.

 The diagram in Figure 14 illustrates the flow of the simulator process from its

start to the end.

28

Figure 14 - The simulator process from start to end

5.6.1 Used libraries

We use the Eigen 3 library to represent different algebraic structures. This library

provides an elegant and templated implementation of different algebraic objects and

operations involving them [29]. For image processing, we use OpenCV [30].

 To work with map data in lanelet2 format, we use the library provided as a ROS

package by the format’s authors [24]. This library comes together with Boost [31], which

we use for threading, and structures not supported in C++11.

 The message passing framework is provided directly by ROS, namely the library

roscpp [32]. Using this library, we create publishers, subscribers, and messages used for

communication with the algorithm or for a visualization environment (e.g., rViz [33]).

 We use the open-source, header-only library JSON for Modern C++ by N.

Lohmann to handle [34] JSON format.

29

5.7 Input Configuration

To parse the input arguments, we use a parser from the OpenCV library so that we do

not introduce new dependencies. The path to the configuration JSON file is the only

argument, which needs to be provided to the program. This way is more practical, as

the JSON contains several nested objects, and passing all the information as input

parameters might not be as comprehensible.

 The simulator loads this file and parses it. If the loading fails for any reason

(e.g., syntax error, an erroneous path to the file), an appropriate exception is thrown,

and the application terminates. After loading the JSON object to memory, the program

validates this object by checking for all the required input fields. If any field is missing

or has a wrong type, an exception is thrown.

 An example JSON is shown in Figure 15. More examples are provided on the

enclosed DVD as described in Appendix.

{

 "opencv": "OFF",

 "rviz": "ON",

 "timeLimit": -1,

 "out": "results",

 "algorithms": [{

 "name": "SimpleAlgorithm",

 "cmd": "rosrun sim_alg sim_alg FOLLOW"

 }],

 "benchmarks": [{

 "data": {

 "name": "ThreeWay",

 "source": "https://www.pexels.com/some_video",

 "osm": "/simulator_data/lanelets/threeWay.osm",

 "csv": "/simulator_data/csvs/threeWay.csv",

 "width": 4096,

 "height": 2160,

 "fps": 40

 },

 "simulationIds": [1,6,23]

 }]

}

Figure 15 - An example of an input JSON

5.7.1 Top-level data format

The fields of the top-level JSON object are described below.

▪ opencv – If set to “ON”, the program plots the scene into a video file.

30

▪ rviz – Setting to “ON” enables sending the objects on the scene as markers to

rViz.

▪ timeLimit – Setting timeLimit to a positive value causes the program to run in

a ‘real-time mode’. This means that the rate of sending frames to the algorithm

is limited by the fps of the data source. If the algorithm does not send a response

in the required time, it is treated as an error. It is advised to use this mode

without any visualization as it may hinder the speed of the simulator. If

timeLimit is negative, the simulator sends the frames as fast as possible and does

not check the response time.

▪ results – The results of the benchmarks are written to files named according to

this field. For example, setting the value “results” creates two files named

results.csv and results.json.

▪ benchmarks – An array of objects holding the information about the benchmarks

on which to test the algorithms. This array is described in greater detail in

Subsection 5.7.2.

▪ algorithms – An array of objects describing which algorithms to benchmark.

More information is provided in Subsection 5.7.3.

5.7.2 Benchmark object

The field benchmarks is, as stated above, an array of objects. A brief description of the

contained fields follows.

▪ name – Name of the scene is used by the program to name the videos and images

produced during the benchmarking.

▪ source – This field contains a path to the source video from which the trajectories

were extracted.

▪ osm – The field osm describes the path to a map in lanelet2 format.

▪ csv – A string containing the path to trajectories file.

▪ width – The width of the source video in pixels.

▪ height – The height of the source video in pixels.

▪ fps – frame rate of the source video

▪ simulationIds – A list of trajectory identifiers describing which vehicles to

substitute with the ego-vehicle.

31

5.7.3 Algorithm object

The field algorithms in the configuration JSON specifies which algorithms will the

simulator benchmark. This field has the following properties:

▪ name – Describes the name of the algorithm. This field is used by the simulator

to name produced videos and images.

▪ cmd – Specifies a command to run the algorithm.

5.8 Data loading

When the configuration is parsed, the program loads the trajectories and the map from

the disk. Afterward, the program projects the positions of the objects onto the map.

Using the coordinates of the top-left and bottom-right corner of the map (as mentioned

in Section 4.4), we compute the size ratio as shown in (1),

𝑚 = [𝑤, ℎ] ,

𝑟 = 𝑚 ⊘ (𝑡 − 𝑏) ,
(1)

where 𝑤 and ℎ denote the width and height of the source, 𝑡 the coordinates of the top-

left corner and 𝑏 of the bottom-right, and 𝑟 is called the calibration ratio. This ratio

describes the value by which the object sizes are multiplied to fit the map scale.

 Using the values from (1), we transform the position 𝑑 of each object into 𝑑′, a

position projected onto the map. A position has three properties, which need to be

transformed – the center point 𝑑𝑐, the size 𝑑𝑠, and the direction 𝑑𝑑. This is shown in

(2).

𝑑𝑐
′ = (𝑑𝑐 ⊘ 𝑟) + 𝑡

𝑑𝑑
′ = 𝑑𝑑 ⊙ 𝑟

𝑑𝑠
′ = 𝑎𝑏𝑠(𝑑𝑠

′ ⊘ 𝑟)

(2)

 As the values of 𝑟 might not always be positive, the direction has to be multiplied

by the calibration as well. We use absolute value for the size for a similar reason, as

size must always be positive.

 When the trajectories and the map are correctly loaded, and the object positions

are transformed, the program then performs a check, whether the map is suitable for

32

routing. The program determines the starting and destination lanelet for each

ego-vehicle and attempts to find a (shortest) path between them. If a path is not found,

an exception is thrown. In such a case, we should check our map for errors as described

in Subsection 4.3.2.

 In any case, a routing graph is plotted to a file called ‘<name>_routing.osm‘,

containing the name of the scenario, as described in Subsection 5.7.2. We can inspect

the file using an editor such as JOSM to check whether the graph is connected correctly.

5.9 Simulation

After the data are loaded and validated, a simulation routine is executed for every

combination of algorithm, scene, and ego-vehicle. A simulation consists of four phases:

initialization, main loop, finalization, and serialization of results.

 The first three phases are the implementation of the more abstract

communication model discussed in Section 5.3. The flow of the simulation procedure is

described in Figure 16 from beginning to end, where every action is assigned to an

appropriate phase.

33

Figure 16 - Simulation procedure

5.9.1 Initialization

In the initialization phase, the simulator instantiates three publishers and subscribers

for all the types of messages (Section 5.4) sent during the communication. The topic

names of these channels are specified in the class Constants, a class holding several

constants to be used by the simulator components.

 The simulator runs the algorithm on a new thread and prepares an Init

(Subsection 5.4.3) message. This includes filling the fields, which are already set in the

configuration (osm_path, name, id, fps), while others are extracted from the data

(start, end, size, maxSpeed, initialSpeed). The size is calculated as the median of all

the observed sizes of the object, while the maxSpeed and initialSpeed are consequently

set as the maximum and initial velocity of the original vehicle. The values start and

end are set as the first and the last observed location of the vehicle.

34

 This Init message is sent via the simulator’s publisher, and then the simulator

waits for a response from the algorithm. The main simulation loop starts after receiving

the response.

5.9.2 The main loop

During the main loop, the simulator reads the trajectories frame by frame and creates

a Frame message (Subsection 5.4.4), containing the positions of every object that is

present on said frame, repeating for each one of the frames. If possible, it starts

publishing frames four seconds before the vehicle enters the scene. This way, the

algorithm is provided data about the scene without the need to make decisions for the

ego-vehicle. However, this is not always possible, as the object may be present in the

scene from the beginning. The message is then sent via the simulator’s publisher.

 If the simulation is running with a time limit set (as described in

Subsection 5.7.1), the simulator limits the rate of sending the messages according to

the fps parameter. Otherwise, the simulation is executed as fast as possible.

 When receiving a FrameResponse (Subsection 5.4.4), the simulator performs

several actions depending on the status contained in the response:

▪ RUNNING - The simulator checks for any errors, as described in Section 5.5and

stores them in memory.

▪ FIN - The simulator stops publishing new frames and ends the main loop.

In any case, the simulator increments the counter and publishes the frame for

visualization. The simulation also ends if there are no more frames available to publish.

5.9.3 Pipelining

When sending the Frame messages, the first approach was to simply wait to receive a

response (as described in Subsection 5.9.1). An illustration is shown in Figure 17.

Figure 17 - Non-pipelined communication

35

The fields in blue color (Create frame and Read response) denote operations made by

the program, while orange (Frame processed) denote that the message is either in a

queue or is being processed by an external algorithm. This idling of the simulator

created a significant overhead.

 By introducing a pipelining scheme, the simulator is able to create or respond to

messages while other messages are being processed (Figure 18). Therefore the simulator

does not need to wait for every response actively. We keep track of two values, the id

of the last published frame and the id of the last received frame. If the difference

between the two values exceeds the preset queue size, the simulator stops sending the

messages and wait for the queue to clear.

Figure 18 - Pipelined communication

To get more insight on how much the pipelining affected the speed of the simulator,

we conducted an experiment by running implementations on four forks, each consisting

of 10 iterations. We made use of equations proposed by Kalibera and Jones [35]. We

measured the time taken by one simulation and calculated the average running time

for each fork �̅�𝑗𝑛
, as well as the total average �̅�. Using (3, we can calculate the half-

width ℎ of the confidence interval for 95% confidence:

 𝐼𝑐 = 𝑡
1−

𝛼
2

,𝜈
√

𝑆𝑛
2

𝑟𝑛
 , (3)

where 𝑡1−
𝛼

2
,𝜈 is the (1 −

𝛼

2
) – quantile of t-distribution with 𝛼 = 0.05 (given by 95%

confidence) and 𝜈 = 𝑟𝑛 − 1 degrees of freedom, 𝑛 represents the number of levels (in

this case 𝑛 = 2), and 𝑟𝑛 stands for the number of repetitions at the highest level (𝑟𝑛 =

4).

 𝑆𝑛
2 denotes the sample variance of execution means and can be calculated using

the following equation (4):

36

 𝑆𝑛
2 =

1

𝑟𝑛 − 1
∑ (�̅�𝑗𝑛

− �̅�)2

𝑟𝑛

𝑗𝑛=1

 . (4)

We show the results in Table 1.

 Time [seconds]

Algorithm �̅�𝟏 �̅�𝟐 �̅�𝟑 �̅�𝟒 �̅� 𝒉

Pipelined 3.68 3.68 3.65 3.67 3.669 ± 0.020

Non-pipelined 45.41 45.51 45.58 45.53 45.509 ± 0.112

Table 1 - Execution times for different implementations of the main loop

 We can then estimate the speedup 𝑅 between the implementation with pipelining

and without. Using (5), we calculate the speedup as

 𝑅 =
�̅� ∙ �̅�′ ± √(�̅� ∙ �̅�′)2 − (�̅�2 − ℎ2)(�̅�′2 − ℎ′2)

�̅�2 − ℎ2
 .

= 12.403 ± 0.076 .

(5)

 The experiment was conducted on a machine equipped with Intel(R) Core(TM)

i5-8400 CPU @ 2.80GHz and 16 GB of RAM with installed ROS Melodic 1.4.1.

5.9.4 The finalization

When the main loop finishes, the simulation enters a finalization phase. During this

phase, the simulator waits for all the pending messages to be processed. When all the

remaining responses have arrived, the simulator sends a Fin message (Subsection 5.4.5)

and waits for the response to arrive.

 After reading the response, the simulator evaluates whether the vehicle has

arrived at its destination and adds an error if not. Finally, it shuts down all publishers

and subscribers and waits for the algorithm subprocess to terminate.

37

5.9.5 Writing the results

After the simulation has finished, all encountered errors are extracted and serialized to

a CSV file specified in the configuration (Subsection 5.7.1). To decrease the size of the

resulting table, the errors are written in the form of intervals. An example is shown in

Table 2.

LARGEJUNCTION_SIMPLEALGORITHM_59

SEVERITY Status Type Frame Start Frame End Obj Id

OK NO ERROR 0 376 -

HARD_ERROR OBJ_COLLISION 377 432 10

OK NO ERROR 433 446 -

Table 2 - Example of the results in CSV format

For automated benchmarking, the results are also serialized to a JSON file, which

should be easier to parse than the CSV.

5.9.6 No messages lost

As stated in Subsection 5.9.2, we use a queue to send the Frame messages (Subsection

5.4.4). However, the queue has a limited size and works in a FIFO manner. If we push

a new message while the queue is full, the oldest message gets deleted. An algorithm

we use to ensure that no messages get lost is described in the following pseudocode

(Figure 19).

S := "the size of the queue"

o := "id of the last sent frame"

i := "id of the last received frame"

ros::spinOnce()

if o - i == S then

 while o - i > S / 2 do

 ros::spinOnce()

 sleep()

 end

end

publishFrame()

Figure 19 - Pseudocode of waiting for the message queue to empty

The spinOnce is a function provided by roscpp which executes all of the callbacks

waiting to be processed (this includes waiting on any FrameResponse (Subsection 5.4.4)

messages).

38

 The condition causes the program to wait until the queue is at least half empty

when the amount of pending messages is equal exactly to the size of the queue. However,

the pending messages can be in three different states:

1. In the queue waiting to be picked up by the algorithm.

2. Being processed by the algorithm.

3. In the response queue waiting to be read by the simulator.

In the worst case, all of the messages are stored in one of the queues. But since the

number of messages cannot be larger than the queue size, they all fit. Therefore, no

unprocessed messages are lost.

5.9.7 Deadlock prevention

As we are dealing with multi-process communication with synchronization, we are at

risk of encountering a loop of infinite waiting.

 One of the potential threats arises from the different interleaving of publishers

and subscribers being created. If a publisher sends a message while no subscriber is

listening, the message gets lost, and the process, waiting for the message, gets stuck

forever.

 This issue is solved by using ‘latched’ queues. These queues cause the last

message to be saved for any subscriber in the future. Hence, if any subscriber connects

after the message has been sent, they are still able to receive the message.

 However, even with using latched queues, we still can encounter a deadlock

(e.g., algorithm crashing, networking error). To avoid deadlocks, we can use a

configurable timeout in the Simulation class. If any waiting exceeds this limit, an

exception is thrown, and the simulation is terminated.

5.10 Visualization

As shown in the configuration (Subsection 5.7.1), the simulator supports two different

ways of visualizing the scene. This includes either a real-time method using rViz or

plotting into a video file using OpenCV.

39

 To export data in an arbitrary format, we introduce the AbstractPublisher class.

An implementation of this class can be registered to the Simulation class, which in turn

handles calling the virtual methods. Both OpenCVPublisher and RVizPublisher are

such implementations and are illustrated by the diagram in Figure 20. Both of the

classes implement the virtual methods while also introducing their own fields and

methods. Some private members are not included in the diagram to improve readability.

A description of the virtual methods follows.

▪ initPublisher – Called once before the simulation starts and initializes the object.

▪ publishFrameMsg – Called for every FrameResponse received by the simulator.

▪ tearDown – Called once after the simulation ends.

Figure 20 - Deriving from AbstractPublisher

5.10.1 Publishing to rViz

When initialized, the class instance creates a publisher, which sends Marker messages

over a designated topic. The topic name, marker namespace, and frame id are all

defined by constants. In this phase, the map is also converted into a set of markers and

sent to rViz.

 When publishing frames, all objects are converted to Marker messages [36] and

assigned an appropriate color using the Palette class. Objects associated with an error

are displayed with red color. All the messages are published via the rViz publisher

40

created during the initialization. The rate of sending the messages is also limited to the

source video fps.

 During the tear-down phase, one more message with the action DELETEALL is

sent, which ensures the removal of any leftover markers in the scene.

 An example of a scene visualized via rViz is shown in Figure 21, where the ego-

vehicle is denoted by a blue cuboid marker, while other vehicles by a green one.

Figure 21 - Using rViz to visualize a scene

5.10.2 Plotting via OpenCV

Using OpenCV, the simulator is able to plot the scene into a video file with the same

parameters (width, height, and fps) as the source video. The program instantiates a

VideoWriter object during the initialization. This object is able to serialize frames into

a video file. The frames are represented as matrices of BGR values, where each element

corresponds to one pixel (essentially a bitmap). We are using matrices with the map

drawn as a canvas.

 For each frame, the publisher creates a copy of the canvas and draws all the

objects onto it. Any object with an error associated with it is drawn using red color.

After that, the matrix is appended to the video via the VideoWriter.

41

 During the tear-down phase, the resources are released, and the video becomes

a playable mp4 file. An example is shown in Figure 22, displaying a single frame from

such video. The ego-vehicle is displayed as a blue rectangle, while the other objects are

green, with yellow identifiers. The target destination of the agent is denoted by the

blue circle. The road borders, road surface markings, and virtual lines are also displayed

in the video.

Figure 22 - Roundabout scenario visualized with OpenCV

5.11 Shared library

Apart from the executable binary, we also create a shared library from the source code,

allowing other projects to use the features of the hav_simulator package. The library

includes functions for geometry or visualization and also different constants which need

to be set correctly for communication.

 To avoid any future naming conflicts, we are using the namespace hav_simulator

for all symbols in the package.

5.11.1 SFINAE pattern

One of the challenges when writing different geometry functions is that there are several

different implementations for data types, such as Vector2f (an 𝑥, 𝑦 vector of the type

float). The implementations often come from different libraries (e.g., Eigen, lanelet2,

OpenCV, ROS, …), and functions from each library expect their own implementation.

42

Moreover, almost in every case, there are no implicit conversions available between the

types.

 One approach is to use overloading to specify the implementation for every type.

However, this is very time-consuming, as there are multiple implementations for several

structures, and we ought to manually write an overload for each one of them. Besides

this, any implementation introduced in the future would be lacking its overload.

 Since we use only the properties 𝑥, 𝑦 of a Point (or Vector) in most of the

functions, we can use templates to achieve the result. This means that we need to

provide only one implementation, and the compiler generates all the required overloads.

However, a significant shortcoming is that this requires all of the properties 𝑥, 𝑦 to be

accessible in the same manner. An example of a template can be seen in Figure 23.

This way, an overload is created if the fields are accessible as a property. In contrast,

if the fields are accessible via a method, this results in a compilation error.

template<class T>

float maximum(T a, T b){

 return max(a.x, b.x, a.y, b.y);

}

Figure 23 - A template example

As stated earlier, it is not desirable to use standard overloading or templating, as we

want to maximize compatibility. We cannot use polymorphism, as the classes from

different libraries rarely extend the same base. Instead, we need to provide different

overloads based on the properties (traits) of the different classes.

 A solution to this is to use the SFINAE (substitution failure is not an error)

technique. This allows ignoring certain templates during the compile-time under specific

conditions [37]. An example is shown in Figure 24, where the function is enabled or

ignored, depending on the characteristics of the type T.

template<typename V, typename T>

typename std::enable_if<!hasXY<T>::value, V>::type

extractVec(T t) {...}

Figure 24 - Using enable_if SFINAE

 Using this technique, we have to provide only two overloads for certain functions

- one for the implementation of Point with 𝑥, 𝑦 as fields, and a second one which uses

43

functions. It is not necessary to know anything about the implementation, only how to

access the required properties.

 Thus, we can use the same implementation for multiple types sharing certain

traits. This approach makes it possible to use the functions without casting to a specific

type and does not restrict the users of the library from using types of their own.

5.12 Exceptions

When dealing with exceptions, we want them to be easily identifiable. If an exception

is thrown by a library method, it is often descriptive enough, as the libraries implement

their exception structures.

 We use a similar approach and implement different exception types depending

on the reason they were raised. This way, we can use a specific exception type in the

catch clause (or a unit test) rather than raising a pre-defined exception (such as

runtime_error) and deducing the type from the error message.

5.13 Testing

For unit testing, we provide a separate CMake target using the gtest framework [38].

The tests are spread across multiple headers according to the tested functionality and

can be run together or separately. The tests are using files stored in the folder data as

resources. This folder needs to be set as the working directory when the tests are run,

so the program can find the required files. This is handled automatically using catkin

in the project CMakeLists file [39]. However, when using another tool (such as CLion),

the path may need to be set manually.

5.13.1 Unit testing

Apart from testing our own code for bugs and unintended behavior, we also want to

ensure that library functions behave as we expect them to. For example, we may expect

a method to return an object by value, so it is safe to modify it. If in another version

of the library the object is returned by reference (e.g., to lessen the memory impact),

mutating this object can lead to modifications of unwanted data. This way, we diminish

44

the chance of any future update introducing unwanted behavior. For all of this, we are

using parameter files saved in the data folder.

 In the unit tests, we focus on testing whether the program detects wrong inputs

and throws an appropriate exception. We also test our geometry functions, the

correctness of the projections, and the loading of the map data. One header is focused

on the work with the map, e.g., correct detection in which lanelet is the object located

and that it can detect the existence of a path (or lack thereof) between two lanelets.

 A special class of tests is dedicated to the correctness of the SFINAE overloads.

These tests are done by using a large variety of types when calling our generic functions.

The existence of a valid overload is checked during the compile-time and its correctness

by running the tests.

 Moreover, we are also testing the full simulation routine. For this, a reduced

dataset is used on a simplified map. After that, we create an algorithm stub on a

separate thread and run the simulation. Afterward, the results are checked, whether a

correct number of errors was detected in the correct order. We are also simulating a

deadlock and checking whether the deadlock is detected, and the simulation is

terminated in time.

5.13.2 Checking for memory errors

We tested the code for erroneous memory accesses to ensure that the program does not

end with a segmentation fault or act with undefined behavior.

 To test for memory errors, we used Memcheck; a tool implemented using the

Valgrind instrumentation framework [40]. This tool checks the addressability of every

byte, the definedness of every bit, and tracks all allocated heap blocks during the

runtime of the program.

 We ran the whole simulation using the Memcheck tool with different

configurations several times to check for memory errors. It was necessary to modify

some parameters like the Frame response timeout duration, as this tool hinders the

performance of the profiled application (in our case, the program was more than 100

times slower). The tool did not find any memory errors but reported a potential leak,

as 1352 bytes were ‘possibly lost’.

45

 After closer inspection, as hinted by the trace containing the symbols ld-

2.27.so and libglib-2.0.so, we deduced that the leak is introduced by the external

library glib [41]. Given that the size of the leak did not increase across multiple

executions and that the library developers confirmed that the ‘possible’ leaks are not

suppressed [42], it is safe to assume that the potential leak does not pose a threat.

 Other than Memcheck, we also used Address Sanitizer to check for memory

errors. Address Sanitizer checks for out-of-bounds memory accesses at the cost of a 73%

slowdown [43] in contrast to a 10000% slowdown of Memcheck. This lesser slowdown

allows us to use the tool even when running a program with such a configuration that

would take Memcheck several hours to analyze. Using Address Sanitizer, we did not

find any error in our application.

5.14 Docker

The environment for the package to compile and run is fairly complex and contains a

lot of different libraries, modules, and other dependencies. To ensure the runnability of

our system and the reproducibility of the results, we have to describe in detail the

parameters of the used environment.

 We could potentially provide an installation script, which would set up the

environment on a given machine. However, we realize that some users may not want

to install all the necessary dependencies to their machine just to be able to use this

package. Moreover, some of the dependencies might be in direct conflict with the

packages already installed on the system and could potentially break existing programs.

 Boettiger [44] described issues with reproducibility concerning scientific research.

In this article, the author mentions Docker, a containerization technology [45], as one

of the solutions. Following this example, we provide a Dockerfile with the instructions

to assemble an image with all the dependencies pre-configured. This image can then be

used to develop, compile, and execute the simulator or its utility modules.

 Another benefit of the Dockerfile is that it can also serve as a recipe for setting

up the environment locally. If someone wants to run the project directly on their

machine, they can follow the instructions specified in the Dockerfile to set up their

machine accordingly.

46

6 Self-driving algorithm

The last objective is to design and implement a path planning algorithm with the ability

to communicate with the simulator. There are several reasons why this is necessary.

First of all, an algorithm is required to test the simulator end to end. Secondly, the

algorithm serves as a practical example of how communication works and how to use

the chosen libraries. Lastly, we want to provide a foundation on which more complex

algorithms can be built.

We are using several symbols defined in the simulator package, which we include

as a dynamic library. This way, we can benefit from the already implemented utilities

for geometry and plotting.

Thus, we implemented three algorithms derived from a base class which is

described in Section 6.2. Two of these algorithms should be considered stubs, as they

do not perform any computations and are trivial. Although simple, the third one can

predict the movement of other vehicles and navigate the ego-vehicle to reach its

destination.

It should be noted that the algorithm, in the context of this work, should serve

as a way to validate the simulator. Thus, it is not considered wrong if the algorithm

causes the vehicle to collide with other objects or does not reach its destination. Such

events should be present, as we want to ensure that they are picked up by the simulator.

6.1 Analysis

A main requirement for the algorithm is to solve the planning problem by proposing a

viable path, or eventually a trajectory (a path with a schedule) between two points.

There are several algorithms and libraries dealing with this task, as reviewed by

Tsardoulias et al. [46].

Based on the research conducted by Tong et al. [47] we discovered, that the necessary

basic path planning functionality is already included in the lanelet2 library. Thus we

decided to build our solution on top of this module to demonstrate the end-to-end

47

usability of our system. The routing module converts the map in lanelet2 format to a

‘routing graph’, where every lanelet is assigned to a node and constructs the edges

based on the reachability between adjacent lanelets.

Using this routing graph, we can perform several operations, such as determining

the optimal path from the start to the destination, including possible lane changes. It

is also possible to predict routes and points of conflict for other vehicles [13]. An

example of a routing graph on a roundabout is shown in Figure 25.

Figure 25 - A routing graph calculated for a roundabout

Moreover, we also need a physical model for our vehicle. For our algorithm, we use a

Point-Mass Model, one of the models proposed by Althoff et al. [4]. This model sets a

limit on the maximum absolute acceleration. However, as this model does not

differentiate between acceleration and deceleration (braking), we limit the value by the

maximum braking speed. As written in [48], most of the modern vehicles are equipped

with an anti-lock braking system, putting their maximum deceleration close to the

value of 𝑔 = 9.8
𝑚

𝑠2 [48]. We use this value for our theoretical model.

6.2 Algorithm interface

As a base class for the algorithms to inherit, we provide class AbstractAlgorithm. We

use the Template Method pattern to deal with the communication with the simulator.

48

Inside this template method, the algorithm handles the creation of the necessary

publishers and subscribers and calls the hooks, defined as virtual methods.

We require the algorithm to implement three different hooks, specifically the

callbacks for the Init, Frame, and Fin messages (Section 5.4). The algorithm should

process the contained information and assemble responses for the Frame messages.

These responses have to contain the position of the ego-vehicle for the frame, which the

algorithm had calculated using the gathered information.

It is not required to call the hooks or create any publishers or subscribers for the

messages, as this is already handled by the template method.

The template method, together with the virtual hooks, is illustrated by a

diagram shown in Figure 26. This diagram provides an example of two different

algorithms extending the base class. The callbacks are all virtual functions that the

algorithm has to implement, while run() is the public template method invoking the

callbacks.

Figure 26 - Using the template method pattern with two different implementations

49

6.2.1 The template method

Figure 27 - Flow of the template method

The purpose of the template method (Figure 27) is to perform the communication of

messages with the simulator. Firstly, the algorithm creates three publishers and

subscribers for all the message types. The parameters for the publishers and subscribers

are extracted from the simulator shared library. As explained in Subsection 5.9.7, we

are using latched publishers to ensure that no messages are lost.

After creating the publishers and subscribers, the algorithm waits for an Init

message (Section 5.4). After receiving this message, the algorithm publishes an

InitResponse and starts the main loop.

In the main loop, the algorithm keeps reading the incoming Frame messages and

generates responses for every single one of them. The main loop ends when the

algorithm receives a Fin message, which signals that the algorithm should finish.

After exiting the main loop, the algorithm sends a response to the Fin message

and shuts down all the publishers and subscribers. When this is done, the algorithm

ends.

50

6.3 The algorithm stubs

During the early development of the simulator, two different algorithms were created.

The algorithms themselves are considered to be stubs and should be used only for the

purposes of demonstrating the simulator. Using these algorithms, we were able to verify

the process of initialization, simulation, visualization, and the detection of different

errors during the early development of the simulator.

6.3.1 Straight algorithm

The first implementation, StraightAlgorithm, starts by ignoring any information

provided in the Init message (Section 5.4) except for the id of the ego-vehicle.

Afterward, the algorithm responds to any Frame message with the status WAITING.

After receiving a first message containing a vehicle with the specified id, the algorithm

saves the orientation of this vehicle.

Afterward, the algorithm keeps moving the vehicle forward at a constant speed

while colliding with any obstacle in its path. This algorithm can be useful if we want

to test whether the simulator is detecting collisions correctly since this algorithm will

probably produce a substantial amount of them.

6.3.2 Echo algorithm

The second algorithm, called EchoAlgorithm, saves only the id of the ego-vehicle in the

Init message (Section 5.4). Until a first Frame message containing a vehicle with this

id is received, the algorithm responds with the status WAITING. Subsequently, the

algorithm sends back the ground-truth position with the status of RUNNING. This is

repeated until a Frame is received in which the vehicle is missing. This causes the

algorithm to switch to the status FIN, in which it stays until the end.

This algorithm was very useful during the development of the simulator, notably

the communication between the simulator and the algorithm. Similarly, this algorithm

was used to test the different methods of visualization.

51

6.4 The autonomous driving algorithm

The last task was to implement a functional self-driving algorithm. This algorithm

should be able to find a path to the destination and adjust the vehicle's velocity and

direction to reach the destination while avoiding collisions.

6.4.1 Initialization

After an Init message is received, the algorithm loads the map and uses the lanelet2

framework to build a routing graph from the scene. The graph is then used to acquire

a path in the form of a sequence lanelets, which can be traversed to reach the

destination.

Using this sequence, the algorithm calculates the path from start to destination

by computing the center lines for the selected lanelets. The path is then smoothed by

limiting the maximum angle (set as a constant) between two consecutive points.

The algorithm stores the information contained in the message in memory. This

includes data such as the initial and maximum velocity, and the size of the vehicle.

These parameters are later used when calculating responses to the Frame messages.

The algorithm also plots the calculated trajectory into an image for debugging

purposes. An example is shown in Figure 28, where the vehicle has to drive through a

roundabout. The path is displayed as a red curve.

Figure 28 - Path of the vehicle when driving through a roundabout

52

6.4.2 Frame response step

When responding to the Frame message, if the object replaced by the ego-vehicle is not

yet present in the scene, the algorithm responds with the status WAITING. After

receiving the first message, the algorithm switches to the status RUNNING and responds

with the position of the vehicle.

When receiving a Frame while the status is RUNNING, the algorithm first updates

the positions of other vehicles in the scene. Then, it calculates their predicted positions

according to their orientations and their instantaneous velocities. The velocity of every

vehicle is estimated using the distance between the current position and the position

from half a second ago. We chose half of a second to compensate for the noise in the

positions of objects between consecutive frames but to still be able to react fast enough.

The speed of the vehicle also determines the predicted future positions, so in case that

the current state is expected to lead to a collision, there is still enough time to brake.

The predicted vehicle positions are inflated by a percentual amount to account for the

uncertainty and also to avoid near-misses if possible.

The algorithm attempts to estimate whether it is necessary to change the

velocity. The algorithm tends to keep the vehicle at the maximum allowed speed.

However, when this leads to a collision with another vehicle, the algorithm causes the

vehicle to brake and decrease the velocity or even bring the vehicle to a full stop.

Moreover, the algorithm attempts to keep a safe distance between itself and any

other vehicle in front of it. For this, we use the routing graph to search for any vehicle

in front of the car, which is in the same or the following lanelet. Under §19 of the Traffic

regulation act (‘Zákon o silničním provozu’ in Czech), drivers should keep enough

distance between the vehicles [49]. The law does not specify this distance, but the usual

value is the distance covered by the vehicle at the current speed in two seconds [50].

However, this value takes into account the time necessary for a human driver to react,

which can be as long a 1.5 seconds. As the algorithm runs with the frequency of fps we

can set the reaction time to the value of fps-1.

After adjusting the velocity according to the behavior of other vehicles, the

algorithm steers the vehicle to follow the pre-computed trajectory. After this, the

53

algorithm calculates the new position of the ego-vehicle and sends it to the simulator

in the form of a FrameReponse message.

For debugging purposes, if the symbol DRAW_DEBUG_IMAGES is defined, the

algorithm also saves an image with objects and their predicted locations drawn for

every frame. An example image is shown in Figure 29, where the ego-vehicle is denoted

by the blue rectangle and other vehicles by green or magenta. The yellow rectangles

are the predicted positions of other vehicles. The blue number describes the

instantaneous velocity of the vehicle in meters per second. In the image, the ego-vehicle

is braking, as it is too close to the vehicle in front. This is symbolized by coloring the

vehicle with magenta rather than green.

Figure 29 - The visualized model of the algorithm

6.4.3 Finalization

After reaching the destination with the ego-vehicle, the algorithm sends a

FrameResponse with the status FIN to signal the simulator that the simulation can be

terminated. Since the sending of the messages is pipelined, there still might be

unprocessed Frame messages enqueued. Each of the messages should be replied to with

the status FIN until a Fin message is received. The switching between states is

illustrated by the state diagram in Figure 30.

54

Figure 30 - The algorithm switching between states

6.5 Testing

For the purposes of testing the whole system, we assembled a dataset consisting of

trajectories and lanelets from six different scenes. These scenes include a simple

highway, roundabout, and two junctions. The last two scenes are from a junction and

a roundabout and both are fairly complex.

We have the following requirements for the system.

▪ The system is able to benchmark one or multiple algorithms on one or multiple

scenes.

▪ The system is able to work with different configurations. This includes the time

limit or types of visualization.

▪ The system must not encounter any exception, deadlock, or erroneous memory

access.

▪ The system must correctly detect collisions or other errors made by the ego-

vehicle.

▪ The routing graph must be connected, and a path exists from start to

destination.

For each one of the scenes, we provide configuration files with cars that should be

replaced with the ego-vehicle for the purpose of benchmarking the algorithm. Almost

55

any vehicle can be substituted, except those either leaving the scene a few seconds after

the start of the footage or entering shortly before the end. Even though the system is

able to work with a benchmark created by substituting such a vehicle, the results of

this benchmark would not hold much of an informational value. To demonstrate the

functionality of the system, we chose a sample of vehicles with multiple combinations

of starting and ending lanelets.

We tested the system on the following configurations.

▪ All of the scenes with one algorithm and OpenCV.

▪ A scene with one algorithm and rViz.

▪ A scene with multiple algorithms.

▪ A scene with a time limit.

Both the simulator and the algorithm were linked with Address Sanitizer, as mentioned

in Subsection 5.13.2, to check for erroneous memory accesses during runtime. The tool

did not detect any error while running the benchmarks.

The resulting videos and evaluations were then manually inspected to ensure that

the encountered errors are reported correctly. The outputs of the system can be found

on the enclosed DVD in the folder results as described in Appendix.

6.6 Results

In this section, we discuss the behavior of the implemented algorithms during different

traffic situations. The following examples are taken from the benchmark results of the

algorithm described in Section 6.4.

In Figures 31 and 32, we see the blue ego-vehicle attempting to join a lane, but

other vehicles are standing in its way. The algorithm correctly waits for a gap in the

traffic to appear and joins the lane shortly after.

56

Figure 31 - The ego-vehicle waiting to join a lane

Figure 32 - The ego-vehicle has joined the lane

Figures 33 - 35 describe a scenario at a different intersection. In the beginning, the ego-

vehicle enters the scene but is blocked by another car with an identifier of 27. The ego-

vehicle correctly waits for the path to get clear and then continues to the destination

marked by the circle.

Figure 33 - The ego-vehicle has

entered the scene

Figure 34 - The ego-vehicle waits at

the intersection

Figure 35 - The ego-vehicle

reaches the destination

Figures 36 - 38 illustrate a situation from another intersection. The ego-vehicle takes a

left turn and meets another car traveling in the opposite direction. After the other car

passes, the ego-vehicle continues along its planned trajectory.

Figure 36 – The ego-vehicle

takes a left-turn and meets

another vehicle in the middle

Figure 37 - The ego-vehicle waits for

 the other vehicle to pass

Figure 38 - The ego-vehicle

continues when the path becomes

clear

An example where the algorithm does not solve the traffic situation correctly is shown

in Figures 39 and 40. As a consequence of joining a traffic lane too soon, the ego-vehicle

57

collides with another vehicle. The simulator detects this and colors the vehicle with

red.

Figure 39 - The ego-vehicle joining a traffic lane

Figure 40 - The ego-vehicle collides with another

vehicle as a result of joining too soon

We also provide examples for the algorithm stubs (described in Section 6.3). The

StraightAlgorithm is predictable as it drives in a straight line and thus generates several

collisions. This behavior is shown in Figures 37 and 38, where the ego-vehicle collides

with multiple vehicles and a curbstone. The EchoAlgorithm does not substitute the

original vehicle but only repeats the ground truth. It can be used to demonstrate that

not every road user follows the traffic rules, as shown in Figure 43, where the ego-

vehicle crosses a full line.

Straight Algorithm Straight Algorithm Echo Algorithm

Figure 41 – The

StraightAlgorithm drives in a

straight line

Figure 42 – StraightAlgorithm causes

the ego-vehicle to collide with two other

vehicles and a curbstone

Figure 43 - The EchoAlgorithm

causes the ego-vehicle to cross a

full line

As stated earlier in Section 6.5, the complete outputs of the benchmarking are provided

on the enclosed DVD in the folder results.

58

7 Future works

In the context of this thesis, we assembled a dataset containing vehicle trajectories

extracted from six different videos. In the future, it might be necessary to extend this

data set with data from other scenes. This could mean exploring the available pre-

annotated datasets or searching the internet for more video footage, from which the

data could be gathered. Alternatively, if a specific traffic situation is required, record

the videos ourselves.

The simulation environment could also be extended with some functionalities.

Currently, the system supports only one vehicle controlled by the algorithm at a time.

Given that the system uses messages to communicate, it can be modified to be able to

communicate with multiple algorithms at once. This would mean that we could

evaluate a scenario with multiple agents, which are controlled by external algorithms.

Such an approach would render the pipelining of the messages unusable, as the

responses from one algorithm contain the information required by the rest of the

algorithms. This would hinder the performance, but the system would work correctly

nonetheless.

The simulator can also be extended with the detection of other kinds of errors.

For example, we classify collisions as an error, but we could also declare that a near-

miss is also an error. Similarly, we use a temporal constraint in the form of a time limit.

The error is then detected if the algorithm does not respond to a message in the specified

time. Similarly, we could specify the time in which the vehicle has to reach the

destination. Failing to do so at the specified time would be classified as an error.

59

8 Conclusion

The main aim of this thesis was to design and implement an environment for

benchmarking planning algorithms in ROS. To provide a complete solution, we split

the project into four major parts.

In the first part, we focused on gathering the dataset for the benchmarks. Given

that we wanted to provide information from real traffic, rather than one that is

artificially generated, we searched for video footage, from which we could extract the

trajectories of the vehicles.

To this point, we assembled a data set consisting of over six hundred unique

vehicle trajectories from six different scenes. The data set is focused on roundabouts

and junctions, as they are generally more complex than a simple highway, where all

the vehicles move in the same direction and usually at a constant speed.

We also provide a ROS package devoted to manipulating the data. Using this

package, one can remove trajectories or add artificial ones. One of the tools can also be

used to convert data from the format used by detection frameworks and datasets to a

format usable for benchmarking.

Furthermore, we discussed several methods of describing the scene itself. From

the available formats, we chose lanelet2, due to the benefit of having an open-source

editor and providing a library to handle the mapping data as a ROS package. The

lanelet2 framework was designed for the purpose of automated driving and gave us

enough tools to describe even complex traffic scenarios. We also extended this format

with one custom tag, which is used to project the trajectories from the data set onto

the map.

The third part is dedicated to the design and implementation of the simulation

environment. This package was also created to work as a ROS node. The simulator is

able to run and benchmark planning algorithms in different scenarios. The scenarios

are described using a configuration file, which serves as input for the system. Multiple

benchmarks and algorithms can be listed in the configuration file to automate the

process. The system then sequentially runs all of the algorithms on the specified data.

60

We use message passing to communicate with the algorithm. Therefore, the

implementation of the algorithm is independent of the simulator. The simulator is

responsible for running the algorithm and exposing the information about the scene

using ROS messages. The simulator then collects the responses from the algorithms

and writes any detected collisions or other errors into files in JSON or CSV format. It

is also possible to visualize the whole scene using OpenCV or rViz.

Lastly, to verify the design of the whole environment consisting of the

benchmarks and the simulator, we required an algorithm that can communicate with

the simulator. However, later on, this was changed, so that we should provide our own

example on how to use the routing library to plan the trajectory and how to

communicate with the simulator. We benchmarked this algorithm using the whole

dataset to demonstrate the simulator’s behavior.

The gathered set of benchmarks, coupled with an environment to work with the

data, creates a framework suitable for building new benchmarks for planning

algorithms. The simulator is able to evaluate different algorithms using the designed

benchmarks. All of the implemented software is compatible with ROS with an emphasis

on using only libraries and tools, which are open-source or at least free to use.

The system is designed to be used by developers of planning algorithms for

personal vehicles. It enables the developers to test the performance of their algorithms

in a safe and simulated environment on several traffic scenarios from the real world.

The output of the system is in a programmatically parsable format, allowing for

automated running of simulations, and using the simulation results to adjust the

parameters of the algorithm.

61

9 References

[1] M. A. K. Bahrin, M. F. Othman, N. H. N. Azli and M. F. Talib, "Industry 4.0: A

review on industrial automation and robotic," Jurnal Teknologi, vol. 78, 2016.

[2] Open Robotics, "ROS.org | About ROS," [Online]. Available:

https://www.ros.org/about-ros/. [Accessed 30 April 2021].

[3] Open Robotics, "ROS.org | Core Components," [Online]. Available:

https://www.ros.org/core-components/. [Accessed 09 May 2021].

[4] M. Althoff, M. Koschi and S. Manzinger, "CommonRoad: Composable

benchmarks for motion planning on roads," in 2017 IEEE Intelligent Vehicles

Symposium (IV), 2017.

[5] Technische Universität München, "New Submission," [Online]. Available:

https://commonroad.in.tum.de/new-submission. [Accessed 30 April 2021].

[6] GoodVision Ltd., "GoodVision Video Processing Options," [Online]. Available:

http://help.goodvisionlive.com/en/articles/3304457-goodvision-video-processing-

options. [Accessed 17 May 2021].

[7] NVIDIA, "NVIDIA DeepStream SDK Developer Guide - DeepStream 5.1 Release

documentation," 26 February 2021. [Online]. Available:

https://docs.nvidia.com/metropolis/deepstream/dev-guide/. [Accessed 30 April

2021].

[8] The Autoware Foundation, "Autoware.AI," 2020. [Online]. Available:

https://www.autoware.ai/. [Accessed 9 May 2021].

[9] OpenStreetMap contributors, https://www.openstreetmap.org, 2017.

62

[10] OpenStreetMaps contributors, "GPS Navigation & Maps," 18 November 2020.

[Online]. Available:

https://wiki.openstreetmap.org/wiki/GPS_Navigation_%26_Maps. [Accessed

17 May 2021].

[11] ASAM e.V. ®, "ASAM OpenDRIVE," 2021. [Online]. Available:

https://www.asam.net/standards/detail/opendrive/. [Accessed 16 April 2021].

[12] Navigation Data Standard (NDS), "Data for all: OpenDRIVE for driving

simulators," 22 April 2021. [Online]. Available: https://nds-

association.org/opendrive/. [Accessed 17 May 2021].

[13] F. Poggenhans, J.-H. Pauls, J. Janosovits, S. Orf, M. Naumann, F. Kuhnt and M.

Mayr, "Lanelet2: A High-Definition Map Framework for the Future of Automated

Driving," in Proc IEEE Intell Trans Syst Conf., Hawaii, 2018.

[14] P. Zhu, L. Wen, D. Du, X. Bian, Q. Hu and H. Ling, "Vision Meets Drones: Past,

Present and Future," arXiv preprint arXiv:2001.06303, 2020.

[15] I. Bozcan and E. Kayacan, AU-AIR: A Multi-modal Unmanned Aerial Vehicle

Dataset for Low Altitude Traffic Surveillance, 2020.

[16] J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater and L. Eckstein, "The inD

Dataset: A Drone Dataset of Naturalistic Road User Trajectories at German

Intersections," 2019.

[17] Pexels, "Free stock videos," 2021. [Online]. Available:

https://www.pexels.com/videos/. [Accessed 15 April 2021].

[18] C. Vondrick, D. Patterson and D. Ramanan, "Efficiently Scaling up Crowdsourced

Video Annotation," International Journal of Computer Vision, pp. 1-21.

[19] P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers, I. Reid, S. Roth, K.

Schindler and L. Leal-Taixé, "MOT20: A benchmark for multi object tracking in

crowded scenes," arXiv:2003.09003[cs], 3 2020.

63

[20] Python Software Foundation, "Sunsetting Python2," [Online]. Available:

https://www.python.org/doc/sunset-python-2/. [Accessed 15 April 2021].

[21] Q. Chen, Y. Zhao, S. Pan and Y. Wang, "Survey of the Influence of the Width of

Urban Branch Roads on the Meeting of Two-Way Vehicle Flows," PLOS ONE,

vol. 11, p. e0149188, 2 2016.

[22] ROS, "nav_msgs/Path Message," 13 January 2021. [Online]. Available:

http://docs.ros.org/en/api/nav_msgs/html/msg/Path.html. [Accessed 15 April

2021].

[23] Python Software Foundation, "unittest - Unit Testing Framework," 2021.

[Online]. Available: https://docs.python.org/3/library/unittest.html#module-

unittest. [Accessed 15 April 2021].

[24] "Lanelet2," FZI Forschungszentrum Informatik, 14 July 2020. [Online]. Available:

https://github.com/fzi-forschungszentrum-

informatik/Lanelet2/blob/master/lanelet2_core/doc/LaneletPrimitives.md.

[Accessed 16 April 2021].

[25] OpenStreetMap, "JOSM," 2021. [Online]. Available:

https://josm.openstreetmap.de/. [Accessed 16 April 2021].

[26] FZI Forschungszentrum Informatik, "Lanelet2 Maps," 22 September 2020.

[Online]. Available: https://github.com/fzi-forschungszentrum-

informatik/Lanelet2/tree/master/lanelet2_maps. [Accessed 16 April 2021].

[27] Open Street Map creators, "JOSM/Plugins/PicLayer," 29 January 2020. [Online].

Available: https://wiki.openstreetmap.org/wiki/JOSM/Plugins/PicLayer.

[Accessed 06 May 2021].

[28] Open Robotics, "ROS/Technical Overview - Ros Wiki," 15 June 2014. [Online].

Available: http://wiki.ros.org/ROS/Technical%20Overview#Topic_Transports.

[Accessed 29 April 2021].

64

[29] G. Guennebaud, B. Jacob and others, Eigen v3, 2010.

[30] OpenCV Team, "OpenCV - OpenCV," 2021. [Online]. Available:

https://opencv.org/. [Accessed 6 May 2021].

[31] B. Daves, D. Abrahams and R. Rivera, "Boost C++ Libraries," [Online].

Available: https://www.boost.org/. [Accessed 06 May 2021].

[32] M. Quigley, J. Faust, B. Gerkey, T. Straszheim and D. Thomas, "roscpp - ROS

Wiki," 2 November 2015. [Online]. Available: http://wiki.ros.org/roscpp.

[Accessed 06 May 2021].

[33] Open Robotics, "rviz - ROS," 16 May 2018. [Online]. Available:

http://wiki.ros.org/rviz. [Accessed 9 May 2021].

[34] N. Lohmann, "JSON for Modern C++," 4 May 2021. [Online]. Available:

https://github.com/nlohmann/json. [Accessed 6 May 2021].

[35] T. Kalibera and R. Jones, "Rigorous benchmarking in reasonable time," in

Proceedings of the 2013 international symposium on memory management, 2013.

[36] "visualization_msgs/Marker documentation," 15 January 2021. [Online].

Available:

http://docs.ros.org/en/melodic/api/visualization_msgs/html/msg/Marker.html.

[Accessed 9 May 2021].

[37] D. Vandevoorde, N. M. Josuttis and D. Gregor, C++ Templates: The Complete

Guide (2nd Edition), 2nd ed., Addison-Wesley Professional, 2017.

[38] Google, "GoogleTest User's Guide | GoogleTest," [Online]. Available:

https://google.github.io/googletest/. [Accessed 9 May 2021].

[39] Open Robotics, "catkin - ROS Wiki," 26 July 2017. [Online]. Available:

http://wiki.ros.org/catkin. [Accessed 9 May 2021].

65

[40] J. Seward and N. Nethercote, "Using Valgrind to Detect Undefined Value Errors

with Bit-Precision.," in USENIX Annual Technical Conference, General Track,

2005.

[41] The GNOME Project, "GLib Reference Manual - GNOME Developer Center,"

[Online]. Available: https://developer.gnome.org/glib/. [Accessed 9 May 2021].

[42] GNOME Project, "Valgrind detects possibly lost memory despite suppressions,"

12 January 2021. [Online]. Available: https://gitlab.gnome.org/GNOME/glib/-

/issues/2296. [Accessed 03 May 2021].

[43] K. Serebryany, D. Bruening, A. Potapenko and D. Vyukov, "AddressSanitizer: A

fast address sanity checker," in 2012 {USENIX} Annual Technical Conference

({USENIX}{ATC} 12), 2012.

[44] C. Boettiger, "An introduction to Docker for reproducible research," ACM

SIGOPS Operating Systems Review, vol. 49, p. 71–79, 2015.

[45] Docker Inc., "Docker Engine overview | Docker Documentation," [Online].

Available: https://docs.docker.com/engine/. [Accessed 9 May 2021].

[46] E. G. Tsardoulias, A. Iliakopoulou, A. Kargakos and L. Petrou, "A review of global

path planning methods for occupancy grid maps regardless of obstacle density,"

Journal of Intelligent & Robotic Systems, vol. 84, p. 829–858, 2016.

[47] K. Tong, Z. Ajanović and G. Stettinger, Overview of Tools Supporting Planning

for Automated Driving, 2020.

[48] N. Kudarauskas, "Analysis of emergency braking of a vehicle," Transport, vol. 22,

p. 154–159, 2007.

[49] "Zákon o silničním provozu č. 361/2000 Sb.," 1 January 2019. [Online]. Available:

https://www.kurzy.cz/zakony/361-2000-zakon-o-silnicnim-provozu/cast-1/.

[Accessed 9 May 2021].

66

[50] Centrum služeb pro silniční dopravu, "vzdalenost_mezi_vozidly," [Online].

Available: https://www.cspsd.cz/storage/files/vzdalenost_mezi_vozidly.pdf.

[Accessed 9 May 2021].

67

10 Appendix

The contents of the enclosed DVD are described below.

▪ /results – The outputs of the simulator for different configurations

▪ /memcheck – The outputs of Memcheck with a brief description of each program

execution

▪ /simulator_data – Folder containing scene descriptions in lanelet2 format and

trajectories

▪ /src – This folder contains the source codes for every implemented ROS package

▪ /src/hav_sim_utils – ROS package dedicated to pre-processing the input data

▪ /src/sim_alg – ROS package containing the planning algorithm example

▪ /src/hav_simulator – ROS package containing the simulator

▪ /src/hav_simulator/cfg – This folder contains several JSON configurations for

benchmarking

▪ /src/hav_simulator/docker – This folder contains a Dockerfile to build an image

with a pre-installed environment

▪ /README.md – Instructions on how to compile and run the system

▪ /plot.rviz – A configuration for the scene in rViz

▪ /deepstream.md – Instructions on how to use DeepStream to extract trajectories

from a video

	1 Introduction
	2 Related work
	2.1 Robot Operating System
	2.2 CommonRoad
	2.3 NVIDIA DeepStream
	2.4 Autoware
	2.5 Mapping formats
	2.6 Datasets

	3 Benchmark dataset
	3.1 Analysis
	3.1.1 Data source

	3.2 Trajectories format
	3.3 Data pre-processing package
	3.4 Parsing the format
	3.5 Filtering trajectories
	3.6 Calculating rotated rectangles
	3.7 Visualization
	3.8 Adding custom trajectory
	3.9 Testing

	4 Scene annotations
	4.1 Analysis
	4.1.1 Lanelet2 format

	4.2 Calibrations with OSM
	4.3 Annotations using Lanelet2
	4.3.1 Using virtual lines
	4.3.2 Connecting lanelets

	4.4 Custom tags
	4.5 Validation
	4.6 Fixing the errors
	4.6.1 Segmentation fault
	4.6.2 Not the closest lanelet

	5 The simulator
	5.1 Requirements
	5.2 Architectural design
	5.3 The communication protocol
	5.4 Messages
	5.4.1 Point2
	5.4.2 Position
	5.4.3 Init
	5.4.4 Frame
	5.4.5 Fin

	5.5 Error types
	5.6 High-level design
	5.6.1 Used libraries

	5.7 Input Configuration
	5.7.1 Top-level data format
	5.7.2 Benchmark object
	5.7.3 Algorithm object

	5.8 Data loading
	5.9 Simulation
	5.9.1 Initialization
	5.9.2 The main loop
	5.9.3 Pipelining
	5.9.4 The finalization
	5.9.5 Writing the results
	5.9.6 No messages lost
	5.9.7 Deadlock prevention

	5.10 Visualization
	5.10.1 Publishing to rViz
	5.10.2 Plotting via OpenCV

	5.11 Shared library
	5.11.1 SFINAE pattern

	5.12 Exceptions
	5.13 Testing
	5.13.1 Unit testing
	5.13.2 Checking for memory errors

	5.14 Docker

	6 Self-driving algorithm
	6.1 Analysis
	6.2 Algorithm interface
	6.2.1 The template method

	6.3 The algorithm stubs
	6.3.1 Straight algorithm
	6.3.2 Echo algorithm

	6.4 The autonomous driving algorithm
	6.4.1 Initialization
	6.4.2 Frame response step
	6.4.3 Finalization

	6.5 Testing
	6.6 Results

	7 Future works
	8 Conclusion
	9 References
	10 Appendix

