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Abstract
This thesis is dedicated to methods of anomaly detection applied to log files. The cur-
rent state-of-the-art anomaly detection methods usually follow the traditional ap-
proach for log processing. Firstly, log files are processed by a log parsing technique
which transforms text information into non-specific structured data. Next, the data
is converted into a numerical representation. The feature extraction is often related
to natural language processing techniques. However, the traditional approach re-
quires extensive domain knowledge and retraining a particular model when new
log messages become available. Thanks to the recent advancements in the natural
language processing domain, we can directly learn embedding vectors instead of
the feature extraction based on log parsing. We propose novel autoencoder-based
models leveraging the embedding vectors since autoencoders are a recommended
choice in the field of anomaly detection. Moreover, we experiment with various tech-
niques which are incorporated into autoencoders, such as convolutional layers and
the self-attention mechanism. We verify that the autoencoders utilizing convolu-
tional layers are effective for anomaly detection in log files. Furthermore, we demon-
strate that boosting the models with the self-attention mechanism might be advanta-
geous and open room for future work and further research. Finally, we can conclude
that the traditional approach combined with an autoencoder may achieve impres-
sive results on the provided testing data set. Nonetheless, the AECNN1D model
achieves the most promising results among models leveraging the embedding rep-
resentation of logs — the F1-score is 0.8597 on the testing data set. The AECNN1D
model is generally applicable to deploying into the production since no additional
requirements or periodic retraining is necessary.

Keywords: anomaly detection, natural language processing, log files, autoencoder,
convolutional neural network, machine learning
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Abstrakt
Tato práce se věnuje metodám detekce anomálií aplikovaným na soubory logů. Sou-
časné metody detekce anomálií obvykle používají tradiční přístup ke zpracování
logů. Nejprve se soubory logů zpracují jejich parsováním, které transformuje textové
informace na nespecifická strukturovaná data. Poté jsou data převedena na číselnou
reprezentaci. Extrakce příznaků často souvisí s technikami používanými pro zpra-
cování přirozeného jazyka. Tradiční přístup však vyžaduje rozsáhlé oborové zna-
losti a přeučení modelu, když se objeví nové typy logů. Díky nedávným pokro-
kům v oblasti zpracování přirozeného jazyka můžeme přímo naučit vnoření slov na-
místo extrakce příznaků založené na parsování logů. Navrhujeme nové modely za-
ložené na autoenkodérech využívajících vnoření slov, protože jsou doporučovanou
volbou v oblasti detekce anomálií. Kromě toho experimentujeme s různými techni-
kami, které jsme začlenili do autoenkodérů, jako jsou konvoluční vrstvy a mechanis-
mus self-attention. Ověřujeme, že autoenkodéry využívající konvoluční vrstvy jsou
vhodné pro detekci anomálií v souborech logů. Dále ukazujeme, že přidání mecha-
nismu self-attention do modelů může být výhodné a otevírá prostor pro budoucí
práci a další výzkum. Závěrem můžeme konstatovat, že tradiční přístup v kombi-
naci s autoenkodérem může na poskytnuté testovací datové sadě dosáhnout působi-
vých výsledků. Nicméně model AECNN1D dosahuje nejslibnějších výsledků mezi
všemi modely, které využívají vnoření slov logů — metrika F1-score je 0,8597 na tes-
tovací datové sadě. Model AECNN1D je obecně použitelný pro nasazení do pro-
dukce, protože nemá žádné další požadavky ani nevyžaduje občasné přeučování.

Klíčová slova: detekce anomálií, zpracování přirozeného jazyka, soubory logů, au-
toenkodér, konvoluční neuronová sít’, strojové učení
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Chapter 1

Introduction

This thesis is dedicated to methods of anomaly detection applied to log files. The cur-
rent state-of-the-art anomaly detection methods usually follow the traditional ap-
proach for log processing. Firstly, log files are processed by a log parsing tech-
nique which transforms text information into non-specific structured data. Next,
the data is converted into a numerical representation. The feature extraction is often
related to natural language processing (NLP) techniques. However, the traditional
approach requires extensive domain knowledge and retraining a particular model
when new log messages become available. Thanks to the recent advancements
in the NLP domain, we can directly learn embedding vectors instead of the feature
extraction based on log parsing. We researched semi-supervised and unsupervised
machine learning methods applicable for anomaly detection of semi-structured data,
such as log files. We decided to leverage autoencoder-based models as autoencoders
are a recommended choice in the field of anomaly detection.

1.1 Motivation

Anomaly detection methods are daily used in a variety of domains across indus-
tries. Anomaly detection methods are instrumental in the banking sector, protect-
ing us against fraudulent activity and transactions. In the cybersecurity domain,
these methods help researchers to detect attackers’ sophisticated malicious software.
The methods also help scientists and doctors to detect cancer or chronic illness in
the healthcare industry. Last but not least, anomaly detection methods monitor
the behavior of a distributed system in a data center and detect an anomalous state
of a particular machine, which is the scope of this thesis.

With the current demand for cloud services, it has become increasingly impor-
tant to provide highly available and error-free services. High availability of services
can be achieved by quickly identifying the root cause. Furthermore, log files are one
of the possible solutions. Nowadays, no company can afford to inspect the log files
manually. Therefore, there is a surge of interest in developing methods which can
automatically detect anomalous behavior with high accuracy.

1.2 Thesis structure and aims

The fundamental aim of this thesis is to experiment with methods of anomaly detec-
tion applied to log files. Specifically, Chapter 3 delineates state-of-the-art anomaly
detection methods. Moreover, this chapter further contains a detailed overview
of the methods focusing on processing log files and extracting continuous vector
representation of features. Next, Chapter 4 is dedicated to selecting various existing
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methods and comparing their performance on a provided data set with our pro-
posed models. The comprehensive evaluation of all models on the data set can be
found in Chapter 5.

This thesis is divided into individual chapters. Chapter 2 introduces and de-
fines the terms and theoretical concepts used in the following chapters. Chapter 3
is devoted to the related work and the classification of anomalies and approaches
for log processing. The detailed solution approach can be found in Chapter 4. Fur-
thermore, this chapter also delineates the implementation of proposed models and
algorithms. Chapter 5 contains a comprehensive evaluation of both baseline and
proposed models on the data set. This chapter is concluded with an exhaustive dis-
cussion of achieved results. Chapter 6 closes the whole thesis with final remarks and
further directions for future work.
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Chapter 2

Fundamentals

This chapter explains and defines the terms and theoretical concepts used in the fol-
lowing chapters. We start with a feedforward neural network. Next, we introduce
the concept of a convolutional neural network and the temporal convolutional net-
work. We also mention the self-attention mechanism, which is a crucial part of
the state-of-the-art architectures in the NLP domain. Finally, we present how we
can leverage neural networks in semi-supervised machine learning.

2.1 Neural network

The biological analogy of animal brains inspires neural networks. Akin to a brain,
the initial building block of all neural networks is a neuron; see Figure 2.1. Each
neuron accepts several input values and produces one output value. The core idea
behind the neuron is that it is possible to learn a particular weight wi given by an in-
dividual input xi. The simplest form of a neural network is called the perceptron [1].

......

Inputs

Bias

Output

FIGURE 2.1: An example of a neuron, a building block of a neural
network. Concatenation of many neurons and organizing them into

layers can produce a very complex neural network.

A feedforward neural network contains multiple neurons which comprise a hid-
den layer. This hidden layer may also be called a fully connected layer if each neuron
from the previous layer li is connected to each neuron from the succeeding layer li+1.
The input layer receives an input, and the output layer makes a prediction. An ex-
ample of a feedforward neural network is depicted in Figure 2.2.

Neural networks use learning techniques — a well-known technique is back-
propagation. A loss function computes the loss using the output values and the cor-
rect answers. Next, the learning technique adjusts the weights of individual neurons.
This process decreases the loss until it plateaus.
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Inputs Outputs

Hidden layers

FIGURE 2.2: A classic example of a feedforward neural network. This
neural network comprises only fully connected layers, which contain

trainable parameters.

2.2 Convolutional neural network

Neural networks consist of individual neurons, which may include various connec-
tions and stacking. Convolutional neural networks have a known grid-like topo-
logical structure [2]. Traditionally, recurrent neural networks process time-series
data, but they are difficult to train and parallelize [3], and thus they are often su-
perseded by other approaches. Time-series data may also be processed using a 1D
convolutional neural network, whereas a 2D convolutional neural network may be
applicable for imagery data.

2.2.1 Building blocks

Each convolutional neural network leverages convolutional layers, pooling layers,
and fully connected layers. We delineate all mentioned building blocks below.

Convolutional layer

A convolutional layer is the main building block, and the whole architecture is
named after this layer. Each neuron is connected to particular neurons from the pre-
ceding layer (a receptive field), which significantly reduces the number of trainable
parameters. The reduction of trainable parameters usually allows the architecture
of a convolutional neural network to be deeper. This layer is used chiefly in the first
part of a convolutional neural network, and it is responsible for feature extraction.
The essential hyperparameters are the kernel size and the number of feature maps.
Each feature map represents one output matrix after applying a convolutional kernel
on a particular input. Padding, stride, and dilation are additional hyperparameters
of a convolutional layer. The difference between the 1D convolutional layer and
the 2D convolutional layer is depicted in Figure 2.3.

Precisely, an arbitrary convolutional layer is defined in Equation 2.1, where n
denotes the number of input channels, and i denotes the index of a particular output
channel. The symbol ∗ is the discrete convolution operator.

outputsi = biasesi +
n

∑
j=1

weightsi,j ∗ inputsj (2.1)
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Feature map

Receptive field

2D example 1D example

Feature maps

Receptive field

FIGURE 2.3: An example of convolutional layers with different input
shapes. The kernel convolves across the input and produces a new

feature map.

Transposed convolutional layer

A transposed convolutional layer has been developed to upsample an input, i.e.,
an output feature map has greater spatial dimensions than the input. The trans-
posed convolutional layer is defined as the inverse operation of the convolutional
layer. However, applying tconv(conv(X)) might not produce a new matrix with
the same numbers as the original input matrix X. The operations conv and tconv de-
note convolutional and transposed convolutional layers, respectively. Specifically,
the operation of the 2D transposed convolution is depicted in Figure 2.4.

The transposed convolutional layer can learn kernel weights. Next, the trained
kernel upsamples the input feature maps. On the contrary, there exists an upsam-
pling technique which only copies the surrounding numerical values, i.e., it does
not provide any trainable parameters. Akin to the convolutional layer, there exist
various transposed convolutional layers which operate with different input shapes.
The crucial hyperparameters are the number of feature maps, the kernel size, pad-
ding, stride, and dilation.

0

0 0

0
1

1 1

10

2 3

1
33

3 3

0 1 1

42 6

5 32

Input Kernel
Output

FIGURE 2.4: An example of the 2D transposed convolutional layer.
The kernel convolves across the input matrix, and it produces four
intermediate results, which are finally added together. The opacity
of individual colors was set to 50% in order to capture the impact
of each intermediate matrix on the output matrix. The symbol ∗ is

the discrete convolution operator.

Pooling layer

A pooling layer is usually inserted between two convolutional layers, which leads to
the reduction of trainable parameters. Models with less trainable parameters better
generalize on unseen data examples. There are various types of pooling layers, such
as max-pooling and average pooling layers. An example of these layers is shown
in Figure 2.5. Since a particular pooling layer applies an aggregation function to
the input, the pooling layer does not have any trainable parameters.
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A global pooling layer can be leveraged as the output layer instead of a fully
connected layer before applying the softmax activation function [4, 5].

Average pooling

Max-pooling1 2 4

2

5

4

13 2

1 3

1 020

1

3

2 4

5

2

1 2

3

FIGURE 2.5: An example of various pooling layers with the stride
equals two. A pooling layer downsamples an input feature map. The
usual choice of pooling layers is the max-pooling layer which reduces
the number of trainable parameters and decreases the risk of overfit-

ting.

Fully connected layer

A fully connected layer comprises individual neurons which are connected to each
output of the preceding layer. A convolutional neural network leverages fully con-
nected layers at the end of the network since they exponentially increase the com-
plexity of a particular architecture. Training a complex network containing only
fully connected layers might be slow and prone to overfitting.

Regularization

The authors [6] proposed a regularization technique called dropout. Dropout is rec-
ommended as a technique tackling with overfitting of a model. The main idea is
to randomly deactivate neurons in a particular neural network during the training
phase. This prevents neurons from precisely adapting to the input. On the con-
trary, all neurons are active during the testing phase. However, their weights are
multiplied by the probability p of deactivation of the neurons. Researchers usually
insert dropout in-between two fully connected layers. It leads to the depletion of a
particular fully connected layer after applying the dropout technique; see Figure 2.6.

Besides dropout, there exist other regularization techniques such as L1 and L2
regularizations. L1 regularization adds the absolute value of a weight w multiplied
by the regularization strength λ to the computed loss. L1 regularization has its prop-
erty which leads to sparse weight vectors. On the other hand, L2 regularization adds
a weight squared w2 multiplied by the regularization strength 1

2 λ to the computed
loss. L2 regularization penalizes jagged weight vectors [7]. The authors [8] com-
bined both L1 regularization and L2 regularization, i.e., the proposed regularization
is λ1|w|+ λ2w2.

Activation function

An activation function applies a mathematical function on a particular output of
a neuron — an example of the activation function ReLU is depicted in Equation 2.2.
A traditional choice of activation functions used to be the sigmoid function. The sig-
moid function suffers from the saturating gradient problem, i.e., in both tails of the
curve, the gradient is close to zero. Therefore, the careful initialization of weights
is required in order to prevent saturation [9]. Moreover, the sigmoid function is
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Inputs Inputs

Outputs Outputs

FIGURE 2.6: An example of a network with fully connected layers
(left) and after applying dropout (right).

not zero-centered, which might introduce undesirable dynamics in the gradient up-
dates [7]. The hyperbolic tangent is akin to the sigmoid function, but it is a zero-
centered function. The activation function ReLU is used nowadays, and its new
modifications have been recently proposed, such as Leaky ReLU [10], ELU [11], and
SELU [12].

output = max(0, bias +
n

∑
i=1

weightsi · inputsi) (2.2)

2.2.2 Temporal convolutional network

Causal convolutions characterize a temporal convolutional network (TCN). The va-
nilla temporal convolutional network operates with a causal constraint, i.e., the out-
put yn depends only on the inputs x1, . . . , xn. Moreover, the model accepts a se-
quence in the input and produces a sequence of the same length in the output.

Causal convolution

The architecture leverages a 1D fully convolutional network [13], where each layer
keeps the same shape as the input using zero padding. Next, causal convolutions
ensure that the output at time t is dependent only on neurons x1, . . . , xt from the
preceding layer. This basic design of a causal convolution requires an immensely
deep neural network or unusually wide kernels [14]. These disadvantages can be
solved by a residual connection which helps a particular TCN block to learn modifi-
cations [15].

Dilated convolution

A dilated convolution enables a model to use longer history. With a linear number
of convolutional layers, the network can leverage an exponentially larger receptive
field [14]. The receptive field can be controlled by the kernel size k and the dilation
factor d. Specifically, the dilation factor d = 1 is used in a regular convolutional
layer. An example of a causal convolution and a dilated convolution is shown in
Figure 2.7.



8 Chapter 2. Fundamentals

Outputs
Inputs

FIGURE 2.7: This temporal convolutional network has the input layer,
two hidden layers, and the output layer. The dilated factor d expo-
nentially grows with the number of layers. The kernel size of each

layer is equal to three.

2.3 Self-attention mechanism

A self-attention mechanism [16] has recently become an essential block of every
modern NLP model but also in the computer vision domain [17, 18]. The self-
attention mechanism lets each input interact with each other and returns a matrix
that denotes the importance of each input value.

Internally, the self-attention mechanism contains a key matrix, a value matrix,
and a query matrix. These matrices update their weights during the training phase.
Next, the score of each input, with respect to a particular input value, is computed by
taking the dot product of a query vector and a corresponding key vector. Afterward,
the scores are normalized by a constant value to have more numerically stable gra-
dients. Then the softmax activation function is applied to the result, ensuring that
all entries are non-negative and sum up to one. The softmax score is multiplied
with each vector which creates weighted numerical vectors. The weighted vectors
are summed up, which produces the self-attention score for a particular input. This
process is repeated for all other inputs. The calculation of a self-attention score is de-
picted in Equation 2.3 where Q denotes the query matrix, K denotes the key matrix,
V denotes the value matrix, and d corresponds to the dimension of the key vector.

The performance of the self-attention mechanism can be further improved by
a multi-head attention. This allows us to create multiple triples of key, value, query
matrices. Each triple can capture different information since all weights of these
triples are randomly initialized [16].

attention = softmax(
QKT
√

d
)V (2.3)

2.3.1 Self-attention & convolutional layers

The self-attention mechanism can improve the performance of computer vision tasks,
and thus self-attention models can compete and outperform convolutional mod-
els [19] while requiring fewer trainable parameters [20]. A convolutional neural net-
work cannot capture the dependencies of features that are spatially distant. On the
contrary, a model with self-attention layers can learn such global dependencies as it
learns the relationship between each input to the others [21]. Specifically, a multi-
head self-attention layer is just a generalized convolutional layer. The authors [22]
showed that a self-attention layer could be equivalent to an arbitrary convolutional
filter in a particular convolutional layer, assuming the usage of relative positional
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encoding and enough heads. The relative positional encoding efficiently allows the
self-attention mechanism to produce a different representation of each sequence el-
ement using the relative distance between the elements [23].

2.4 Autoencoder

An autoencoder is a neural network that learns an approximation of the identity
function, i.e., it tries to copy the input to its output. An autoencoder usually reduces
the input until a hidden layer h which describes a code (a compressed representation
of the input). This part of an autoencoder is named an encoder. Next, the decoder re-
constructs the code to the initial shape of the input [2]. Figure 2.8 shows an example
of an autoencoder comprising fully connected layers.

A particular autoencoder is useful as long as it does not learn to precisely copy
the input to the output. The autoencoder usually incorporates mechanisms that force
it to learn only an approximation of the input. Therefore, an autoencoder can learn
valuable properties of the underlying probability distribution of a data set.

An autoencoder does not require annotated data, and thus it approximates the
identity function in an unsupervised manner. However, our task, anomaly detec-
tion in log files, needs annotated data since an autoencoder is supposed to learn the
normal state of logs. The hypothesis assumes that a particular autoencoder trained
on normal data examples could reconstruct anomalous data examples with a sig-
nificantly higher loss. Therefore, our task requires autoencoders trained in a semi-
supervised manner.

Besides the autoencoders, which use only fully connected layers, we propose var-
ious autoencoders which leverage convolutional layers and the self-attention mech-
anism. The detailed overview of proposed autoencoders is in Section 4.4.

Inputs Outputs

Bottleneck

Encoder Decoder

FIGURE 2.8: An example of an autoencoder that consists of an en-
coder, a bottleneck, and a decoder. The input is reduced until the
bottleneck, which describes a code. The code is a compressed repre-
sentation of the input. Finally, the decoder reconstructs the code to

the input shape.

2.4.1 Regularized autoencoders

An autoencoder might directly copy the input to the output and thus achieves zero
loss on the data set. This is not a desirable behavior of the autoencoder. Therefore, it
is crucial to impose a regularization technique on the autoencoder [24]. One possible
solution is to introduce a bottleneck, as is shown in Figure 2.8.

The first approach is known as sparse autoencoders. The autoencoder is forced
to have only a small number of active hidden units simultaneously. The sparsity
can be achieved by introducing an additional term to the loss function. The term
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might be L1 regularization or the Kullback–Leibler divergence, which measures the
dissimilarity of two probability distributions.

Another approach resides in denoising the input [25]. The input is corrupted
by some noise at the beginning, such as white Gaussian noise. Next, the autoen-
coder tries to reconstruct the original undistorted input. The model has to extract
informative features in order to learn the denoising accurately.

2.4.2 Applications of autoencoders

Autoencoders have been used for dimensionality reduction, while a classical ap-
proach is Principal Component Analysis (PCA) [26]. An autoencoder with only the
linear activation function strongly relates to PCA. However, the main advantages of
autoencoders reside in the usage of non-linear activation functions. These autoen-
coders may outperform PCA if the manifold is non-linear. On the contrary, PCA is
optimal as a linear projection [24]. Specifically, we used autoencoders for dimen-
sionality reduction in Subsection 4.4.9.

Another application of autoencoders is anomaly detection. An autoencoder can
learn the latent space of normal data examples. Once the autoencoder is appropri-
ately trained, it should reconstruct normal data points with a considerably lower
loss. On the contrary, the anomalous data points should yield a higher reconstruc-
tion loss. Although there are various other applications of autoencoders, we men-
tioned dimensionality reduction and anomaly detection applications as they are in-
terwoven with our main task.
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Chapter 3

Related Work

We first define what anomalies are and how we can deal with them. Next, we pro-
vide an intensive overview of the current state-of-the-art methods used for anomaly
detection and lastly aim our focus on anomaly detection in log files.

3.1 Anomaly detection

Anomalies are the data points dissimilar to the rest of the data based on appropriate
metrics [27]. The rest of the data is called normal data. Anomaly detection is related
to the problem of identifying patterns in a data set that significantly deviate from
the expected behavior [28].

3.1.1 Categories of anomalies

We classify anomalies into three categories by their types akin to authors [27, 29, 30].

Point anomalies

We say that a particular data point is anomalous if it significantly deviates from the
rest of the data points [27]. Point anomalies are the simplest type of anomalies, and
an example might be a temperature of a human body. Let us assume that an aver-
age temperature of a human body is 36 °C for the sake of simplicity. We conduct
five measurements and four times the temperature is 36 °C. During one of the mea-
surements, the temperature reaches 40 °C, and thus it is a point anomaly. Figure 3.1
shows one such example.

Contextual anomalies

A particular data point belongs to this category if it is anomalous only in a specific
context but not otherwise. There are contextual and behavioral attributes that define
each data point. Contextual attributes determine the context or the neighborhood
of the data point. In contrast, behavioral attributes define the noncontextual charac-
teristics of the data point [27]. We often observe contextual anomalies in time-series
data such as temperature, stocks, and logs. Figure 3.2 depicts an example of a con-
textual anomaly.

Collective anomalies

A collection of data points is a collective anomaly if it is anomalous with respect
to the entire data set. Individual data points are not usually anomalies, but their
occurrences together represent an example of a collective anomaly [27]. Figure 3.3 is
an example of collective anomalies.
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FIGURE 3.1: A point anomaly example. The blue data points repre-
sent normal data, whereas the data point A is labeled as an anomaly.

3.1.2 Presence of data labels

We distinguish three types of anomaly detection methods based on the data labels.

Supervised anomaly detection

All methods which belong to this category assume that there exists a label for each
data point, i.e., it is known whether a particular data point is an anomaly or not.
Support vector machines (SVM) [31], a logistic regression [32], and decision trees [32,
33] are representative examples of supervised anomaly detection methods. These
methods usually outperform the following categories [32], but collecting labels may
be costly and, in some cases, even unfeasible. Another issue is that the number of
anomalous data points in a particular data set is notably fewer than normal data
points. Supervised anomaly detection methods are not in the scope of this thesis.

Semi-supervised anomaly detection

Semi-supervised methods assume that all training data points belong to the normal
class. Since these methods do not need anomalous data points in the training phase,
they are widely applicable in the anomaly detection domain [27]. The authors [34]
adapted SVM to one-class SVM. One-class SVM tries to estimate a function on nor-
mal data points, which is negative for anomalies and positive otherwise.

Our proposed methods, presented later in this thesis, belong to this category. Au-
toencoders are an exquisite example of semi-supervised methods, e.g., authors [35]
developed a robust autoencoder to detect anomalies in images.

Unsupervised anomaly detection

Unsupervised methods do not require any training data points, and therefore they
are also widely applicable in the anomaly detection domain. These methods usu-
ally assume that the number of anomalies in the data set is significantly lesser than
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FIGURE 3.2: A contextual anomaly example. The value of the data
point A might be expected within a range close to x = 20, but the
same value (depicted as the data point B) is definitely anomalous with

respect to its neighborhood.

the number of normal data points [27]. Specifically, the authors [36] proposed an un-
supervised method based on the local outlier factor (LOF), which measures an ano-
maly score of each example. The anomaly score depends on how isolated a par-
ticular data point in space is with respect to the surrounding neighborhood. An-
other example may be the Isolation Trees algorithm, which was presented by the
authors [37]. Partitioning of individual data points is repeated recursively until all
data points are isolated. Anomalous data points have noticeable shorter paths to the
root. These data points are likely to be separated in early partitioning because they
have contrasting attribute values with respect to the rest of the data set [37].

Methods proposed in [36, 37] are used as the baseline methods in our experi-
ments; see Subsection 4.4.2.

3.1.3 The output of anomaly detection methods

One crucial aspect of every anomaly detection method is the output form in which
the anomalous behavior is reported. Typically, we can distinguish two output forms,
namely an anomaly score and an anomaly label, according to [27, 38].

An anomaly score, usually expressed as a real number, describes the certainty of
being an anomaly for each data point. Thus, the output is a ranked list of anomalies,
and a domain-specific threshold is applied to identify anomalies. This output form
provides us with more information than anomaly labels.

An anomaly label, usually expressed as a binary label, assigns to each data point
either a normal or an anomalous label. This output form does not allow us to use any
domain-specific threshold. However, the threshold might be controlled indirectly
through parameter tuning in a particular anomaly detection method.
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FIGURE 3.3: A collective anomaly example. The red color de-
notes an anomaly because the range contains very similar values for

a longer period of time than it was expected.

3.2 Anomaly detection for log files

Until now, we have described general-purpose methods for anomaly detection. We
aim our focus on methods used to detect anomalous data points in log files and
emphasize how essential logs might be nowadays.

3.2.1 Importance of logs in modern large-scale systems

With the current demand for cloud services, it has become increasingly important
to provide highly available and error-free services. Otherwise, it would cause con-
siderable hardship to both providers and users. Therefore, companies invest much
money to forestall outages of their services [39]. High availability of services can be
achieved by quickly identifying the root cause, and generating logs is one possible
solution. Therefore, every application and every process generates millions of log
messages every day [39], informing an administrator about performance, failure,
and availability of the services. Since data centers consist of hundreds of running
components on thousands of nodes, sometimes even distributed on different conti-
nents, the importance of automated log processing arises when troubleshooting and
diagnosing operational problems.

Logs are valuable resources of information for debugging purposes in the early
phase of development or monitoring deployed applications. Since a human being
is the main recipient, logs usually contain information in a human-readable format
such as plain text. The common structure is depicted on Figure 3.4. Although there
is no universally accepted terminology, we describe the most all-important terms. It
is worth noticing that some of these terms are used interchangeably. A log line is also
known as a log statement in the research community. The log statement usually cor-
responds to a single line of text in a particular log file. The log statement comprises
two parts: a log header and a log message. The log header records information about
a timestamp, a level of severity, or a process identification number (PID). Since the
same formatting is used for all types of logs, they are relatively easy to parse. The
log message is further divided into a log key and log parameters. The log key is
a static part that is the same for all log lines corresponding to a particular event. On
the other hand, the log parameters are variables that may vary within one event.
A representative example of log parameters is an IP address or the size of a file.
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logging.info(f 'PacketResponder {packet_id} for block {block_id} terminating')

081109 203615 148 INFO dfs.DataNode$PacketResponder: PacketResponder 1 for block
blk_38865049064139660 terminating

Header

Message

Timestamp
PID

Level
Component

Key
Parameters

081109 203615
148

INFO
dfs.DataNode$PacketResponder

PacketResponder ? for block ? terminating
1, blk_38865049064139660

FIGURE 3.4: An example of the process from creating a log line in the
programming language Python1 to proper log parsing.

3.2.2 Traditional approaches for log processing

Traditionally, a log anomaly detection approach comprises log collection, log pars-
ing, feature extraction, and anomaly detection. This general framework was first
introduced in [32].

Log collection

Collecting log files and providing them on demand is a crucial feature of every large-
scale system. Less complex systems usually use only simple log files. However,
the need for a more sophisticated tool arises as the systems grow. We can mention
syslog2 or Google Cloud Logging3, but for this thesis, we used publicly available
data sets, and thus log collection is not assumed in this thesis.

Log parsing

As mentioned above, log files contain semi-structured data, which should help ad-
ministrators with a root cause analysis. The goal of log parsing is to transform
semi-structured data, i.e., log files, into non-specific structured data. A very compre-
hensive overview of the performance of different log parsers can be found in [40].
Even though the state-of-the-art log parsers can achieve high accuracy, it is worth
mentioning that the log parsing task is challenging and none of the log parsers is
faultless.

The log files usually contain log statements from different tasks which might be
written concurrently, e.g., in a distributed file system. Fortunately, the individual
log statements often provide a unique task identification number which eases the
belonging to a group. A particular log key can appear in more than one task [41].
Therefore, it is essential to process the intertwined log statements carefully.

The oldest approach is based on handcrafted regular expressions, which extract
log keys and log parameters [42].

The second approach, the source code analysis, was proposed in [43]. The au-
thors tried to parse log lines more accurately using inferring the structure from print

1https://www.python.org
2https://tools.ietf.org/html/rfc5424
3https://cloud.google.com/logging

https://www.python.org
https://tools.ietf.org/html/rfc5424
https://cloud.google.com/logging
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statements. Object-oriented programming causes several limitations, such as over-
writing the toString method. Moreover, the source code may not be available at all
when using proprietary libraries.

Finally, several data-driven approaches were proposed, such as hierarchical clus-
tering [44], data clustering and line pattern mining [45], and a fixed depth parse
tree [46]. We use the newer version of Drain [46], namely Drain34, as the baseline
approach for parsing logs in this thesis.

Feature extraction

Extracting the most appropriate but still uncorrelated features is an essential subtask
in every machine learning project. We can let a model decide itself [47, 48] which fea-
tures are indispensable for making a prediction. We can also hardcode the features
using an empirical study.

Since we are dealing with semi-structured data, namely log files, the feature ex-
traction is often related to NLP techniques. The basic idea is to use the bag-of-words
technique [49]. This technique creates a numerical feature vector where each entry
represents the number of occurrences of a particular word, optionally normalized
by a weighting method such as TF-IDF [50]. We can tailor this approach to log files
where each entry in a vector means the number of occurrences of a particular log
key [32]. Figure 3.5 depicts one such example. The log keys are estimated on a train-
ing data set, but a testing data set might also contain different log keys. The easiest
solution is to skip those log keys that are not present in the training data set. Other
possible solutions were proposed in [51], but retraining a model periodically as new
log keys appear is still the most recommended solution.

Receiving block ? src: ? dest: ?

PacketResponder ? for block ? terminating
Received block ? of size ? from ?

Transmitted block ? to ?
Starting thread to transfer block ? to ?
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FIGURE 3.5: This example describes how a numerical representation
of log lines belonging to a particular identification number can be
constructed. Each entry in the vector is associated with a unique log
key. The occurrences of individual log keys are calculated and as-

signed to corresponding entries of the vector.

A better approach seems to be learning embedding vectors. An embedding vec-
tor is a dense, fixed-size numerical vector built using co-occurrence statistics and
their distributional hypothesis [50]. The best-known models for computing word
representations in an unsupervised manner are Skip-gram and CBOW (continuous-
bag-of-words). The Skip-gram model learns to predict a word embedding vector
using the surrounding neighborhood. On the contrary, the CBOW model predicts
a word embedding vector using its context. The context consists of a bag of words
contained in a fixed size window in the word’s neighborhood [52]. The Skip-gram
model is used in this thesis for log representations as numerical vectors.

4https://github.com/IBM/Drain3

https://github.com/IBM/Drain3
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Authors [51] leveraged representing log lines as embedding vectors as they pro-
posed a simple but effective method, which captures both syntax and semantic in-
formation from log keys. The semantic and contextual information also extracts
the method [53] which detects anomalies by utilizing a Long Short-Term Memory
(LSTM) model [54]. The most general method [41] utilizes the whole log, including
a timestamp, a PID but also log parameters. Next, the deep learning model (LSTM)
and classic mining approach detect anomalies in log files. Akin to the method [41],
our proposed methods leverage whole logs, i.e., including log parameters, while
learning the embedding vectors.

Although the logs contain textual information, the language is constrained, and
thus we cannot use a pre-trained language model, which would perform poorly.

Anomaly detection

In Section 3.1, we described methods that can be successfully applied to anomaly
detection. Here, we specifically focus on anomaly detection for log files. The meth-
ods can be classified into three categories based on the availability of data labels,
similarly to Subsection 3.1.2.

The first category describes unsupervised methods. Traditionally, PCA was used
for anomaly detection to detect run-time system problems automatically. To our
best knowledge, authors [43] were the first who successfully applied PCA on log
files. They constructed two subspaces using PCA and calculated a projection dis-
tance between the space and a feature vector, which consists of event occurrences.
If the distance is greater than a predefined threshold, the feature vector is classified
as an anomaly. The authors [55] proposed a method that firstly measures the cosine
similarity and then performs log clustering based on the agglomerative hierarchical
clustering technique.

The supervised methods belong to the second category. Logistic regression [32]
is first trained on a training data set containing both normal and anomalous data
points. Next, in the testing phase, it returns the probability of being anomalous for
each queried data point. If the value of the data point is greater than 0.5, the example
is classified as anomalous. Decision trees [33] were used to diagnose failures on the
Internet websites. An example traverses through an individual path from the root to
a leaf during the testing phase. Each leaf of a decision tree is annotated with either
the anomalous or the normal label. Once the example reaches a leaf, the leaf returns
the corresponding label as a prediction. The most mature supervised approaches
leverage LSTM [41] and convolutional neural networks (CNN) [56].

Supervised methods beat easily unsupervised methods but at the cost of log
annotation, which often requires domain experts. Therefore, we focus mainly on
semi-supervised methods in this thesis, which are in-between supervised and unsu-
pervised methods. As discussed earlier, semi-supervised methods need only non-
contaminated data, i.e., log files without anomalous logs. Although there are semi-
supervised anomaly detection methods, it is not usual to apply them on log files.
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Chapter 4

Solution Approach

In the previous chapter, we discussed the state-of-the-art methods for anomaly de-
tection and anomaly detection in log files.

Traditional anomaly detection methods for log files need extracted log keys to
create a numerical representation on top of which a machine learning model is built.
However, this approach brings several limitations.

Firstly, preprocessing techniques usually suffer from errors caused by imperfect
parsing methods. These parsing methods have their limitations in the log key detec-
tion.

Another issue arises after the log key detection. Ideally, we must know all possi-
ble log keys in advance, which is not always feasible. Periodically retraining a model
is proposed as an alternative solution as the new log keys appear.

The last obvious limitation is that we lose much information in the preprocessing
phase since only extracted log keys are used for creating a feature vector. We could
manually incorporate new features such as a timestamp, a PID, a level of severity,
or even log parameters. It was shown in [41, 51] that adding this information can
improve the performance of anomaly detection systems.

Many state-of-the-art anomaly detection methods rely on annotations, as it was
mentioned in Chapter 3. Together with the limitations mentioned above, we identify
the bottlenecks of modern anomaly detection systems for log files. In this chapter,
we propose multiple methods which deal with the mentioned bottlenecks. Further-
more, we introduce a data set which the proposed methods use and describe train-
ing, validation, and testing settings.

4.1 From HDFS to creating a data set containing logs

Hadoop1 is a framework containing many open-source software components which
ease solving problems involving a massive amount of data. One of these compo-
nents is the Hadoop Distributed File System (HDFS). HDFS is a distributed file
system that can run on commodity hardware. HDFS is highly fault-tolerant, pro-
vides high aggregate bandwidth, and is suitable for applications handling large data
sets [57].

The HDFS data set2 is a collection of logs from a Hadoop cluster running on
more than 200 nodes. Console logs are written directly to the storage on each node
at runtime. Next, the logs are aggregated to a single file offline. The level of sever-
ity is set to the default HDFS logging level. The logs are grouped by a particular
block ID, and each collection of logs is annotated by the normal or the anomalous

1https://hadoop.apache.org
2https://zenodo.org/record/3227177/files/HDFS_1.tar.gz?download=1

https://hadoop.apache.org
https://zenodo.org/record/3227177/files/HDFS_1.tar.gz?download=1
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. . .
081109 203519 145 INFO dfs.DataNode$PacketResponder: PacketResponder 1

↪→ for block blk_-1608999687919862906 terminating
081109 203519 145 INFO dfs.DataNode$PacketResponder: PacketResponder 2

↪→ for block blk_-1608999687919862906 terminating
081109 203519 145 INFO dfs.DataNode$PacketResponder: Received block

↪→ blk_-1608999687919862906 of size 91178 from /10.250.10.6
. . .

FIGURE 4.1: A few log lines from the HDFS data set. Each line con-
sists of a timestamp, a PID, a level of severity, a log component, and

a log message, respectively.

label. The labels have been discussed and further confirmed by Hadoop develop-
ers [43]. Figure 4.1 depicts a few lines of the original HDFS data set before applying
any changes. An individual log line consists of a header (a timestamp, PID, a level
of severity, and a component) and a message (a log key and log parameters); see
Figure 3.4 for more details. The data set contains 11,175,629 lines in total. Each line
belongs to a particular block according to its blk_$ID, where $ID denotes a unique
integer. The data set was collected within 38.68 hours, i.e., the first log was recorded
on 9 November 2008 in the evening and the last log on 11 November 2008 at noon.
The total number of blocks is 575,061, where 16,838 blocks are anomalous, which
translates into 2.93% of anomalous blocks in the whole data set. More statistics
about the data set are listed in Table 4.1. Finally, Figure 4.2 depicts the block size
distribution, as not all blocks contain the same number of log lines. The most com-
mon number of log lines within a particular block is 19, followed by 13 and 25. Each
block contains between 2 and 298 log lines.

There also exists a larger HDFS data set containing over 71 million log lines. Un-
fortunately, we could not use this data set in our work as it comprises only unlabeled
data.

HDFS data set statistics
Total size 1.58 GB
Labels per block ID
Time span 38.68 hours
Maximum time span within a block 15 hours
Number of log lines 11,175,629
Number of unique log keys 48
Number of total blocks 575,061
Number of anomalous blocks 16,838
Relative number of anomalies 2.93%

TABLE 4.1: Detailed statistics of the HDFS data set.

When building a machine learning project, the general recommendation requires
splitting a data set into training and testing parts. The HDFS data set is split accord-
ing to individual blocks, i.e., log lines belonging to a particular block are a part of
either the training data set or the testing data set. Since we need also tune hyper-
parameters (see Section 4.3), an additional validation part is necessary. Therefore,
the HDFS data set is first split into training and testing data sets in ratio 10 : 1. It
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FIGURE 4.2: The histogram clearly shows that most of the blocks have
the number of log lines strictly less than 100. Although several blocks
contain more log lines, the number of such occurrences is relatively

small with respect to the whole distribution.

is a good practice not to touch the testing data during the development process. Fi-
nally, the training data set is divided into the training data set and the validation
data set. The training and validation data sets follow the exact split ratio (10 : 1).

4.1.1 On challenges of imbalanced data sets

The majority of machine learning algorithms require a similar number of occur-
rences across all classes. However, the distribution of a particular data set might
be skewed. Therefore, the machine learning algorithm is biased towards the ma-
jority class. Unfortunately, the minority class is the one, which is crucial in many
real-life applications, such as fraud detection, histopathologic cancer detection, and
anomaly detection in logs [58].

Researchers distinguish three main approaches tackling imbalanced data sets,
namely a data-level approach, an algorithm-level approach, and a combination of
two previously mentioned approaches.

Data-level methods try to modify the original data set in a suitable way for an ar-
bitrary machine learning algorithm. We usually have two choices, either to over-
sample the minority class or to undersample the majority class. However, these
approaches often introduce meaningless data examples and remove essential data
examples, respectively [58].

Algorithm-level methods try to modify the machine learning algorithms so that
they can adequately discriminate the classes, and thus they are not biased towards
one of the classes [58]. The solution is often based on penalizing the samples from the
majority class [59]. However, there arises a problem to set the cost of the individual
classes precisely.

The last approach combines two previously mentioned approaches in order to
leverage their strengths and reduce their weaknesses [58].

Circumspection while using an imbalanced data set is crucial, especially for su-
pervised machine learning. The recent research [60] showed that semi-supervised
learning is robust to imbalanced data sets. Therefore, we do not modify in any way
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the HDFS data set, i.e., oversampling the anomalous class or undersampling the
normal class, since we leverage semi-supervised learning.

Metrics

As the HDFS data set is imbalanced, we must carefully select appropriate metrics.
We cannot use accuracy even though this metric is the recommended choice for
many real-life applications [61]. The minority class has little impact on the overall
accuracy compared to the majority class.

Let us assume the following example. The data set contains 100 examples where
98 examples belong to the normal class, and two examples belong to the anomalous
class. In such a scenario, the accuracy can be 98% by predicting the normal class
every time. Unfortunately, this model is useless as we want to detect the rare events,
i.e., the anomalous class in our example. We rather sacrifice accuracy for predicting
the minority class correctly.

We define several well-suited metrics for the HDFS data set and are used in
anomaly detection for log files in the research community [32, 42].

The precision (Equation 4.1) informs us how many of the predicted anomalous
data points are truly anomalous. On the other hand, the recall (Equation 4.2) informs
us how many of all anomalous data points in the testing data set were identified as
anomalous. In general, there is a trade-off between the precision and the recall, i.e.,
maximizing one of the metrics often means decreasing the other metric. Fortunately,
there exists a metric that takes into consideration both mentioned metrics. The met-
ric is the harmonic mean of the precision and the recall, and it is called the F1-score
(Equation 4.3). The F1-score is the primary metric in all our experiments.

precision =
true positives

true positives + f alse positives
(4.1)

recall =
true positives

true positives + f alse negatives
(4.2)

F1-score = 2 · precision · recall
precision + recall

(4.3)

4.2 Creating embeddings from semi-structured data

Once the HDFS data set is grouped by blk_$ID, as depicted in Figure 4.3, we need
to convert the actual blocks with logs to a numerical representation. We introduce
several approaches used in this thesis.

4.2.1 Baseline approach

In the beginning, we researched state-of-the-art unsupervised methods used for
anomaly detection in log files. These methods are delineated in Subsection 4.4.2.
It is sufficient for now that these methods require a single numerical vector as the
input. Furthermore, we could not fully leverage all log lines, as there was a need to
aggregate the log lines into a single feature vector.

We created a bag-of-words representation. Each entry corresponds to a par-
ticular log key and incorporates the number of occurrences of the given log key
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081109 203518 143 INFO ...
081109 203518 35 INFO  ... 
081109 203519 143 INFO ...
...

HDFS.log

BlockId, Label
blk_-1608999687919862906, Normal   
blk_7503483334202473044, Normal   
blk_-3544583377289625738, Anomaly
...

labels.csv

['081109 203518 143 INFO ...', 
... 
'081109 213840 19 INFO ...']

['081109 203521 145 INFO ...', 
... 
'081109 213838 19 WARN ...']

blk_-1608999687919862906

blk_-3544583377289625738
...

...

FIGURE 4.3: This is an actual snippet of the HDFS data set. The log
lines and corresponding labels are loaded into memory. Next, each
line is assigned to one block (bucket) according to its blk_$ID. Finally,
the whole block is annotated with either the normal or the anomalous

label.

within a block; recall Figure 3.5. The obtained vectors can be centered by subtract-
ing the mean vector and normalized by the weighting method TF-IDF. We applied
both preprocessing techniques to the baseline methods.

4.2.2 Representation learning with fastText

The proposed models are capable of handling a matrix as the input. Therefore, no
additional aggregation is needed, and it is sufficient to convert each log line into
a numerical vector. The authors [42] have stated that embeddings created by an un-
supervised fastText3 model perform surprisingly well on semi-structured data, such
as log files. The actual settings of the model were adopted from [42], i.e., the dimen-
sion of embeddings is 100, and the model is trained using the character n-grams from
3 to 6. We trained the model only on the training part of the HDFS data set to pre-
vent overfitting. The process of transforming log lines into embeddings is depicted
in Figure 4.4.

A particular log line is assumed to be a sentence that is essential from the fastText
point of view. The actual calculation of a sentence vector differs from averaged word
vectors. Firstly, each word vector is divided by its Euclidean norm. Then, the sum
of all normalized word vectors is divided by the number of word vectors whose
Euclidean norm is non-zero.

Besides learning the embeddings, we implemented an additional feature. The
feature keeps the information about time deltas between a pair of succeeding log
lines. The implementation of the feature is delineated in Subsection 4.5.3.

Cropping blocks in the HDFS data set

The log representations introduced in Subsection 4.2.2 preserve the same number of
rows as the initial block had. Recall Figure 4.2 which shows the distribution of block
sizes. All the models proposed in Section 4.4 need input in the form of matrices
with the same shape. Therefore, additional padding is required in order to fulfill

3https://fasttext.cc

https://fasttext.cc
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['081109 203518 143 INFO ...', 
... 
'081109 213840 19 INFO ...']

['081109 203521 145 INFO ...', 
... 
'081109 213838 19 WARN ...']

blk_-1608999687919862906

blk_-3544583377289625738
fastText

[[0.00399287, -0.02853309, ...],  
... 
[-0.02722596, -0.00188825, ...]]

[[0.01399791, -0.02392589, ...], 
... 
[0.00360796,  0.00645738, ...]]

blk_-1608999687919862906

blk_-3544583377289625738

FIGURE 4.4: FastText creates a numerical vector for each log line in
all blocks, i.e., initially, a block contained a list of log lines, then the
block contains a list of numerical vectors. We used a trained fastText

model to predict the values depicted in this figure.

the desired input shape. We leave the block size as a model hyperparameter. The
actual implementation is delineated in Subsection 4.5.3.

4.3 Hyperparameters

A hyperparameter is a parameter whose value is set before the training phase. The
value is unchangeable during training a model. The hyperparameters may influence
both the training time and the final performance of a particular model [9].

Neural networks generally have a large number of hyperparameters. Although
we use various models in Section 4.4, we describe the vital hyperparameters below.

The learning rate is a parameter of an optimization algorithm which determines
the magnitude of change in weights to minimize a loss function. The batch size
specifies the number of examples used for one update of weights. The topology, the
size of a neural network, and the block size are complex hyperparameters since their
search space is enormous. Surprisingly, we assume that the number of epochs is also
a hyperparameter of proposed neural networks as we train the models in a semi-
supervised manner. Moreover, we cannot easily find the point where a particular
model starts overfitting on the training data set. This is caused by the nature of semi-
supervised machine learning as there is no validation data set which tracks the loss
on the validation data set simultaneously. Next, the dropout refers to skipping some
neurons during the training phase. This hyperparameter controls the percentage of
skipped neurons. The neurons are chosen at random. Last but not least, an activation
function and the kernel size in a convolutional layer are considered as additional
hyperparameters.

Besides a training data set, the hyperparameter tuning phase also requires a vali-
dation data set. The validation data set contains examples that have not been ex-
posed during the training phase. The loss on the validation data set appraises
whether the hyperparameters were set appropriately. Furthermore, k-fold cross-
validation provides more precise statistics but at the cost of a noticeable deceleration
of the whole training and validation process [9].

There exist several algorithms for hyperparameter tuning [2]. A grid search is
a naive approach which evaluates only combinations of hyperparameters given be-
forehand. A random search [62] enables an extensive search in a search space of
hyperparameters. It is still a preferred choice over Bayesian optimization, as men-
tioned in the course [7].
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4.4 Proposed models

As we know all the details about the data set, we may propose machine learning
models which leverage the embeddings introduced in Subsection 4.2.2. We start by
describing the choice of a loss function and an optimizer.

4.4.1 The choice of a loss function and an optimizer

The vast majority of proposed models are based on a neural network, and thus the
backpropagation algorithm is used. The models try to learn an approximation to
the identity function. The most appropriate loss function, which we also selected,
is usually the mean squared error; see Equation 4.4. Nevertheless, this loss function
might be prone to outliers [9].

There is a large pool of optimizers such as SGD, RMSProp, and Adam. We de-
cided to use the Adam optimizer as it is a recommended choice [9, 42].

MSE =
1
n

n

∑
i=1

(ground_truthi − predicted_valuei)
2 (4.4)

4.4.2 Baseline models

The baseline models leverage the approach mentioned in Subsection 4.2.1. The in-
put is a standalone vector which aggregates the information from all log lines be-
longing to a particular block. The obtained vectors can be centered by subtracting
the mean vector and normalized by the weighting method TF-IDF. The training data
set contains 48 different log keys, hence the input of the baseline models is a one-
dimensional vector with 48 real numbers.

The following models are examples of unsupervised machine learning.

Local Outlier Factor model

The simplest baseline model is LOF (mentioned in Subsection 3.1.2), which measures
an anomaly score of each example. We used the original unsupervised method pro-
posed in [36]. However, there exists a modified semi-supervised method4, which is
trained on a data set without anomalous data examples.

The unsupervised method has two deciding hyperparameters, namely the num-
ber of neighbors and a distance metric. The number of neighbors is used in querying
k-nearest neighbors, and the metric is used to calculate the distance between each
k-nearest neighbor and the source data point.

A noticeable disadvantage of using LOF is the high computational complexity.

Isolation Trees model

The more sophisticated baseline model is Isolation Trees (mentioned in Subsection
3.1.2), where anomalous data points usually have shorter paths from the root to
a particular leaf.

The essential hyperparameters are the number of trees, the number of examples
drawn from a data set to train a tree, and the number of features drawn from all
available features to train a tree. We leverage the bootstrap sampling. The bootstrap

4https://github.com/scikit-learn/scikit-learn/blob/95119c13a/sklearn/neighbors/
_lof.py#L19

https://github.com/scikit-learn/scikit-learn/blob/95119c13a/sklearn/neighbors/_lof.py#L19
https://github.com/scikit-learn/scikit-learn/blob/95119c13a/sklearn/neighbors/_lof.py#L19
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sampling is a technique where individual trees are trained on a data subset sampled
from the source data set with replacement.

A grid search was used for tuning hyperparameters as Isolation Trees, and LOF
models have a small number of hyperparameters.

Vanilla autoencoder

The last baseline model is a vanilla autoencoder which was originally created as
a proof of concept. The crucial difference between this autoencoder and the other
autoencoder-based models mentioned later on is the input. The input is only a one-
dimensional vector per block akin to Isolation Trees and LOF models. Therefore, the
autoencoder comprises only fully connected layers.

The proposed autoencoder and the other models introduced later in this section
have a large number of hyperparameters. Therefore, a random search is used for
tuning hyperparameters henceforth.

We tuned several hyperparameters, namely the number of epochs, the learning
rate, the batch size, the topology and the size of a neural network, and the dropout.

4.4.3 TCN model

This model is based on the concept of TCN described in Subsection 2.2.2. TCN can
process a sequence of an arbitrary length and outputs a new sequence with the same
length as the input. A key characteristic is that the output at index i can leverage
entries of an input sequence which occur before i (causal convolutions). Neverthe-
less, we annulled this limitation as our model should decide on an output using the
whole block. Unfortunately, it brings a new limitation that only an odd kernel size
greater than one can be used. The kernel size is used for calculating the padding
size, and the result has to be an integer.

We created several modifications which contain TCN blocks, such as the model
mentioned in Subsection 4.4.6. We build the architecture of a model which leverages
the TCN block as an encoder and a decoder. The encoder and the decoder are linked
using a bottleneck which consists of a fully connected layer. We call this model
AETCN.

We tuned several hyperparameters using a random search, namely the number
of epochs, the learning rate, the batch size, the topology and the size of a neural
network, the dropout, and the block size. The list of hyperparameters is enriched
with the number of neurons in the bottleneck of the AETCN model.

4.4.4 CNN1D model

The CNN1D model comprises two main blocks, an encoder and a decoder, respec-
tively. The encoder is built upon 1D convolutional blocks. The block repeats the 1D
convolutional layer followed by the activation function ReLU and the max-pooling
layer. A particular 1D kernel convolves over a block, and an embedding dimension
is seen as multiple feature maps. The decoder consists of several 1D transposed
convolutional blocks. Each block repeats the 1D transposed convolutional layer, the
activation function ReLU and an upsampling layer using the nearest neighbor algo-
rithm5.

5https://pytorch.org/docs/stable/generated/torch.nn.Upsample.html

https://pytorch.org/docs/stable/generated/torch.nn.Upsample.html
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Furthermore, we proposed a modified CNN1D model. The modified model adds
a fully connected layer between the encoder and the decoder. This model is called
AECNN1D.

The list of hyperparameters is akin to the one mentioned in Subsection 4.4.3.
Moreover, we distinguish between the kernel size of the encoder and the kernel size
of the decoder. Akin to the AETCN model, the AECNN1D model has an additional
hyperparameter — a number of neurons in the bottleneck.

4.4.5 CNN2D model

The CNN2D model works similarly to the CNN1D model from a high-level over-
view. The major difference is that both the encoder and the decoder use the 2D
convolutional layer and the 2D transposed convolutional layer, respectively. In con-
trast to the CNN1D model, the CNN2D model considers the input as a matrix with
one channel. Therefore, a particular 2D kernel convolves over log lines as well as
an embedding dimension.

We did not implement any modified models as the first results of these experi-
ments were not promising.

The list of hyperparameters is the same as the one mentioned in Subsection 4.4.4.

4.4.6 CNN1DTCN model

This model combines the advantages of both 1D convolutional blocks and TCN
blocks. The idea behind this model is as follows. Firstly, a few 1D convolutional
blocks are applied to detect local dependencies and reduce the input dimension.
Next, TCN blocks detect global dependencies and propagate them carefully through
the model. Finally, a decoder (a block of the 1D transposed convolutional layer, the
activation function ReLU, and an upsampling layer) reconstructs the output of the
last TCN block back to the same shape as the input.

We tuned the following list of hyperparameters, i.e., the number of epochs, the
learning rate, the batch size, the topology and the size of a neural network, the block
size, the dropout, the kernel size of the 1D convolutional blocks, the kernel size of
the TCN blocks and the kernel size of the 1D transposed convolutional blocks.

4.4.7 SACNN1D model

Thanks to the recent outstanding results of transformers[16, 63], we decided to try
incorporating the self-attention mechanism into an autoencoder-based model. The
implementation of the self-attention mechanism is straightforward since we can di-
rectly reuse the one mentioned in [16].

The proposed model combines 1D convolutional blocks, self-attention blocks,
and 1D transposed convolutional blocks. Precisely, every pair of 1D convolutional
layers is followed by the multi-head self-attention layer. The authors [64] recently
recommended not to use an activation function straight before the self-attention
layer. We follow this recommendation in this architecture and the architecture in-
troduced in Subsection 4.4.8. A particular architecture of the SACCN1D model is
designed so that the encoder contains exactly one self-attention layer. On the con-
trary, the decoder might contain at most one self-attention layer.

The list of hyperparameters comprises the number of epochs, the learning rate,
the batch size, the topology and the size of a neural network, the kernel size of the
1D convolutional layers, the kernel size of the 1D transposed convolutional layers,
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the dropout, the block size and the number of heads in the first and, optionally, in
the second self-attention layer.

4.4.8 SACNN2D model

We tried to incorporate the self-attention mechanism into a model using 2D con-
volutional layers. Unfortunately, the implementation is not straightforward as in
Subsection 4.4.7. We leveraged the ideas proposed in [18, 64]. In contrast to the
SACNN1D model, we do not include the self-attention mechanism to an encoder or
a decoder. However, we assume it as a bottleneck since the block contains multi-
ple convolutional layers. Each model contains an encoder, a decoder, and the self-
attention bottleneck. We reuse the implementation of the encoder and the decoder
from Subsection 4.4.5. Figure 4.5 depicts the architecture of the bottleneck.
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FIGURE 4.5: This 2D self-attention mechanism leverages 1D convolu-
tional layers (denoted as 1× 1). These convolutional layers enable us
to change the number of feature maps within a self-attention block.
Nevertheless, the final 1D convolutional layer produces the output
with the same shape at the input. This architecture was inspired by

authors [18].

The list of hyperparameters contains the number of epochs, the learning rate, the
batch size, the topology and the size of a neural network, the kernel size of the 1D
convolutional layers, the kernel size of the 1D transposed convolutional layers, the
number of feature maps used in the bottleneck, and the block size.

4.4.9 Hybrid models

The last two proposed models leverage the AETCN model and its bottleneck, in
particular. The bottleneck is viewed as newly compressed embeddings. Since the
bottleneck is a one-dimensional vector, we can use the baseline models, namely the
Isolation Trees model and the vanilla autoencoder. Figure 4.6 depicts the general
architecture of a hybrid model.

Isolation Trees and AETCN

The Isolation Trees algorithm is used on top of the bottleneck of the AETCN model.
The bottleneck consists of more neurons (vector entries) than the original input used
in Subsection 4.4.2. Therefore, we hope that the new embeddings contain more in-
formation than the original input.

It is worth mentioning that we combine a semi-supervised model with an unsu-
pervised model.



4.5. Implementation 29
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Model
Anomalous

Normal

FIGURE 4.6: A hybrid architecture leverages the bottleneck of the
AETCN model. The bottleneck is used as an input into another

model, which makes the final predictions.

Vanilla autoencoder and AETCN

Another fully connected autoencoder is used on top of the bottleneck of the AETCN
model. The autoencoder comprises only fully connected layers. The idea behind this
hybrid model is akin to the previous hybrid model — we hope that we can further
improve the performance on the HDFS data set.

We combine two semi-supervised models, autoencoders in particular. In the re-
search community, this technique is sometimes called a stacked autoencoder [65].

4.5 Implementation

This section is divided into subsections which were implemented individually. Sub-
section 4.5.2 is dedicated to data preprocessing and data splitting. Subsection 4.5.3
regarding embedding learning follows together with creating an additional feature
and cropping the blocks. Next, a model prototype is delineated in Subsection 4.5.4.
Logging experiment results and a description of the RCI Cluster concludes this sec-
tion.

4.5.1 Project overview

The whole project is written in the programming language Python 3.7. The reasons
for choosing Python over other programming languages are platform independence,
consistency, simplicity, a massive number of machine learning libraries and frame-
works, and a wide community. The models are implemented using scikit-learn6 and
PyTorch7 libraries. The scikit-learn library provides simple and efficient tools for
machine learning tasks. The PyTorch library contains building blocks easing pro-
totyping neural networks from early stages in research to production deployment.
Last but not least, we leverage the NumPy8 library, which brings well-optimized
compiled C code into Python.

We decided to use the Cookiecutter Data Science9 template to ease the collab-
oration with other researchers. The Cookiecutter Data Science template provides

6https://scikit-learn.org/stable/
7https://pytorch.org
8https://numpy.org
9https://drivendata.github.io/cookiecutter-data-science/

https://scikit-learn.org/stable/
https://pytorch.org
https://numpy.org
https://drivendata.github.io/cookiecutter-data-science/
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$ python prepare_hdfs.py --help
usage: prepare_hdfs.py [-h] [-in PATH/TO/FOLDER] [-out PATH/TO/FOLDER]

↪→ n_folds

Process HDFS1 data set and split data into training, validation, and
↪→ testing sets.

positional arguments:
n_folds a number of cross-validation splits

optional arguments:
-h, --help show this help message and exit
-in PATH/TO/FOLDER a location with HDFS1 data (HDFS.log and

↪→ anomaly_label.csv) (default: ../../data/raw/HDFS1)
-out PATH/TO/FOLDER a location where all intermediate data will be

↪→ saved (default: ../../data/interim/HDFS1)

FIGURE 4.7: An example of the command-line interface, which en-
ables us to easily use the provided tool.

a logical but flexible project structure for data science tasks. The current version of
our project is accessible on GitHub10.

4.5.2 Data preprocessing and splitting

The Python file prepare_hdfs.py provides the interaction with a user via a com-
mand-line interface. An example is shown in Figure 4.7. The core functions are
implemented in hdfs.py and logparser.py. Firstly, the HDFS file with labels is
loaded into memory. Then, log lines are grouped into blocks by the block ID. The
data set is split into training and testing data sets. It is crucial not to divide any block
into two sets. Otherwise, it could cause severe information leakage.

We use a stratified splitting technique as the data set is highly imbalanced. The
stratified technique guarantees that the percentage of normal and anomalous log
blocks is similar in both data sets. This technique is performed at the label level, and
thus the number of log lines might differ slightly in individual data sets. However,
we are primarily interested in blocks. Therefore, the different number of log lines in
data sets does not mean any serious problem. All newly created data sets contain
2.93% anomalous data points thanks to the stratified splitting technique. We also
specify a random seed in order to have the splits consistently reproducible.

The logparser.py file contains the implementation of Drain3, which is the pre-
processing technique used in the baseline methods.

The file prepare_hdfs.py also supports k-fold cross-validation. In this case, the
file produces multiple pairs of training and validation data sets. Nevertheless, the
cross-validation technique is not used in experiments due to the high computational
complexity.

We save several output files in this stage, namely the training data set, the vali-
dation data set, and the testing data set. These files still contain raw log lines.

10https://github.com/LogAnalysisTeam/methods4logfiles

https://github.com/LogAnalysisTeam/methods4logfiles
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4.5.3 From textual to numerical representation

Before we may convert the log lines into numerical vectors, we need a trained fast-
Text model. The fastText library provides a command-line interface, and it can also
be used in Python. We leverage Skip-gram model, implemented within the fastText
library, and learn the embeddings in an unsupervised manner. The hyperparame-
ters are adopted from [42], and the rest is left with their default values. Specifically,
the embedding dimension is 100, and character n-grams are from n = 3 to n = 6.
We could not use multithreading, as the embeddings would not be reproducible.

The Python file build_features_hdfs.py ensures proper conversion from tex-
tual data to numerical vectors once a trained fastText model is available. Akin to
data preprocessing 4.5.2, this file also provides a user-friendly command-line in-
terface. The particular implementation is located in hdfs.py. The implementation
supports several options. We can access each log line as a standalone data point or
a part of a particular block.

The first case involves creating new data labels as the original file with labels
contains labels in a per-block manner; recall Figure 4.3. However, this approach is
not further assumed, as the HDFS data set is more or less an example of multiple-
instance learning (MIL). A model receives a set of instances and only one label. The
set is annotated positive if there is at least one anomalous log line. Otherwise, the
set is annotated negative. Therefore, it is not sufficient to annotate all log lines cor-
responding to an anomalous label as anomalies.

The second case creates a list of matrices that contain a numerical representation
of a particular block. Additionally, we can append a new feature that tracks time
deltas between two succeeding log lines within a block. When a system is inactive,
it does not produce any log line. Thus, the logarithm function is applied to time
deltas in order to reduce the importance of distant log lines, as suggested in [42].
The timestamp granularity is one second, i.e., a later timestamp may differ by one
or more seconds. Therefore, the difference might be equal to zero. We add inter-
nally one to all time deltas to prevent the algorithm from undefined behavior. The
function responsible for computing time deltas is depicted in Figure 4.8.

The feature_extractor.py file processes the data sets prepared for the baseline
methods. It contains a class that follows a uniform scikit-learn application program-
ming interface (API). The class implements a transformer, and thus the implementa-
tion of transform and fit_transform methods is required.

The number of occurrences of each log key within a block is calculated and used
as a feature vector per a given block. Next, the TF-IDF technique is applied to the
data set. Finally, the mean vector is subtracted from all vectors.

When applying this transformation on previously unseen data, two scenarios
might happen. Firstly, a new log key was detected by Drain3. In this case, the
algorithm skips such keys. Secondly, the unseen data contains only a subset of the
log keys encountered in the training data. In this case, corresponding columns are
filled with zeros.

The data sets created by the build_features_hdfs.py file are saved on a disk in
binary format afterward. In contrast, the class, located in the feature_extractor.py
file, is called on the fly before training a model as it is not a time-consuming trans-
formation.
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def to_seconds(timedeltas: np.array) -> np.array:
return np.vectorize(lambda x: int(x.total_seconds()))(timedeltas)

def get_timedeltas(timestamps: np.array) -> np.array:
# initialize the vector with all ones since log10(0) is undefined
timedeltas = np.ones(shape=timestamps.shape, dtype=np.int32)
# we do not lose the information if the time delta is 1
timedeltas[1:] += to_seconds(timestamps[1:] - timestamps[:-1])
# decrease the importance of large time differences
timedeltas = np.log10(timedeltas)
return timedeltas

FIGURE 4.8: Each pair of timestamps is subtracted and converted to
seconds. The implementation assures that we do not lose the infor-
mation whether a particular time delta is equal to one. The common
logarithm is applied to the result to decrease the importance of large

time differences.

4.5.4 Models

In this subsection, we first describe implemented preprocessing techniques that im-
prove the learning process. Next, we delineate a model prototype that follows the
intuitive scikit-learn API.

Feature scaling and cropping

Since we experiment with neural networks, it is crucial to scale the features. It usu-
ally speeds up the training [66].

We implemented a modified version of standardization. Many machine learning
models often require the standardization of a data set. It centers the data by subtract-
ing the mean vector from each feature vector, and then it scales the data by dividing
it by its standard deviation. Standardization is essential for models which make
assumptions about the input data. A typical implementation of standardization is
shown in Equation 4.5, where µ is the mean and σ is the standard deviation.

The HDFS data set is a list of matrices. Each matrix has a shape given by the
number of log lines and the embedding dimension; see Figure 4.9. We first reshape
the data set into a 2D matrix, and then the standardization is applied to it.

X =
X− µ

σ
(4.5)

Akin to the implementation of standardization, the implementation of norma-
lization is also adjusted to the HDFS data set requirements. Normalization scales the
data in the range between 0 and 1. It is useful for models which do not assume any
distribution of a particular data set, e.g., neural networks. However, normalization
is not recommended if the data set contains outliers. Equation 4.6 depicts a common
implementation of normalization.

X =
X− Xmin

Xmax − Xmin
(4.6)

Our implementations, i.e., standardization and normalization, inherit from the
scikit-learn class StandardScaler and MinMaxScaler, respectively. Furthermore, we
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have to implement fit, fit_transform, and transform methods. Besides initial
experiments, we decided to use normalization over standardization due to better
performance.

The HDFS data set contains blocks with various numbers of log lines; recall Fig-
ure 4.2. That is a burden to mini-batch learning. Even though a model supports
a variable input, PyTorch does not support a batch of blocks with various numbers
of log lines. This limitation leads us to two solutions.

The obvious solution is to use a batch size of size one. Nevertheless, this is not
used in practice since the small batch size is less accurate in gradient estimation.

The alternative approach involves padding the data set. As mentioned earlier,
the block size is a hyperparameter of a model. Once the block size is known, we
crop all blocks with more log lines than the block size. Moreover, we pad the smaller
blocks with zeros. An example is shown in Figure 4.9. We used this approach in
our experiments, although it might remove some vital information from a particular
block.

The implementation of techniques mentioned above, i.e., standardization and
normalization, may be found in the datasets.py file.

[[-0.01389461, ..., -0.04697354],
[-0.00932064, ..., -0.0575709]]

[[-0.00622604, ..., -0.05824759],
[0.01256008, ..., 0.00303828],
[-0.09042968, ..., -0.04284256],
[-0.00092338, ..., -0.04930394], 
[0.00864883, ..., -0.04740478]]

Crop to 4 logs

[[-0.01389461, ..., -0.04697354],
[-0.00932064, ..., -0.0575709],
[0.0, 0.0, 0.0, ..., 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, ..., 0.0, 0.0, 0.0]] 

[[-0.00622604, ..., -0.05824759],
[0.01256008, ..., 0.00303828],
[-0.09042968, ..., -0.04284256],
[-0.00092338, ..., -0.04930394]]

blk_1037231945509285002

blk_4258862871822415442

blk_1037231945509285002

blk_4258862871822415442

FIGURE 4.9: This figure shows how blocks can be cropped to the de-
sired shape. Let us assume the block size equals 4. The blocks with
less than 4 log lines are padded with zeros, and all blocks with more

than 4 log lines are cropped to 4 log lines.

Model prototype

We developed and followed a set of guidelines which the implementation of models
obey. The scikit-learn library provides some guidance. Compliance with the guid-
ance should enable other researchers to fast prototype training, evaluation, and de-
ployment of a particular model. Each implementation of a model is in a standalone
file. One class provides a wrapper around another class that implements a neural
network using the PyTorch library.

The wrapper follows best practices as mentioned in scikit-learn. A class should
be instantiable without passing any argument into the constructor. Furthermore,
each class inherits from the abstract class OutlierMixin. It means that methods such
as fit, predict, and set_params are implemented. A data set should be a NumPy
object which is internally converted to PyTorch tensors.

Once a model is trained on the training data set, the model can predict validation
data examples. The predictions are returned in the form of a single float number per
data point. Each float number corresponds to a particular reconstruction error of
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model = AETCN()
model.set_params(**config[’hyperparameters’])

model.fit(x_train[y_train == 0]) # train on normal data examples
y_pred = model.predict(x_val) # return the MSE per example

theta, f1_score = find_optimal_threshold(y_val, y_pred)
y_pred = classify(y_pred, theta)
metrics_report(y_val, y_pred)
confusion_matrix(y_val, y_pred)

FIGURE 4.10: This example depicts the shared API among all im-
plemented models. Let us assume that data sets were defined be-
forehand. The AETCN model is instantiated, and the current set of
hyperparameters is passed to the model. The model fits the normal
training data, i.e., data points annotated as anomalies were removed.
Then, the model predicts the MSE of a corresponding validation data
point. The decision threshold is estimated, and the data points are

classified accordingly.

a data point. We need to find such a threshold that classifies each data point as ei-
ther normal or anomalous. We optimize the threshold in O(n) by trying to set each
anomalous data point from the validation data set as the threshold. The anoma-
lous data point is called the threshold if and only if it maximizes the F1-score. This
threshold is also used once we want to perform the final evaluation of a particular
model on the testing data set. A minimalist example of conducting an experiment is
depicted in Figure 4.10.

We specify a random seed for all experiments to ensure that our results are repro-
ducible. Nonetheless, the PyTorch library states that completely reproducible results
across individual executions are not guaranteed. The primary source of nondeter-
minism is a graphics card.

4.5.5 RCI Cluster

The RCI Cluster was used to train the models and tune their hyperparameters. It is
a gratuitous project for all RCI researchers, and even non-RCI researchers may ask
for access to the cluster. The RCI Cluster consists of compute nodes, data storage,
and a high-speed network with low latency. The high-speed network interconnects
individual compute nodes.

We leveraged graphics cards as most of our models comprise convolutional lay-
ers. Some nodes contain multiple instances of NVIDIA Tesla V100 with 32GB graphic
memory. This card substantially accelerates the training of deep learning models.

The RCI Cluster uses the SLURM workload manager as a job scheduler. A set
of basic commands needed for executing and managing experiments is depicted in
Figure 4.11.
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#!/bin/bash
#SBATCH --partition=gpu
#SBATCH --time=24:00:00
#SBATCH --nodes=1 --ntasks-per-node=1 --cpus-per-task=4
#SBATCH --mem=50G
#SBATCH --gres=gpu:1

# clear the environment from any previously loaded modules
ml purge > /dev/null 2>&1

# train a model
python train_autoencoder.py

FIGURE 4.11: An example of a script which reserves a single graphics
card and 50 GB of memory. The execution may last at most one day.
The script can be added to the gpu queue using the command sbatch

task.sh.
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Chapter 5

Evaluation

This chapter delineates our workflow of evaluating the proposed models, and it is
divided into several sections. We start with examining the baseline methods, which
set the initial thresholds on the metrics. We presented the tuned hyperparameters of
the proposed models in Section 4.4. These models are evaluated on validation and
testing data sets. We include a detailed analysis of the performance using various
metrics. Finally, we provide some insights into the obtained results.

The complexity of models prolongs the time needed for model training. Al-
though the search spaces are enormous, we had to compromise the number of trials
in a particular experiment. We tried to find a trade-off between the number of trials
and the execution time of an experiment. Therefore, each experiment using a ran-
dom search performs 100 trials on a particular search space. This number of trials
does not hold for a grid search where all predefined combinations are evaluated.

5.1 Baseline models

Baseline models expect a one-dimensional vector with 48 real numbers as the in-
put. The numerical vector aggregates the information from all log lines belonging to
a particular block. The obtained vectors are centered by subtracting the mean vec-
tor and normalized by the weighting method TF-IDF. The approach is described in
more detail in Subsection 4.2.1.

The Local Outlier Factor and Isolation Trees models have a small number of hy-
perparameters. Therefore, we tuned the hyperparameters on a grid search using
predefined values. On the other hand, the vanilla autoencoder leverages a random
search as the number of hyperparameters significantly increases. All baseline mod-
els are delineated in Subsection 4.4.2.

5.1.1 Local Outlier Factor model

The LOF model has two crucial hyperparameters, namely the number of neighbors
and the distance metric. The most promising configuration sets the number of neigh-
bors to 450 and uses the Chebyshev metric. The performance on the validation and
testing data set is depicted in Table 5.1. This model performed poorly compared to
other baseline methods since it has scalability issues in high-dimensional space as
mentioned by the authors [67]. Therefore, this model is not assumed as a candidate
in hybrid models due to a rise in the input dimension.
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Precision Recall F1-score
Validation data set 0.4350 1.0000 0.6062
Testing data set 0.4288 0.9281 0.5866

TABLE 5.1: Detailed metrics of the LOF model with tuned hyperpa-
rameters.

5.1.2 Isolation Trees model

The more sophisticated baseline model is Isolation Trees. This model comprises
three essential hyperparameters, namely the number of trees, the number of exam-
ples drawn from a data set to train a tree, and the number of features drawn from all
available features to train a tree. The optimal model has 115 trees, uses 32 features
but only 1% of the training examples. The total number of available features is 48,
i.e., the model utilizes 66.7% of the provided features. The training data set con-
sists of 465,798 blocks. Interestingly, the model leverages only 4,657 blocks to train
individual trees. The most optimal percentage of training examples might slightly
differ since we used a grid search for hyperparameter tuning. Table 5.2 shows the
achieved performance on both validation and testing data sets. The Isolation Trees
model significantly outperformed the LOF model and achieved similar performance
to other embedding-based models.

Precision Recall F1-score
Validation data set 0.8157 0.8152 0.8155
Testing data set 0.8095 0.8076 0.8086

TABLE 5.2: Detailed metrics of the Isolation Trees model with tuned
hyperparameters.

5.1.3 Vanilla autoencoder

Once we explored the performance of baseline unsupervised machine learning mod-
els on the HDFS data set, we wanted to prove our idea that semi-supervised machine
learning models can outperform the baseline models. We implemented a vanilla au-
toencoder that uses the same preprocessing of the HDFS data set as the other base-
line models. We tuned hyperparameters of the autoencoder using a random search
due to the immense number of hyperparameters.

The optimal architecture comprises six fully connected layers. The encoder has
only one hidden layer with 183 neurons. The bottleneck compresses the information
into 66 neurons. Finally, the decoder decodes the compressed information back to
the vector with 48 numerical values. The decoder consists of hidden layers with
115, 151, 171, 192, and 48 neurons. The model was trained for two epochs with the
learning rate 0.0013. The batch size was set 16, and the dropout was 0.0729, i.e.,
each neuron is skipped with approximately 7% probability. The decision threshold
is 0.1530. The smaller the decision threshold is, the better the model can reconstruct
an arbitrary input.

The performance of the vanilla autoencoder is depicted in Table 5.3. This model
performed significantly better than the other baseline models. Moreover, it achieved
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the highest F1-score on both the validation and the testing data sets from all pro-
posed models. Surprisingly, the vanilla autoencoder has the lowest number of train-
able parameters among the proposed neural networks, as shown in Table 5.15.

Precision Recall F1-score
Validation data set 0.9301 0.8165 0.8696
Testing data set 0.9314 0.8302 0.8779

TABLE 5.3: Detailed metrics of the vanilla autoencoder model with
tuned hyperparameters.

Vanilla autoencoder with aggregated embeddings

We also experimented with aggregated blocks of embeddings produced by the train-
ed fastText model. The idea comes originally from multiple-instance learning. In this
setup, we tried to reconstruct an aggregated vector. The reconstruction of the orig-
inal block would be much more difficult as an aggregation function removes some
information and the order of log lines. We proposed two different aggregation func-
tions, namely maximum and average. Each block of embeddings is first aggregated
to a one-dimensional vector accordingly. Then the vanilla autoencoder tries to learn
to copy the numerical vector to its output.

Although we ran an extensive random search on the hyperparameters, we were
not able to achieve any promising results. The best models with different aggre-
gation functions achieved a similar F1-score on the validation data set — with the
maximum aggregation function 0.5525, and with the average aggregation function
0.5518, precisely. The models could not distinguish between the normal and anoma-
lous classes as both aggregation functions probably removed a substantial amount
of information needed for the accurate distinction. We did not explore this direc-
tion further due to the disappointing results. Moreover, these experiments were
conducted to help us to better understand the baseline performance on the data set.

5.2 Embedding-based models

Once we had well-established baseline performance on the metrics, we started think-
ing about models capable of handling a matrix as the input and ideally producing
another matrix with the same shape as the output. Naturally, we decided to research
convolution-based methods at first. The ideal candidate is a model with TCN blocks
as it leverages convolutional layers and can produce a sequence in the output.

5.2.1 TCN model

A TCN model usually outperforms classical LSTM approaches for sequence-to-se-
quence tasks. The TCN model can process a sequence of an arbitrary length and
outputs a new sequence but with the same length as the input. The TCN block
contains two 1D convolutional layers followed by the ReLU activation function and
the dropout.
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The first experiment continues in the research proposed by authors [14] avail-
able on GitHub1. Initially, the number of feature maps in each TCN block was ran-
dom. Unfortunately, this model performed poorly in terms of the F1-score, precisely
0.5514. A key characteristic is that the output at index i can leverage entries of an in-
put sequence that occur before i. Nevertheless, we disposed of this limitation in
order to let each neuron utilize the whole block, not just the preceding log lines.
This approach is known as bidirectional TCN in literature [68]. The models with this
modified architecture achieved negligible improvement in all metrics. There arose
an idea that the model could not properly compress the information. Therefore, we
proposed an architecture that follows the pattern of autoencoders, i.e., the first few
blocks compress the input, then the succeeding blocks try to reconstruct the input
back. We controlled the compression and the decompression using the number of
feature maps in the individual TCN blocks. Nevertheless, the autoencoder-based
architecture did not improve the performance of the model on the metrics.

The autoencoder-based model achieved the best performance with the follow-
ing properties — the batch size is set to 32, the dropout is 0.1942, the kernel size of
convolutional blocks is 9. The architecture contains four TCN blocks with 100, 895,
250, and 100 feature maps. We tuned the input block size during the hyperparam-
eter optimization. The optimal block size utilizes the first 12 log lines. The model
was trained for seven epochs with the learning rate 0.0001. The decision threshold
is 0.0000098, which means that the model could almost learn the identity function
completely. The performance of the model is depicted in Table 5.4. The TCN model
performed worse than any baseline method.

Precision Recall F1-score
Validation data set 0.9966 0.3842 0.5545
Testing data set 0.9935 0.3646 0.5334

TABLE 5.4: Detailed metrics of the autoencoder-based TCN model
with tuned hyperparameters.

5.2.2 AETCN model

The TCN model did not meet our expectations. Therefore, we proposed a modified
version of the TCN model where the model explicitly contains a bottleneck. This bot-
tleneck is implemented as a fully connected layer which helps the model to further
compress the information. The AETCN model comprises an encoder (TCN blocks),
the bottleneck (a fully connected layer), and a decoder (TCN blocks). We observed
a significant improvement on the metrics with this architecture.

The optimized architecture consists of one TCN block with 142 feature maps (the
encoder), the bottleneck with 1246 neurons, and one TCN block with 100 feature
maps (the decoder). The convolutional layers use the kernels of size 3. The dropout
is set to 0.3239, and the batch size equals 8. The block size uses 45 log lines which the
majority of the blocks fulfill; see Figure 4.2. We trained the model for four epochs
with the learning rate 0.0016. The decision threshold is equal to 0.0033. The results
on the metrics are depicted in Table 5.5. The AETCN model achieved auspicious
performance on the F1-score metric. However, the model suffered from overfitting

1https://github.com/locuslab/TCN

https://github.com/locuslab/TCN
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as the decrease in the F1-score on the testing data set is the highest among all pro-
posed models. Moreover, the TCN-based models have a typically greater number of
trainable parameters by order of magnitude than other models; see Table 5.15.

Finally, we examined the bottleneck in more detail. On average, only 35 neurons
are active after applying the ReLU activation function to the fully connected layer,
i.e., approximately 97% of neurons are nullified.

Precision Recall F1-score
Validation data set 0.8794 0.8040 0.8400
Testing data set 0.8576 0.7797 0.8168

TABLE 5.5: Detailed metrics of the AETCN model with tuned hyper-
parameters.

5.2.3 CNN1D model

A more suitable layer, in terms of flexibility, is a convolutional layer. Each convolu-
tional layer reduces the dimension of input. Moreover, there exists a complement to
each convolutional layer called the transposed convolutional layer. The transposed
convolutional layer enlarges an input. Therefore, we may create an architecture that
allows us to use a matrix as the input and still follows the autoencoder pattern. We
leveraged 1D convolutional and transposed convolutional layers in the architecture
of this model.

Our convolutional block comprises one 1D convolutional layer, followed by the
activation function ReLU and the 1D max-pooling layer. On the other hand, the
transposed convolutional block contains one 1D transposed convolutional layer, fol-
lowed by the activation function ReLU and an upsampling layer. The transposed
convolutional block is the complement of the convolutional block.

The most optimized model consists of one convolutional block with 195 feature
maps (the encoder) and three transposed convolutional blocks with 170, 164, and
100 feature maps (the decoder). Since we used convolution-based layers in both the
encoder and the decoder, we tuned the kernel size of the encoder and the kernel size
of the decoder separately. The optimal value of the kernel size in the convolutional
layer is 3, and the kernel size in the transposed convolutional layers is 11.

Each convolutional block reduces the dimension of a particular input, and there-
fore the block size is dependent on the number of convolutional layers and the ker-
nel size precisely. The number of the block size is determined randomly in the range
from min_block_size to min_block_size + 32. The min_block_size variable rep-
resents the smallest number of log lines that produces feature maps with positive
dimensions, and 32 is an arbitrarily chosen number that increases the variety of pos-
sible choices. The block size equals 32 log lines in the model. The model was learned
for three epochs with the learning rate 0.0006 and the batch size 128. The decision
threshold is 0.0036. Table 5.6 depicts the performance of the CNN1D model on the
metrics. This model achieved a similar performance on both the validation data set
and the testing data set as the Isolation Trees model.

5.2.4 AECNN1D model

Akin to the AETCN model, we proposed an architecture that enhances the CNN1D
model by an additional fully connected layer. The architecture comprises several
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Precision Recall F1-score
Validation data set 0.9511 0.7320 0.8273
Testing data set 0.9292 0.7090 0.8043

TABLE 5.6: Detailed metrics of the CNN1D model with tuned hyper-
parameters.

1D convolutional blocks, the bottleneck, and several 1D transposed convolutional
blocks. The bottleneck is the only difference from the CNN1D model.

The architecture with tuned hyperparameters consists of two 1D convolutional
blocks with 220 and 409 feature maps (the encoder). The kernel size of the convolu-
tional layers is 7. Next, the bottleneck has 945 neurons. Finally, three 1D transposed
convolutional blocks form the decoder. The number of feature maps in individual
blocks is 405, 58, and 100, respectively. The kernel size of the transposed convolu-
tional layers is 5. The model expects 28 log lines in the input. We trained the model
for eight epochs with the learning rate 0.0007. The batch size was experimentally
set to 8. The decision threshold is 0.0075, and the performance of this model on the
metrics is shown in Table 5.7. Moreover, the histogram of the reconstruction error
on the testing data set is depicted in Figure 5.1.

The AECNN1D model confirmed that adding a fully connected bottleneck helps
the model to compress the information thoroughly. In addition, this model achieved
the highest F1-score metric on the testing data set among all embedding-based mo-
dels.

Precision Recall F1-score
Validation data set 0.8274 0.8799 0.8528
Testing data set 0.8447 0.8753 0.8597

TABLE 5.7: Detailed metrics of the AECNN1D model with tuned hy-
perparameters. Interestingly, the model performed slightly better on
the testing data set than on the validation data set in terms of the F1-

score.

5.2.5 CNN1DTCN model

As both the CNN1D model and the AETCN model showed promising results, we
proposed their combination. The idea behind the CNN1DTCN model is as follows.
Initially, 1D convolutional blocks extract local dependencies. Next, TCN blocks are
plugged in as they can forward the information to all output neurons. Moreover,
TCN might be viewed as the bottleneck of the model. Finally, 1D transposed convo-
lutional blocks reconstruct the information back to the same shape as the input.

The best architecture contains three 1D convolutional blocks, three TCN blocks,
and three 1D transposed convolutional blocks. The individual blocks consist of 68,
115, and 486 feature maps (1D convolutional blocks), 98, 394, and 498 feature maps
(TCN blocks), 497, 275, and 100 feature maps (1D transposed convolutional blocks).
The kernel size of convolutional layers is 3, and the kernel size of transposed con-
volutional layers is 13. The TCN blocks have the dropout with 0.3087 probability of
skipping a particular connection between neurons. The batch size is 64. The model
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FIGURE 5.1: The histogram of the reconstruction error on the testing
data set. The reconstruction error is computed as the MSE (Equation
4.4). The decision threshold θ∗ had been estimated on the validation
data set, and then the threshold was used for the classification. All

data points with greater MSE than θ∗ are classified as anomalies.

was trained for six epochs with the learning rate 0.0005. The block size was experi-
mentally set to 49 log lines, which most blocks fulfill and only a minority of blocks
have to be cropped. The optimal decision threshold is 0.0029. Table 5.8 shows the
performance of the model on the metrics. The achieved F1-scores on validation and
testing data sets showed that the combination of TCN blocks and 1D convolutional
layers forming an autoencoder-based model could perform better than the individ-
ual CNN1D or TCN models.

Precision Recall F1-score
Validation data set 0.9549 0.7406 0.8342
Testing data set 0.9454 0.7197 0.8173

TABLE 5.8: Detailed metrics of the CNN1DTCN model with tuned
hyperparameters.

5.2.6 CNN2D model

Naturally, once we explored the possibilities of 1D convolutional layers, we focused
on 2D convolutional layers. The main difference is in the shape of an input matrix.
A particular kernel of the 1D convolutional layer convolves across the log lines, and
the embedding dimension is viewed as the number of input channels. In contrast,
the 2D convolutional layer convolves across the whole matrix, i.e., both the log lines
and the embedding dimension. Therefore, the kernel size is not a single integer but
a tuple of two numbers. The dimension of input channels must be artificially added,
and it equals one. Therefore, the input shape of a standalone tensor has three dimen-
sions. The 2D convolutional and 2D transposed convolutional blocks look similar to
1D convolutional and 1D transposed convolutional blocks. The only difference is
that 1D convolutional and 1D transposed convolutional layers are substituted with
2D convolutional and 2D transposed convolutional layers, respectively.
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The model with tuned hyperparameters has six blocks, three 2D convolutional
blocks, and three 2D transposed convolutional blocks. The 2D convolutional blocks
consist of 28, 199, and 250 feature maps (the encoder). On the contrary, the 2D trans-
posed convolutional blocks consist of 236, 131, and 1 feature map (the decoder).
Akin to the last blocks in other models, the last block has to be in agreement with
the input number of feature maps. The kernel size of the 2D convolutional blocks
is a tuple with the height 5 and the width 3. The kernel size of the 2D transposed
convolutional blocks is a tuple with dimensions 15 and 7. The batch size is 32, and
the block size is 41 log lines. We trained the model for four epochs with the learning
rate 0.0005. The decision threshold is 0.0046.

The performance of the model is depicted in Table 5.9. Surprisingly, adding
a fully connected layer as the bottleneck did not improve the performance of the
model on the metrics. Therefore, we did not further explore such architecture. More-
over, the models with 2D convolutional layers performed generally worse than the
models leveraging 1D convolutional layers. The CNN1D model also has a lower
number of trainable parameters by order of magnitude than the CNN2D model, as
depicted in Table 5.15.

Precision Recall F1-score
Validation data set 0.9172 0.7234 0.8089
Testing data set 0.8943 0.7084 0.7906

TABLE 5.9: Detailed metrics of the CNN2D model with tuned hyper-
parameters.

5.2.7 SACNN1D

Once we exhausted all possibilities of convolutional layers, we concentrated on
transformer-based models. The main building block of a transformer is the self-
attention mechanism; recall Section 2.3. This layer is designed directly to work with
sequences. Therefore, no additional changes to the architecture were required.

The optimized architecture comprises two 1D convolutional blocks with 128 and
269 feature maps, respectively. The kernel size of each convolutional block is 7. Next,
the 269-head self-attention layer follows. Finally, three 1D transposed convolutional
blocks with the 1-head self-attention layer after the second 1D transposed convolu-
tional block follow. The kernel size of each 1D transposed convolutional block is 9.
The self-attention layer uses the dropout, and the dropout is set to 0.2891 for both
self-attention layers. The batch size is set to 64. The model utilizes 35 log lines for the
input. The model was trained for six epochs with the learning rate 0.0007. The deci-
sion threshold is set to 0.0026. The performance of the model is shown in Table 5.10.
The model achieved almost the identical performance as the CNN1D model on the
validation data set, but the SACNN1D model generalized better than the CNN1D
model on the testing data set. Furthermore, the difference in the numbers of train-
able parameters of both comparing models is negligible; see Table 5.15.

5.2.8 SACNN2D

Exploring the 2D self-attention layer comes quite naturally once we experimented
with the 1D self-attention mechanism. Unfortunately, 2D self-attention mechanism
is not straightforward. Especially, handling matrices instead of sequences makes it
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Precision Recall F1-score
Validation data set 0.9442 0.7373 0.8280
Testing data set 0.9300 0.7179 0.8103

TABLE 5.10: Detailed metrics of the SACNN1D model with self-
attention layers and tuned hyperparameters.

difficult. We were inspired by the authors [18, 64]. Our proposed architecture of the
2D self-attention layer is depicted in Figure 4.5. Since the architecture is complex,
we used the 2D self-attention layer as the bottleneck of the model. The bottleneck is
controlled by the number of feature maps in the 2D self-attention layer. The 2D con-
volutional and 2D transposed convolutional blocks are the same as in the CNN2D
model.

The optimal architecture of the SACNN2D model consists of two 2D convolu-
tional blocks with 204 and 328 feature maps, respectively. Next, the 2D self-attention
layer with 81 feature maps follows. Furthermore, the model contains two 2D trans-
posed convolutional blocks with 80 and 1 feature maps, respectively. The kernel size
of 2D convolutional blocks is a two-dimensional tuple — 5 and 3, precisely. The ker-
nel size of 2D transposed convolutional blocks is also a two-dimensional tuple — 7
and 9. The block size is 29 log lines, and the batch size is 8. We trained the model for
four epochs with the learning rate 0.0012. The decision threshold is 0.0150, which
suggests itself that the model cannot efficiently reconstruct the input. The perfor-
mance of the model on the metrics also supports this claim; see Table 5.11. The
SACNN2D model achieved the worst performance on both validation and testing
data sets among all proposed embedding-based models; see Table 5.14.

Precision Recall F1-score
Validation data set 0.9682 0.6640 0.7878
Testing data set 0.9470 0.6479 0.7694

TABLE 5.11: Detailed metrics of the SACNN2D model with the 2D
self-attention layer and tuned hyperparameters.

5.3 Hybrid models

We used the AETCN model for feature extraction. The input of hybrid models is the
output of the bottleneck from a particular trained instance of the AETCN model. The
bottleneck may be viewed as newly compressed embeddings. We did not use the
AETCN model, which achieved the highest performance on the metrics, but rather
an instance of the AETCN model with a relatively low-dimensional bottleneck. Nev-
ertheless, the chosen model did not achieve statistically significantly worse perfor-
mance than the best-reported model; see more details of the tuned AETCN model in
Subsection 5.2.2.

The output bottleneck dimension of the used the AETCN model equals 106. We
leveraged the features obtained before applying the ReLU activation function. Oth-
erwise, only 35 neurons would remain non-zero on average, i.e., approximately 67%
of neurons are nullified. The obtained features are always scaled such that the mean
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equals zero and the standard deviation is equal to one. Next, a particular model is
trained on the scaled features.

Finally, we started with the Isolation Trees model and compared its performance
with a vanilla autoencoder.

5.3.1 Isolation Trees and AETCN

We used the features from the AETCN bottleneck as the input to the Isolation Trees
model. Since the dimension of the newly created embeddings is greater than the
dimension of the baseline (bag-of-words) approach, we hoped that the new features
might capture more information.

The optimized unsupervised model uses 97 out of 106 features, has 645 trees, and
is fit only on 3% of the training examples. The training data set consists of 465,798
blocks. Interestingly, the model leverages only 13,973 blocks to train individual trees.
Nevertheless, the most optimal hyperparameters might be slightly different since
we used a grid search for hyperparameter tuning. Table 5.12 shows the achieved
performance on the validation and testing data sets. The performance is worse than
the performance achieved by the standalone Isolation Trees model. The issues might
arise from the loss of relevant information in the bottleneck of the AETCN model or
high-dimensional input data.

Precision Recall F1-score
Validation data set 0.8168 0.5122 0.6296
Testing data set 0.7964 0.5018 0.6157

TABLE 5.12: Detailed metrics of the tuned hybrid model, which com-
prises the AETCN model and the Isolation Trees model.

5.3.2 Vanilla autoencoder and AETCN

Akin to the previous hybrid model, information gain was expected as the newly
created embeddings have a higher dimension. Moreover, the idea of building an au-
toencoder on top of one or multiple autoencoders has been thoroughly studied and
showed promising results [65].

The hyperparameters of this hybrid model were tuned using a random search
since the number of hyperparameters is enormous. The optimal model consists of
an encoder and a decoder. The encoder contains fully connected layers with 453,
452, 447, 346, 201, and 116 neurons. The decoder comprises three fully connected
layers with 125, 478, and 106 neurons. The batch size equals 32, and the dropout is
set to 0.0218. We trained the model for eight epochs with the learning rate 0.0002.
The decision threshold is equal to 0.2052. The performance of the model is depicted
in Table 5.13. Akin to the previous hybrid model, the performance is worse than the
performance achieved by the standalone vanilla autoencoder.

5.4 Discussion

The initial experiments showed that unsupervised models could compete with semi-
supervised models, namely autoencoder-based models, in terms of the F1-score. The
Isolation Trees algorithm significantly outperforms the LOF model on both valida-
tion and testing data sets. Moreover, the Isolation Trees model performs similarly
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Precision Recall F1-score
Validation data set 0.9125 0.6950 0.7891
Testing data set 0.9013 0.6829 0.7770

TABLE 5.13: Detailed metrics of the tuned hybrid model, which com-
prises the AETCN model and the vanilla autoencoder model.

to multiple models which utilize embeddings created by the trained fastText model,
see Table 5.14. The vanilla autoencoder, Isolation Trees, and LOF models leverage
bag-of-words representation as the input of a particular model. The vanilla autoen-
coder achieved the best F1-score on the testing data set, 0.8779 precisely. It emerged
that this was the highest reported F1-score overall.

Model Validation F1-score Testing F1-score
Local Outlier Factor 0.6062 0.5866
Isolation Trees 0.8155 0.8086
Vanilla autoencoder 0.8696 0.8779
TCN 0.5545 0.5334
CNN1D 0.8273 0.8043
CNN2D 0.8089 0.7906
CNN1DTCN 0.8342 0.8173
AETCN 0.8400 0.8168
AECNN1D 0.8528 0.8597
SACNN1D 0.8280 0.8103
SACNN2D 0.7878 0.7694
Isolation Trees and AETCN 0.6296 0.6157
Vanilla autoencoder and AETCN 0.7891 0.7770

TABLE 5.14: This table shows the results on the validation and test-
ing data sets per each model. The orange color highlights the base-
line models. On the other hand, the blue color highlights the hybrid
models. The green color highlights the model with the overall best
performance on the HDFS data set. At the same time, the purple
color highlights the most promising model which operates with em-

beddings.

Next, the TCN model can almost learn the identity function, but it is not desir-
able as we need a model capable of distinguishing normal and anomalous classes.
The performance of the TCN model is 0.5334, which is the worst reported result
in this thesis. A characteristic feature of the TCN-based models is the complexity
and the number of trainable parameters; see Table 5.15. Three out of four models
with the highest number of trainable parameters are the TCN-based models. How-
ever, the TCN-based models are beneficial with the fully connected bottleneck. The
AETCN model outperforms most of the proposed models on the validation data set
with the F1-score equal to 0.8400. Nevertheless, the difference between the F1-score
on the validation data set and the testing data set is the highest among all models.
Specifically, the decrease in the F1-score is 0.0232.

The CNN1D model outperforms the CNN2D model. Moreover, the CNN1D
has approximately ten times fewer trainable parameters than the CNN2D model;
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see Table 5.15. The answer to the diverse performance might be found fundamen-
tally in convolutional layers. The 1D convolutional kernel convolves only across log
lines. The embedding dimension is viewed as a number of input channels. Even
though the input is a two-dimensional matrix, only the dimension, which represents
log lines, is spatial. On the contrary, the 2D convolutional kernel convolves across
both dimensions. A fully connected bottleneck further boosts the performance of
the CNN1D model, which we named the AECNN1D model. The AECNN1D model
achieved the highest F1-score of all models operating with embeddings.

We also explored the models with the self-attention mechanisms, as many state-
of-the-art architectures in the NLP domain incorporate self-attention layers. The tra-
ditional self-attention layer proposed by authors [16] can fully substitute the 1D con-
volutional layer once certain conditions are met [20, 22]. Adapting the self-attention
layer still shows room for further improvement, such as a complete replacement of
1D convolutional layers with self-attention layers. The SACNN1D model achieved
a statistically similar F1-score to other models leveraging the 1D convolutional layer;
see Table 5.14. On the contrary, the SACNN2D model could not compete with other
models, which has several explanations. Firstly, the 2D convolutional layer might
not be suitable for log files, as mentioned above. Secondly, the proposed architec-
ture contains only one self-attention layer, which is very complex. Therefore, the
self-attention mechanism for higher dimensional data needs further investigation.

Finally, we proposed models which leverage the AETCN model. The bottleneck
extracts essential features which are further used as a one-dimensional input vector
for another model. We tried first the Isolation Trees model since it achieved high per-
formance on the testing data set. Akin to the Isolation Trees model, we also trained
the vanilla autoencoder. Neither the unsupervised model (Isolation Trees) nor the
semi-supervised model (vanilla autoencoder) achieved the F1-score comparable to
other models; see Table 5.14. The explanation might involve the sparse feature vec-
tor — recall that, on average, only 35 neurons remain non-zero after applying the
ReLU activation function. We may use the AECNN1D for feature extraction instead
of the AETCNN model in the future.

Model Number of parameters
TCN 11,250,450
CNN1D 910,859
CNN2D 10,286,030
CNN1DTCN 7,938,214
AETCN 16,136,818
AECNN1D 3,307,510
SACNN1D 1,287,178
SACNN2D 2,772,356
Vanilla autoencoder 114,612
Vanilla autoencoder and AETCN 829,984

TABLE 5.15: This table shows the number of trainable parameters per
each proposed neural network. The orange color highlights a baseline
model. On the other hand, the blue color highlights a hybrid model.



49

Chapter 6

Conclusion

Anomaly detection methods can monitor the behavior of a distributed system in
a data center and can detect an anomalous state of a particular machine. With
the current demand for cloud services, providing highly available and error-free
services has become increasingly important. High availability of services can be
achieved by quickly identifying the root cause, and generating logs is one possible
solution. Nowadays, no company can afford to inspect log files manually. Therefore,
there is a surge of interest in developing methods which can automatically detect
anomalous behavior with high accuracy.

Our intensive research confirmed that many existing solutions still depend on
log parsing. The main disadvantage of this approach is caused by not using the
whole log line but rather only an extracted log key. Moreover, there arises a problem
of handling unseen log keys, which might appear in a testing data set. However,
other approaches exist which utilize the information hidden in semi-structured data,
such as log files. Therefore, we leveraged a trained fastText model, which converts
a particular log line into a continuous vector representation, known as a sentence
embedding. This approach eliminates the limitation of using only an extracted log
key. Furthermore, the fastText library can generalize the underlying semantics. It
can create an embedding vector even for an unseen log line, and thus there is no
need to retrain the model frequently.

We described the HDFS data set, which contains more than 11 million log lines.
We proved the difficulty of the anomaly detection task applied to log files by the
first baseline experiments. The baseline methods use a simplified feature extraction
based on log parsing and the weighting TF-IDF technique. We selected the Isolation
Trees and the Local Outlier Factor models and implemented a vanilla autoencoder as
a more advanced baseline method. The hyperparameters of the Isolation Trees and
the Local Outlier Factor models were tuned using a grid search. However, due to the
immense number of hyperparameters of the vanilla autoencoder, we tuned its hy-
perparameters using a random search. Next, we proposed novel autoencoder-based
models leveraging the information provided by the trained fastText model. We com-
prehensively evaluated 13 different autoencoder-based models and conducted addi-
tional experiments, which did not achieve promising results. The models comprise
the temporal convolutional layers, the convolutional and transposed convolutional
layers, or the self-attention mechanism. Moreover, we experimented also with hy-
brid models, which combine the AETCN model with another model. Each model
was trained on the training data set, and its hyperparameters were exhaustively op-
timized using a random search. The hypothesis assumes that the underlying prob-
ability distribution of normally-labeled samples retains the specific information dis-
tinguishing between the normal and anomalous classes. Therefore, the models were
trained in a semi-supervised manner.
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The vanilla autoencoder trained on the simplified extracted features achieved
the overall best performance on the testing data set — the F1-score was equal to
0.8779. On the contrary, the AECNN1D model outperformed all other proposed
models with the F1-score equals 0.8597 on the testing data set. The performance of
both mentioned models is comparable regarding the achieved F1-score. Moreover,
the AECNN1D model utilizes the embedding representation and is generally appli-
cable to deploying into the production since no additional requirements or periodic
retraining is necessary.

Future work may extend the proposed models by further research in the NLP do-
main. We believe that the self-attention mechanism still poses new room for further
improvements. In addition, we initialized experiments with contextual embeddings.
Unfortunately, the early results did not show any exceptional embeddings, which
would provide more information than fastText embeddings. Finally, the concept of
transformer-based models might also be worth considering.
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